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Diffusion tensor imaging in frontostriatal tracts is associated
with executive functioning in very preterm children at 9 years of age
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Abstract
Background Very preterm birth can disturb brain maturation and subject these high-risk children to neurocognitive difficulties later.
Objective The aim of the study was to evaluate the impact of prematurity onmicrostructure of frontostriatal tracts in childrenwith
no severe neurologic impairment, and to study whether the diffusion tensor imaging metrics of frontostriatal tracts correlate to
executive functioning.
Materials and methods The prospective cohort study comprised 54 very preterm children (mean gestational age 28.8 weeks) and
20 age- and gender-matched term children. None of the children had severe neurologic impairment. The children underwent
diffusion tensor imaging and neuropsychological assessments at a mean age of 9 years. We measured quantitative diffusion
tensor imaging metrics of frontostriatal tracts using probabilistic tractography. We also administered five subtests from the
Developmental Neuropsychological Assessment, Second Edition, to evaluate executive functioning.
Results Very preterm children had significantly higher fractional anisotropy and axial diffusivity values (P<0.05, corrected for
multiple comparison) in dorsolateral prefrontal caudate and ventrolateral prefrontal caudate tracts as compared to term-born
children. We found negative correlations between the diffusion tensor imaging metrics of frontostriatal tracts and inhibition
functions (P<0.05, corrected for multiple comparison) in very preterm children.
Conclusion Prematurity has a long-term effect on frontostriatal white matter microstructure that might contribute to difficulties in
executive functioning.
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Introduction

The survival of infants born before 32 weeks of gestation has
increased remarkably in the last 20 years. Neurologic out-
comes have improved, as well, including a decreasing rate
of major neurosensory disabilities such as cerebral palsy [1].
Despite this, children born at a very low gestational age
(VLGA) continue to have difficulties in neurocognitive pro-
cessing through their early school years and into adulthood
[2–4], even with no serious perinatal brain injury [5]. Specific
neurodevelopmental deficits, including problems in executive
functioning, might explain poorer academic performance in
this high-risk population [6].

Executive functions comprise cognitive processes such as
attentional control, inhibition, shifting, working memory, rea-
soning and problem-solving. The prefrontal cortex and
frontostriatal tracts are part of a wide neural network that
conveys these processes [7, 8]. Among cortical areas, the
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frontal cortex has the longest maturational time window [9],
making it particularly susceptible to both structural and func-
tional alterations.

Very preterm birth might affect myelination and axonal
growth in developing white matter. Diffusion tensor imaging
(DTI) is a special sequence of MRI used to study white matter
microstructure [10]. Fractional anisotropy, axial diffusivity, ra-
dial diffusivity and mean diffusivity are quantitative measures
of water diffusion. These DTI metrics offer the opportunity to
study possible correlations between voxel-based changes in
white matter microstructure and neurodevelopmental outcomes
in children born very preterm [11].

As part of our follow-up study, a cohort of VLGA children
and a comparison group of term children underwent DTI and
neuropsychological assessments at 9 years of age. Previously,
we showed that VLGA children at school age had more prob-
lems in executive functions when compared to term children
[3]. In the present study, we defined frontostriatal tracts using
probabilistic tractography and quantitated DTImetrics. Our aim
was to test the hypotheses that the DTI metrics of frontostriatal
tracts differ between VLGA and term-born schoolchildren and
that these microstructural properties correlate to executive func-
tioning among schoolchildren born very preterm.

Materials and methods

Subjects

The present study was part of a prospective follow-up cohort
study of children born before 32 weeks of gestation at Oulu
University Hospital between November 1998 and November
2002. The data set of this population has been described in
detail [3, 12]. The VLGA children underwent serial brain US
examinations during the neonatal period, and severe brain in-
jury was identified as intraventricular haemorrhage Grades 3 or
4 [13] or cystic periventricular leukomalacia [14]. A group of
age- and gender-matched term children was selected from the
birth register of Oulu University Hospital at the age of 9. The
recruitment and inclusive follow-up assessments were carried
out during a 4-year period, between November 2007 and
November 2011, at Oulu University Hospital [3, 12].

