
Information and Software Technology 131 (2021) 106488

Available online 20 November 2020
0950-5849/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Security in agile software development: A practitioner survey

Kalle Rindell *,a, Jukka Ruohonen a, Johannes Holvitie a, Sami Hyrynsalmi b,c, Ville Leppänen a

a Department of Future Technologies, University of Turku, Turun Yliopisto FI-20014, Finland
b Unit of Computing Sciences, Tampere University, P.O. Box 300, Pori FI-28101, Finland
c Software Engineering, Lappeenranta-Lahti University of Technology LUT, Mukkulankatu 19, Lahti FI-15210, Finland

A R T I C L E I N F O

Keywords:
Survey
Security engineering
Agile software development
Software security
Security standards
Security assurance

A B S T R A C T

Context: Software security engineering provides the means to define, implement and verify security in software
products. Software security engineering is performed by following a software security development life cycle
model or a security capability maturity model. However, agile software development methods and processes,
dominant in the software industry, are viewed to be in conflict with these security practices and the security
requirements.

Objective: Empirically verify the use and impact of software security engineering activities in the context of
agile software development, as practiced by software developer professionals.

Method: A survey (N = 61) was performed among software practitioners in Finland regarding their use of 40
common security engineering practices and their perceived security impact, in conjunction with the use of 16
agile software development items and activities.

Results: The use of agile items and activities had a measurable effect on the selection of security engineering
practices. Perceived impact of the security practices was lower than the rate of use would imply: This was taken
to indicate a selection bias, caused by e.g. developers’ awareness of only certain security engineering practices,
or by difficulties in applying the security engineering practices into an iterative software development workflow.
Security practices deemed to have most impact were proactive and took place in the early phases of software
development.

Conclusion: Systematic use of agile practices conformed, and was observed to take place in conjunction with
the use of security practices. Security activities were most common in the requirement and implementation
phases. In general, the activities taking place early in the life cycle were also considered most impactful. A
discrepancy between the level of use and the perceived security impact of many security activities was observed.
This prompts research and methodological development for better integration of security engineering activities
into software development processes, methods, and tools.

1. Introduction

Secure software development is performed by executing a set of se
curity engineering activities in conjunction with software development
processes [1,42,78]. Purportedly this is done by following a security
development life cycle model, or an implementation of a security
maturity model. However, in agile software development the execution
and progress of software development processes cannot always be
determined in advance – nor are they necessarily even predictable at the
start of a project.

This premise complicates the software development processes in the
form of production bottlenecks. These bottlenecks include the

production of additional documentation, performing security-related
reviews and scans, and time-consuming security testing. Strict process
requirements constrain the flexibility gained through the use of agile
methods, and goes against the principles of adaptable processes [59,67,
75]. The agile techniques are applied to serve specific purposes, as do
the security engineering techniques. When both elements are present in
a software project, security must not be compromised by the strive for
agile principles and lightweight processes; conversely, security pro
cesses should not decrease the effectiveness of the development process.

Security incidents and threats are a significant factor when deter
mining the cost of creating a software product and maintaining it
throughout its lifetime [46]. Secure software engineering involves

* Corresponding author.
E-mail address: kakrind@utu.fi (K. Rindell).

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

https://doi.org/10.1016/j.infsof.2020.106488
Received 2 December 2018; Received in revised form 1 October 2020; Accepted 5 November 2020

mailto:kakrind@utu.fi
www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2020.106488
https://doi.org/10.1016/j.infsof.2020.106488
https://doi.org/10.1016/j.infsof.2020.106488
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2020.106488&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Information and Software Technology 131 (2021) 106488

2

clearly defined security objectives, elicitation of requirements, creation
of security architecture and design, and secure programming practices.
Security assurance is gathered throughout the life cycle, and by verifying
the implemented security features. Regulative requirements and
rigorous security frameworks typically introduce additional security
assurance requirements. These take the form of additional documenta
tion, security reviews, security testing, and audits [29,69]. A main
objective of software security engineering is to provide the software
developers means to comply with security assurance requirements. The
general aim of software security engineering is to address the identified
software security risks already in the development phase, enabling
efficient creation of effective security solutions.

Introducing new tasks and tools into software development work
flow necessarily incurs a cost in time and other resources. Software
development organizations operate under strict budgeting and sched
uling restraints, with careful monitoring of the ability to produce
deployable software. These restraints have created a high demand for
efficient software development processes, including those specific to
security engineering. This stresses the importance of efficiently
combining the agile software development and security engineering
processes, and the significance of this task to both industry and research.

