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Background: The accuracy of wrist-worn accelerometers in identifying sedentary time has been scarcely studied in free-living
conditions. The aim of this study was to compare daily sedentary time estimates between a thigh-worn accelerometer, which
measured sitting and lying postures, and a wrist-worn accelerometer, which measured low levels of movement. Methods: The
study population consisted of 259 participants (Mage = 62.8 years, SD = 0.9) from the Finnish Retirement and Aging Study
(FIREA). Participants wore an Axivity AX3 accelerometer on their mid-thigh and an Actigraph wActiSleep-BT accelerometer on
their non-dominant wrist simultaneously for a minimum of 4 days in free-living conditions. Two definitions to estimate daily
sedentary time were used for data from the wrist-worn accelerometer: 1) the count cutpoint, ≤1853 counts per minute; and 2) the
Euclidean Norm Minus One (ENMO) cutpoint, <30 mg. Results: Compared to the thigh-worn accelerometer, daily sedentary
time estimate was 63 min (95% confidence interval [CI] = −53 to −73) lower by the count cutpoint and 50 min (95% CI = 34 to
67) lower by the ENMO cutpoint. The limits of agreement in daily sedentary time estimates between the thigh- and cutpoint
methods for wrist-worn accelerometers were wide (the count cutpoint: −117 to 243, the ENMO cutpoint: −212 to 313 min).
Conclusions: Currently established cutpoint-based methods to estimate sedentary time from wrist-worn accelerometers result in
underestimation of daily sedentary time compared to posture-based estimates of thigh-worn accelerometers. Thus, sedentary time
estimates obtained from wrist-worn accelerometers using currently available cutpoint-based methods should be interpreted with
caution and future work is needed to improve their accuracy.
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Sedentary behavior refers to waking behavior while sitting,
reclining, or lying down with energy expenditure no more than
1.5 metabolic units (METs) (Tremblay et al., 2017). Daily sedentary
time during waking hours has been estimated to be considerable, 7.7

to 9.4 hr among adults in Western countries (Harvey, Chastin, &
Skelton, 2015; Matthews et al., 2008). A high amount of daily
sedentary time has been shown to be associated with cardiometabolic
risk factors (Healy, Matthews, Dunstan, Winkler, & Owen, 2011;
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Powell, Herring, Dowd, Donnelly, & Carson, 2018), risk of cardio-
vascular diseases (Vasankari et al., 2017), and mortality (Biswas
et al., 2015; Ekelund et al., 2016).

Recently, accelerometers have provided a feasible way to
estimate sedentary time either by measuring low levels of or
absence of movement or specific postures. Although these methods
are not perfectly in line with the official definition of sedentary
behavior, which is based on the energy expenditure and posture,
they have been used to estimate sedentary behavior nonetheless.
Accelerometers mounted on the hip have been used extensively to
provide movement-based estimates of sedentary time, but wrist-worn
accelerometers have recently also gained popularity in large
epidemiological studies such as the National Health and Nutrition
Examination Survey (NHANES) (Troiano, McClain, Brychta, &
Chen, 2014) and the UK Biobank study (Plotz et al., 2017). In
addition to movement-based hip- and wrist-worn accelerometers,
sedentary time has been estimated by posture-based thigh-worn
accelerometers (Edwardson et al., 2017). Thigh-worn acceler-
ometers provide information of the inclination of the thigh, which
is suitable for distinguishing between postures, and have shown high
accuracy for capturing time spent sitting and lying down and
therefore for estimating sedentary time (Kozey Keadle, Libertine,
Lyden, Staudenmayer, & Freedson, 2011; Lyden, Kozey Keadle,
Staudenmayer, & Freedson, 2012; Skotte, Korshøj, Kristiansen,
Hanisch, & Holtermann, 2014; Stemland et al., 2015). High accu-
racy for posture detection has been reported especially for data
processing algorithms in the PAL Technologies software designed
for thigh-worn activPAL accelerometers (Kozey Keadle et al., 2011;
Lyden et al., 2012), and in the Acti4 software (Kongsvold, 2016;
Skotte et al., 2014; Stemland et al., 2015), which can be used to
process raw data from several thigh-worn accelerometer brands such
as activPAL, ActiGraph, and Axivity with good equivalence
between accelerometer brands in estimates of time spent sitting
and lying (Crowley et al., 2019).