Altogether, 68 VLGA children and 23 term children
underwent brain MRI at a mean age of 9 years (range 8.6–
9.6 years). Fourteen VLGA children were excluded from the
current study. The exclusion criteria were cerebral palsy
(n=4), missing DTI data (n=1), problems in MRI data transfer
(n=2) or with quality control criteria (n=5), and technical
problems in fibre tracking (n=2). Three term children were
excluded: two because of missing DTI data and one because
of technical problems in fibre tracking. Five parents of VLGA
children refused to participate in neuropsychological tests,
leaving 49 VLGA children and 20 term children with results

from neuropsychological assessments at a mean age of 9 years
(range 8.7–9.3 years). The ethics committee of Oulu
University Hospital approved the study (reference number
60/2007), and we obtained written informed consent from
both the participating children and their parents.

Neurologic and neuropsychological assessments

Severe neurologic impairment was defined as cerebral palsy.
Among the VLGA children, cerebral palsy was confirmed by
a child neurologist at Oulu University Hospital at the age of
5 years. The diagnosis was based on standard criteria by the
Surveillance of Cerebral Palsy in Europe network [15]. Every
child participating in the current study also underwent a struc-
tured neurologic assessment at the age of 9 years. None of the
term children was diagnosed to have cerebral palsy. All par-
ticipants attended mainstream school.

Neuropsychological assessments were performed by a
child psychologist at Oulu University Hospital. The children
comple ted 14 subtes ts f rom the Developmenta l
Neuropsychological Assessment, Second Edition [16].
Standardised scores were calculated and analysed for these
subtests. The subtest scores, with a range of 1–19, had a
normed mean of 10 and a standard deviation of 3. The five
subtests describing executive functioning —auditory atten-
tion, response set, inhibition/naming, inhibition/inhibition
and inhibition/switching— were chosen for the present study
from the Developmental Neuropsychological Assessment,
Second Edition. To reduce the number of outcome variables,
we further calculated mean scores for attention domain (com-
prising auditory attention and response set subtests) and for
inhibition domain (comprising three inhibition subtests). Four
VLGA children and one term child could not perform the
inhibition/switching subtest, leaving 45 VLGA children and
19 term children with no severe neurologic impairment and
with results from the inhibition domain.

Neuroimaging

Conventional MRI was performed using a 1.5-tesla (T) GE
Signa HDX (GE Healthcare, Milwaukee, WI). The study pro-
tocol comprised a T1-weighted sagittal spin-echo sequence.
For this protocol, the slice thickness was 5 mm with a 1-mm
gap between slices, the field of view was 24 cm with a
512×512 matrix, and the repetition time (TR)/echo time
(TE) was 540/14 ms. In addition, T2-weighted axial images
were taken using the Propeller technique with a slice thickness
of 5 mm and a 1-mm gap, an echo train length of 28, a recon-
struction diameter of 22 cm with a 512×512 matrix, and a TR/
TE of 5,000/173 ms.

DTI was obtained using a spin-echo echoplanar sequence
with an isotropic 3-mm voxel, 40 directions and a b value of
1,000. The repetition time was 9,000 ms, and the echo time
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was as short as possible. The slice thickness was 3 mm, and
the field of view was 19.2 cm with a 64×64 matrix.

We used an 8-channel head coil. The child’s head was
surrounded by soft cushions during scanning, and ear plugs
were used to protect the child from imaging noise. No sedation
was used during imaging. Data quality control was carried out
with DTIPrep (Universities of North Carolina, Iowa and Utah,
USA) [17]. Data were checked for slice-wise and interlace-
wise intensity differences. Eddy current and motion defects
were corrected, and data were checked gradient-wise for re-
sidual motion or deformations. Gradient directions that had
image artefacts were removed from the data.