To determine the state of the art practices in software security, an
industry survey was performed among the Finnish software industry
practitioners. The respondents were asked about individual agile soft
ware development and software security engineering activities they use
during software development, and the security impact of the security
practices used. In total, the survey contained questions about the usage
of forty common software security activities and twelve agile practices,
along with their perceived impact on software security.

The rest of this article is structured as follows: The opening Section 2
provides the theoretical background and motivation for the survey. The
survey design is described in Section 3, and the results are presented in
Section 4. Results and implications are further discussed in Section 5;
examination of threats to validity conclude the article in Sections 6 and 7
respectively.

2. Background

This section provides an introduction to the main concepts and
challenges software security engineering is facing, and the regulatory
and industrial background of security in software development.

2.1. Software security engineering

The purpose of software security engineering is to identify, mitigate,
and avoid security threats to software and data assets [1,42]. In this
approach, the goal of ensuring the availability, integrity, and confi
dentiality of information is achieved by security policies, implemented
into software security features during software development. To verify
the implementation, appropriate security assurance is produced and
gathered along the development, testing and operations.

As a means to increase software dependability, software security
engineering aims to guarantee the correctness of software, computer
networks, and computer systems in adverse situations. The problem
field in software security is relatively well-known [73], whereas the
common approach to mitigate and manage security is often performed
by following relatively simple checklists to guide design and imple
mentation practices [27,51,62]. However, software security engineering
must provide also more systematic means to address the security risks in
software development. Software dependability, a related concept, is
achieved through such means as fault prevention, fault tolerance, fault
removal, and fault forecasting [2].

Emphasis on the prevention of latent security issues necessarily
places software security engineering to the early phases of the software
life cycle. This provides an opportunity to prevent security incidents
from occurring in the first place. It can also supplement the external

security mechanisms introduced in the operations and maintenance
phases of the applications’ life cycle. A common characteristic of secu
rity faults, such as implementation bugs and design flaws, is their
persistence. When not repaired, they become “features”, requiring
constant and costly security engineering activities throughout the soft
ware’s operational lifetime. Eliminating such faults early on requires
significantly less resources than having to fix the issues later [35,55].
Furthermore, hardware errors, problems caused by users, and other is
sues in the operating environment are more transient and can be miti
gated by means independent of the assets protected [26]. These
characteristics make software security engineering distinct from other
security domains.

Systematic security assurance contains rigorous documentation of
technical security features, security architecture, and procedural secu
rity instructions. A number of security verification techniques may also
be used [69]. These techniques—various forms of security documenta
tion, testing, reviews, and audits—seek to detect flaws and errors, and to
provide an appropriate level of assurance.

2.2. Software security development models

Software security engineering consists of a diverse set of techniques
and processes. In research, they are often arranged into security devel
opment and life cycle models. Organizational security practices are
traditionally presented in the form of security maturity models, pro
moting repeatability and continuous improvement of the security ac
tivities used in software development.

To make the investment in software security more feasible for the
software development organizations, also less demanding maturity
models have been developed. An example is the openly available Soft
ware Assurance Maturity Model (SAMM) [52]. SAMM makes an explicit
claim of being “agile agnostic”: In practice, this means that it does not
even mention the principles and values of the Agile Manifesto [7]. It
does, however, take into consideration the tremendous advancements in
continuous and automated software engineering practices and pro
cesses. SAMM is also accompanied with a diverse set of open source tools
and frameworks, including those provided by the Open Web Application
Security Project (OWASP). These less demanding yet still rigorous
maturity models encourage developers and organizations to tailor the
models to their own processes and to perform at least the most necessary
security improvements. This tailoring aligns with various industry best
practices, often published in the form of security checklists and “do not
do” lists [27,51,62]. Like with maturity models for agile development
[50], it should be noted that these security-specific maturity models and
their checklists are not adequate in all contexts.

The SSDLC models used were the Microsoft Security Development
Lifecycle (SDL) model [78], and Touchpoints for Software Security [42].
The latter also forms the development life cycle model included in the
Building Security In Maturity Model (BSIMM). To comply with the
changing software development practices, Microsoft later made a rudi
mentary effort to adopt the SDL for agile development [25]. However,
the references to agile development have since been removed from the
current version of the SDL [43], and the life cycle model itself integrated
into DevOps processes and tools used in Microsoft’s public cloud service.

