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A locating-dominating set of an undirected graph is a subset of vertices S such that S
is dominating and for every u, v /∈ S , the neighbourhood of u and v on S are distinct 
(i.e. N(u) ∩ S �= N(v) ∩ S). Locating-dominating sets have received a considerable attention 
in the last decades. In this paper, we consider the oriented version of the problem. A 
locating-dominating set in an oriented graph is a set S such that for each w ∈ V \ S , 
N−(w) ∩ S �= ∅ and for each pair of distinct vertices u, v ∈ V \ S , N−(u) ∩ S �= N−(v) ∩ S . We 
consider the following two parameters. Given an undirected graph G , we look for →γ LD(G)

(
→
� LD(G)) which is the size of the smallest (largest) optimal locating-dominating set over 

all orientations of G . In particular, if D is an orientation of G , then →
γ LD(G) ≤ γLD (D) ≤

→
� LD (G) where γLD (D) is the minimum size of a locating-dominating set of D .
For the best orientation, we prove that, for every twin-free graph G on n vertices, 
→
γ LD (G) ≤ n/2 which proves a “directed version” of a widely studied conjecture on the 
location-domination number. As a side result we obtain a new improved upper bound for 
the location-domination number in undirected trees. Moreover, we give some bounds for 
→
γ LD (G) on many graph classes and drastically improve the value n/2 for (almost) d-regular 
graphs by showing that →γ LD (G) ∈ O (log d/d · n) using a probabilistic argument.

While →
γ LD(G) ≤ γLD (G) holds for every graph G , we give some graph classes such as 

outerplanar graphs for which 
→
� LD(G) ≥ γLD (G) and some for which 

→
� LD (G) ≤ γLD(G)

such as complete graphs. We also give general bounds for 
→
� LD (G) such as 

→
� LD (G) ≥ α(G). 

Finally, we show that for many graph classes 
→
� LD (G) is polynomial on n but we leave open 

the question whether there exist graphs with 
→
� LD(G) ∈ O (logn).

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A dominating set of an undirected graph G is a subset S of its vertices such that each vertex of G not in S has a 
neighbour in S . The domination number of G , denoted by γ (G) is the size of a smallest dominating set of G . Domination 
theory is one of the main topics of graph theory, see for example the two reference books [21,22]. Among the variations 
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of domination, the location-domination, introduced by Slater [29], has been extensively studied. A locating-dominating set of 
an undirected graph G is a dominating set S such that all vertices not in S have pairwise distinct neighbourhoods in S . 
The location-domination number of G , denoted by γLD(G), is the size of a smallest locating-dominating set of G . Since V (G)

is always a locating-dominating set, γLD (G) is well-defined. Structural and algorithmic properties of locating-dominating 
sets have been widely studied (see e.g. [26] for an online bibliography). Location-domination in directed graphs was briefly 
mentioned in several articles (see e.g. [7,28]) and further studied in [13]. A locating-dominating set of a directed graph D is 
a subset S of its vertices such that two vertices not in S have distinct and non-empty in-neighbourhoods in S . The directed 
location-domination number of D , denoted by γLD(D), is the size of a smallest locating-dominating set of D .

Two oriented graphs with the same underlying graph can have a very different behaviour towards locating-dominating 
sets. Let us illustrate it on tournaments that are oriented complete graphs. Transitive tournaments (i.e. acyclic tournaments) 
have directed location-domination number 
n/2� whereas one can construct locating-dominating sets of size 
log n� for a 
well-chosen orientation of Kn [28]. Following the idea of Caro and Henning for domination [6] and the work started by 
Skaggs [28], we study in this paper the best and worst orientations of a graph for locating-dominating sets. Orientation of 
graph G is considered to be best (resp. worst) if it minimizes (resp. maximizes) the location-domination number over all 
the orientations of G . A similar line of work has been recently initiated for the related concepts of identifying codes [9] and 
metric dimension [2].

The two parameters that are considered in this paper are the following. The lower directed location-domination number of 
an undirected graph G , denoted by 

→
γ LD(G), is the minimum directed location-domination number over all the orientations 

of G . The upper directed location-domination number of an undirected graph G , denoted by 
→
� LD(G), is the maximum directed 

location-domination number over all the orientations of G .

1.1. Outline of the paper

Basic definitions, some background and first results are given in Section 2. Section 3 is dedicated to the study of the best 
orientations whereas Section 4 focuses on the worst orientations.

Main results on best orientations We first give basic results on 
→
γ LD(G) and relations with classical parameters of graphs. 

Skaggs [28] proved in 2007 that for any graph G , 
→
γ LD(G) ≤ γLD(G). We refine this inequality by proving that, in graphs 

without cycles of size 4 (as a subgraph), 
→
γ LD(G) and γLD(G) coincide. As a consequence, computing 

→
γ LD(G) is NP-complete.

Two vertices are twins if they have the same open or closed neighbourhood. Twins play an important role in locating-
dominating sets since any locating-dominating set must contain at least one vertex of each pair of twins. As a consequence, 
if G is a star on n vertices, then 

→
γ LD(G) = n − 1. In Section 3.3, we prove that this function can be drastically improved 

when the graph G is twin-free, which is one of the main contributions of our paper.

Theorem 1. Let G be a twin-free graph of order n with no isolated vertices. Then, 
→
γ LD(G) ≤ n/2.

The fact that any twin-free graph of order n satisfies γLD(G) ≤ n/2 is a notorious conjecture, left open in [12,16] for 
instance.

Conjecture 2 ([16]). If G is a twin-free graph of order n, then γLD(G) ≤ n/2.

The proof of Theorem 1 holds in two steps. First, we show in Section 3.2 that 
→
γ LD(G) is the smallest undirected location-

domination number among all the (connected) spanning subgraphs of G . Then, we prove in Section 3.3 that there exists a 
spanning subgraph for which the condition is satisfied. In particular, our result implies a weakening of Conjecture 2 since 
we prove that any twin-free connected graph G on n vertices admits a spanning subgraph H with γLD(H) ≤ n/2. As a side 
result we obtain a new improved upper bound for the location-domination number in trees. We also give a characterization 
for trees attaining this new upper bound.

We then focus on (almost) regular graphs in Section 3.4 and prove, using a probabilistic argument, that there exists a 
constant cd such that, if G is d-regular,

→
γ LD(G) ≤ cd · log d

d
· |V (G)|.

We continue this subsection by giving some bounds using independence and matching numbers.

Main results on worst orientations In Section 4.1, we give some examples and relate 
→
� LD(G) with some classical graph 

parameters. In particular, we prove that 
→
� LD(G) ≥ γLD(G) if G does not have any cycle of length 4 as a (not necessarily 

induced) subgraph. Moreover we prove that if G is a C4-free bipartite graph (which in particular, contains the class of trees), 
then 

→
� LD(G) = α(G) where α(G) is the independence number of G .
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In Section 4.2, we prove that 
→
� LD(G) ≥ γLD(G) is satisfied for other graph classes such as bipartite graphs, cubic graphs, 

and outerplanar graphs. Somehow surprisingly at first glance, 
→
� LD(G) ≥ γLD(G) is not always true. In [13], Foucaud et al. 

have shown that for a complete graph Kn on n vertices we have 
→
� LD(Kn) = 
n/2� but γLD(Kn) = n − 1. We prove that 

the existence of twins is not the reason why this inequality fails since we exhibit a family of twin-free graphs for which 
the ratio 

→
� LD(G)/γLD(G) tends to 1/2. We did not succeed to bound this ratio by a constant. However, we prove that 

→
� LD(G) ≥ γLD(G)/
log2(�(G)) + 1�. We leave the existence of a constant bounding 

→
� LD(G)/γLD(G) as an open problem.

Finally, in Section 4.3, we provide some lower bounds on 
→
� LD(G) using the number of vertices. For numerous classes 

of graphs, we actually have 
→
� LD(G) ≥ c1 · nc2 where c1 and c2 are constant. This is true for perfect graphs (with c2 = 1/2), 

C3-free graphs, claw-free graphs and actually for any χ -bounded class of graphs with a polynomial χ -bounding function. 
However, we leave as an open problem the existence of a graph G on n vertices such that 

→
� LD(G) is logarithmic on n.

Note that we did not find the complexity of computing 
→
� LD(G). In particular, it is not clear that this problem belongs to 

NP.

2. Preliminaries

2.1. Notations

We give in this subsection the main definitions and notations we are using along the paper. The reader may refer to 
some classical graph theory books like [4] for missing definitions.

Let G = (V , E) be an undirected and simple graph. We usually denote by n the number of vertices of G . We denote by 
NG(u) (or N(u) when G is clear from context) the open neighbourhood of a vertex u, that is the set of neighbours of u. And 
we denote by NG [u] (abbreviated into N[u]) the closed neighbourhood of u that is N(u) ∪{u}. Two vertices u and v are twins
if N(u) = N(v) or N[u] = N[v]. The degree of a vertex u, denoted by d(u), is the size of N(u). The minimum and maximum 
degree of G are respectively denoted by δ(G) and �(G). A leaf is a vertex of degree 1.

A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). A subgraph H is induced if for any pair of vertices of 
H , (x, y) is an edge of H if and only if it is an edge of G . A graph G is H-free if it does not contain H has an induced 
subgraph. We say that a graph G is without H if G does not contain H as a subgraph (not necessarily induced). A subgraph 
H is a spanning subgraph if V (H) = V (G).

The complete graph on n vertices is denoted by Kn . The complete bipartite graph with size n and m is denoted by 
Kn,m . A star is a graph isomorphic to K1,m . The star with three leaves, K1,3, is also called a claw. The cycle on n vertices is 
denoted by Cn whereas the path on n vertices is denoted by Pn . The girth of a graph G is the length of a shortest cycle in 
G . If G does not contain any cycle we say that G has infinite girth. A set S of vertices is independent if they are pairwise 
non-adjacent. A set S is an edge cover if every edge has at least one endpoint in S . A set of edges M is a matching if no two 
edges in M share an endpoint. In a graph G , we denote the cardinalities of maximum independent sets and matchings by 
α(G) and α′(G), respectively. Moreover, the cardinality of a minimum edge cover is denoted by β(G). The clique number of 
a graph G , denoted by ω(G), is the maximal order of a complete subgraph of G .