Probabilistic tractography was carried out using the
Functional Magnetic Resonance Imaging of the Brain
(FMRIB) Diffusion Toolbox version 3.0 (FMRIB Analysis
Group, Oxford, UK), which allowed for an estimation of the
most probable pathway location from a seed point using
Bayesian techniques [18]. Fibre tracking was initiated from
all voxels within the seed masks to generate 5,000 streamline
samples, each with a step length of 0.5 mm and a curvature
threshold of 0.2.

The frontostriatal fibres were divided into four bundles
using a regions-of-interest approach. We used a
connectivity-based seed classification analysis to identify con-
nections among the dorsolateral prefrontal cortex, medial pre-
frontal cortex, orbitofrontal cortex, ventrolateral prefrontal
cortex and caudate nucleus (Fig. 1). The cortex areas were
used as seed masks. The caudate nucleus was used as a way-
point and a stop mask. Connections were analysed bilaterally.
The contralateral hemisphere, ipsilateral putamen and thala-
mus were used as avoid masks. Masks were constructed using
MARINA software (Bender Institute of Neuroimaging,
University of Giessen, Germany) [19] and were originally
defined in the Montréal Neurological Institute space and later
transformed to diffusion space using FMRIB’s Linear Image
Registration Tool with default settings.

Voxel values represented the number of samples passing
through any given voxel. Connectivity distribution was nor-
malised using the waytotal value. To remove voxels with very
low connectivity, we applied a probability threshold using
values selected from the normalised connectivity distribution.
The robust intensity range was used to read the two percentile
values from healthy controls. The mean of these values was
calculated and used as a threshold of the normalised connec-
tivity distribution. The threshold varied among the tracts. The
created image was binarised and used as a mask to collect
fractional anisotropy, mean diffusivity, axial diffusivity and
radial diffusivity values from each child in the study cohort.

Statistical analyses

Statistical analyses were performed using SPSS 24.0 (IBM,
Armonk, NY). Differences in the averaged DTI values

(fractional anisotropy, mean diffusivity, axial diffusivity and
radial diffusivity) in each tract and in both sides between
VLGA and term-born children were evaluated using the
Student’s t-test. Linear regression analyses were conducted

Fig. 1 T1-weightedMR images with an overlay of the frontostriatal tracts
coded by colours in a 9.1-year-old healthy boy (a control) who had
normal findings at conventional MRI. a Sagittal. b Coronal. c Axial.
The dorsolateral prefrontal caudate tract is red, the medial prefrontal
caudate tract is blue, the orbitofrontal caudate tract is yellow and the
ventrolateral prefrontal caudate tract is green
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to adjust these results with gender and perinatal brain injury.
Effect sizes were calculated in terms of Hedges’s g using
means and standard deviations [20]. A commonly used inter-
pretation is to refer to effect sizes as 0.20, 0.50 and 0.80 for
small, medium and large, respectively. We evaluated differ-
ences in the composite scores of attention and inhibition do-
mains between VLGA and term-born children using the
Student’s t-test. Further, we performed linear regression anal-
yses to evaluate correlations between executive function
scores and DTI values among VLGA children while control-
ling for gestational age, gender and perinatal brain injury. We
controlled for inflation of Type I error by reducing the number
of comparisons; only DTI values and executive function
scores that differed significantly between the VLGA and term
children were included in these analyses. The results were
controlled for multiple comparisons using the false discovery
rate method developed by Benjamini and Hochberg [21]. The
level of significance was set at P<0.05, two-tailed.

Results

Antenatal and neonatal clinical characteristics of the study
population are shown in Table 1. Four VLGA children had
severe perinatal brain injury. The VLGA children were found
to have significantly higher fractional anisotropy and axial
diffusivity values in the left and right dorsolateral prefrontal
caudate tracts and in the left and right ventrolateral prefrontal
caudate tracts then the term children (Table 2). These results
remained significant after controlling for gender and perinatal
brain injury using linear regression analyses and after
correcting for multiple comparisons. There were no signifi-
cant differences in radial diffusivity and mean diffusivity
values between the groups (data not shown). VLGA children
had a 1.4-point (95% confidence interval [CI] 0.4–2.4;

P=0.005) reduction in inhibition domain scores compared
with term children. No significant differences were found in
attention domain scores between the groups (P=0.341).