The international standard for security development framework has
been created by the ISO/IEC in the form of Secure Software Engineering
Capability Maturity Model (SSE-CMM) [31]. This model claims to
contain the best practices for security engineering. It formalizes security
work into an exhaustive set of security processes, by defining 129 se
curity processes divided into 22 process areas. To supplement this
high-level standard, multiple international, national and
domain-specific security regulations have been crated [22,55].

In Finland, where this survey was performed, a comprehensive set of
information security instructions has been issued by the Government
Information Security Management Board (Finnish abbreviation: VAHTI
[76]). This model contains a specific Software Security Development

K. Rindell et al.

Information and Software Technology 131 (2021) 106488

3

Life Cycle (SSDLC) model. While this model does not cite any references,
it is largely formed after the SDL and Touchpoints, and based on the
Common Criteria [30], the ISO standard for software product evalua
tion, and appears to conform with the ISO application security standard
[28]; VAHTI can be considered to represent the state of the art of soft
ware security engineering practices in Finland. KATAKRI is another
Finnish security framework, geared towards compatibility with Euro
pean and North American security regulations.

The most notable industrial software security framework outside the
SSDLCs and maturity models is SAFECode [58]. This approach to se
curity management is based on a rigorous security risk management
process. Similarly to ISO standard framework, SAFECode addresses the
identified risks by secure design and coding practices coupled with strict
management of third party software components. A security incident
response function is used to cover the operational part of a software life
cycle. SAFECode supplements the security maturity models by providing
concrete and actionable instructions for the deployment of security
processes. It also contains the essential principles guiding the build-up of
an SSDLC-enhanced software development process.

2.3. Related work

Applying security engineering methods and models into agile soft
ware development was initially seen as challenging [15,79]. As agile
development matured experiences have often been more positive,
although even recent empirical research continues to report organiza
tional and technical problems in adaptation [75]. The perceived
mismatch between formal security engineering and software develop
ment has prompted many attempts to combine maturity models with
agile processes [65,67]. A finding common to these studies is that agile
software development can comply even with strict and formal security
requirements, but at the unsurprising expense of slower development
and higher cost, largely due to non-agile security processes.

In software development, agile methodologies promote and provide
the ideals of flexibility and freedom [6,64]. Even though the agile
methods were initially criticized due to their perceived contradictions
with the traditional process-oriented approaches [48,74], agile princi
ples have since been successfully adopted also to the regulated areas of
the software industry. Agile methods are now used to fulfill extensive
software safety and security requirements, although this may require
compromising some of the benefits of the agile approach. The iterative
methods also contain inherent mechanisms for continual performance
and quality improvement. Agile principles simplify that tradition, and
build upon it [66].

Iterative and incremental software development methods have
inspired and enabled new continuous integration and deployment
models, such as DevOps, which considerably shorten maintenance cy
cles. In terms of security, this shortening manifests itself through
accelerated delivery of security improvements and quicker recovery
from security incidents. However, in regulated environments, DevOps
has also definite challenges caused by the introduction of new practices
[36]. Despite of these challenges, a growing number of organizations is
utilizing automated processes to deploy software into production [8].
The tools, techniques, and methodologies used for the automation
contain also security considerations. To support continuous delivery,
further work has been done to find an acceptable level of continuous
software security using agile methods [10].

Given the challenges outlined, it is not surprising that previous work
has been done to examine software security engineering in the context of
agile software development. Early contributions for agile software se
curity engineering were mainly theoretical concepts on how to perform
and manage agile software security engineering. Given that software
architectures have often been seen as a weak point of agile methods [9,
66], a good example would be the suggestions for secure software ar
chitectures in agile development [13,18]. Similarly, suggestions for
producing security assurance using Extreme Programming (XP) have

been made [11]. This line of work has also provided early outlines for
creating and gathering assurance at requirements, design, imple
mentation, and testing phases. Elicitation of security requirements,
whether through misuse cases or by other means, has also been studied
[34,72].

A major research challenge centers around the question of how to
integrate security engineering practices, maturity models, and activities
required to comply with standards into flexible agile work flow [56].
The main objective should not be maintaining “agility” as such, but to
produce as secure software as necessary, as efficiently as possible. The
many quality-improving mechanisms in agile development—iterative
development, retrospectives, constant refactoring, and continuous
integration—work towards both of these goals when producing secure
software [5].