Let S be a subset of V . Set S is a dominating set of G if any vertex of G is either in S or adjacent to a vertex of S . The 
minimum size of a dominating set is denoted by γ (G). We denote by IG (S; u) (I(u) for short) the set NG (u) ∩ S that is the 
neighbours in S of a vertex u. Note that S is a locating-dominating set if for each vertex u ∈ V (G) \ S , I(u) is non-empty 
(since S is a dominating set) and for each pair of distinct vertices u, v ∈ V \ S , we have I(u) �= I(v). We say that a vertex 
s ∈ S separates u and v if s is in exactly one of sets I(u) and I(v). Note that any locating-dominating set must intersect any 
pair of twins. The minimum size of a locating-dominating set of G is denoted by γLD(G).

These notions are similarly defined for directed graphs. In this paper, we mostly consider directed graphs derived from 
orienting an undirected graph. A directed graph (also called digraph), is a pair D = (V , E), where V is a set whose elements 
are called vertices, and A is a set of ordered pairs of vertices, called arcs. Let G = (V , E) be a simple undirected graph. 
An orientation of G is a directed graph (oriented graph) D on V where every edge uv of G is either oriented from u to v
(resulting to the arc (u, v) in D) or from v to u (resulting to the arc (v, u)). In particular, all the directed graphs considered 
are oriented and simple: if (u, v) is an arc then (v, u) is not. The undirected graph G is called the underlying graph of D . 
Unless otherwise stated, “graph” means “undirected graph”. A tournament is an orientation of a complete graph. The open 
out-neighbourhood and in-neighbourhood of a vertex u of D are denoted by N+

D (u) and N−
D (u) whereas the closed out- and 

in-neighbourhood are denoted by N+
D [u] and N−

D [u]. The maximum out- and in-degree are denoted by �+(G) and �−(G). 
A source is a vertex with no in-neighbours. Locating dominating sets are defined similarly as in the undirected case by 
considering the in-neighbourhoods. We denote by I D (S; u) (or I(u) for short) the set N−

D (u) ∩ S , that is, the in-neighbours 
of u that are in a set S of vertices. The set S is a locating-dominating set of D if all the sets I D(S; u) are non-empty and 
distinct for u /∈ S . The minimum size of a locating-dominating set of D , called the minimum directed location-domination 
number, is denoted by γLD (D).
3
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We finally recall the two main parameters that we are considering along this paper. The lower directed location-domination 
number of an undirected graph G , denoted by 

→
γ LD(G), is the minimum directed location-domination number over all the 

orientations of G . Formally, we have

→
γ LD(G) = min{γLD(D) | D is an orientation of G}.

The upper directed location-domination number of an undirected graph G , denoted by 
→
� LD(G), is the maximum directed 

location-domination number over all the orientations of G . Formally, we have

→
� LD(G) = max{γLD(D) | D is an orientation of G}.

2.2. Preliminary results and examples

Let D be a digraph and u be a non-source vertex of D . Then, V (D) \ {u} is a locating-dominating set of D . In particular, 
for any directed graph containing at least one edge, �d(D) ≤ n −1. In [13], the authors characterized those digraphs reaching 
this extremal value. This characterization is useful for studying the extremal values of 

→
γ LD(G) and 

→
� LD(G). A directed star

is a (non-necessarily simple) directed graph such that the underlying graph is a star. A bi-directed clique is a directed graph 
that contains all the possible arcs between two vertices.

Theorem 3 ([13], Theorem 6). Let D be a connected (non necessarily simple) digraph of order n ≥ 2. Then, γLD(D) = n − 1 if and only 
if at least one of the following conditions holds:

1. n = 3;
2. D is a directed star;
3. V (D) can be partitioned into three (possibly empty) sets S1, C and S2 , where S1 and S2 are independent sets, C is a bi-directed 

clique, and the remaining arcs in D are all the possible arcs from S1 to C ∪ S2 and those from C to S2 .

In particular, any orientation of a star has location-domination number n − 1.

Corollary 4. Let G be a star on n vertices. Then, 
→
γ LD(G) = →

� LD(G) = n − 1.

In [13], the authors also proved a tight upper bound for tournament:

Theorem 5 ([13]). Let D be a tournament on n vertices. Then, γLD(D) ≤ 
n/2�. Moreover, γLD(D) = 
n/2� if D is transitive.

As a consequence, the upper directed location-domination number of complete graphs is known:

Corollary 6. Let n ≥ 2 be an integer. Then, 
→
� LD(Kn) = 
n/2�.

Concerning the best orientation of a complete graph, Skaggs proved in his thesis [28] that one can obtain the best 
possible number for 

→
γ LD(G). For the sake of completeness, we add a short proof of this result.

Theorem 7 ([28], Proposition 5.4). Let n ≥ 2 be an integer. Let k be the smallest integer such that n ≤ k + 2k − 1. Then, 
→
γ LD(Kn) = k.

Proof. Let S be a set of k vertices of Kn . Then, consider an injective map f from the other vertices of Kn (there are at most 
2k − 1 of them) to the non-empty subsets of S . Let u /∈ S and v ∈ S . Orient edge uv from v to u if v ∈ f (u) and from u to 
v otherwise. Orient all the other edges in any direction. Then, S is a locating-dominating set for this orientation of Kn . �
3. Best orientation

In this section we focus on the best orientation. We first give basic results and links with classical parameters. Then, 
we give another definition of 

→
γ LD(G) using spanning subgraphs and use this definition to show that 

→
γ LD(G) ≤ n/2 if G is 

twin-free. We finally improve this last result in the case of almost regular graphs.
4
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3.1. Basics

Theorem 8. Let G be a graph of order n. Then,

1. [28, Proposition 5.3]
→
γ LD(G) ≤ γLD(G).

2.
→
γ LD(G) ≤ n − α′(G).

Proof. Claim (1) is proved in [28], for completeness, we include a short proof here. Consider a graph G and a locating 
dominating set S of size γLD(G) of G . Then, orient all the edges uv between S and V \ S from S to V \ S and all the other 
edges in any way. Then, S is a locating-dominating set for this orientation.

Let us next prove (2). Let G be a graph on n vertices and let M be a maximum matching of G . Let V M be a subset of 
vertices containing exactly one vertex from each edge of M and CM be the set of vertices which are not endpoints of edges 
in M . Let C = V M ∪ CM . Note that |C | = n − α′(G). Choose any orientation D ′ of G where the edges in M have their tails 
in C and all the other edges between V \ C and C are oriented from V \ C to C . Now, C is a locating-dominating set in D ′
since all the vertices of V \ C have exactly one in-neighbour in V M and all of them are pairwise distinct. �

We show that these bounds are tight in Corollary 9 and Theorem 10. Using Theorem 3, we next provide a characterization 
of graphs reaching the extremal value 

→
γ LD(G) = n − 1.

Corollary 9. For any connected graph G of order n ≥ 2, 
→
γ LD(G) = n − 1 if and only if either n = 3 or G is a star.

Proof. Let G be a graph of order n ≥ 2 with 
→
γ LD(G) = n − 1. If either n = 3 or G is a star, then, 

→
γ LD(G) = n − 1 by 

Corollary 4.
Otherwise, let D be an orientation of G . Since �d(D) ≤ n − 1 we must actually have �d(D) = n − 1. Since G is not at star, 

then D must have the structure of the third condition of Theorem 3.
Thus, V (G) can be partitioned to sets S1, C and S2 satisfying the third condition of Theorem 3. Since C is a bi-directed 

clique in Theorem 3, we have |C | ≤ 1 because D is an oriented graph. Assume first that |C | = 1. If S1 or S2 are empty, then 
G is a star. If both of them are not empty, then G contains a triangle and there is an orientation D ′ of G with an oriented 
cycle. Then, by Theorem 3, �d(D ′) ≤ n − 2, a contradiction.

If C = ∅, then G is a star if either |Si| = 1 for i ∈ {1, 2} and disconnected if either is an emptyset. But if |Si | ≥ 2, then 
again G contains a cycle and an orientation with an oriented cycle which is against the conditions of Theorem 3. Hence, the 
claim follows. �

Theorem 8 ensures that, for every graph G , 
→
γ LD(G) ≤ γLD(G). Let us prove that if G is without C4 as a (not necessarily 

induced) subgraph, then it is actually an equality.

Theorem 10. Let G be a graph without C4 as a subgraph. Then,

→
γ LD(G) = γLD(G).

Proof. To prove this equality, let us show that, any locating-dominating set S of an orientation D of a graph G is also a 
locating-dominating set for G . Let D be an arbitrary orientation of G and S be a locating-dominating set of D . First note 
that S is indeed a dominating set of G . Thus, if S is not locating-dominating in G , then there exist u, v /∈ S such that 
IG(u) = IG (v). Moreover, we have |IG(u)| = |IG(v)| ≥ 2 since |IG(u)| ≥ |I D(u)| and |IG(v)| ≥ |I D(v)|. Thus, if |IG(u)| = 1, 
then |IG(v)| = |I D(v)| = |I D(u)| = 1 and hence, I D(u) = IG (u) = IG(v) = I D(v), a contradiction. Let {c1, c2} ⊆ IG(u). But then 
u, c1, v and c2 induce a cycle on four vertices, a contradiction. �

In particular, Theorem 10 means that 
→
γ LD(T ) = γLD(T ) for any tree T . Let us complete this warm-up part by proving 

that finding the value of 
→
γ LD(G) is NP-hard.

Locating-Dominating-Set

Instance: A graph G , an integer k.
Question: Is it true that γLD(G) ≤ k?

Lower-Directed-LD-Number

Instance: A graph G , an integer k.

Question: Is it true that 
→
γ LD(G) ≤ k?

Theorem 11. Locating-Dominating-Set and Lower-Directed-LD-Number are NP-complete for planar graphs of maximum degree 
5 without C4 as a subgraph.
5
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Fig. 1. Reduction from Dominating-Set to Locating-Dominating-Set.

Proof. Both problems are in NP. For Lower-Directed-LD-Number, a polynomial certificate for 
→
γ LD(G) ≤ k is an orientation 

D of G and a locating-dominating set of D of size at most k.
By Theorem 10, both values are equal in the class of graphs without C4. Thus, we just prove the result for Locating-

Dominating-Set. We reduce it from Dominating-Set.

Dominating-Set

Instance: A graph G , an integer k.
Question: Is it true that γ (G) ≤ k?

We use the reduction of Gravier et al. [18, Figure 7]. Consider an instance (G, k) of Dominating-Set. Let G� be the graph 
obtained by adding to each vertex of the graph a pendant triangle (see Fig. 1). Then it is proved in [18] that G has a 
dominating set of size k if and only if G� has a locating-dominating set of size k + n (where n is the number of vertices of 
G). Indeed, each triangle must contain at least one of the new vertices in a locating-dominating set and if there is exactly 
one vertex in a triangle, the vertex of the original graph must be dominated in the original graph.

