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Abstract
Matrix population models are widely used to assess population status and to inform

management decisions. Despite existing theories for building such models, model

construction is often partially based on expert opinion. So far, model structure has

received relatively little attention, although it may affect estimates of population

dynamics. Here, we assessed the consequences of two published matrix structures

(a 4 × 4 matrix based on expert opinion and a 10 × 10 matrix based on statistical

modeling) for estimates of vital rates and stochastic population dynamics of the

long-lived herb Astragalus scaphoides. We explored the ways in which choice of

model structure alters the accuracy (i.e., mean) and precision (i.e., variance) of

predicted population dynamics. We found that model structure had a negligible

effect on the accuracy and precision of vital rates and stochastic stage distribution.

However, the 10 × 10 matrix produced lower estimates of stochastic population

growth rates than the 4 × 4 matrix, and more accurately predicted the observed

trends in population abundance for three out of four study populations. Moreover,

estimates of realized variation in population growth rate due to fluctuations in pop-

ulation stage structure over time were occasionally sensitive to matrix structure,

suggesting differential roles of transient dynamics. Our study indicates that statisti-

cal modeling for choosing categories in matrix models might be preferable over

expert opinion to accurately predict population trends and can provide a more

objective way for model construction when the biological knowledge of the species

is limited.
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1 | INTRODUCTION

Matrix population models are widely used to assess popula-
tion status and to inform management decisions (e.g., Crone
et al., 2011; Crouse, Crowder, & Caswell, 1987; Menges,
2000; Öst, Ramula, Lindén, Karell, & Kilpi, 2016; Ramula,
Knight, Burns, & Buckley, 2008), as evidenced by the

accumulation of hundreds of matrices for different species
across taxa (Salguero-Gómez et al., 2015, 2016). In matrix
models, individuals are assigned into discrete categories
based on their age, size or life stages, and vital rates (the sur-
vival, growth, and fecundity of individuals) are then esti-
mated separately for each category (Caswell, 2001). Model
structure determines the amount of data per category in a
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matrix model, which may affect estimates of vital rates and,
consequently, estimates of population growth rate (Fiske,
Bruna, & Bolker, 2008). For a given data set, a smaller
matrix consists of more individuals per category than a
larger matrix, and therefore, might result in more precise
estimates of vital rates, given that vital rates within each cat-
egory are homogeneous enough (Moloney, 1986; Van-
dermeer, 1978). However, not all vital rates are necessarily
affected by matrix structure. As an example, vital rates that
fluctuate little over time (e.g., adult survival in long-lived
organisms) might be estimated reliably based on a small
number of individuals (Fiske et al., 2008).

While model structure may be relatively unimportant in
some cases, it can be important in others. For example,
matrix structure may have a minor effect on the long-term
population growth rate (e.g., Picard & Liang, 2014; Ten-
humberg, Tyre, & Rebarber, 2009) but a substantial effect
on short-term transient dynamics (Tenhumberg et al., 2009).
Transient dynamics is important in changing environments
and can play a major role particularly in reintroduced or
invasive populations that may not have reached their stable
stage structure (Ezard et al., 2010; Iles, Salguero-Gómez,
Adler, & Koons, 2016; Stott, Townley, & Hodgson, 2011).
A related phenomenon affects ordinary stochastic population
dynamics: realized variation in growth rate depends on both
variation in vital rates and variation in stage structure over
time (Ellis & Crone, 2013). Therefore, if we extrapolate
from extreme cases of transient dynamics, we would predict
that variation in stage structure is more important for larger
matrices than for smaller matrices. A previous comparative
study of stochastic population dynamics across different
plant species found that the relative contribution of variation
in stage structure to realized variation in population growth
rate increased with increasing matrix dimension, while the
relative contribution of variation in vital rates decreased with
increasing matrix dimension (McDonald, Stott, Townley, &
Hodgson, 2016). If matrix structure is critical to the conclu-
sions of sources for variability of population growth rate,
this may affect our interpretation of population dynamics,
and consequently, our conclusions on how to effectively
manage populations.