Growing interest in wrist placement stems from increased
participant compliance, ability to detect reliably light physical
activity related to daily tasks, and the possibility to measure sleep
with the same device, creating opportunities for 24-hr physical
behavior measurements (Freedson & John, 2013; Quante et al.,
2015; Schrack et al., 2016). However, the weakness of wrist-worn
accelerometers is that they cannot detect lower body posture, which
is an important part of the sedentary behavior definition. Moreover,
accelerometer-measured sedentary time is most commonly esti-
mated with a cutpoint approach (i.e., determination of cutpoint
values that reflect activities with an energy expenditure no more
than 1.5 METs; Watson, Carlson, Carroll, & Fulton, 2014). The
cutpoint approach has been used traditionally with hip-worn
accelerometers due to close location of the center of mass of the
body and, thus, relatively high correspondence to whole body
movements (Shiroma et al., 2016). However, with wrist-worn
accelerometers there are inherent limitations due to low correspon-
dence between wrist movements and whole body movements.
Despite these weaknesses, sedentary cutpoint values for wrist-
worn accelerometers have been developed (Flórez-Pregonero,
Buman, & Ainsworth, 2018; Koster et al., 2016). Koster et al.
(2016) compared an ActiGraph accelerometer worn on the non-
dominant wrist to a thigh-worn activPAL and found the most
optimal vector magnitude (VM) cutoff point to differentiate
between sedentary behavior and light activity to be <1853 counts
per minute (CPM). However, since studies comparing sedentary
estimates from thigh- and wrist-worn accelerometers in free-living
conditions are few (Koster et al., 2016; Pavey, Gomersall, Clark, &

Brown, 2016), and the study population of Koster et al. (2016)
consisted of a small sample of older adults (Mage 78 years), the
accuracy of this cutoff point needs to be evaluated in a larger
population of adults free of aging-related mobility limitations.

In addition to relying on device-specific activity counts,
several research groups have recently developed methods to
analyze raw triaxial acceleration data from wrist-worn acceler-
ometers to enable data harmonization between studies using
different accelerometer devices. However, only a few studies
have analyzed raw acceleration data, such as Euclidean Norm
Minus One (ENMO), and examined wrist accelerometer threshold
values for estimating sedentary time in adults (Bakrania et al.,
2016; Hildebrand, Hansen, van Hees, & Ekelund, 2017;
Rowlands et al., 2018; Sanders et al., 2019), and these studies
have suggested various threshold values for adults in free-living
environments (Hildebrand et al., 2017; Rowlands et al., 2018).
As the use of raw acceleration data and wrist-worn accelerometers
is increasing, evaluation of the suggested threshold values in
free-living conditions is needed. Therefore, it is essential to
compare movement-based sedentary estimates from wrist-worn
accelerometers to identify more reliable methods of estimating
sedentary time, such as postural-based thigh-worn acceler-
ometers. The aims of the current study were to compare daily
sedentary time estimates from a wrist-worn ActiGraph wActi-
Sleep-BT accelerometer using 1) a cutoff point value of 1853
CPM by Koster et al. (2016) and 2) a sedentary threshold of 30 mg
for raw ENMO acceleration values based on the data processing
algorithm in the GGIR-package (Rowlands et al., 2018), to daily
sedentary estimates from a thigh-worn Axivity AX3 accelerome-
ter processed by the validated data processing algorithm in Acti4
software (Skotte et al., 2014; Stemland et al., 2015) as the
reference method in free-living conditions.

Methods

Participants

The study population consisted of participants from the Finnish
Retirement and Aging Study (FIREA), an ongoing longitudinal
cohort study of older adults in Finland established in 2013.
Details of the design and implementation of the FIREA study
have been reported elsewhere (Leskinen et al., 2018; Pulakka
et al., 2019). Briefly, participants were first contacted 18 months
prior to their estimated retirement date by sending a question-
naire. After responding to the questionnaire, Finnish-speaking
participants with an estimated retirement date between 2017 and
2019 who lived in Southwest Finland and were still working
were invited to participate in the clinical sub-study (n = 773). Of
them, 290 participated in the study between September 2015 and
May 2018. Informed consent was obtained from all participants.
The FIREA was conducted in line with the Declaration of
Helsinki and was approved by the ethics committee of Hospital
District of Southwest Finland.