Correlations between inhibition domain scores and DTI
metrics (fractional anisotropy and axial diffusivity values) in
the left and right dorsolateral and ventrolateral prefrontal cau-
date tracts among VLGA children were assessed using linear
regression analyses. High fractional anisotropy values in these
tracts correlated with low inhibition domain scores. In addi-
tion, high axial diffusivity values in the right dorsolateral pre-
frontal caudate tract correlated with low inhibition scores. The
results remained significant after adjusting for gestational age,
gender and perinatal brain injury and after correcting for mul-
tiple comparisons (Table 3).

Discussion

Consistent with our hypothesis, this study showedmicrostruc-
tural differences in the frontostriatal tracts between VLGA
children with no severe neurologic impairment and term chil-
dren at 9 years of age. The VLGA children had significantly
higher fractional anisotropy and axial diffusivity values in two
frontostriatal tracts bilaterally — dorsolateral prefrontal cau-
date and ventrolateral prefrontal caudate — than did the term
children. Further, fractional anisotropy and axial diffusivity
values in these tracts correlated negatively with neuropsycho-
logical test scores measuring inhibition, one of the core exec-
utive functions, in the VLGA children.

Functional and structural neuroimaging studies have dem-
onstrated that during its maturational process the prefrontal
cortex (including the dorsolateral prefrontal, medial prefron-
tal, orbitofrontal and ventrolateral prefrontal) forms connec-
tions within itself and with other cortical and subcortical brain
regions [7]. Despite this widespread neural circuitry,

Table 1 Clinical characteristics of study populations

VLGA children (n=54) Term children (n=20)

Boys, n (%) 29 (54) 11 (55)

Singleton, n (%) 36 (67) 17 (85)

Gestational age, mean in weeks (range) 28.8 (24.4–31.9) 39.4 (37.3–41.6)

Birth weight, mean in grams (range) 1,169 (538–2,295) 3,356 (2,655–4,040)

Foetal growth restriction, n (%) 12 (22) 0

Antenatal steroids, n (%) 46 (85) 0

Intraventricular haemorrhage Grade 2, n (%) 2 (4) 0

Intraventricular haemorrhage Grade 3, n (%) 3 (6)a 0

Cystic periventricular leukomalacia, n (%) 1 (2) 0

Age at the DTI scanning, mean in years (range) 9.0 (8.6–9.7) 9.1 (8.8–9.3)

DTI diffusion tensor imaging, VLGA very low gestational age
a None of the VLGA children had intraventricular haemorrhage Grade 4
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prefrontal cortex and its frontostriatal network are still thought
to play a major role in guiding processes required for flexible
and goal-directed behaviours [7, 8, 22]. Preterm birth is asso-
ciated with both reorganization and disruptions in cortical–
cortical and cortical–subcortical connectivity [23].

Commonly, fractional anisotropy values have been found
to increase during white matter maturation, reflecting
myelination, more organised axons, and thus restricted water
diffusion [24], in most cases with preterm children having
lower values compared to term-born controls [25]. The pres-
ent study found higher fractional anisotropy and axial diffu-
sivity values in two frontostriatal tracts bilaterally in VLGA
children compared to term children. Supporting our findings,
recent studies have also found higher fractional anisotropy
values in certain white matter pathways among different age
groups of individuals born preterm [26–30]. A meta-analysis,
based on 13 studies and including participants from children
to young adults born preterm, identified four regions of in-
creased fractional anisotropy and 11 regions of decreased frac-
tional anisotropy in preterm subjects compared to term con-
trols [25]. In addition to our study, others have reported higher
axial diffusivity values in certain white matter regions, includ-
ing the reticular activating system involved in attention abili-
ties [31], among preterm individuals compared to term-born
controls [27, 29, 30].