The same applies in the safety context [32]. Also the software se
curity life cycles in an agile context have been a frequent subject in
software security research [3,4,12]. General challenges in adapting se
curity engineering into agile development have been identified [20]. A
further example would be the integration of security engineering and
education [53,81]. However, there is a notable lack of industry surveys
directly concentrating on the actual development-time activities.

Directly comparable industry surveys are limited both in numbers
and in scope. Apart from a small web survey (N = 46) concerning the
general use of security life cycle models [19], no surveys about industry
use of security engineering practices in software development are
known. The survey reported in the present paper fills this notable gap in
previous research.

3. Research design

This chapter summarizes the research objective and the research
questions. it also describes the practical measures taken to answer those
questions, and how to replicate the research process. In the design and
implementation of the research, the general good practices for industry
survey were followed [68].

3.1. Research questions

The primary research objective was to improve the understanding of
the use of security engineering activities in the context of agile software
development. The first research question (RQ) makes the research
objective explicit:

RQ1: To what extent are security engineering activities utilized in
the context of agile software development?

This research question was addressed by querying the extent of usage
of both security engineering and agile activities in software projects.
Forty software development security practices were extracted from
various security engineering models: the ISO/IEC Common Criteria,
Microsoft SDL, BSIMM, and VAHTI; three additional activities were
extracted from literature [59]. These practices were assembled into five
groups according to its phase in the SSDLC: requirement, design,
implementation, verification, and release.

The secondary objective augments RQ1 with the following question:

RQ2: What is the perceived security impact of security engineering
activities in agile software development?

The two research questions complement each other; the answer to
this question was found by directly asking for the perceived impact of
each used activity. The use of a particular security engineering activity
may or may not reflect its perceived impact. The activity may be used
because it is efficient for improving security. However, it may be used
also because it demands only few resources or because it is easy to
embed into existing agile software development work practices. The

K. Rindell et al.

Information and Software Technology 131 (2021) 106488

4

reverse relation is also important: the activity may be used only infre
quently even though its perceived impact upon security is substantial.
Answers to RQ1 and RQ2 can implicitly pinpoint important insights
about potential incompatibility problems between agile methods and
security engineering activities.

3.2. Questionnaire

The survey was explicitly designed to find answers to research
questions RQ1 and RQ2. To ensure a representative sample, the popu
lation targeted refers to Finnish software engineers, software security
specialists, and other direct participants in software development pro
cesses. For evaluating the success of this targeting, relevant background
information was queried from the respondents. The information queried
includes a few structured questions on education, work experience,
software development role, security training acquired, and organiza
tional aspects (including company size, application area, and potential
regulations or certifications for projects under delivery). As both
research questions concentrated on agile software development, the
questionnaire included also a group of questions designed to measure
the agility of the projects. To achieve this, the questionnaire included a
structured question about the agile software development methodolo
gies used in the projects the respondents use. The most common meth
odologies at the time of the survey, Extreme Programming (XP) and
Scrum, were used as specific examples.

To measure how ‘agility’ was achieved, the use of sixteen work
practices and processes typical to agile software development were
presented in the questionnaire. Many of these are derived directly from
the classical Agile Manifesto [7]. More importantly, the sixteen selected
agile work practices were the same as the ones used in a recent study on
technical debt [24], sans retrospectives that were omitted. This can be
used as a data point in any follow-up studies for longitudinal longitu
dinal. The examples include test-driven development, refactoring,
continuous integration, iteration backlog, and rest of the usual suspects.

To avoid clustering the activities into verification phase, review ac
tivities were principally placed into the lifecycle phase where the item or
artifact is created. Code-related reviews are thus placed into imple
mentation phase, as were requirement and design reviews placed into
their respective phases. This was done to partially reflect the phase into
which the activity has most impact, and partially to keep the amount of
options in the questionnaire manageable for each lifecycle phase.

A pilot group of twenty persons was used to pre-test the question
naire. Based on the feedback, a few corrections were made to the
wording of the questions and the terminology. Given that not all of the
associated terms are unambiguously defined even in scholarly research
[71], particular attention was paid to the descriptive names of the se
curity engineering activities. These were formulated to conform with the
Microsoft SDL, VAHTI, and the BSIMM surveys, with specific attention
paid to the BSIMM terminology to gain commensurability. A secondary
naming principle was to use the VAHTI names for the activities in cases
where the sources differed.