Ideally, individuals in the adjacent categories of matrix
models exhibit different vital rates. Despite the fact that the-
ories exist for how to choose categories for structured popu-
lation models (Merow et al., 2014; Moloney, 1986;
Salguero-Gómez & Plotkin, 2010; Vandermeer, 1978),
model structure is usually at least partially based on expert
opinion on relevant categories, for matrix models in particu-
lar. As a consequence, model structure varies among species
and sometimes even among populations of the same species
(e.g., Brys, Jacquemyn, Endels, de Blust, & Hermy, 2005;
Lehtilä, Syrjänen, Leimu, Begoña Garcia, & Ehrlén, 2006)

by either reflecting study aims, the biology and life history
of a given species (e.g., seed bank, dormant stages,
semelparity, iteroparity), and/or the amount of demographic
data available. For example, in published matrix population
models of plant and animal species, dimension varies from
two categories up to more than 20 categories (mean = 4 cat-
egories for plants; Salguero-Gómez et al., 2015, 2016), with
matrix dimension generally increasing with the amount of
data for perennial plants (Ramula, Rees, & Buckley, 2009).
We should mention here that matrix structure does not only
refer to matrix dimension, but it also refers to biological
assumptions underlying the model. A matrix model can be
constructed in different ways depending on, for example,
how vital rates are assumed to change when individuals sen-
esce (Tuomi et al., 2013) or undergo periods of prolonged
dormancy (Jäkäläniemi, Crone, Närhi, & Tuomi, 2011).

An alternative to expert opinion for choosing categories
in matrix population models is statistical modeling, in which
the variability of vital rates is explored a priori between
alternative categories. For instance, Jäkäläniemi et al. (2011)
used generalized linear mixed models (GLMMs) to test
whether vital rates for the perennial orchid, Epipactis
atrorubens, differed among dormant individuals with differ-
ent demographic history, and consequently, to inform
whether a single category or multiple dormant categories
were necessary to be included in a matrix population model.
As the statistical modeling is likely to be a more objective
way for choosing categories than expert opinion, it might
more accurately predict the long-term population growth
rate. However, this modeling approach is less frequently
used in practice (but see e.g., Jäkäläniemi et al., 2011, Gre-
mer, Crone, & Lesica, 2012, Alahuhta et al., 2017), and we
are not aware of studies that have compared estimates of sto-
chastic population dynamics between matrix models based
on expert opinion and statistical modeling.

Here, we used two published matrix structures to evalu-
ate dynamics of the long-lived perennial herb,
A. scaphoides, and to compare the ways in which choice of
matrix structure alters predicted population dynamics. For
this species, Lesica (1995) published a 4 × 4 matrix that was
constructed based on expert opinion (i.e., stage classes were
defined according to biological relevance), and Gremer et al.
(2012) later published a 10 × 10 matrix for which stage clas-
ses were chosen based on statistical modeling. For both
matrix structures, we estimated annual vital rates with
GLMMs rather than used observed data because this elegant
but underused technique reduces sampling variation
(Altwegg, Schaubb, & Roulin, 2007; Morris et al., 2011;
Williams & Crone, 2006). More specifically, we compared
both the accuracy and precision of estimates of vital rates (fit
with GLMMs), stochastic population growth rate and sto-
chastic stage distribution. We also compared the
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contributions of variability of vital rates and stage structure
to realized variation in growth rate. We predicted that
(a) estimates of binary vital rates would be more precise in
the smaller matrix due to more individuals per stage cate-
gory, while the larger matrix based on statistical modeling
would more accurately predict observed trends in population
abundance due to its finer biological resolution; (b) the over-
all estimates of average stochastic population growth rate
and stochastic stage distribution would be similar regardless
of matrix structure (i.e., point estimates would be similar
and their confidence intervals would overlap); and (c) the
two components of realized variation in population growth
rates—changes in vital rates and stage structure over time—
would depend on matrix structure, with the former being
smaller and the latter being larger in the 10 × 10 matrix than
in the 4 × 4 matrix. In other words, changes in vital rates
would decrease, while changes in stage structure would
increase with increasing matrix dimension.

2 | MATERIALS AND METHODS

2.1 | Study species and demographic data

A. scaphoides (Fabaceae) is an iteroparous, perennial herb
with an estimated life span of 21 years (Ehrlén & Lehtilä,
2002). It inhabits sagebrush steppe in Montana and Idaho,
and flowers with yellow inflorescences in May–June.
Median age to first reproduction is 3 years (Lesica, 1995),
after which high flower and seed production tend to occur in
alternate years (Crone, 2013; Crone & Lesica, 2004; Lesica,
1995), resulting in considerable fluctuations in vital rates
over time (Gremer et al., 2012). The species exhibits pro-
longed dormancy (i.e., nonseed stages stay belowground for
one or more years before re-emerging) with most dormancy
events only lasting 1 year (Gremer et al., 2012;
Lesica, 1995).