One explanation for the variability of fractional anisotropy
among studies might be the differences in imaging protocols
and analytical methods among studies [5, 25]. On the other
hand, both tracts in the current study found to have increased
fractional anisotropy values run from the prefrontal cortex,
known to have long maturational time window. Thus, al-
though the MRI was performed in VLGA and term children
at same chronological age, the biological maturation profile
might differ between these two cohorts, and this difference
might be reflected in DTI metrics in this brain area. It has also
been suggested that high fractional anisotropy values relate to

Table 2 Comparisons of fractional anisotropy and axial diffusivity values of the frontostriatal tracts in very low gestational age (VLGA) and term
children

Fractional anisotropy Axial diffusivity (×10−3 mm2/s)

Tract VLGAa (n=54) Terma (n=20) Pb Hedges’s gc VLGAa (n=54) Terma (n=20) Pb Hedges’s gc

DLPFC, left 0.260 (0.027) 0.243 (0.016) 0.001d 0.692 1.24 (0.047) 1.21 (0.029) 0.001d 0.698

DLPFC, right 0.253 (0.019) 0.240 (0.014) 0.008d 0.730 1.25 (0.046) 1.21 (0.041) 0.007d 0.894

MPC, left 0.260 (0.029) 0.260 (0.016) 0.533 0 1.24 (0.046) 1.23 (0.041) 0.236 0.224

MPC, right 0.273 (0.024) 0.270 (0.016) 0.588 0.135 1.24 (0.043) 1.24 (0.051) 0.824 0

OFC, left 0.244 (0.029) 0.238 (0.020) 0.419 0.222 1.20 (0.051) 1.19 (0.043) 0.666 0.204

OFC, right 0.239 (0.025) 0.229 (0.019) 0.098 0.424 1.17 (0.048) 1.17 (0.042) 0.976 0

VLPFC, lefte 0.292 (0.030) 0.260 (0.018) <0.001d 1.170 1.18 (0.057) 1.14 (0.031) 0.005d 0.778

VLPFC, righte 0.271 (0.022) 0.252 (0.017) 0.001d 0.914 1.16 (0.033) 1.14 (0.033) 0.010d 0.606

DLPFC dorsolateral prefrontal caudate, MPC medial prefrontal caudate, OFC orbitofrontal caudate, VLPFC ventrolateral prefrontal caudate
a Data are given as mean (standard deviation)
b Student’s t-test. P<0.05 is significant
c Effect sizes were calculated in terms of Hedges’s g
d The results remained significant after adjusting for gender and perinatal brain injury and after correcting for multiple comparisons
e The diffusion values of left and right VLPFC tracts were not obtained from three VLGA children because of technical problems in fibre tracking

Table 3 Correlations between inhibition scores and fractional
anisotropy and axial diffusivity values of the dorsolateral prefrontal
caudate (DLPFC) and ventrolateral prefrontal caudate (VLPFC) tracts
among very low gestational age (VLGA) children with no severe
neurologic impairments (n=45)

Inhibition domain

Tract DTI value ra Pb

DLPFC, left Fractional anisotropy −0.443 <0.001c

DLPFC, right Fractional anisotropy −0.449 <0.001c

VLPFC, leftd Fractional anisotropy −0.404 0.003c

VLPFC, rightd Fractional anisotropy −0.461 <0.001c

DLPFC, left Axial diffusivity −0.050 0.710

DLPFC, right Axial diffusivity −0.317 0.011c

VLPFC, leftd Axial diffusivity −0.049 0.719

VLPFC, rightd Axial diffusivity −0.220 0.106

DTI diffusion tensor imaging
a Regression coefficient
b Linear regression analysis adjusted for gender, gestational age and peri-
natal brain injury. P<0.05 is significant
c The results remained significant after correction for multiple
comparisons
d The diffusion values of left and right VLPFC tracts were not obtained
from two VLGA children because of technical problems in fibre tracking

Pediatr Radiol



increased myelination as a marker of compensatory recovery
process after early white matter damage [28]. However, other
factors in white matter such as axonal status and crossing
fibres in voxel level could also affect these microstructural
properties [26, 28, 32].