3.3. Scales

The agile and security engineering practices were surveyed using the
following five-point Likert scale:

5. Systematically used throughout the projects
4. Mostly used throughout the projects
3. Sometimes used during the projects
2. Rarely used during the projects
1. Never used during the projects

This scale was used based on the premise that development processes
are not fixed in agile software development. Therefore, the value five
was phrased with the word “systematically” rather than with the word

“always”. Otherwise the scale was comparable to the ones used in
existing surveys (notably, Synopsys Software Integrity Group [70]). The
same scale was used in the questionnaire for all security engineering
activities. An analogous five-point scale was used for the perceived
impact of these:

5. Very high
4. High
3. Moderate
2. Low
1. Very low

The online answering about the perceived impact of the activities
was streamlined by dynamically hiding the activities that were unused.

3.4. Survey implementation

The research was conducted as an invitation-based online survey.
There were two types of invitations: a public web link and targeted links
sent by personal e-mail invitations. The individual invitees were
collected with two distinct methods from a precompiled list of software
companies.

The survey was announced and first invitations sent by a public
invitation via a monthly news letter of the Finnish Software Entrepre
neurs Association. This invitation contained the public web link to the
survey. The coverage of the news letter was about 340 executives in the
Finnish software companies. The recipients were also asked to further
share the link to their employees. This method, however, was considered
to be inadequate for reaching the targeted audience of software engi
neers and software security specialists. Furthermore, the invitation was
sent during the holiday season, necessitating the second method for
invitations.

The second phase of invitations involved two methods. The first was
manual compilation of invitee email addresses from the websites of 303
Finnish software companies. In the second method, 69 software com
panies were targeted by searching the corresponding employees from
LinkedIn. Following an existing research example [44], LinkedIn’s
“People Search” functionality was utilized for email address gathering;
LinkedIn was selected for its specific focus on professionals.

For ethical reasons and to respect employee privacy only companies
with an expressly published email addresses or address forming policies
were searched. The second method produced the best targeted invitees,
but has weaknesses in e-mail address accuracy as they were formed
based on the announced address forming policies.

In the selection process, employees working in non-technical roles
were systematically excluded from the population. The exclusion
criteria specifically targeted people with functional titles related to
finance, human relations, sales, customer support, as well as non-
technical executives. Inclusion criteria contained all roles related to
software engineering and information security, or technical manage
ment of projects, departments or companies, up to C-level.

The survey remained open for a period of six weeks from December
2017 to January 2018. A reminder message was sent after three weeks.
In total, 62 valid responses were received. The exact response rate
cannot be calculated due to the public invitations used in the first stage,
but given that 1436 email addresses were contacted in the second stage,
the response rate can be interpreted to be low, as is typical to online
surveys.

A central purpose of the survey was also to elicit industry best
practices and expert opinions in software security engineering. This
objective was approached through careful selection of the participants,
and a very focused selection of activities included in the questionnaire.
As a result, a representative and focused sample of population was
invited to report on specific types of activities in a well-scoped context.
Due to the deterministic reduction of randomness in both the population
and the observed phenomena (development time activities), the central

K. Rindell et al.

Information and Software Technology 131 (2021) 106488

5

limit theorem was deemed not not to apply. Furthermore, the survey
revealed a high incidence of self-designed security rules supplementing
the regulation-based ones, rendering the independence of the security
activities under doubt. In line with our purpose of inspecting these
specific phenomena, and presenting relevant and truthful results, the
research objective is accomplished using descriptive statistics.

4. Results

This section reports the results as designed: background details of the
respondents and their organization, and the answers to the research
questions.

4.1. Background

The background questions were used to profile the respondents and
their role in the software development. This section also covers basic
information about their organizations, certifications, and the applica
tion area in which security has been a concern in a software project.

4.1.1. Demographics: experience, education, and organizations
The respondents are generally well-educated and highly experienced

in software engineering. While about five percent reported no experi
ence in software development, as much as 77% reported six or more
years. Roughly about a half of the respondents have a master’s degree, a
little below one third have a bachelor’s degree, and about fifteen percent
have a doctoral degree.