Demographic data were collected from four populations
of A. scaphoides; Sheep Corral Gulch (N45 06 21 latitude,
W113 02 44 longitude) and Reservoir Creek (N45 08 26,
W113 10 24) in Montana, and McDevitt Creek (N44 55 23,
W113 43 42) and Haynes Creek (N45 00 19, W113 42 06)
in Idaho by annually monitoring the fates (vegetative,
flowering, dormant) of plants in established transects (see
Lesica, 1995 for details). Plants with unbranched stems were
divided into those with more or less than six leaves (leaf
counts were not recorded), and the number of seed pods was
counted for flowering plants. The minimum and maximum
pairwise distances between the study populations were about
10 and 50 km, respectively. The surveys were initiated in
different years, but we used demographic data from the over-
lapping period 2003–2014 (12 years and 11 transition matri-
ces for each population) to enable comparisons among

populations. Final datasets contained on average
117 (±SD = 65.5) monitored individuals per year (see
Table S1 in Supporting Information for annual sample
sizes).

To examine the effect of matrix structure on estimates of
population parameters, we constructed 4 × 4 and 10 × 10
matrices based on the two previously published population
models. The 4 × 4 matrix, based on expert opinion, is struc-
turally identical to that previously used by Lesica (1995) and
Tenhumberg, Crone, Ramula, and Tyre (2018) for this spe-
cies, and consists of small vegetative plants (<6 leaves),
large vegetative plants (≥6 leaves), flowering plants, and
dormant plants. In this matrix, individuals from any stage
category can enter the dormant category and vice versa
(Figure 1a, Table S2 in Supporting Information). The
10 × 10 matrix is based on statistical modeling and, conse-
quently, differences in vital rates between adjacent stage cat-
egories (Gremer et al., 2012). This matrix mirrors the matrix

FIGURE 1 Life cycle graphs of the perennial herb Astragalus
scaphoides resulting in (a) a 4 × 4 matrix based on expert opinion and
(b) a 10 × 10 matrix based on statistical modeling. The arrows indicate
transitions between different life stages: small recruits (Rs), medium
recruits (Rm), small vegetative plants (S), medium vegetative plants
(M), large vegetative plants (L), flowering plants (F) and dormant
plants (Dx) reflecting different aboveground stages x before dormancy.
Dormant stages are circled with a dotted line
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used by Gremer et al. (2012) for Sheep Corral Gulch popula-
tion except that it does not contain a short-term seed bank
because no evidence for seed dormancy was found in a sta-
tistical analysis across all four study populations (Table S3
in Supporting Information). The stage classes in the 10 × 10
matrix are: small recruits (newly emerged plants with <6
leaves), medium recruits (newly emerged plants with 6 or
more leaves including flowering plants), small vegetative
plants (<6 leaves), medium vegetative plants (6 or more
leaves), large vegetative plants (evidence of aboveground
branching), flowering plants, small dormants (defined as in
Gremer et al., 2012 based on the state before dormancy),
medium dormants, large dormants and flowering dormants
(Figure 1b). Therefore, the larger matrix contains multiple
dormant categories and individuals from a given nondor-
mant stage category can enter a corresponding dormant cate-
gory only and vice versa (Figure 1b, Table S2). Moreover,
the 10 × 10 matrix distinguishes new recruits from older
vegetative plants that have emerged earlier, while they are
pooled with vegetative stages in the 4 × 4 matrix (Figure 1,
Table S2).