Dominating-Set has been proved to be NP-complete even for planar graphs of maximum degree 3 and girth at least 
5 [33]. If G is planar of maximum degree 3 and girth at least 5, then G� is planar, of maximum degree 5, and does not 
contain C4 as a subgraph. This implies our result. �
3.2. Relation to spanning subgraphs

In this section, we prove a simple but important lemma that links 
→
γ LD(G) with optimal locating-dominating sets of 

spanning subgraphs of G . This result is used to prove several important results all along the section, but we illustrate its 
interest by first giving several simple lower bounds on 

→
γ LD(G).

Lemma 12. Let G be an undirected graph. Then,

→
γ LD(G) = min{γLD(H) | H is a spanning subgraph of G}.

Proof. Let us show first that 
→
γ LD(G) ≤ γLD(H) holds for each spanning subgraph H of G . Let S be a locating-dominating 

set of a spanning subgraph H of G . We next construct an orientation D of G such that an edge e between S and V \ S is 
oriented away from the vertex in S if e ∈ E(H) and if e /∈ E(H), then we orient edge e towards the vertex in S . Other edges 
can be oriented in any way. Observe that we have I D(S; w) = I H (S; w) for each vertex w /∈ S and hence, S is locating-

dominating in D . Thus, 
→
γ LD(G) ≤ min{γLD(H) | H is a spanning subgraph of G}.

Let us then show that for any orientation D ′ of G , there exists a spanning subgraph H ′ of G such that γLD(H ′) ≤ γLD(D ′). 
Let S be a locating-dominating set in D ′ . Let us construct a spanning subgraph H ′ from the graph G by having V (H ′) = V (G)

and e = uv ∈ E(H ′) if and only if either u ∈ S and the edge is oriented away from u in D ′ or v ∈ S and the edge is oriented 
away from v in D ′ . Observe that now I D ′ (S; w) = I H ′(S; w) for each vertex w /∈ S and hence, S is locating-dominating in 
H ′ . Thus, min{γLD(H ′) | H ′ is a spanning subgraph of G} ≤ →

γ LD(G) and the claim follows. �
In the following theorem, we apply the previous lemma on classes of graphs which are closed under (spanning) sub-

graphs. In particular, general lower bounds for undirected location-domination numbers in such classes also hold when we 
orient graphs.
6
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Lemma 13. Let G be a class of graphs closed under subgraphs. If there exists a function f : N → N such that for each graph G ∈ G
with n vertices we have γLD(G) ≥ f (n), then

→
γ LD(G) ≥ f (n).

Proof. Assume by contradiction that 
→
γ LD(G) < f (n) for some G ∈ G . By Lemma 12, there exists a spanning subgraph H

such that γLD(H) = →
γ LD(G). So H ∈ G and γLD(H) < f (n), a contradiction. �

As proven in [27], planar graphs satisfy γLD(G) ≥ n+10
7 and outerplanar graphs satisfy γLD(G) ≥ 2n+3

7 . Since planar and 
outerplanar graphs are closed under subgraphs, the following is a consequence of Lemma 13.

Corollary 14. Let G be a planar graph on n vertices. Then,

→
γ LD(G) ≥ n + 10

7
.

Let G ′ be an outerplanar graph on n vertices. Then,

→
γ LD(G ′) ≥ 2n + 3

7
.

Lemma 15. Let G be a graph of order n. Then,

→
γ LD(G) ≥ 2n

�(G) + 3
.

Proof. Let G be a graph of order n. In [31, Theorem 2] Slater has given general lower bound γLD (G) ≥ 2n/(d + 3) for a 
locating-dominating set in a d-regular graph G on n vertices. Moreover, it is easy to generalize the proof for non-regular 
graphs, giving γLD(G) ≥ 2n/(�(G) + 3). For completeness, we include the proof here. Let G be a graph on n vertices with a 
locating-dominating set S . We give one share unit for each vertex. Next, we shift 1/|I(v)| share from each vertex v ∈ V (G) \ S
to every vertex in I(v). After this shift, total share over all vertices remains as n. Let s denote the largest share in any vertex 
u ∈ S . Notice that s|S| ≥ n and hence, |S| ≥ n/s. Moreover, we have that s ≤ 2 + (�(G) − 1)/2. Indeed, vertex u has share of 
1 at the beginning. After which, we shift at most 1 + (�(G) − 1)/2 share to u since there is at most one adjacent vertex v
with |I(v)| = 1. Thus, |S| ≥ n/s ≥ 2n/(�(G) + 3).

Moreover, we also have γLD(H) ≥ 2n/(�(H) +3) ≥ 2n/(�(G) +3) for each spanning subgraph H of G since �(H) ≤ �(G). 
Thus, the claim follows from Lemma 13 with graph class GG = {H | H is a subgraph of G}. �
3.3. Conjecture 2 holds for graph orientations

The main goal of this section is to prove Theorem 1 we restate here:

Theorem 1. Let G be a twin-free graph of order n with no isolated vertices. Then, 
→
γ LD(G) ≤ n/2.

We first need some auxiliary definitions and results.
Let G = (V , E) be an undirected graph of order n ≥ 3. A vertex adjacent to a leaf is called a support vertex and a non-leaf, 

non-support vertex u which has only support vertices as neighbours is called a support link. The number of support vertices, 
leaves and support links in G are denoted by respectively s(G), 
(G) and sl(G). Moreover, let us denote by L(G), S(G) and 
S L(G) the sets of leaves, support vertices and support links, respectively, in G . By convention, for the path P2 we assume 
that one of its two vertices is a support vertex and the other is a leaf.

We first introduce a useful lemma. The result has been previously discussed in [3] and Claim 2 has been proven in [3, 
Lemma 2.1].

Lemma 16. Let T be a tree, s ∈ S(T ) with k leaves v1, . . . , vk attached to s. Then:

1. Every locating-dominating set C in T contains at least k vertices in {s, v1, . . . , vk}.
2. There exists a minimum locating-dominating set C in T which contains all the vertices s ∈ S(T ) and for each s ∈ S(T ) there is 

exactly one leaf attached to s which is not in C.

Proof. Let C be a locating-dominating set. Let s ∈ S(T ). If s /∈ C , then all the leaves attached to s are in C . Otherwise, C is 
not dominating. Let v be a leaf attached to s. We claim that C ′ = {s} ∪ C \ {v} is a locating-dominating set. Indeed, we have 
7
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I(C ′; v) = {s} and if I(C ′; u) = {s} for any v �= u ∈ V \ C ′ , then I(C; u) = ∅. Thus, C ′ is a locating-dominating set. So, for every 
C , there exists a locating-dominating set of the same size containing s. We assume that S(T ) ⊆ C holds in the rest of the 
proof.

Assume by contradiction that |{s, v1, . . . , vk} ∩ C | ≤ k − 1. Since s ∈ C , there are vi, v j /∈ C with i �= j. But then I(vi) =
I(v j) = {s}, a contradiction. So the first point holds.

Assume next that N(s) ∩ L(T ) ⊆ C . Let v ∈ N(s) ∩ L(T ). Since C has minimum size, there exists a vertex u /∈ L(T ) ∪ C such 
that I(u) = {s} (otherwise v can be safely removed from C contradicting the minimality of C ). However, if we now consider 
the set C ′ = {u} ∪ C \ {v}, then we notice immediately that C ′ is locating-dominating and the claim follows. �

Locating-dominating sets in trees have been widely studied. Blidia et al. proved in [3] that

γLD(T ) ≤ n + 
(T ) − s(T )

2
. (1)

Let us prove a slight improvement of this result that is needed in the proof of the main result of this section. As this is 
the best known upper bound for locating-dominating sets in trees, we have included a complete characterization of trees 
attaining it in Theorem 18.

Theorem 17. Let T be a tree of order n ≥ 2. Then,

γLD(T ) ≤ n + 
(T ) − s(T ) − sl(T )

2
.

Proof. Let T be a tree and let F = T − S L(T ). The set F induces a forest without isolated vertices. Moreover S(T ) = S(F ) and 
L(T ) = L(F ) (by choosing the right vertex in L and S if the component is a P2). Let C be an optimal locating-dominating set 
in F such that S(F ) ⊆ C . Observe that now C is also a locating-dominating set in T . Indeed, if u ∈ S L(T ), then I(u) ⊆ S(T )

and |I(u)| ≥ 2. Moreover, if I(v) = I(u), then we have a cycle. Finally, if u, v /∈ S L(T ), then IT (u) = IT (v) implies that 
I F (u) = I F (v). Thus, γLD(T ) ≤ |C | = γLD(F ) ≤ n−sl(T )+
(T )−s(T )

2 . The last inequality is due to bound (1). �
As a slight side-step from proving Theorem 1, we first give a characterization for trees reaching the upper bound of 

Theorem 17. For this, we need some definitions. Let T be a family of trees such that T ∈ T if and only if γLD(T ) =
n+
(T )−s(T )

2 where n = |V (T )| or if T = P2. This family has been characterized in [3]. We say that trees T1, T2, . . . , Tk , where 
k ≥ 2 are support linked into tree T and we note T = SL(T1, T2, . . . , Tk) if there are vertices vi ∈ S(Ti) and w /∈ ⋃k

i=1 V (Ti)

such that V (T ) = ⋃k
i=1 V (Ti) ∪ {w} and E(T ) = ⋃k

i=1 E(Ti) ∪ {vi w | 1 ≤ i ≤ k}. Let us denote by TS L the closure of T under 
SL.

Theorem 18. Let T be a tree. We have γLD(T ) = n+
(T )−s(T )−sl(T )
2 if and only if T ∈ TS L .

Proof. Notice first that if sl(T ) = 0, then γLD(T ) = n+
(T )−s(T )−sl(T )
2 if and only if T ∈ T ⊆ TS L .

Let us assume first that there exists T ∈ TS L such that γLD(T ) < n+
(T )−s(T )−sl(T )
2 . Let T be a tree satisfying these prop-

erties with the least number of vertices. By the previous remark, we can assume that sl(T ) > 0 and thus, that T can be 
written as T = SL(T1, . . . , Tk), where k ≥ 2, with Ti ∈ TS L for both i. Let w be the vertex in V (T ) \ ⋃k

i=1 V (Ti) and let 
vi ∈ N(w) ∩ V (Ti) for each i ∈ {1, . . . , k}. Notice that for any i, we have vi ∈ S(T ) and vi ∈ S(Ti). Furthermore, by the 
minimality of T , γLD(Ti) = |V (Ti)|+
(Ti)−s(Ti)−sl(Ti)

2 for each i ∈ {1, . . . , k}. Moreover, let C , be a locating-dominating set of 
minimum size in T and Ci be a locating-dominating set of minimum size in Ti . Notice that

k∑
i=1

|V (Ti)| + 
(Ti) − s(Ti) − sl(Ti)

2
= |V (T )| + 
(T ) − s(T ) − sl(T )

2
.