All 290 participants were provided with two accelerometer
devices (a thigh-worn Axivity and a wrist-worn ActiGraph). We
excluded 18 participants due to device malfunction or missing
accelerometer or diary data. In addition, to minimize the effects to
sedentary estimates caused by differences in wear and sleep time
between methods, we excluded participants who had large differ-
ences (>10 min during all the days) in daily wear time between the
methods (the count cutpoint vs. thigh comparison: 12 persons; the
ENMO cutpoint vs. thigh comparison: 71 persons). After that, we
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excluded participants who had less than 1 valid day with ≥10 hr of
waking wear time from both thigh- and wrist-worn accelerometers
(the count cutpoint comparison: 1 person; the ENMO cutpoint
comparison: 2 persons), resulting in an analytic sample of 259
persons for the comparison between the thigh-worn accelerometer
and the count cutpoint method and an analytic sample of 199
persons for the comparison between the thigh-worn accelerometer
and the ENMO cutpoint method.

Participants Characteristics

Sex, date of birth, and occupational status were obtained from the
register of Keva, Finland’s largest pension provider which admin-
isters the pensions of local and state government. Occupational
status was categorized based on the International Standard
Classification of Occupations (ISCO; Statistics Finland, 2010)
into three groups according to the occupational titles by the last
known occupation: managers and professionals (ISCO classes
1–2), associate professionals and office workers (ISCO classes
3–4), and service and manual workers (ISCO classes 5–9).

Accelerometer Measurements

A study nurse fastened the triaxial accelerometer and inclinometer
Axivity AX3 (Axivity Ltd., Newcastle, UK), initialized to record at
100 Hz, to the participant’s right thigh during the clinical exami-
nation visit. The Axivity accelerometer was fastened with adhesive
waterproof film dressing (Opsite, Smith & Nephew, London, UK)
directly to the skin on the medial front of the right thigh, midway
between the hip and knee joints, which is a standardized position
(Skotte et al., 2014). Participants were also instructed to wear the
triaxial Actigraph wActiSleep-BT accelerometer (ActiGraph,
Pensacola, FL, US) on the non-dominant wrist using a wrist
band provided with the accelerometer. The ActiGraph was initial-
ized to record at 80 Hz.

A study nurse gave the participants both oral and written
information on how to use the accelerometers. Participants were
asked to wear both accelerometers at least four days and nights
including at least two working days and two days off. Participants
were instructed to wear the devices at all times, including during
water-based activities such as swimming, but to remove them for
sauna bathing. In addition, participants were instructed to perform a
reference measurement in a standing upright position for 15 sec
every day. Participants were also asked to record date, waking time,
bedtime, reference measurement times, and information about
working day (working day or day off) for each day that they
wore the devices on a daily log. After the measurement period, the
participants returned devices and daily logs by mail.

Accelerometer Data Processing

Thigh-worn Accelerometers. To derive the posture-based esti-
mates of sedentary time, data from the thigh-worn Axivity accel-
erometers were downloaded through Open Movement software
(version 1.0.0.37; Open Movement, Newcastle University, UK).
The raw data were further processed and analyzed using a custom-
ized MATLAB program, Acti4, which determines the type and
duration of different activities and body postures with a high
sensitivity and specificity (Skotte et al., 2014; Stemland et al.,
2015). The Acti4 software is freely available upon request from the
National Research Centre for the Working Environment in
Copenhagen, Denmark. The epoch length was set to 5 sec for

sitting and lying in the Acti4 software. The detailed data analysis
procedures in the Acti4 software are described elsewhere (Gupta
et al., 2015; Skotte et al., 2014). We included wear time between
the first and last date and time recorded in the daily log after
excluding sleep time, based on bedtime recorded in the daily log.
Non-wear time was excluded based on the definition of the Acti4
software: periods longer than 60 min without movement and also
periods between 10 and 60 min if the standard deviation (SD) in x,
y, and z axes were higher than 0.5 g for any second during a 5-s
interval immediately before the period without movement (raw and
unfiltered data were used) (Skotte et al., 2014). In the Acti4
software, the daily sedentary time estimate was defined based
on postures, as daily time spent sitting and lying. Sitting postures
or lying were detected when the thigh inclination was above 45°.

Wrist-worn Accelerometers: The Count Cutpoint Method. For
the movement-based count cutpoint method, data from the wrist-
worn Actigraph accelerometers were downloaded and converted
into 60-s epochs in ActiLife software, version 6.13 (ActiGraph,
Pensacola, FL, US). We calculated the VM CPM as the square root
of the sum of the squares of the activity counts of the three axes.
Similarly, as with data from the thigh-worn accelerometers, we
included wear time between the first and last date and time recorded
in the daily log after excluding sleep time, based on bedtime
recorded in the daily log. We further excluded non-wear time
using the algorithm developed by Choi et al. (2011, 2012) that has
been validated for wrist-worn triaxial accelerometers. (Choi et al.,
2012) Daily sedentary time estimate was defined as VM CPM
<1853 (Koster et al., 2016).