For each matrix structure, we estimated vital rates using
GLMMs to account for sampling variation that can bias
annual estimates (Appendix S1 in Supporting Information).
Although some studies have used GLMMs to estimate vital
rates (e.g., Altwegg et al., 2007; Gremer et al., 2012;
Jäkäläniemi, Ramula, & Tuomi, 2013; Morris et al., 2011;
Tye, Dahlgren, Øien, Moen, & Sletvold, 2018; Williams &
Crone, 2006), this approach is still poorly known among
demographers. Following Morris and Doak (2002), we ana-
lyzed stage transitions as conditional vital rates
(i.e., survival, flowering probability conditioned on survival,
dormancy conditioned on survival and not flowering, and
growth conditioned on survival and not flowering or not
being dormant; see Tables S2, S4 in Supporting Informa-
tion). We used binomial family, logit link GLMMs to esti-
mate conditional vital rates (function “glmer” in the lme4
package in R 3.5.1; R Development Core Team, 2018).
Annual offspring production was estimated with a Poisson
family, log link GLMM using the number of recruits at year
t + 1 as a response variable and the log-number of flowering
plants +1 at year t as an offset (1 was added to enable ana-
lyses for years when no flowering plants were observed). All
statistical models included an intercept only with year as a
random effect to produce annual estimates of vital rates after
correcting for varying sample size. If annual estimates of vital
rates were not possible to calculate due to missing data for a
given year, we used the model intercept, that is, the maxi-
mum likelihood estimate of the average on a link scale. Using
year as a random effect in statistical models for individual
vital rates reduces sampling variation resulted from different
sample sizes over the study period (Altwegg et al., 2007;

Morris et al., 2011; Williams & Crone, 2006), making this
estimation method preferable to the traditional way of con-
structing matrix models that directly utilizes observed transi-
tions without attempts to control for sampling variation.

2.2 | Accuracy and precision of vital rates

To compare the accuracy and precision of vital rates
between the two matrix structures, we calculated the mean
and standard error of back-transformed binary vital rates
(survival, flowering probability conditioned on surviving,
dormancy conditioned on surviving and the probability of
transitioning to large plants conditioned on surviving,
12 vital rates in total; Figure 2) using the “delta method”
function in the msm package of R (Jackson, 2011). This
function (based on a Markov multistate model fit by maxi-
mum likelihood) enabled us to calculate the standard error of
the weighted mean of vital rates for the larger 10 × 10
matrix according to the vital rates from the smaller 4 × 4
matrix. Note that the survival and flowering probability of
flowering plants, as well as the survival of dormant individ-
uals are identical in both matrix structures and were not con-
sidered (Figure 1). Similarly, the fecundity transitions were
excluded from this comparison as our a priori prediction did
not hold for them (sample sizes are smaller in the smaller
matrix than in the larger matrix, and the main fecundity tran-
sition from flowering plants to small plants is identical in
both matrix structures). We then examined differences in the
means and standard errors of these 12 binary vital rates
between the two matrices. As the means represented different
types of vital rates, we first tested differences in the point esti-
mates between the two structures separately for each vital rate
using a t test (based on their means and associated errors). To
summarize the outcomes of these multiple individual tests,
we used an empirical adaptation of Brown's method (function
“empiricalBrownsMethod” in the EmpiricalBrownsMethod R
package; Poole, 2018), which is an extension of Fisher's
method and tests overall differences among dependent com-
parisons in each population (Poole, Gibbs, Shmulevich, Ber-
nard, & Knijnengburg, 2016). For the standard errors, we
tested a directed hypothesis (i.e., estimates from the smaller
matrix would be more precise) with a paired t test in R. The
paired t test was used to consider the dependence of the vital
rates estimated from the two matrix structures. We ran again
comparisons separately for each population.

2.3 | Stochastic population dynamics and
realized variation in growth rate

To explore estimates of population parameters resulting
from the two matrix structures for each population, we used
a matrix selection method. The selection of matrices is a
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commonly used approach that maintains observed covari-
ances among vital rates and typically includes between-year
variation in them (Morris & Doak, 2002). To consider
parameter uncertainty, we first sampled vital rates from a
normal distribution based on their annual means (coeffi-
cients from GLMMs on logit and log scales for binary and
fecundity rates, respectively) and standard errors (for annual
estimates, extracted from GLMMs), and constructed a new
set of 11 transition matrices per population (see Appendix
S1 in Supporting Information for details). In cases where
there were no data for a given vital rate in a given year, we
used the ML coefficient and standard deviation estimated
across years. All vital rates were back-transformed for the
matrix models. We then simulated density-independent sto-
chastic dynamics for 500 years with 1,000 replicates by ran-
domly selecting a matrix from a set of new matrices (n = 11
per matrix structure) based on equal probabilities. This pro-
cedure was repeated 100 times, with each simulation con-
sisting of a new set of vital rates per 1,000 replicates. All
simulations were started from the same number of individ-
uals that were equally distributed among different matrix
stages. Stochastic population growth rate (log λs) was calcu-
lated based on the logarithm of population sizes from two