Indeed, we have |V (T )| = 1 +∑k
i=1 |V (Ti)|, 
(T ) = ∑k

i=1 
(Ti), s(T ) = ∑k
i=1 s(Ti) and sl(T ) = 1 +∑k

i=1 sl(Ti). By Lemma 16, 
we may assume that S(T ) ⊆ C and S(Ti) ⊆ Ci for each i ∈ {1, . . . , k}.

Since |C | < n+
(T )−s(T )−sl(T )
2 , we have |C ∩ V (Ti)| < |V (Ti)|+
(Ti)−s(Ti )−sl(Ti)

2 for some i ∈ {1, . . . , k}. Since vi ∈ C ∩ V (Ti)

and since C is a locating-dominating set in T , C ∩ V (Ti) is a locating-dominating set in Ti , a contradiction. Thus, any tree 
in TS L satisfies the claim.

Let us then show that no tree outside of TS L can satisfy the claim. Let us consider a tree T of minimum size satisfying 
γLD(T ) = n+
(T )−s(T )−sl(T )

2 and T /∈ TS L . Observe that sl(T ) > 0, otherwise we would have T ∈ T ⊆ TS L . Thus, we may assume 
that T = SL(T1, . . . , Tk), where k ≥ 2, for some trees Ti , where T1 /∈ TS L and w ∈ V (T ) \ ⋃k

i=1 V (Ti). Let C be a minimum 
size locating-dominating set in T such that S(T ) ⊆ C (we may assume this by Lemma 16). Since S(T ) ⊆ C and since C
is of minimum size, we have w /∈ C . Since |V (T )| = 1 + ∑k

i=1 |V (Ti)|, 
(T ) = ∑k
i=1 
(Ti), s(T ) = ∑k

i=1 s(Ti) and sl(T ) =
8
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1 + ∑k
i=1 sl(Ti) and 

∑k
i=1

|V (Ti)|+
(Ti)−s(Ti)−sl(Ti)
2 = |V (T )|+
(T )−s(T )−sl(T )

2 , we have |C ∩ V (T1)| = n+
(T1)−s(T1)−sl(T1)
2 . Indeed, 

since |C ∩ V (Ti)| ≤ n+
(Ti)−s(Ti)−sl(Ti)
2 , we would otherwise have |C | < |V (T )|+
(T )−s(T )−sl(T )

2 . However, this is a contradiction 
on the minimality of T . Thus, T ∈ TS L . �

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let T be a spanning tree of G such that 
(T ) − s(T ) is minimal among all the spanning trees of G . If 
T has 
(T ) = s(T ), then we are done by Lemma 12 and Lemma 17.

First, we claim that any leaf of T adjacent in T to a support vertex s such that |N(s) ∩ L(T )| ≥ 2, is adjacent, in G , only 
to vertices which are support vertices in T . Observe that if u and v are two leaves of T adjacent to the same support vertex 
s, then either u or v has another neighbour in G since G is twin-free. Moreover, if s′ ∈ NG(u), then s′ is a support vertex in 
T . Indeed, if s′ is a leaf in T , then the spanning tree T ′ = T − us + us′ satisfies 
(T ′) − s(T ′) < 
(T ) − s(T ), a contradiction 
with the minimality of T . Moreover, if s′ is a non-leaf, non-support vertex, then we have s(T ′) = s(T ) + 1 and 
(T ′) = 
(T ), 
a contradiction.

We next construct an auxiliary graph G ′ as follows. First we add to the tree T every edge e = uv ∈ E(G) such that 
u ∈ L(T ), v ∈ S(T ) and there is a support vertex s ∈ S(T ) in NT (u) such that |NT (s) ∩ L(T )| ≥ 2. Then, we delete some of the 
newly added extra edges so that there is exactly one leaf adjacent to every vertex in S(T ). The resulting graph is denoted 
by G ′ . Observe that, because G is twin-free, none of the vertices in L(T ) are pairwise twins in G ′ .

Let C ′ be an optimal locating-dominating set in T such that every support vertex is included in it and for each s ∈ S(T )

there exists a leaf u ∈ N(s) ∩ L(T ) such that u /∈ C ′ . By Lemma 16 such a set exists. Let us now denote C ′′ = C ′ \ L(T ). Now, 
Lemma 17 and Lemma 16 together imply that |C ′′| ≤ n/2. Indeed,

|C ′′| = |C ′| − (
(T ) − s(T )) ≤ n − 
(T ) − sl(T ) + s(T )

2
.

Finally, we create the locating-dominating set C by adding to set C ′′ all vertices in S L(T ) that have a twin in G ′ . Let us 
denote their set by W . Observe that if v ∈ S L(T ) has a twin u in G ′ , then v and u belong to a cycle in G ′ . Moreover, since 
NT (v) ⊆ S(T ), we have u ∈ L(T ). Furthermore, vertices u and v may only have one twin in G ′ and for each s ∈ S(T ) ∩ N(u)

we have exactly one adjacent leaf in G ′ (which is not u). Thus, 
(T ) ≥ s(T ) + |W |. Hence, |C | = |C ′′| + |W | ≤ n−|W |−sl(T )
2 +

|W | ≤ n
2 .

Next, we show that C is a locating-dominating set in G ′ . First of all, because none of the vertices in L(T ) are pairwise 
twins in G ′ and because S(T ) ⊆ C , all the vertices in L(T ) are dominated and pairwise separated by C . Moreover, because 
we removed only leaves from C ′ , which is a locating-dominating set in T , and because each support vertex is in C , all the 
non-leaf vertices are dominated and pairwise separated. Finally, there is the case with IG ′ (C; u) = IG ′ (C; v) where u ∈ L(T )

and v ∈ V (T ) \ (L(T ) ∪ S(T ) ∪ S L(T ) ∪ C). We have |I(v)| ≥ 2, otherwise we would have IT (C ′; v) = IT (C ′; u′) for some 
leaf u′ /∈ C ′ . Moreover, since I(u) ⊆ S(T ), we also have I(v) ⊆ S(T ). Let us denote I(u) = {u1, . . . , ut}, t ≥ 2, and assume 
without loss of generality that uu1 ∈ E(T ). Observe that because v /∈ S L(T ) ∪ S(T ) ∪ L(T ), there exists w ∈ NT (v) \ NG ′ (u)

and w is not a leaf in T . Let us next consider the tree T ′′ = T − u1 v + uu2. We notice that no new leaves are created since 
{w, u2} ⊆ NT ′′ (v) and u1 has at least three neighbours in T , namely v , u and at least one other leaf. Moreover, the number 
of support vertices does not decrease. Indeed, u2 ∈ S(T ′′) and u1 ∈ S(T ′′). Finally, u ∈ L(T ) but u /∈ L(T ′′). Thus, we have 

(T ′′) − s(T ′′) < 
(T ) − s(T ), a contradiction and hence, C is a locating-dominating set in G ′ , a spanning subgraph of G and 
the claim follows by Lemma 12. �

The bound n/2 is asymptotically tight even for graphs with large minimum degree as we can see in the next subsection 
(see Lemma 23). However, it can be improved in many cases, even without the twin-freeness assumption. Let us provide 
two simple classes for which we can improve it.

Remark 19. Let G be a graph on n vertices with a twin-free spanning subgraph G ′ with no isolated vertices. Then, 
→
γ LD(G ′) ≤

n/2 by Theorem 1 and by Lemma 12, we have γLD(G) ≤ →
γ LD(G ′). Hence, the existence of a twin-free spanning subgraph G ′

is enough for Theorem 1 to hold.

Lemma 20. Let G be a graph on n vertices with a Hamiltonian path. Then,

→
γ LD(G) ≤

⌈
2n

5

⌉
.

Proof. The Hamiltonian path is a spanning subgraph. Since γLD (Pn) =
⌈

2n
5

⌉
as proven in [30], Lemma 12 ensures that 

→
γ LD(G) ≤

⌈
2n

⌉
. �
5

9
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We say that a graph G has a P≥t -factor (or t-path factor) if it has a spanning subgraph containing only paths of length 
at least t as its components.

Lemma 21. Let G be a claw-free graph with minimum degree δ ≥ 5t + 3, where t is a positive integer, on n vertices. Then,

→
γ LD(G) ≤ 2t + 4

5t + 8
n.

Proof. Let G be a claw-free graph with minimum degree δ ≥ 5t + 3, where t is a positive integer, on n vertices. Ando et 
al. proved in [1] that every claw-free graph with minimum degree δ has a P≥δ+1-factor. Let P1, . . . , Pq be the paths in the 
P≥δ+1-factorization where mi = |Pi | ≥ δ + 1. As proven in [30], each of these paths has a locating-dominating set of size 
exactly 
2mi/5�. Hence, by Lemma 12, we have 

→
γ LD(G) ≤ ∑q

i=1
2mi/5� = ∑q
i=1(
2mi/5� − 2mi/5) + ∑q

i=1 2mi/5.
Observe that we have 
2mi/5� − 2mi/5 ≤ 4/5 and this value is attained whenever mi = 3 mod 5. It is easy to check that 

the sum is upper bounded by the case where each mi = 5(t + 1) + 3 because each mi ≥ 5t + 4 ≥ 9 and the larger each mi is 
the smaller q is. Hence, we have 

∑q
i=1(
2mi/5� −2mi/5) +∑q

i=1 2mi/5 ≤ n/(5(t +1) +3) ·4/5 +2n/5 = n(2t +4)/(5t +8). �
3.4. (Almost) regular graphs

The goal of this section is to prove that the n/2 bound can be drastically improved when the graph is (almost) regular. 
The proof is based on a probabilistic argument. Namely we prove that, if we select a random subset of vertices of the graph, 
then we can find an orientation where it is “almost” a locating-dominating set. That is, with positive probability, we can 
obtain a locating-dominating set from a random set by simply adding a small well-chosen subset of vertices to this random 
set.

A graph G is d-regular if all the vertices of G have degree exactly d. A class of graphs G is k-almost regular if for every 
graph G ∈ G , we have �(G) ≤ δ(G)k .

Theorem 22. Let G be a class of k-almost regular graphs. Then, there exists a constant cG,k such that, for every G ∈ G ,

→
γ LD(G) ≤ cG,k · log δ

δ
· n.

Before proving Theorem 22, let us make a couple of remarks. First notice that the bound is tight up to a constant 
multiplicative factor since, by Theorem 7, �(logn) vertices are needed for cliques.