The respondents work in diverse organizations. About 39% worked
in organizations with less than fifty employees, about 21% in organi
zations with 50 to 250 employees, and about 35% in organizations with
more than 250 employees. About five percent preferred not to disclose
this information. This range presumably reflects the current structure of
the Finnish software industry. The same applies to the type of software
produced. Most (69%) of the respondents are developing web and cloud
applications. The rest are mostly working with desktop and client-server
applications, embedded software, and mobile applications. A few
specialized domains are also represented, including video games, smart
cards, and consulting.

4.1.2. Agile development
The primary targets of the survey were full-time employees involved

in technical software development roles. The results of this targeting are
shown in Table 1: a total of 87% of the respondents had directly worked
in a software development project with security considerations which
was managed using an agile methodology. The relevance of evaluation
of the research questions is based on this number, also taking into ac
count the relatively high educational levels and long work experiences
of the respondents.

The respondents were also asked about the particular agile meth
odologies used in the security-constrained projects they work with. The
predefined list of methodologies provided to the respondents was
assembled based on a recent industry survey [77]. The results summa
rized in Table 2 show no surprises: Scrum and its variants are currently

the most popular agile methodologies among the respondents. In
contrast to earlier surveys [38,77], none of the respondents reported
using XP or a method derived from XP. A few respondents reported not
using any specific agile methodology, or declined from naming it.
Notably, all of these respondents reported using e.g. iterations and
backlogs, both key practices in agile methodologies.

Observed details about the use of agile methodologies are significant
on their own rights. Even in security sensitive projects, a majority of
respondents managed their work by agile methodologies, and performed
agile activities in software development. This observation is particularly
significant for the survey at hand: there exists no widely used polar
opposite (i.e. use of RAD, ‘waterfall’, or other non-agile method) for
empirical comparisons. The results also justify the wording used for RQ1
and RQ2. Based on the results, it appears that the respondents had
performed quite well in adapting agile software development methods
for security engineering.

While nearly all of the respondents were working with agile projects,
there is still some variance in terms of the actual agile work practices. To
query such practices, the respondents were asked to evaluate the use of
sixteen different agile work practices on a similar five-point Likert scale
used for the security activities (see Section 3.3). The results are visual
ized in Fig. 1, which shows the relative share of the answers across the
Likert scale; the numbers on left (never and rarely) and right (mostly and
systematically) of the plot display the combined share of two categories
each. When compared to an earlier survey [38] performed in the context
of technical debt activities in agile software development, the adoption
rates of agile activities by security-oriented developers were consistently

Table 1
Project roles.

Role Share (%)

Developer 40
Architect 21
Scrum master or team leader 11
Project manager 10
Executive 8
No projects 5
Security specialist 3
Product owner 2
Tester 0

Table 2
Development methodologies.

Methodology Share (%)

Scrum 30
Scrum-Kanban 28
Custom agile 17
Kanban 14
Other 3
Do not know 5
No answer 3

Fig. 1. Use of agile work practices.

K. Rindell et al.

Information and Software Technology 131 (2021) 106488

6

higher. Inherently agile activities were prominently used. The examples
include product and iteration backlogs, refactoring, iterations, iteration
planning, and continuous integration. More generic ones—such as
coding standards and open office space—were also very popular. On the
side of less frequently used practices were pair programming, planning
games, on-site customer, and test-driven development. Even these
received a fair amount of use, with only planning game receiving less
than half (47%) usage reported as “sometimes” or more.

4.1.3. Standards, regulations, and constraints
A fundamental pillar of agile software development is the explicit

involvement of customers throughout the software development pro
cesses. This manifests itself also in the typical security constraints
imposed upon the software projects surveyed. The data displayed in
Table 3 shows that a majority of the projects have constraints that were
context-specific and related to customers’ particular security re
quirements. In comparison, the security constraints defined by the
software development organizations themselves were used 29% of the
projects, with an equal 29% with customer-defined security constraints.
The use of various international or national security standards summed
up 30%, with 10% using more informal RFC 2196 or other guidelines.
Notably, only 2% stated not using any security guidelines.

These observations are significant as regulation is generally regarded
as a significant source of security requirements in software develop
ment. A fundamental problem with software security standards, such as
the Common Criteria, is the omission of business processes that should
arguably be the main drivers for security engineering [1]. In this sense,
agile practices can patch the limitations of security standards and
checklist-style guidelines. It is also important to emphasize that no
single standard or framework was dominant among the respondents.