consecutive years over time, averaging them across 1,000 repli-
cates and further across 100 simulations. The first 100 years
were discarded to achieve stochastic steady state dynamics.
Using a larger number of simulations or replicates had a mini-
mal effect on model outputs (S. Ramula, unpublished). In addi-
tion to stochastic growth rate, we calculated average stochastic
stage distribution from these simulations for each population.
To enable comparison of stochastic stage distributions between
the two matrix structures, we summed the stage distribution of
the larger 10 × 10 matrix to correspond the structure of the
smaller matrix: stages 1–2 represented small vegetative plants,
stages 3–5 represented large vegetative plants and stages 7–10
represented dormant plants, while stage 6 (flowering plants)
was identical in both matrix structures.

We assessed the accuracy of the stochastic population growth
rates (estimated above) by comparing them to the growth rates
calculated from population abundances during the study period,
hereafter rabundance (Table S1). We calculated rabundance with a
Poisson family, log-link GLMM using the number of plants dur-
ing 2004–2014 as a response variable and the log-number of
plants from the previous year (2003–2013) as an offset, year was
included as a random intercept in the model.

FIGURE 2 Accuracy (mean) and precision (±SE) of binary vital rates estimated using two matrix structures for four populations of the
perennial herb Astragalus scaphoides (a–d). To enable comparison of vital rates, weighted means based on the delta method were used for the larger
matrix (see Section 2 for details). Abbreviations for the conditional vital rates considered are: survival of small (sS) and large plants (sL); flowering
probability of small (pFS), large (pFL), and dormant plants (pFD); dormancy conditioned on surviving of small (pDS), large (pDL), and dormant
(pDD) plants; probability of transitioning to large plants from small (LS), large (LL), dormant (LD) and flowering (LF) plants conditioned on surviving
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To partition realized variation in growth rate of
A. scaphoides into two different components (variation in
vital rates and variation in stage structure over time), we
followed the method and calculations described in Ellis and

Crone (2013). This method separates the part of the
observed annual population growth rate between two time-
steps that is due to variation in vital rates (demographic vari-
ation) from the part that is due to fluctuations in population
stage structure. For each population, we simulated stochastic
density-independent dynamics as above and calculated the
observed annual population growth rate (robs) between
t = 500 and t = 501 as log(Σ(A500n500)/Σn500), where A500

denotes the transition matrix and n500 denotes population
stage structure from 500th time step. The component due to
the difference in vital rates over time (rVR) was calculated as
the logarithm of the dominant eigenvalue of A500, and the
component due to variation in stage structure (rSS) was cal-
culated as as log(Σ(A500/λ500n500)/Σn500). Note that rVR and
rSS sum to robs (Ellis & Crone, 2013). To quantify dependen-
cies, Pearson's correlation coefficients were then calculated
between robs and rVR, and between robs and rSS (Ellis &
Crone, 2013) across 100 simulations, with each simulation
consisting of 1,000 replicates.

3 | RESULTS

3.1 | Accuracy and precision of vital rates

Comparison of the 4 × 4 and 10 × 10 matrices revealed
that the accuracy (i.e., mean) of vital rates differed

FIGURE 3 Stochastic population growth rates (mean ± 95% CI
calculated across 100 simulations with each consisting of 1,000
replicates) resulting from two matrix structures (4 × 4 and 10 × 10)
and growth rates calculated from observed population abundances
(rabundance) using a generalized linear mixed model for four populations
of the perennial herb Astragalus scaphoides (a–d). Note that CIs are
sometimes small and therefore invisible at the current scale

FIGURE 4 Observed stochastic stage distribution (mean ± 95% CI calculated across 100 simulations with each consisting of 1,000 replicates)
resulting from two matrix structures (4 × 4 and 10 × 10) for four populations of the perennial herb Astragalus scaphoides. The stages of the larger matrix
are summed to correspond to those of the smaller matrix (see Section 2 for details). Significant differences in the estimates between the two matrix structures
(defined as nonoverlapping CIs) are indicated by asterisks. Note that CIs are sometimes small and therefore invisible at the current scale
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statistically significantly only in one (McDevitt Creek)
out of four populations of A. scaphoides (Table S5 in
Supporting Information). However, the differences in the
vital rates were not systematic but depended on a vital
rate in question (Figure 2b). The precision (i.e., standard
error) of the vital rates did not differ between matrix
structures in any of the four study populations (p > .10
for all paired t tests, df = 11, Table S5 in Supporting
Information, Figure 2).