Another hypothesis of Theorem 22 asserts that there is a polynomial gap between the minimum and maximum degree. 
One can wonder if a similar result holds if we only have some assumptions on the minimum degree of the graph. We can 
prove that it is not true:

Lemma 23. Let d, n0 ∈N , and ε > 0 be a real. Then, there exists a twin-free graph G of minimum degree at least d, order n ≥ n0 such 
that

→
γ LD(G) ≥ (

1

2
− ε)n

Proof. Let p and q be two integers with p ≥ q ≥ 4. We define the graph G p,q of order n = 4p + q as a disjoint union of 
p paths on four vertices complete to a set {v1, v2, ..., vq} of size q such that the subgraph induced by {v1, v2, ..., vq} is a 
cycle. An example is given by Fig. 2. As p ≥ q the minimal degree is δ(G) = q + 1 and one can check G p,q is twin-free.

Let us prove that 
→
γ LD(G p,q) ≥ 2p − 24q+2 which is enough to obtain the lemma since then, 

→
γ LD(G p,q)/n will tend to 1

2 , 
when p → ∞.

Let D be an orientation of G p,q and let S be an optimal locating-dominating set of D . Let G1 = G p,q[p1, p2, p3, p4], 
G2 = G p,q[q1, q2, q3, q4] and G3 = G p,q[r1, r2, r3, r4] be three P4 of G p,q which belongs to the disjoint union of P4’s. If, for 
every 1 ≤ i ≤ 4 and every 1 ≤ j ≤ q, the edges pi v j , qi v j and ri v j have the same orientation in D , then |S ∩ V (G1)| ≥ 2 or 
|S ∩ V (G2)| ≥ 2 or |S ∩ V (G3)| ≥ 2. Indeed, if there is at most one vertex of S in each subgraph, then in each subgraph Gi
one extremity have no neighbour in Gi ∩ S . Hence we can assume this is the case for p1 and q1. Then, p1 and q1 have the 
same neighbourhood in S , a contradiction.
There are 2q4

orientations of edges between a set of four vertices and a set of q vertices so at least p − 2 × 2q4 = p − 2q4+1

paths of the disjoint union contain at least two elements of S . So 
→
γ LD(G p,q) ≥ 2p − 24q+2. �

The rest of this section is devoted to prove Theorem 22. Let G be a graph in G . We can assume that G has minimum 
degree at least e2. (For graphs of degree less than e2, the conclusion indeed follows since we can modify the constant to 
guarantee that cG,k · log δ · n is at least n). The proof is based on a probabilistic argument. We will select a subset of vertices 
δ

10
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Fig. 2. Example of G9,7 of Lemma 23.

at random and prove that, by only modifying it slightly (with high probability), we can construct an orientation of G such 
that this set is a locating-dominating set.

Let us first recall the Chernoff inequality.

Lemma 24. [Chernoff] Let X = ∑n
i=1 Xi where Xi = 1 with probability p and 0 otherwise and where all the Xi are independent. Let 

μ =E(X) and r > 0. We have

P (X ≤ (1 − r)μ) ≤ e−μ·r2/2.

Also recall the Markov’s inequality: If X is a random variable taking non-negative values and a > 0, then:

P (X ≥ a) ≤ E[X]
a

.

In order to prove Theorem 22, we also need the following general lemma:

Lemma 25. Let G be a graph and X be a subset of vertices such that every vertex v not in X is adjacent to at least log� + 1 vertices 
of X. Then, there exists an orientation D of G where X is a locating-dominating set.

Proof. Let V ′ = {v1, . . . , vt} be an arbitrary ordering of V \ X . Let us prove that we can associate to each vertex vi of V ′ a 
non-empty subset Si of X ∩ N(vi) such that, for every i �= j, Si �= S j .

Let us prove that such a collection of sets Si can be found greedily. Since v1 is adjacent to at least log � + 1 ≥ 1 vertex 
of X , we can indeed find such a set for v1. Assume that we have already selected S1, . . . , Sr . Let us prove that we can select 
a set for vr+1. Let Yr+1 = N(vr+1) ∩ X and u ∈ Yr+1. The number of subsets of Yr+1 containing u is 2|Yr+1|−1 ≥ 2log�+1 ≥ �. 
So at least one of them has not been selected since a subset S j can contain u only if v ju is an edge. We arbitrarily select a 
subset of Yr+1 containing u that is distinct from S1, . . . , Sr , which completes the first part of the proof.

Next, for every x ∈ X in N(vi), we orient the edges from vi to x j if x /∈ Si and orient from x to vi if x ∈ Si . One can easily 
check that X is a locating-dominating set of this orientation of the graph. �

We now have all the ingredients to prove Theorem 22.

Proof of Theorem 22. Let us first start with the following claim:

Claim 26. Let c ≥ 2 be constant. For every graph G of minimum degree δ, there exists a subset X of 25c · (log δ)/δ · n vertices2 of G
such that all the vertices of V \ X have at least c log δ neighbours in X.

Proof. Start with a set X which is empty and add each vertex in X with probability 6c · (log δ)/δ. So E(|X |) = 6c · log δ
δ

· n. 
Moreover P (|X | ≥ 24c · log δ

δ
· n) ≤ 1

4 by Markov’s inequality.

2 All the logarithms of the paper have to be understood base 2.
11
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Let u be a vertex of G . Since N(u) has size at least δ, E(|X ∩ N(u)|) ≥ 6c · log δ. Thus, Lemma 24 ensures that

P (|X ∩ N(u)| ≤ c · log δ) = P (|X ∩ N(u)| ≤ (1 − 5/6)6c · log δ) ≤ e−6c·log δ·(5/6)2/2 ≤ 1

δ3

as long as c ≥ 2.
Let us next enrich X with all the vertices u such that |X ∩ N(u)| is less than c log δ. By union bound, the average number 

of vertices that are added in X is at most n/δ3. Moreover, using again Markov’s inequality, we know that, with probability 
at least 1/2, the number of vertices that are added in X is at most 2 · n/δ3 ≤ c · log δ

δ
· n.

So, with probability at least 1/4, the size of X is at most 24c · log δ
δ

·n before X is enriched and we add at most c · log δ
δ

·n
vertices in X during the second phase. So there exists a set X of size at most 25c log δ/δ · n such that all the vertices are 
either in X or have at least c log δ neighbours in X . �

Let c = 2k. By Claim 26, G admits a subset of vertices X of size 50k · log δ/δ · n such that every vertex v is either in X
or has at least 2k · log δ neighbours in X . We claim that we can orient the edges between X and V \ X to guarantee that all 
the vertices of V \ X have a different neighbourhood in X . It follows from Lemma 25 and the fact that log � + 1 ≤ 2k · log δ

since log � ≤ k log δ. �
Let us complete the results of this section with additional results on regular graphs or based on Lemma 25.
A set S is k-dominating in G if we have for each v ∈ V \ S that |N(v) ∩ S| ≥ k. Let us denote with γk(G) the cardinality 

of a minimum k-dominating set of G . The following lemma is a simple consequence of Lemma 25.

Lemma 27. Let G be a graph with maximum degree �. If k ≥ log � + 1, then

→
γ LD(G) ≤ γk(G).

By [10, Corollary 14], γk(G) ≤ n − α(G) while k ≤ δ. Then, the inequality is an immediate consequence of Lemma 27.

Corollary 28. Let G be a graph with maximum degree � and minimum degree δ ≥ log � + 1. Then,

→
γ LD(G) ≤ n − α(G).

A similar result holds for locating-dominating sets, when G is twin-free [16, Corollary 4.5].
Let M be a matching in a graph G . We say that a vertex u ∈ V (G) is M-unmatched if u is not an endpoint of any edge 

in M .

Theorem 29. Let G be a d-regular graph with d ≥ 3. Then,

→
γ LD(G) ≤ α′(G).

Proof. Let G be a d-regular graph and M be a maximum matching in G . Moreover, let us construct the set D M by choosing 
for each edge uv ∈ M the vertex u to D M if only u has an adjacent M-unmatched vertex. If neither u or v , or both u and 
v have an adjacent (common) M-unmatched vertex, then we arbitrarily add one of them to D M . In the latter case, the 
M-unmatched vertex is common to u and v by the maximality of M .

Observe that D M is a dominating set in G and each M-unmatched vertex is 2-dominated by D M . First of all, each 
M-matched vertex is dominated by another M-matched vertex. Secondly, no two M-unmatched vertices can be adjacent 
because M is a maximum matching. Moreover, since d ≥ 3, each M-unmatched vertex is adjacent to the endpoints of at 
least two different edges in M . Now, due to the structure of D M , each M-unmatched vertex is at least 2-dominated.

Let us next construct graph G ′ by removing each edge e ∈ E(G) \ M with both endpoints in M-matched vertices. 
Now, |IG ′ (D M; u)| = 1 for each M-matched vertex in V (G) and |IG ′ (D M; v)| ≥ 2 for each M-unmatched vertex v . Thus, 
M-matched vertices have unique I-sets in G ′ .

Let w and w ′ be two M-unmatched vertices with identical I-sets. If 2 ≤ |I(D M; w)| = |I(D M; w ′)| ≤ d − 1, then w is 
adjacent to vertices u and v with uv ∈ M and, say, u ∈ D M and v /∈ D M . Moreover, we also have u ∈ N(w ′). But now we 
could have chosen uw ′ and v w in our matching M which is a contradiction to the maximality of M .

Let us then assume that |I(D M ; w)| = |I(D M; w ′)| = d and I(D M; w) = I(D M; w ′) = {u1, . . . ud}. Thus, w and w ′ are 
twins. Let us then count the maximum number, N , of M-unmatched vertices which are adjacent to at least two of vertices 
in I(D M ; w). Each vertex in I(D M; w) is adjacent in G to at least one M-matched vertex, u and v . Hence, there might be 
at most d − 3 other adjacent M-unmatched vertices. Hence, we have N ≤ d(d − 3)/2 + 2. Furthermore, there are exactly 
2d − d − 1 subsets of I(D M; w) of cardinality at least two. Since d ≥ 3, we have 2d − d − 1 > d(d − 3)/2 + 2. Thus, we 
may go through each M-unmatched vertex one by one and if an M-unmatched vertex w has an I-set identical to some 
12
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other (M-unmatched) vertex, then there exists a set of adjacent edges which can be removed so that w has a unique I-
set afterwards. Therefore, we may construct a spanning subgraph G ′′ with the property γLD(G ′′) ≤ α′(G). Hence, the claim 
follows by Lemma 12. �
4. Worst orientation

We next focus on the worst possible orientation. We again start with basic results. Then, we study the lower bound 
→
� LD(G) ≥ γLD(G)/2 that we prove to be true for several classes of graphs and let it open in general. Finally, we consider 
lower bounds using the number of vertices.