The use of self-designed security constraints typically occurred with
use of some formal standard. Use of the national or international secu
rity standards typically overlapped with self-designed security con
straints. A total of 29% did not report any organizational use of security
standards or guidelines. This observation is particularly noteworthy
because much of the existing research has focused on international
standards and guidelines used by large multinational companies; it is
also foreseeable that the already pronounced growing trend in the
amount national and international information security frameworks and
regulation will continue.

4.2. Use and impact

In the following subsections, the use of each software security en
gineering activity in each phase is reported. Use of the activities is
accompanied by their perceived impact.

4.2.1. Requirements phase
Security requirements are essential to security engineering. Suc

cessful requirement management practices may determine the success of
the software project. The use of security engineering activities related to
requirements is also among the highest in this survey: This observation is
visualized in Fig. 2.

The most used security engineering techniques during this phase are
the fundamental ones: eliciting the security requirements, defining the
goal and criticality, and performing business impact and risk analyses.
These activities produce results that are tightly linked with the economic
value of the software being produced. However, as can be seen from the
analogous Fig. 3, the perceived security impact of some of the activities
is less clear. For instance, about half of the respondents perceived the
impact of defining an application’s goal and criticality as having a low or
very low impact upon security. This observation is in a stark contrasts
with security requirements, which are often elicited and also perceived
as important. Security requirements align also well with the general

Table 3
Standards, regulations, and security constraints.

Standard, regulation, or constraint Share (%)

Customer’s self-designed constraints 29
Self-designed constraints 29
VAHTI 10
ISO 27,000 series 9
KATAKRI 7
ISO 15,408 (Common Criteria) 4
RFC 2196 (Site Security Handbook) 4
Other 6
None 2

Fig. 2. Use at requirements phase.

Fig. 3. Perceived impact at requirements phase.

K. Rindell et al.

Information and Software Technology 131 (2021) 106488

7

wisdom about the importance of the early software development phases
in security engineering [35,55]. Interestingly, however, security
requirement reviews are a much lesser used activity despite perceived as
highly effective. Interestingly, architectural guidelines appear to display
an opposite trend, possibly implicating flaws in security architectures, or
a common lack of security features in software architectures.

Data classification schemes and creation of quality gates are the least
used; these activities were never used by 35% and 42% of the re
spondents respectively. The perceived impact of creating data classifi
cation schemes is also very low. These observations differ from the
BSIMM’s annual surveys: For instance, creating data classification
schemes is one of BSIMM’s twelve core activities which, according to
BSIMM, everybody does [70]. This is likely due to a shift in techniques:
on a provided free-form text field some respondents noted that data
classification schemes are typically based on the use cases, and thus do
not exist before the software design. Although use cases may be prob
lematic in the security and safety contexts [23], these are still a highly
typical characteristic of agile software development. Thus preferring use
cases for sensitive data instead of elaborate data classification schemes is
a likely explanation for the diverging results.

The prevalence of agile development may also explain the limited
use of quality gates—an activity suggested by the Microsoft SDL. These
gates can be disruptive and hard to manage in iterative software
development. Additionally they constrain the freedom of execution and
flexibility of processes, so important to the agile development principles.
The lower usage may has a potential explanation may relate to the
relatively infrequent use of formal standards and regulations (see
Table 3). In general, compliance constraints, typically introducing non-
negotiable additional documentation and other assurance activities,
were not a particularly common security requirement among the sur
veyed practitioners: The security requirements were most commonly set
by either the customer, or the development organization itself. This
result again differs from the BSIMM’s surveys [81]. It is also likely for
some regulation-based requirements to be included in these customized
security instructions without full compliance being achieved.

4.2.2. Design phase
The design phase refers to the work required to translate re

quirements and abstract architecture principles into more concrete plans
for software features and functionality. The technical context of the
software produced is clarified and aligned with the results from the re
quirements elicitation phase. From security point of view, this alignment
involves updating of the risk analysis with technical risk definitions and
mitigation plans. The security architecture is typically also detailed
during this phase.

By implication, the design phase is often seen as particularly crucial
for security engineering [22,55]. The key ‘traditional’ security engi
neering tasks in this phase are threat modeling and attack surface
recognition. When agile software development is used, many of these
activities are carried out using security stories and different misuse or
abuse cases [40,41,63]. Like in conventional agile development, these
activities are used to create security-related tasks to a project’s iteration
backlog.

Given this general background, the use of the design phase activities
surveyed are depicted in Fig. 4. The corresponding Fig. 5 shows their
perceived impact.