3.2 | Stochastic population dynamics and
realized variation in growth rate

Matrix structure affected both the accuracy (mean) and pre-
cision (confidence intervals) of growth rate estimates in
A. scaphoides (Figure 3). The larger matrix produced lower
estimates of stochastic population growth rate than the
smaller matrix in three out of four populations (Sheep Corral
Gulch, McDevittt Creek, Haynes Creek; Figure 3). Compari-
son of these growth rate estimates with the population
growth rate calculated from annual abundances during the
study period revealed that the larger matrix based on statisti-
cal modeling more accurately predicted the observed trends
in all but Reservoir Creek population, for which both struc-
tures produced identical estimates (Figure 3). However, both
model structures performed poorly and overestimated
growth rate particularly in Sheep Corral Gulch population
(Figure 3). In addition to higher accuracy, the larger matrix
tended to be more precise in two of four populations (Sheep
Corral Gulch, Haynes Creek), resulting in narrower confi-
dence intervals for stochastic population growth rate
(Figure 3).

When matched to equivalent life stages, estimates of
observed stochastic stage distributions were qualitatively
identical between the two matrix structures in all
populations, although they often differed significantly nearly
for all life stages (Figure 4).

The proportion of realized variation in population growth
rate that was due to the variability of vital rates over time
was generally unaffected by matrix structure in the four
study populations (Figure 5a). The estimate of realized vari-
ation in population growth rate that was due to the variabil-
ity of population stage structure was clearly sensitive to
matrix structure in two out of four populations (Sheep Corral
Gulch, McDevitt Creek), with the larger matrix resulting in a
stronger correlation between observed growth rate and the
variability of stage structure than the smaller matrix
(Figure 5b).

4 | DISCUSSION

The ability of structured demographic models to accurately
predict population dynamics has been debated
(e.g., Beissinger & Westphal, 1998; Ellner, Fieberg,
Ludwig, & Wilcox, 2002), with previous studies primarily
focusing on issues related to data quality, the length of the
prediction interval and density dependence
(e.g., Beissinger & Westphal, 1998; Crone et al., 2013;
Doak, Gross, & Morris, 2005; Gross, 2002; Münzbergová &
Ehrlén, 2005; Rueda-Cediel, Anderson, Regan, & Regan,
2018). However, model structure itself has received less
attention despite the fact that structured models (matrix

FIGURE 5 Pearson's correlation coefficients (mean ± 95%
CI calculated across 100 simulations with each consisting of 1,000
replicates) between (a) observed growth rate and (b) components
of realized variation in growth rate resulting from two matrix
structures (4 × 4 and 10 × 10) for four population of the perennial
herb Astragalus scaphoides. Abbreviations are:
observed = observed growth rate between two consecutive time
steps (robs), VR = realized variation in growth rate due to the
variability of vital rates (rVR) and SS = realized variation in
growth rate due to the variability of population stage
structure (rSS)
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models in particular) are usually constructed based on expert
opinion with limited objective guidelines for choosing cate-
gories. In the present study, we assessed the consequences
of two published matrix structures (the 4 × 4 matrix based
on expert opinion and the 10 × 10 based on statistical
modeling) for estimates of vital rates and predictions of sto-
chastic population dynamics of the long-lived herb,
A. scaphoides. In contrast to our prediction, matrix structure
had a negligible effect on the accuracy or precision of binary
vital rates (estimated using GLMMs) for the study species
suggesting that the larger sample size per stage category
(and reduced sampling error) in the 4 × 4 matrix did not
improve the estimates of vital rate. This finding may be due
to increased heterogeneity among individual plants within
each category in the smaller matrix (i.e., larger distribution
error), which leveled off the positive effect of decreased
sampling error on vital rates. These two types of error are
usually adversely affected by matrix dimension; distribution
error tends to increase with increasing matrix dimension,
while sampling error tends to decrease (Vandermeer, 1978).