4.1. Basic results

Let us start by first showing some lower bounds that are used all along the section. The maximum average degree of a 
graph G , denoted by mad(G) is the maximum quantity 2|E(H)|

|V (H)| over all the subgraphs H of G .

Lemma 30. Let G be a graph of order n. Then,

1.
→
� LD(G) ≥ α(G),

2.
→
� LD(G) ≥ 
ω(G)/2�,

3.
→
� LD(G) ≥ 2n/
mad(G)/2 + 3�.

Proof. Let G be a graph on n vertices. Point 1 has already been noticed for the worst orientation for dominating sets (see 
[6]) and thus, is still true for locating-dominating sets. We repeat here the argument. Take an independent set X of size 
α(G) and orient all the edges with an endpoint in X from X to V \ X . Then, all the vertices in X are sources and thus, must 
be in any locating dominating set.

Let us next prove the second point. Let Km be a clique of G . Consider an orientation D such that each edge is oriented 
away from Km and the edges inside Km are oriented in a transitive way. In a locating-dominating set S of D , no vertices 
outside Km can be in the in-neighbourhoods of the vertices of Km . Thus, S must induce a locating-dominating set in Km . 
Since Km is oriented in a transitive way, by [13], we necessarily have at least 
m/2� vertices in V (Km) ∩ S and so in S .

Let us prove the last point. To do so, let us show that γLD(D) ≥ 2n/(�+(D) + 3) for any orientation D of G . Let C be 
a locating-dominating set of D . For each vertex c ∈ C , let s(c) = ∑

v∈N+[c] 1/|N−[v]|. Since C is dominating in D , we have ∑
c∈C s(c) = n. Moreover, for any c ∈ C , at most two vertices in N+[c] have only c in their I-sets (at most one vertex outside 

c and maybe c). Thus, s(c) ≤ 2 + (�+(D) − 1)/2. Now,

n =
∑
c∈C

s(c) ≤ |C |3 + �+(D)

2
.

Hence, |C | ≥ 2n/(3 +�+(D)). So Point 3 follows since each graph has an orientation D ′ such that �+(D ′) ≤ 
mad(G)/2� by 
[20]. �

Observe that all the bounds are tight. Indeed, we see in Corollary 35 that for some bipartite graphs 
→
� LD(G) = α(G). 

Moreover, for a complete graph Kn , we have 
→
� LD(Kn) = 
n/2�, by Corollary 6. Finally, we will see (Corollary 36) that for a 

cycle on n vertices we have 
→
� LD(Cn) = 
n/2�.

We now present three general upper bounds for 
→
� LD(G). We denote by ad(G) the average degree of G and by α2(G)

the maximum size of an independent set at 2-distance, that is a set of vertices such that any two vertices of the set are at 
distance greater than 2.

Lemma 31. Let G be a graph of order n. Then,

1.
→
� LD(G) ≤ n − α2(G);

2.
→
� LD(G) ≤ n −

⌊
ω(G)

2

⌋
;

3.
→
� LD(G) ≤ n −

⌊
n

2n−2ad(G)

⌋
.

Proof. Let G be a graph on n vertices and D be an orientation of G such that γLD(D) = →
� LD(G). Let S be a maximum 

independent set at 2-distance in G . Observe that, for any two distinct vertices u, v ∈ S , we have N[u] ∩ N[v] = ∅. Let us 
13
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construct set S ′ by adding, for each vertex u ∈ S , either u to S ′ if u has no out-neighbours in D or an out-neighbour of u if 
u has one in D . Now, one can easily check that C = V \ S ′ is a locating-dominating set of G of size n − α2(G).

Let us next prove 2. Let K be a maximal clique in G and let C K be an optimal locating-dominating set in D[K ]. Now, 
C = C K ∪ (V (G) \ K ) is a locating-dominating set of D . Furthermore, |C K | ≤ 
ω(G)/2� by Theorem 5 and hence, the claim 
follows.

Let us finally prove the third bound. We have

→
� LD(G) ≤ n − �ω(G)/2� = n − �α(G)/2� ≤ n − �n/(2ad(G) + 2)� = n − �n/(2n − 2ad(G))�.

Here the second inequality is due to Caro-Wei lower bound for independence number [5,32] and the last equality is due to 
equality ad(G) + ad(G) = n − 1. �

All these bounds are tight: the first bound is tight for stars and the two others for complete graphs.

We still have 
→
� LD(G) ≤ n − 1 as soon as G has at least one edge. As in the case of 

→
γ LD(G), we can characterize the set 

of graphs reaching 
→
� LD(G) = n − 1 using Theorem 3.

Lemma 32. For a connected graph G, 
→
� LD(G) = n − 1 if and only if at least one of the following conditions holds:

1. n = 3;
2. G is a star;
3. G consists of a complete bipartite graph and possibly a single universal vertex.

Proof. By Theorem 3, we have 
→
� LD(G) = n − 1 if n = 3 or G is a star. Moreover, since we consider oriented graphs, the 

third condition of Theorem 3 implies that C must be of size one. Thus, the claim follows. �
Cycles on four vertices have a special role for best orientations. It is also the case for worst orientations, as illustrated by 

the following results.

Lemma 33. Let G be a graph without C4 as a subgraph. Then, 
→
� LD(G) ≤ →

� LD(G − e) for any edge e ∈ E(G).

Proof. Let G be a graph without C4 and with at least one edge. Let D be an orientation such that γLD(D) = →
� LD(G). By 

contradiction, assume that 
→
� LD(G − e) <

→
� LD(G). Then, we have γLD(D − e) < γLD(D).

Let S be an optimal locating-dominating set in D − e. Since γLD(D − e) < γLD(D), S cannot be a locating-dominating 
set in D . Because S is dominating in D − e, S is also dominating in D . Thus, there are vertices u, v ∈ V (G) such that 
I D(v) = I D(u). Moreover, we have |I D(v)| = |I D(u)| ≥ 2. Let {c1, c2} ⊆ I D(v). But now we have a cycle on four vertices 
u, c1, v and c2. �

Note that Lemma 33 does not hold for C4. We have 
→
� LD(C4) = 3 and 

→
� LD(P4) = 2. The bounds in the following lemma 

are tight for example for stars.

Lemma 34. Let G be a graph without C4 as a subgraph. Then,

γLD(G) ≤ →
� LD(G) ≤ n − α′(G).

Proof. Let G = (V , E) be a graph without C4 as a subgraph. The lower bound follows from Theorem 10. Let us prove the 
upper bound. Let M be a maximum matching in G and G ′ be a graph we get from G by removing each edge not belonging 
to M . By Lemma 33, we have 

→
� LD(G) ≤ →

� LD(G ′). Moreover, the graph G ′ consists of isolated vertices and components 
isomorphic to P2. Thus, a set S consisting of isolated vertices and a single vertex for each P2-component is locating-

dominating in G ′ and 
→
� LD(G ′) = γLD(G ′) = |S| ≤ n − α′(G). �

Together with some classical results of König and Gallai, Lemma 34 permits to determine the exact value of 
→
� LD(G) for 

bipartite graphs without C4 (which in particular include all trees).

Corollary 35. Let G be a bipartite graph without C4 as a subgraph. Then, 
→
� LD(G) = α(G).
14
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Proof. Let G be a bipartite graph without C4. We have 
→
� LD(G) ≥ α(G) by Lemma 30. By [25], we have α′(G) = β(G)

since G is bipartite. Moreover, by [15], we have α(G) + β(G) = n. Hence, α(G) = n − α′(G). Now, we have, by Lemma 34, 
→
� LD(G) ≤ n − α′(G) = α(G). Thus, α(G) ≤ →

� LD(G) ≤ α(G). �
Corollary 36. Let Cn be a cycle on n vertices. Let n = 3 or n ≥ 5. Then,

→
� LD(Cn) =

⌈n

2

⌉
.

Proof. By Lemma 33, we have 
→
� LD(Cn) ≤ →

� LD(Pn) by Corollary 35 applied to Pn (where α(Pn) =
⌈ n

2

⌉
). Moreover, if we 

take a cyclic orientation of Cn , the set of vertices with an odd index number forms an optimal locating-dominating set. �
Observe that, for the path on n vertices, Pn , we have γLD(Pn) = 
2n/5� for paths [30] while we have 

→
� LD(Pn) = α(Pn) =


n/2�. As we mentioned above, there exist graphs without C4 with 
→
� LD(G) > γLD(G). However, we are not aware of any 

graph G without C4 which does not attain the upper bound of Lemma 34.

Open problem 37. Does there exist a graph G without C4 as a subgraph with 
→
� LD(G) < n − α′(G)?

4.2. Lower bound with γLD(G)

In Section 4.1, we have seen that 
→
� LD(G) ≥ γLD(G) if G is without C4 subgraphs. One can easily remark that this equality 

does not hold in general. For example, for complete graphs we have γLD (Kn) = n − 1 and 
→
� LD(Kn) = 
n/2� by Corollary 6. 

However the clique example is somehow unsatisfactory since all the vertices are twins. One can wonder if we can also 
provide an example of twin-free graphs where 

→
� LD(G) < γLD(G). We will prove (Theorem 43) that there are graphs for 

which 
→
� LD(G)/γLD(G) is arbitrarily close to 1/2. Moreover, we strengthen the result that 

→
� LD(G) ≥ γLD(G) on graphs 

without C4 to a wider class of graphs (Lemma 41).

Despite our efforts, we were not able to find graphs for which 
→
� LD(G) < γLD(G)/2. We leave as an open problem the 

following question:

Open problem 38. Is it true that for every graph G , 
→
� LD(G) ≥ γLD(G)/2?

We were actually not able to prove the existence of any constant c such that, for any graph G , 
→
� LD(G) ≥ c · γLD(G). 

However, in the following theorem we present a bound with �(G).

Theorem 39. Let G be a graph. Then,

→
� LD(G) ≥ γLD(G)


log2 �(G)� + 1
.

Proof. Let D be an orientation of G such that 
→
� LD(G) = γLD(D). Moreover, let S be an optimal locating-dominating set in 

D . Observe, that for each subset I of S , the set

S I = {v ∈ V (G) \ S | IG(S; v) = I}
contains at most �(G) vertices: |S I | ≤ �(G). Let us next construct a new orientation D1 by first taking for each set S I , 
�|S I |/2� disjoint vertex pairs within the set S I , that is, as many disjoint vertex pairs as possible. Then, we number each 
vertex of V (G) as ui , 1 ≤ i ≤ |V (G)| so that each pair has consecutive numbers. Finally we orient each edge from ui to u j
where i < j.