Previously, we demonstrated that VLGA children scored
worse in inhibition/naming, inhibition/inhibition and
inhibition/switching compared to term children at 9 years of
age [3]. The current study showed that high fractional anisot-
ropy values in the frontostriatal tracts, bilateral dorsolateral
prefrontal caudate and bilateral ventrolateral prefrontal cau-
date were associated with poor performance in inhibition
tasks. In contrast to our findings, previous studies have dem-
onstrated correlations between low fractional anisotropy
values in different white matter areas and poor executive func-
tioning among very preterm populations [5, 31, 33, 34]. In
addition, both negative and positive correlations between ex-
ecutive functions and fractional anisotropy in the different
segments of the corpus callosum were found in 6-year-old
preterm children [35]. Other studies have found no significant
correlation between fractional anisotropy and executive func-
tions [36, 37]. However, the tests measuring executive func-
tioning in previous studies were dissimilar, and white matter
areas evaluated in the present and previous studies differed
from one another. The correlation variability between DTI
metrics and neurocognitive functions could also stem from
differences in vulnerability or the developmental stages of
specific tracts [38]. Previously, VLGA individuals with higher
fractional anisotropy in certain corticospinal and corpus
callosal tracts had worse outcome in fine motor and executive
functions, respectively, indicating— in line with our study—
that higher fractional anisotropy values do not always imply
better function [35, 39].While projecting from the frontal lobe
to the caudate nucleus, the frontostriatal tracts cross with
callosal and association fibres [8]. Thus, it is possible that
the correlation between increased fractional anisotropy values
in dorsolateral prefrontal caudate and ventrolateral prefrontal
caudate tracts and unfavourable executive functioning might
be related to the effect of crossing fibres or might reflect axo-
nal loss and disrupted branching in those white matter areas
[26, 28, 32].

Among the strengths of the present study, we consider that
our VLGA population belonged to the well-defined prospec-
tive cohort [3, 12]. In addition, the study included a compar-
ison group of term children. All the children underwent imag-
ing and neuropsychological assessments within the same age
range. The same MRI scanner was used to obtain MRI se-
quences for all participants. DTI is known to be prone to
artefacts, particularly from motion. In the current study, data
quality control was carried out with DTIPrep [17]. Data were
checked for slice-wise and interlace-wise intensity differ-
ences. Eddy current and motion defects were corrected, and
data were checked gradient-wise for residual motion or

deformations. Gradient directions that had image artefacts
were removed from the data. The DTI analyses were per-
formed using well-defined techniques [18, 19]. The evaluation
of executive functioning was based on an objective and
standardised method [16]. The size of our VLGA group
corresponded with the size of previous DTI study groups
[25, 27, 30]. To avoid Type I error, multiplicity of the analyses
was controlled, and correction for multiple comparison was
used. A potential concern for our study was the small group
size of term children, which could have affected hypothesis
testing and could have resulted in Type II error. However, the
group of term childrenwas age- and gender-matched, random-
ly recruited from the Oulu University Hospital birth register,
and comprised a representative sample of 9-year-old
schoolchildren with no severe neurologic impairment.

Conclusion

Very preterm children had higher fractional anisotropy and
axial diffusivity values in diffusion tensor imaging bilaterally
in two frontostriatal tracts when compared to term children at
a comparable 9 years of age. Furthermore, the diffusion values
of frontostriatal tracts correlated negatively with neuropsycho-
logical measures of inhibition in the very preterm children.
These results indicate that white matter microstructure is dif-
ferent in very preterm children— even with no severe neuro-
logic impairment— when compared to term children and that
this difference might reflect the complex maturational pro-
cesses of specific neurodevelopmental abilities at school age.
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