4.1 | Model structure can affect predictions of
stochastic population dynamics

Our findings suggest that the statistical comparison of all
vital rates simultaneously between alternative matrix struc-
tures is not necessarily informative about population-level
consequences; the lack of statistically significant differences
in the accuracy and precision of vital rates between matrix
structures still resulted in different estimates of stochastic
population growth rates for A. scaphoides. The larger
10 × 10 matrix based on statistical modeling produced lower
estimates of stochastic population growth rates for three out
of four populations of A. scaphoides than the smaller 4 × 4
matrix based on expert opinion. This result somewhat con-
trasts with previous studies that have found stochastic popu-
lation growth rate to be insensitive to matrix dimension
(Picard & Liang, 2014; Tenhumberg et al., 2009). However,
our result is in line with findings for perennial plants
(Ramula et al., 2009; Ramula & Lehtilä, 2005; Rojas-
Sandoval & Meléndez-Ackerman, 2013), which have
reported growth rates to decrease with increasing matrix
dimension, with larger matrices being often more accurate
and precise. In the present study, the larger matrix more
accurately predicted observed trends in population abun-
dances in three out of four populations and produced also
more precise estimates in two of them. The higher model
accuracy and precision are probably due to the larger matrix
describing the life-cycle of the study species in more detail
by distinguishing new recruits from older vegetative plants,
while these life stages are pooled in the smaller matrix
(Figure 1). Such pooling can result in increased

heterogeneity within stage categories (Vandermeer, 1978),
which overestimates the survival and growth of these new
recruits. A visual assessment of different vital rates reveals
that the smaller matrix indeed produced a considerably
higher estimate for the transitions from small and large vege-
tative plants to large vegetative plants (pLS, pLL) than the
larger matrix in all four study populations (Figure 2), which
might have had an additive effect on population dynamics,
leading to the differences in stochastic population growth
rates. Moreover, for the smaller matrix, parameter uncer-
tainty included in the stochastic simulations resulted in over-
estimates of many vital rates compared to their average
values estimated across years (Figure S1 in Supporting
Information; results shown for the 4 × 4 matrix only).

The consequences of biased estimates of vital rates for
stochastic population dynamics partially depend on the sen-
sitivity of population growth rate to given vital rates. The
low precision of a vital rate with high sensitivity to relative
perturbations usually has the most dramatic impact on popu-
lation estimates (Gross, 2002). For example, population
dynamics of declining populations of long-lived perennial
herbs, such as those of A. scaphoides, tend to be more sensi-
tive to proportional changes in survival than those in growth
and fecundity (de Kroon, van Groenendael, & Ehrlén, 2000;
Oostermeijer, Brugman, de Boer, & den Nijs, 1996). It
should be noted though that both matrix structures failed to
predict stochastic population growth rate in one of four study
populations and produced over-optimistic estimates of popu-
lation viability compared to observed growth rates estimated
from population abundances. Such a mismatch between the
observed and predicted population growth rates might be
due to ignoring temporal autocorrelation in vital rates
(i.e., the environment was assumed to vary randomly over
time). Since A. scaphoides tends to reproduce in alternate
years (Crone, 2013; Crone & Lesica, 2004; Lesica, 1995),
some vital rates might exhibit a negative temporal autocorre-
lation. Although negative temporal autocorrelation usually
alleviates the effect of environmental variation on population
dynamics (Lande, Engen, & Saether, 2003, p. 34), the oppo-
site has been reported for rare perennial plants, in which it
reduces population growth rate (Buckley et al., 2010).

In addition to population growth rate, matrix structure
may influence other population parameters. For example,
Tenhumberg et al. (2009) observed that the magnitude of
transient dynamics increased with increasing matrix dimen-
sion in pea aphids, and Stott, Franco, Carslake, Townley,
and Hodgson (2010) found the same pattern in plants. More-
over, in their synthesis across different plant species,
McDonald et al. (2016) detected that the proportion of real-
ized variation in growth rate due to the variability of vital
rates over time was negatively associated with matrix dimen-
sion, whereas the proportion of realized variation due to the
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variability of stage structure was positively associated with
matrix dimension. Overall, these previous findings suggest
that the dependence between the estimates of realized varia-
tion in growth rate and matrix size might be a methodologi-
cal artifact. However, our study based on the two matrix
structures for the same plant species did not reveal such clear
relationships between the two components of realized varia-
tion of population growth rate and matrix dimension. We
detected that the variability of population stage structure
increased with increasing matrix dimension in only two out
of four populations indicating greater importance of transient
dynamics. Nevertheless, we acknowledge the fact that our
results are based on two matrix structures (that also have dif-
ferent dimensions) for a single long-lived perennial herb,
and therefore, more studies on different species with multi-
ple matrix dimensions are required to assess methodological
artifacts (if any) in population estimates due to model
structure.