Wrist-worn Accelerometers: The ENMO Cutpoint Method. For
the movement-based ENMO cutpoint method, we used open
source R-package GGIR (version 1.7-1) to analyze raw accelera-
tion data from the wrist-worn accelerometers in R statistical
software (version 3.5.1; R Foundation for Statistical Computing,
Vienna, Austria, https://cran.r-project.org/). The R-package GGIR
script that we used is shown in SupplementaryMaterial 1 (available
online). The data processing in the GGIR package included
1) autocalibration according to the local gravity, 2) detection of
sustained abnormally high values and non-wear time, and 3) calcu-
lation of the average magnitude of dynamic acceleration expressed
as ENMO (as mg [milligravitational units] where g = 9.81 m/s2)
over 5-s epochs with negative values rounded to zero (Migueles,
Rowlands, Huber, Sabia, & van Hees, 2019; Sabia et al., 2014; van
Hees, 2014; van Hees et al., 2013; van Hees et al., 2015). The
ENMO cutpoint method is described in detail elsewhere (van Hees,
2014; van Hees et al., 2013). Sleep time was detected based on the
combination of the daily logs and algorithm of the GGIR package
(van Hees et al., 2015) so that sleep was defined as periods of time
within the in-bed and out-bed times reported in the daily logs
during which there was no change larger than 5° in the arm angle
over at least 5 min. Non-wear time was classified using 15-min time
blocks based on the characteristics of the 60-min time window
centered at these 15 min. A block was classified as non-wear time if
the standard deviation of the 60-min window was less than 13.0 mg
for at least two out of the three axes, or if the value range for at least
two out of three axes was less than 50 mg (Sabia et al., 2014; van
Hees et al., 2013). We defined sedentary time using a previously
proposed threshold of 30 mg (Rowlands et al., 2018). To increase
the correspondence to the previously suggested and commonly
used 60-s epoch length for wrist-worn accelerometers (Heesch,
Hill, Aguilar-Farias, van Uffelen, & Pavey, 2018), we included in
our sedentary time estimates only bouts of a minimum of 60 s in
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which a minimum of 90% of the time met the threshold criteria
(<30 mg). In the supplemental analyses, we also derived sedentary
time estimates without bout restriction (i.e., directly from 5-s epoch
values).

Harmonization of the Sleep and Non-wear Time Detection Meth-
ods. We used developed and commonly used data processing
methods because we aimed to describe differences that could be
expected between these methods. Because non-wear time was
identified by different algorithms in the thigh- and wrist-worn
accelerometers, we excluded days with a more than 10-min
difference in waking wear time between the methods (the count
cutpoint vs. thigh comparison: 214 days for the ENMO cutpoint vs.
646 days for the thigh comparison). For sleep detection, there are
no established practices or commonly used algorithms; therefore,
we harmonized sleep detection by using self-reported in-bed times
from the daily logs as basis for defining sleep time from the thigh-
and the wrist-worn accelerometers. In the final analytical sample
of the comparison between the count cutpoint method and the
thigh-worn accelerometer there were no differences in sleep time
but minor differences in non-wear time (<10 min) because we used
the exact same sleep detection method (self-reported in-bed times)
and accepted less than 10-min difference in waking wear time. In
the final analytical sample of the comparison between the ENMO
cutpoint method and the thigh-worn accelerometer, the differences
in sleep and non-wear time were only minor, as the ENMO cutpoint
method gave slightly less sleep time (M difference = 3 min, SD =
61 min) and non-wear time (M difference = 4 min, SD = 60 min)
than the thigh-worn accelerometer.

Statistical Analyses

Characteristics of the study population are shown as percentages
for categorical variables and M (SD) for continuous variables.
Pearson correlations were used to examine the relative agreement
between the posture-based thigh-worn accelerometer (reference
method) and both movement-based methods for the wrist-worn
accelerometer (count cutpoint and ENMO cutpoint method) for
mean daily sedentary time. A Pearson correlation of <0.5 was

determined to be low, 0.5–0.75 moderate, and >0.75 high (Chastin,
Culhane, & Dall, 2014). In supplemental analyses, we also exam-
ined the relative agreements between the thigh- and the wrist-worn
accelerometers using Pearson correlations separately for working
days and days off.