Let S1 be an optimal locating-dominating set for orientation D1. Notice that |S1| ≤
→
� LD(G). Moreover, S ′

1 = S ∪ S1 is a 
locating-dominating set in D and D1. Furthermore, S1 separates each paired pair of vertices in D1. Thus, if for a pair ui, ui+1, 
vertex x separates ui and ui+1 in D1, then either x = ui+1 or it separates also ui and ui+1 in G . Moreover, for each I ′ ⊆ S ′

1

such that I = I ′ ∩ S , we have that S ′ I ′
1 ⊆ S I . Since S1 separates the pairs in G , we have that |S ′ I ′

1 | ≤ �|S I |/2� ≤ ��(G)/2�.
If we now iterate this process 
log2(�(G))� times, each time creating a new orientation with a new numbering and a 

new optimal locating-dominating set for the orientation, then we finally get set S ′
t = S ∪ ⋃t

i=1 Si , where t = 
log2(�(G))�, 

with |S ′
t | ≤ 
log2(�(G)) + 1�→

� LD(G). Moreover, because we (almost) halve the number of vertices with the same I-set in 
15
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Fig. 3. Example of graph G of Theorem 43 with t = k = 3.

G each time, no vertices in V \ S ′
t share the same I-set with the set S ′

t in G . Thus, S ′
t is locating-dominating in G and 

γLD(G) ≤ |S ′
t | ≤ 
log2(�(G)) + 1�→

� LD(G). �

4.2.1. Graphs for which 
→
� LD(G) ≥ γLD(G)

Lemma 40. Let G be a graph and D be an orientation of G such that no C4 in G contains a directed path of length 4 in D. Then, any 
locating-dominating set of D is a locating-dominating set of G. In particular, 

→
� LD(G) ≥ γLD(G).

Proof. Let G be a graph and D be an orientation of G such that no C4 in G contains a directed path of length 4 in D . Let 
S be locating-dominating in D . Let us assume that S is not locating-dominating in G . Set S is clearly dominating in G . Let 
v, u ∈ V \ S be vertices with IG (v) = IG(u). Since I D(v) �= I D(u), we have |IG(v)| ≥ 2. Let us assume that c1 ∈ I D(v) \ I D(u)

and c2 ∈ I D(u). But now we have a directed path c2uc1 v , a contradiction. �
Let M and R be subgraphs of G . An (M, R)-WORM colouring [17] of graph G , is a colouring of the vertices of G where 

no subgraph of G isomorphic to M is monochromatic and no subgraph of G isomorphic to R is heterochromatic (i.e. has all 
its vertices of different colours). The following lemma gives us a tool for applying Lemma 40.

Lemma 41. If G admits a (K2, C4)-WORM colouring, then 
→
� LD(G) ≥ γLD(G).

Proof. Let G be a graph which admits a (K2, C4)-WORM colouring c using colours {1, . . . , k}. Let D be the orientation such 
that we have an edge from u to v if c(u) < c(v). Since c is a (K2, C4)-WORM colouring, it defines an orientation for any 
edge and 

→
� LD(G) ≥ γLD(D). Hence, it is enough to show that γLD (D) ≥ γLD(G).

We claim that no C4 in D contains a directed path of length 4. Indeed, if there is a directed path u1u2u3u4, then 
c(u1) < c(u2) < c(u3) < c(u4) and if this path is contained in a C4, then this C4 is heterochromatic, a contradiction. Then, 
the claim follows from Lemma 40. �

Observe that any proper colouring with at most three colours is also a (K2, C4)-WORM colouring. Hence, we get the 
following corollary (where χ(G) denotes the chromatic number of G).

Corollary 42. Let G be a graph with χ(G) ≤ 3. Then, 
→
� LD(G) ≥ γLD(G).

4.2.2. Worst examples
The following theorem ensures that there exist examples of twin-free graphs where we almost reach the ratio 1

2 for 
→
� LD(G)/γLD(G).
16
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Theorem 43. There exists an infinite family of twin-free graphs G such that

→
� LD(G)

γLD(G)

n→∞−→ 1

2
.

Proof. Let k, t ≥ 2 be integers and let Hk,t be the graph with vertex set

V (Hk,t) = {vi, j, ui, j | 1 ≤ i ≤ k,1 ≤ j ≤ t}
and edge set

E(Hk,t) = {ui, jui′, j | i �= i′} ∪ {ui, jui, j′ | j �= j′} ∪ {vi, j vi′, j | i �= i′} ∪ {vi, jui, j}
where we have 1 ≤ i ≤ k, 1 ≤ j ≤ t for each i and j. We illustrate graph H3,3 in Fig. 3.

In other words, the set of vertices {vi, j | 1 ≤ i ≤ k} induces a clique V j
t for every j. Similarly, the set of vertices {ui, j | 1 ≤

i ≤ k} induces a clique U j
t for every j and the set of vertices {ui, j | 1 ≤ j ≤ t} induces a clique U i

k for each i. In fact, the set 
of vertices ui, j , for 1 ≤ i ≤ k, 1 ≤ j ≤ t , forms the Cartesian product Kt�Kk . Observe that Ht,k is twin-free since each vertex 
ui, j has a unique neighbour vi, j and vice versa.

Let C be a locating-dominating set of Ht,k . If we have {vi, j, ui, j, vi′, j, ui′, j} ∩ C = ∅. Then, I(vi, j) = I(vi′, j) and hence, 
we have a contradiction. Thus, γLD (Ht,k) ≥ (k − 1)t . On the other hand, the set {vi, j | 1 ≤ i ≤ k, 1 ≤ j ≤ t} forms a locating-
dominating set and hence,

kt ≥ γLD(Ht,k) ≥ (k − 1)t.

Let us then consider the oriented locating-dominating sets. Let D be an orientation of Ht,k with 
→
� LD(G) = γLD(D).

Let S j be a 2-dominating set in the tournament U j
t for each j (i.e. each vertex outside S j is dominated twice). Let S ′

i

be a dominating set in the tournament U i
k \ ⋃t

j=1 S j for each i in the orientation D . Observe that |S j | ≤ 2 log(t + 1) and 
|S ′

i | ≤ log(k + 1) for each i and j by [11]. Moreover, let C j be an optimal locating-dominating set in the tournament V j
t . We 

have |C j | ≤ t/2.

Consider next the set C = ⋃t
j=1 C j

⋃k
i=1 S ′

i

⋃t
j=1 S j . We have

|C | ≤ kt/2 + 2k log(t + 1) + t log(k + 1).

Observe that for each i and j, vertex ui, j is now 3-dominated by 
⋃k

a=1 S ′
a ∪ ⋃t

b=1 Sb and I D(ui, j) �= I D(ui′, j′ ) where (i, j) �=
(i′, j′). Moreover, each vertex vi, j is located by the set C j . Thus, C is a locating-dominating set of D and

→
� LD(Hk,t) = γLD(D) ≤ kt/2 + 2k log(t + 1) + t log(k + 1).

Finally, if we choose an orientation of Hk,t such that each edge from vi, j is oriented to ui, j and such that all the cliques 
V j

t are oriented transitively, we notice that we need at least t
k/2� vertices in C .
Thus,

→
� LD(Hk,t)

γLD(Hk,t)
≤ kt/2 + 2k log(t + 1) + t log(k + 1)

(k − 1)t

and
→
� LD(Hk,t)

γLD(Hk,t)
≥ t
k/2�

kt
≥ 1

2
.

When k → ∞ and t → ∞, 
→
� LD(Hk,t)/γLD(Hk,t) → 1

2 . �
4.3. Lower bound with the number of vertices

In this subsection, we consider how small 
→
� LD(G) can be compared to the number of vertices. For the best orientation 

and the undirected case, there exist many graphs reaching the theoretical lower bound in �(log n) (see Theorem 7). For the 
worst orientation, we did not find any graph with 

→
� LD(G) of order logn.

Open problem 44. Does there exist a class of graphs G such that for any G ∈ G on n vertices the value 
→
� LD(G) is logarithmic 

on n?
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We have three reasons to believe there is a positive answer for Open Problem 44. First, most of the other types 
of locating-dominating parameters can achieve logarithmic values on n. Secondly, we did not find a non-logarithmic 
lower bound. Thirdly, A natural class of candidates would be (Erdős-Renyi) random graphs where an unoriented locating-
dominating set has indeed logarithmic size [14]. However, the worst orientation of such a graph is not easy to manipulate 
and then we were not able to study efficiently upper bounds on 

→
� LD(G).

On the other hand, in the following we give some properties which deny the possibility for a graph class G to have 
a logarithmic lower bound on n. Together with a well-known conjecture and an open problem, if they have a positive 
solution, these properties mean that if G has a certain type of a forbidden subgraph characterization, then it does not have 
a logarithmic lower bound for 

→
� LD(G). In the following, we discuss these ideas and give some polynomial lower bounds for 

→
� LD(G) in some graph classes.

Lemma 30 gives a linear lower bound for 
→
� LD(G) in n for classes of graphs which have their chromatic number bounded 

by a constant since α(G) ≥ n/χ(G) and for classes of graphs with cliques of linear size. These results can be extended to 
obtain bounds in 
(nβ) where β is a constant when a class of graphs G is χ -bounded by a polynomial function, that is, if 
there exists a polynomial function f such that χ(G) ≤ f (ω(G)) holds for all G ∈ G . Note that it has been asked [23] if it is 
true that every χ -bounded class admits a χ -bounding function that is polynomial. Moreover, Gyárfas [19] has conjectured 
that if the graph class G is F -free for some forest F , then G is χ -bounded.

Theorem 45. Let G be a class of graphs χ -bounded by a function f : x �→ xc where c is a constant. Then, for any G ∈ G with n vertices, 
we have:

→
� LD(G) ≥ 2−c/(c+1) · n

1
c+1 .

Proof. Let G ∈ G . By Lemma 30, we have 
→
� LD(G) ≥ ω(G)/2 ≥ χ(G)1/c/2 and 

→
� LD(G) ≥ α(G) ≥ n/χ(G). Thus, 

→
� LD(G) ≥

max{n/χ(G), χ(G)1/c/2}. This value attains its minimum when n/χ(G) = χ(G)1/c/2. In other words, when χ(G) =
(2n)c/(c+1) . This gives the claim. �

Theorem 45 applies in particular for perfect graphs for which f is the identity function. Hence, if G is a perfect graph, 
then

→
� LD(G) ≥

√
n

2
. (2)

Theorem 45 can also be used to get a lower bound, for example, for claw-free graphs. In [8], the authors have shown that 
if G is a connected claw-free graph with an independent set of size at least 3, then χ(G) ≤ 2ω(G). Thus, 

→
� LD(G) ≥ √

n/2. 
Similar idea works also for C3-free graphs. In [24], the author has shown that if G is C3-free, then α(G) ∈ 
(

√
n log n). Thus, 

also 
→
� LD(G) ∈ 
(

√
n log n).