4.2 | Recommendations for choosing model
structure

A state variable that correlates with vital rates is a key for
structured population models; usually age or size for animals
and size or stage for plants (Caswell, 2001; Merow et al.,
2014; Morris & Doak, 2002). Previous studies can be used
to inform about a potential state variable before data collec-
tion. While the model structure is greatly determined by the
biology of a given species as well as study aims, our results
indicate that statistical modeling can be helpful for choosing
between alternative model structures. Similar to previous
studies, we recommend considering multiple, biologically
meaningful model structures (Beissinger & Westphal, 1998;
Morris & Doak, 2002, p. 453) and testing their underlying
assumptions statistically. In other words, statistics are used
to explore the variability of vital rates between adjacent or
alternative categories before deciding the model structure.
Statistically significant differences in vital rates between
adjacent categories in a structured population model clearly
justify separate categories (Gremer et al., 2012; Jäkäläniemi
et al., 2011), while in the opposite situation pooling might
be possible, given that the structure still reflects the biology
of the species. For example, Gremer et al. (2012) used
GLMMs to determine the number of dormant stages for the
matrix model of A. scaphoides by assessing whether demo-
graphic state before prolonged dormancy affected the fate of
dormant plants in the following year and necessitated more
than a single dormant stage. Similarly, categories for newly
recruited plants were defined by comparing their vital rates
to those of older plants (Gremer et al., 2012). Although our
example in the present study comes from plant matrix
models, the same principles apply to more recently

developed integral projection models (IPMs, Easterling,
Ellner, & Dixon, 2000), which have become increasingly
popular in plant and animal studies (e.g., Coulson,
Tuljapurkar, & Childs, 2010; Griffith, 2017; Merow et al.,
2014; Ramula et al., 2009; Williams & Crone, 2006). These
models may contain a combination of one or several contin-
uous (e.g., size, biomass) and discrete variables (e.g., seed
bank) that are used to describe individuals' state, resulting in
a large matrix after discretization that preserves the continu-
ous states (reviewed in Merow et al., 2014). As an example,
one may need to decide whether to include one or multiple
discrete categories in an IPM for the youngest life stages
(Merow et al., 2014). For IPMs that are based on continuous
state variables only, model structure is not an issue, and such
models thus avoid potential problems related to model build-
ing. Unfortunately, continuous size data were not recorded
in this long-term study, which was originally designed and
initiated in 1986, long before IPMs were an option, so we
cannot compare IPMs to the matrix modeling approaches
used in this study for A. scaphoides. Regardless, matrix
models and IPMs are becoming a more popularized and
accessible tool for understanding the life history and info-
rming management of populations. Therefore, we urgently
need more studies evaluating the consequences of matrix
construction as well as providing good general guidelines to
avoid incorrect conclusions about population dynamics.

Although matrix dimension per se was not our primary
interest, the present study provides some insights into com-
parative demographic studies. Namely, our findings add to
the growing evidence of the importance of considering
matrix dimension in increasing the accuracy of model out-
puts in comparative studies (e.g., Gamelon et al., 2014;
McDonald et al., 2016; Stott et al., 2011). This improved
accuracy can be achieved by including matrix dimension as
a covariate in analyses that are based on matrix models from
a large number of species (McDonald et al., 2016; Stott
et al., 2011) or by using different matrix collapsing or stan-
dardization techniques (Gamelon et al., 2014; Salguero-
Gómez & Plotkin, 2010).

In summary, the present study indicates that while
matrix structure may not matter for estimates of some pop-
ulation parameters (e.g., the accuracy and precision of vital
rates and stochastic stable stage distribution), it may affect
estimates of stochastic population growth rate. In such
cases, statistical modeling to choose model structure might
predict population trends more accurately than a model
constructed based on expert opinion. Overall, a modeling
approach provides a more objective way for designing
matrix population models than expert opinion and can be
preferable particularly when the biology of the study spe-
cies is poorly known.
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