We used linear mixed models to compare mean estimates and
95% confidence intervals (95% CI) for daily sedentary time by the
movement-based count cutpoint and by the movement-based
ENMO cutpoint methods to the daily sedentary time estimates
from the posture-based thigh-worn accelerometer. Further, to visu-
alize the magnitude of the pairwise differences, we used Bland-
Altman analysis for paired measurements of a varying true value
(Bland & Altman, 2007) to compare daily sedentary time estimates
by the movement-based count cutpoint and the movement-based
ENMO cutpoint method to the daily sedentary time estimates from
the posture-based thigh-worn accelerometer. In supplemental anal-
yses, we conducted the Bland-Altman analysis to compare daily
sedentary time estimates by the ENMO cutpoint method without
bout restriction to the daily sedentary time estimates from the thigh-
worn accelerometer. Furthermore, we examined accuracy of the
wrist-worn accelerometer in estimating within-individual differ-
ences in sedentary time. This was done by comparing sedentary
time estimates between working days and days off for each method
by using linear mixed models because daily sedentary time has
been observed to differ between working days and days off
(Pulakka, Stenholm, et al., 2018). The results are shown as
mean differences and 95% limits of agreement.

All statistical analyses were performed using SAS statistical
software (version 9.4; SAS Institute, Inc., Cary, NC, US).

Results

Mean age of the participants was 62.8 years (SD = 0.9) and 82% of
participants were women (Table 1). Details related to duration of
the measurement are shown in Table 1.

Correlations between daily sedentary time estimates obtained
from the thigh- and wrist-worn accelerometers are illustrated in

Table 1 Characteristics of the Participants in Comparisons Between Wrist-Worn and Thigh-Worn Accelerometer

Characteristics
Comparison Between the Count

Cutpoint (Wrist) and Thigh
Comparison Between the ENMO

Cutpoint (Wrist) and Thigh

N 259 199

Age, M (SD) 62.8 (0.9) 62.8 (1.0)

Gender, n (%)

Women 213 (82) 162 (81)

Men 46 (18) 37 (19)

Occupational status, n (%)

Managers, professionals 93 (36) 72 (36)

Associate professionals, office workers 89 (34) 70 (35)

Service and manual workers 77 (30) 57 (29)

Number of measurement days, M (SD) 3.2 (1.3) 2.0 (1.0)

Working days 2.0 (0.9) 1.5 (0.7)

Days off 1.7 (0.7) 1.2 (0.5)

Mean daily wake wear time, min (95% CI)

Thigh 944 (936 to 952) 941 (928 to 954)

Wrist 944 (936 to 952) 942 (929 to 955)

Note. SD = standard deviation, CI = confidence interval, ENMO= Euclidean Norm Minus One.
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Figure 1. Pearson’s correlation was high for the movement-based
count cutpoint (0.78, 95% CI = 0.75 to 0.80) and moderate for the
movement-based ENMO cutpoint method (0.62, 95% CI = 0.56
to 0.68) when compared against the posture-based thigh-worn
accelerometer.

Mean daily sedentary time estimates obtained from the thigh-
and wrist-worn accelerometers and the mean difference between
the methods are shown in Table 2. The mean daily sedentary time
estimate was 556 min (95% CI = 543 to 569) from the posture-
based thigh-worn accelerometer. Compared to the thigh-worn
accelerometer, the mean daily sedentary time estimate was 63 min
lower (95% CI = −73 to −53) by the movement-based count
cutpoint and 50 min lower (95% CI = −67 to −34) by the move-
ment-based ENMO cutpoint method.

Figure 2 shows agreement between the thigh- and wrist-worn
accelerometers based on Bland-Altman analysis in which differ-
ences between the measurement methods are plotted against their

average. For the movement-based count cutpoint, the 95% limits of
agreement were from −117 min to 243 min and the mean difference
between the methods did not depend on the level of the estimated
mean daily sedentary time. The 95% limits of agreement were
larger for the movement-based ENMO cutpoint method (−212 min
to 313 min).

Correlations and mean differences between the methods in
estimating sedentary time were also examined separately on work-
ing days and days off. Similarly with the main analyses, correla-
tions with the thigh-worn accelerometer were higher for the
movement-based count cutpoint (working day r = 0.75, 95% CI =
0.71 to 0.79; days off r = 0.79, 95% CI = 0.75 to 0.83) than for the
movement-based ENMO cutpoint method (working day r = 0.59,
95% CI = 0.49 to 0.67; days off r = 0.68, 95% CI = 0.59 to 0.75)
(Supplementary Material 2 [available online]). Although the abso-
lute level of daily sedentary time estimate differed between the
posture-based and movement-based methods on working days and

Figure 1 — Correlation between daily sedentary time estimates from the thigh-worn and wrist-worn accelerometers using (A) the count cutpoint and
(B) the Euclidean Norm Minus One cutpoint.