Finally, we end the chapter by giving a class of perfect graphs which shows that Bound (2) is tight within a logarithmic 
multiplier. We denote by G�H the cartesian product of G and H .

Theorem 46. Let m be an integer. Then, m ≤ →
� LD(Km�Km) ≤ 3m log(m + 1).

Proof. Let us denote the vertices of G = Km�Km by V (G) = {(vi, u j) | 1 ≤ i, j ≤ m}. Moreover, we have (vi1 , u j1 )(vi2 , u j2 ) ∈
E(G) if i1 = i2 or j1 = j2. There are 2m cliques, each of size m in G and every vertex belongs to exactly two of these cliques. 
We have ω(Km�Km) = χ(Km�Km) = m. Thus, m ≤ →

� LD(Km�Km) and G is perfect.

Let D be an orientation of G such that 
→
� LD(G) = γLD(D). Similarly, as in the proof of Theorem 43, we again construct 

a dominating set for each clique {(vi, u j) | 1 ≤ i ≤ m} where j is fixed and a 2-dominating set for each clique {(vi, u j) | 1 ≤
j ≤ m} where i is fixed. Observe that, in D , each dominating set has cardinality of at most log(m + 1) ([11]) and hence, each 
2-dominating set has cardinality of at most 2 log(m + 1). Since we have m dominating sets and m different 2-dominating 
sets, we have 

→
� LD(Km�Km) ≤ 3m log(m + 1). �

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.
18



N. Bousquet, Q. Deschamps, T. Lehtilä et al. Discrete Mathematics 346 (2023) 113124
References

[1] K. Ando, Y. Egawa, A. Kaneko, K.-i. Kawarabayashi, H. Matsuda, Path factors in claw-free graphs, Discrete Math. 243 (1–3) (2002) 195–200.
[2] J. Bensmail, F. Mc Inerney, N. Nisse, Metric dimension: from graphs to oriented graphs, in: The Proceedings of Lagos 2019, the Tenth Latin and American 

Algorithms, Graphs and Optimization Symposium, LAGOS, 2019, in: Electronic Notes in Theoretical Computer Science, vol. 346, 2019, pp. 111–123.
[3] M. Blidia, M. Chellali, F. Maffray, J. Moncel, A. Semri, Locating-domination and identifying codes in trees, Australas. J. Comb. 39 (2007) 219–232.
[4] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Elsevier, New York, 1976.
[5] Y. Caro, New results on the independence number, Technical report, Technical Report, Tel-Aviv University, 1979.
[6] Y. Caro, M.A. Henning, Directed domination in oriented graphs, Discrete Appl. Math. 160 (7–8) (2012) 1053–1063.
[7] I. Charon, O. Hudry, A. Lobstein, Identifying and locating-dominating codes: Np-completeness results for directed graphs, IEEE Trans. Inf. Theory 48 (8) 

(2002) 2192–2200.
[8] M. Chudnovsky, P. Seymour, Claw-free graphs VI. Colouring, J. Comb. Theory, Ser. B 100 (6) (2010) 560–572.
[9] N. Cohen, F. Havet, On the minimum size of an identifying code over all orientations of a graph, Electron. J. Comb. (2018) P1.49.

[10] E. DeLaViña, C.E. Larson, R. Pepper, B. Waller, Graffiti.pc on the 2-domination number of a graph, Congr. Numer. 203 (2010) 15–32.
[11] P. Erdös, On schütte problem, Math. Gaz. 47 (1963) 220–222.
[12] F. Foucaud, M.A. Henning, C. Löwenstein, T. Sasse, Locating–dominating sets in twin-free graphs, Discrete Appl. Math. 200 (2016) 52–58.
[13] F. Foucaud, S. Heydarshahi, A. Parreau, Domination and location in twin-free digraphs, Discrete Appl. Math. 284 (2020) 42–52.
[14] A. Frieze, R. Martin, J. Moncel, M. Ruszinkó, C. Smyth, Codes identifying sets of vertices in random networks, Discrete Math. 307 (9) (2007) 1094–1107.
[15] T. Gallai, Über extreme Punkt- und Kantenmengen, Ann. Univ. Sci. Bp. Rolando Eötvös Nomin., Sect. Math. 2 (1959) 133–138.
[16] D. Garijo, A. González, A. Márquez, The difference between the metric dimension and the determining number of a graph, Appl. Math. Comput. 249 

(2014) 487–501.
[17] W. Goddard, H. Xu, Vertex colorings without rainbow or monochromatic subgraphs, arXiv preprint, arXiv:1601.06920, 2016.
[18] S. Gravier, R. Klasing, J. Moncel, Hardness results and approximation algorithms for identifying codes and locating-dominating codes in graphs, Algo-

rithmic Oper. Res. 3 (1) (2008).
[19] A. Gyárfás, Problems from the world surrounding perfect graphs, Appl. Math. 3 (19) (1987) 413–441.
[20] S.L. Hakimi, On the degrees of the vertices of a directed graph, J. Franklin Inst. 279 (4) (1965) 290–308.
[21] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
[22] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs. 1998, Marcel Dekker, New York, 1998.
[23] T. Karthick, F. Maffray, Vizing bound for the chromatic number on some graph classes, Graphs Comb. 32 (4) (2016) 1447–1460.
[24] J.H. Kim, The Ramsey number R(3, t) has order of magnitude t2/log t, Random Struct. Algorithms 7 (3) (1995) 173–207.
[25] D. König, Graphen und matrizen, Mat. Lapok 38 (1931) 116–119.
[26] A. Lobstein, Watching systems, identifying, locating-dominating and discriminating codes in graphs: a bibliography, Published electronically at https://

www.lri .fr /%7Elobstein /debutBIBidetlocdom .pdf.
[27] D.F. Rall, P.J. Slater, On location-domination numbers for certain classes of graphs, Congr. Numer. 45 (1984) 97–106.
[28] R.D. Skaggs, Identifying vertices in graphs and digraphs, PhD thesis, University of South Africa, 2007.
[29] P.J. Slater, Domination and location in acyclic graphs, Networks 17 (1) (1987) 55–64.
[30] P.J. Slater, Dominating and reference sets in a graph, J. Math. Phys. Sci. 22 (4) (1988) 445–455.
[31] P.J. Slater, Fault-tolerant locating-dominating sets, Discrete Math. 249 (1–3) (2002) 179–189.
[32] V. Wei, A lower bound on the stability number of a simple graph, Technical report, Bell Laboratories Technical Memorandum 81-11217-9, Murray Hill, 

NJ, 1981.
[33] I.E. Zvervich, V.E. Zverovich, An induced subgraph characterization of domination perfect graphs, J. Graph Theory 20 (3) (1995) 375–395.
19

http://refhub.elsevier.com/S0012-365X(22)00330-2/bibAFBDFE5B20A193F1B41A7E48E7AC1771s1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bibA0CDAF23BF40F84A2BF6E952CB9E3AFFs1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bibA0CDAF23BF40F84A2BF6E952CB9E3AFFs1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bib5D2CB731BA788686E8EE4C6603CD92D8s1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bibD1101FC49D02C207A83927B923C41333s1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bib5B40254A155181E0E21FB70031344F26s1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bib4EED26F687B0C7F8209EDBF4E4F6797Es1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bibF81D1E5D5FFEA4F95DAF910E963466E4s1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bibF81D1E5D5FFEA4F95DAF910E963466E4s1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bib0678B978A53BB1488ECF3F338E6F9D98s1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bib1E62EED460BAC394D1D81920BBCEB8E4s1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bib028ACBA70D5BD151543612B028FB872Cs1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bib9D97DD986249E22623CAC115558BF198s1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bib75B9146F3C288DBE4302B5F768CEF458s1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bib03B470F1600F35CE96CED1D4E7917909s1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bib4F12707D064A4791BAD855709C36E8A7s1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bib07F3CE3988505320BCE84A9BFC8C40E7s1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bib8621F4AA12B096852F649AB0FB1E4802s1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bib8621F4AA12B096852F649AB0FB1E4802s1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bib73B9389F3D1CFF5E7F45EC9946BE9EE0s1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bib7E25987FB06D59CF6162353123DB2903s1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bib7E25987FB06D59CF6162353123DB2903s1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bib92D12D2A9EB335F8880E3286399E458Fs1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bib64C2B76790F1F4349304CE8AE2AD1443s1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bib90C5D5D60C30C7496C37D0A9D66D097As1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bibBAB34DD90B04F5F0F2BB25EFCF9C49D0s1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bib5B59E990D8198FFB76E8DFA7DE86243Cs1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bib0012858FA02D329ACB0DE47AB1B7D905s1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bib367615702E3040EBFBC8BB84D737DFE9s1
https://www.lri.fr/%7Elobstein/debutBIBidetlocdom.pdf
https://www.lri.fr/%7Elobstein/debutBIBidetlocdom.pdf
http://refhub.elsevier.com/S0012-365X(22)00330-2/bib6AC8511A76F4C32BA9835BF19E75FD7Bs1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bib91A7C021CBBBC20AB205BA36767CDD80s1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bibE97EEE2964CE88DF721BE8814187D8ECs1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bib9DBE1A0C2A52A01D268373A5C515B2D2s1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bibFE4631F6368C6EA5D60111D0D93C8200s1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bib30395F151A08185A516B409D79B10E0Bs1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bib30395F151A08185A516B409D79B10E0Bs1
http://refhub.elsevier.com/S0012-365X(22)00330-2/bibFEFEA8CD11C810222D7020F1975CD33Bs1

	Locating-dominating sets: From graphs to oriented graphs
	1 Introduction
	1.1 Outline of the paper

	2 Preliminaries
	2.1 Notations
	2.2 Preliminary results and examples

	3 Best orientation
	3.1 Basics
	3.2 Relation to spanning subgraphs
	3.3 Conjecture 2 holds for graph orientations
	3.4 (Almost) regular graphs

	4 Worst orientation
	4.1 Basic results
	4.2 Lower bound with γLD(G)
	4.2.1 Graphs for which →ΓLD(G)≥γLD(G)
	4.2.2 Worst examples

	4.3 Lower bound with the number of vertices

	Declaration of competing interest
	References