Table 2 Comparison of Daily Sedentary Minutes BetweenWrist-Worn and Thigh-Worn Accelerometer on All Days,
Working Days, and Days Off

All Days (min/day)
Working Days

(min/day) Days Off (min/day)

Difference,
Working Days
vs. Days Off
(min/day)

M 95% CI M 95% CI M 95% CI M 95% CI

Count cutpoint (wrist) vs. thigh

Thigh (ref) 556 543 to 569 578 561 to 595 532 517 to 546 48 30 to 67

Wrist 493 480 to 506 516 499 to 533 468 453 to 482 49 33 to 64

Difference −63 −73 to −53 −62 −73 to −50 −64 −76 to −51 0 −12 to 14

ENMO cutpoint (wrist) vs. thigh

Thigh (ref) 562 544 to 581 579 556 to 603 534 510 to 557 49 21 to 76

Wrist 512 493 to 530 523 499 to 547 493 569 to 517 34 3 to 65

Difference −50 −67 to −34 −56 −78 to −35 −41 −60 to −22 −11 −40 to 17

Note. ENMO = Euclidean Norm Minus One, min = minutes, 95% CI = 95% confidence interval.
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days off, almost the same difference in daily sedentary time estimates
between working days and days off, approximately 50 min, was
observed by the movement-based count cutpoint method and the
posture-based thigh-worn accelerometer (Table 2). By themovement-
based ENMO cutpoint method, the difference in the sedentary time
estimate between working days and days off was observed to be

slightly less, 34 min, when compared to the posture-based thigh-worn
accelerometer (Table 2).

In the supplemental analyses, calculation of the sedentary time
estimate directly from 5-s epoch values resulted in overestimation
of daily sedentary time by 59 min by the movement-based ENMO
method (Supplementary Material 3 [available online]).

Figure 2 — The Bland-Altman plots describing the level of agreement in daily sedentary time estimates by different methods. The difference in daily
sedentary time estimates between the thigh-worn accelerometers and (A) the count cutpoint and (B) the Euclidean Norm Minus One cutpoint is plotted
against the mean of daily sedentary time obtained by these two methods. Solid gray line is the zero bias line representing the mean difference and dashed
lines present the 95% limits of agreement. The histogram describes the number of observations (i.e., number of days for each value of difference between
daily sedentary time estimates obtained from the thigh- and wrist-worn accelerometers).
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Discussion

In this study we compared daily sedentary time estimates from two
movement-based cutpoint methods applied to a wrist-worn accel-
erometer to estimates from a posture-based thigh-worn accelerom-
eter. The thigh-worn accelerometer has previously shown high
accuracy to detect time spent sitting and lying and therefore to
estimate sedentary time. So far the accuracy of wrist-worn accel-
erometers using cutpoint-based methods has been scarcely studied
in free-living conditions. Our results show that using currently
established methods, a wrist-worn accelerometer underestimates
daily sedentary time by approximately 1 hr when compared to the
posture-based thigh-worn accelerometer in free-living conditions.
This observed discrepancy in sedentary time estimates is clinically
meaningful and therefore the results from wrist-worn acceler-
ometers using currently available cutpoint-based methods should
be interpreted with caution.

Movement-based wrist-worn accelerometers and posture-
based thigh-worn accelerometers have been used in epidemiologi-
cal studies to estimate sedentary time despite the fact that none of
these methods are suitable for capturing both metabolic and
postural components of the official definition of sedentary behav-
ior. Differences between the thigh- and wrist-worn accelerometers
were expected, because of the different estimation (movement vs.
posture) and because wrist movements can be independent of body
posture. Therefore, when using a wrist-worn accelerometer, the
false negative classifications of sedentary time increase when a
person is sitting and moving arms, for instance while doing
handcraft. On the other hand, the false positive classifications of
sedentary time increase when a person is standing arms still. In
addition to the location of the device, different data processing
methods result in different estimates of daily sedentary time.
Despite the inherent limitations of wrist-worn accelerometers to
detect full body movements, wrist-worn accelerometers are used in
large epidemiological studies (Plotz et al., 2017; Troiano et al.,
2014) due to the convenience to capture 24-h physical behavior and
increased participant compliance. Thus, methods for wrist-worn
accelerometers to estimate sedentary time, which is one important
part of the 24-h physical behavior composition, have to be as
accurate as possible.

To the best of our knowledge, the validation study by Koster
et al. (2016), in which the count cutpoint method was developed, is
so far the only study in which sedentary estimates between posture-
based thigh- and movement-based wrist-worn accelerometers were
compared in free-living conditions. As in that study, we also
observed an underestimation of daily sedentary time by the
wrist-worn vs. thigh-worn accelerometer when using the move-
ment-based count cutpoint method, but to a larger extent (63 min
vs. 23 min). This may be due to the differences of the study
populations: our participants were younger (Mage 63 years) and still
working, whereas the study participants of the validation study
were older (78 years) and retired (Koster et al., 2016). Therefore,
our study participants might have spent more time in sedentary
activities which include arm movements (e.g., working with
computer), and these sitting activities might not be detected as
sedentary time by the movement-based wrist-worn accelerometer.
Moreover, differences in the data processing (Acti4 vs. PAL) and
sleep detection methods can partly explain the observed differ-
ences. Another explanation might be the chosen epoch lengths
which are reported to affect sedentary estimates (Heesch et al.,
2018). Koster et al. (2016) tested the epoch lengths of 15 and 60 s
and observed that 60 s was more accurate in assessing sedentary

time. In our study, we used previously established methods in
which the epoch length was 5 s for the thigh and 60 s for the wrist-
worn accelerometer. The optimal epoch lengths for estimating
sedentary time by accelerometers worn in different locations are
still under debate, but an epoch length of 60 s for wrist-worn
accelerometers may be more accurate compared to shorter epoch
lengths when evaluated against a thigh-worn accelerometer
(Heesch et al., 2018; Koster et al., 2016) and direct observation
(Flórez-Pregonero et al., 2018).

Use of wrist-worn accelerometers and especially raw acceler-
ation data is becoming more common and therefore knowledge of
the accuracy of the movement-based ENMO cutpoint methods for
the wrist-worn accelerometers is essential. The ENMO cutpoint
method resulted also in an underestimation of daily sedentary time
by 1 hr compared to the thigh-worn accelerometer. We decided
to estimate daily sedentary time from 60-s bouts in which 90% of
the minimum required time met the sedentary threshold criteria,
because 60-s epoch length for wrist accelerometer has been
reported to be more accurate compared to shorter epoch lengths
(Heesch et al., 2018; Koster et al., 2016). In addition, a 5-s epoch
length or shorter for wrist-worn accelerometers resulted in large
overestimation of daily sedentary time, from 60 to 140 min, when
compared to thigh-worn accelerometers in our supplemental anal-
yses (Supplementary Material 3 [available online]) and also in
other adult study populations (Hildebrand et al., 2017). It should be
noted that the threshold value of 30 mg that we used was developed
among a small group of young adults (N = 20) during 2 hr of
activities in supervised free-living conditions (Rowlands et al.,
2018). Movement-based sedentary thresholds may not be easily
transferred from young adults to older adults because of different
movement patterns and gait speed (Heesch et al., 2018). Therefore,
additional research to determine a more optimal movement-based
threshold value for sedentary behavior when using the ENMO
cutpoint method for wrist-worn accelerometers might be needed. A
possible future direction for research may focus on threshold values
for “stationary behaviors” including sitting, lying, and standing
still, because movement-based methods for wrist-worn acceler-
ometers may be more suitable for estimating these stationary
behaviors than for estimating sedentary behaviors (Flórez-
Pregonero et al., 2018; Tremblay et al., 2017). Although, as pointed
out, there are challenges associated with threshold-based methods,
and machine learning methods may offer a more accurate approach
for processing acceleration data from wrist-worn accelerometers
(Heesch et al., 2018). However, machine learning methods still
need considerable field-based validation for each target population
(Heesch et al., 2018; Sasaki et al., 2016).

In addition to examining differences in daily sedentary time
estimates obtained from the wrist- and thigh-worn accelerometers,
we also investigated within-individual changes in sedentary time
between work days and days off when assessed by the different
methods. We found that estimates of within-individual changes in
daily sedentary time were very similar, independent of the device
location or data processing method. This suggests that although the
movement-based wrist-worn accelerometer underestimates abso-
lute daily sedentary time compared to a posture-based method, it
can reliably estimate individual changes in daily sedentary time.

Our study has several important strengths. First, we included a
large number of participants who wore a thigh- and wrist-worn
accelerometer simultaneously for up to 7 24-h measurement days in
free-living conditions with high compliance. Therefore, our study
has an advantage over laboratory studies in which activities are
usually simple and of short duration and may not represent complex
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activities of daily living. Furthermore, our reference method was a
thigh-worn accelerometer, a device that has shown high accuracy in
detecting time spent sitting and lying down and therefore to produce
estimates of sedentary time due to thigh inclination information
(Kozey Keadle et al., 2011; Lyden et al., 2012; Skotte et al., 2014;
Stemland et al., 2015). The decision tree applied in the Acti4
software, the raw data processing method for thigh-worn acceler-
ometer data used in this study, has a high sensitivity and specificity
to detect sitting and lying down (i.e., postural component of
sedentary behavior) both in semi-standardized protocol in compari-
son to video observations (Crowley et al., 2019) and in free-living
conditions (Skotte et al., 2014; Stemland et al., 2015); although the
distinction between sitting and lying postures is not possible when
using only the thigh-worn accelerometer. Nevertheless, our aimwas
to compare a movement-based wrist-worn accelerometer to a more
accurate posture-based thigh-worn accelerometer, as there are no
field-based tools to measure directly or accurately the metabolic
component of sedentary behavior. Furthermore, Acti4 software has
usually been used to process data from thigh-worn ActiGraph
GT3X+ accelerometers (Skotte et al., 2014; Stemland et al., 2015),
but it has good equivalence when processing data from ActiGraph
GT3X+ and Axivity AX3 accelerometers (Crowley et al., 2019;
Rowlands et al., 2018).

Our study also has some limitations that should be addressed.
Due to different accelerometer wear locations, accelerometer
brands, epoch lengths, and algorithms to detect non-wear and
sleep time used in our study, there are several possible factors
contributing to the observed differences in daily sedentary time.
Generally, our aim was to examine differences in daily sedentary
time estimates between the previously established methods in their
standard form; nonetheless, we harmonized the methods as much
as we could within the limits of the algorithms. Epoch length
(i.e., sampling frequency) has been observed to affect generation of
counts from raw acceleration data (Brønd&Arvidsson, 2016), and,
thus, it may also affect the daily sedentary time estimates (Heesch
et al., 2018). Epoch length is probably more critical for wrist-worn
accelerometers than for thigh-worn accelerometers, because wrist
movements can be expected to be more frequent compared to thigh
movements during sedentary activities. We used a 60-s epoch
length (count cutpoint method) as well as a 60-s bout length
(ENMO cutpoint method) for the wrist, which has been reported
to be more accurate for wrist-worn accelerometers compared to
shorter epoch lengths (Heesch et al., 2018; Koster et al., 2016).
Sleep detection methods have also been reported to affect daily
sedentary time estimates (Meredith Jones, Williams, Galland,
Kennedy, & Taylor, 2016; Pulakka, Shiroma, et al., 2018), whereas
methods to detect non-wear time also have an effect, but to a lesser
extent (Pulakka, Shiroma, et al., 2018). The thigh- and wrist-worn
accelerometers may have had different wear times because a wrist-
worn accelerometer is easily removed and therefore it is possible
that the wrist-worn accelerometer was not worn while the thigh-
worn accelerometer was in use and attached to the thigh. Tominimize
the effects of differences in wear or sleep time in our study, we
included only days with a maximum of 10 min of difference in daily
waking wear time between thigh- and wrist-worn accelerometers. In
addition, we used exactly same sleep detection method in the
comparison between the count cutpoint method and the thigh-
worn accelerometer; thus, there were no differences in sleep time and
only minor differences in non-wear time in this comparison. In the
comparison between the ENMO cutpoint method and the thigh-worn
accelerometer there were only minor differences both in sleep time
and non-wear time.

Generalizability of our results may be limited, because our
study population was homogenous regarding age and ethnicity.
Therefore, future research should determine accuracy of wrist-
worn accelerometers in estimating sedentary time in more diverse
populations.

Conclusions

The results of this study of working-age adults in free-living
conditions show that compared to a position-sensitive thigh-worn
accelerometer, a wrist-worn accelerometer, by which sedentary time
is estimated based on movement, underestimates daily sedentary
time by 1 hr. This should be taken into consideration when compar-
ing results of sedentary time between studies that have used different
estimation methods (posture- or movement-based) and data proces-
sing methods to estimate sedentary time. As wrist-worn acceler-
ometers are increasingly used in the field of physical activity and
epidemiological research, sedentary time estimates obtained from
wrist-worn accelerometers using currently available movement-
based cutpoint methods should be interpreted with caution. Machine
learning methods offer a promising tool to improve accuracy of
wrist-worn accelerometers. Future research is needed to improve
accuracy of wrist-worn accelerometers in estimating sedentary time
in free-living conditions.
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