Application security configurations, design requirements, and abuse
or misuse cases are the most frequently used security design activities.
These are all very similar to activities performed in most agile software
development projects in general: the high usage is likely explained by
developers finding it quite natural to add a security flavor into these
common activities. The security impact of design requirements and as
abuse or misuse cases is also considered high, adding to their perceived
usefulness. The security impact of the other design-phase activities is
perceived to be significantly lower, making these two activities distinct.

In contrast to the common software design activities, threat

modeling and attack surface analysis are exclusively security engineer
ing tasks. This is a likely explanation for their relatively infrequent use.
For instance, almost one third of the respondents had never used threat
modeling, despite it is promoted by practically all security development
models.

There may be also a certain causal logic behind the results: For
example, when threat modeling is not done, attack surfaces are not
known either. A further examination also reveals that threat modeling
was seldom used by those respondents who rarely defined security
configurations. These activities are linked to technical analysis of the

Fig. 4. Use at design phase.

Fig. 5. Perceived impact at design phase.

K. Rindell et al.

Information and Software Technology 131 (2021) 106488

8

software, and not necessarily considered contributing to development of
new features. While correlation does not indicate causality, low
perceived security impact may be a contributing factor to the lack of use,
or simply rejection of tasks considered overburdening or difficult to
accomplish. Maintenance of a detailed treat model can be an arduous
task in iterative development.

4.2.3. Implementation phase
Contemporary software development is typically highly automated.

Various tools are used to develop, debug, test, and commit the produced
software code and configurations into a repository. Many of these
implementation tasks are also directly integrated into development
tools. The tools promoted by security standardization bodies [49]
include various effective means to improve software quality: most
importantly, static analysis tools [14,80]. The security engineering tasks
during implementation reflect these activities and tools. In addition, the
security tasks in the implementation consist of security documentation,
coding standards, and many related configuration activities supple
mented by respective implementation reviews.

The results regarding the eight surveyed implementation phase ac
tivities are illustrated in Figs. 6 and 7. Coding standards are the most
frequently used activity during the implementation phase. These are
also perceived to have a high impact upon security. The observations are
not surprising because coding standards are also an integral part of
common agile software development principles.

The tools used for development are frequently agreed upon and
specified security documentation, as are the types of performed static
analyses. These observations seem logical in the sense that coding
standards, use of common tools, and static analysis are frequently used
irrespective of whether the context is explicitly related to security. The
same explanation may apply to the low perceived security impact of
static analysis and documentation. In terms of the former, the result
supports other recent surveys [47], possibly also reflecting the limited
capability of many static analysis tools for detecting security weak
nesses [37,54]. In terms of the latter, the low perceived impact is ex
pected due to the sample’s inherent bias toward software developers.

There is a substantial mismatch between the use and perceived
impact of a few particular implementation-time activities. In particular,

security reviews with automated tools and security-specific hardening
sprints receive only infrequent use, despite both of these activities are
perceived to have a relatively high impact upon security. Regulation
aspects may again partially explain these results. For instance, security
hardening sprints have been promoted in the safety context as a way to
ensure regulatory compliance [17]. For agile projects dealing with less
strict compliance requirements, however, the use of hardening sprints
may constrain the development akin to quality gates, especially in case
these do not relate to auditing or one-shot verification. That is, these
hardening sprints may introduce “security gate”, contradictory to the
agile work. Dedicated security sprints consume valuable development
time, which needs to pay off for example in the form of passing a security
audit. The answer to this question is not straightforward: it may be that
security-specific hardening sprints are either unnecessary, or they are
considered difficult to apply to agile work without breaking the flexible
practices.

4.2.4. Verification phase
At the security testing phase, various security validation and verifi

cation activities are performed to locate any weaknesses in the imple
mentation, documentation or configurations that could introduce
exploitable security vulnerabilities. The activities performed in this
phase also aim to validate and produce proof that the implementation
complies with the security requirements.

In iterative software development, the potentially production-ready
release candidates are selected as a result of the verification and vali
dation processes. The surveyed activities behind these processes are
shown in Figs. 8 and 9.

In general, the use is heavily balanced toward testing. With code
reviews thrown in, the most frequently used verification activities
include the use of automated testing tools, security specific test cases,
and, to a lesser extent, penetration testing. These results underline the
test-driven ethos of agile software development as well as the contem
porary trend toward automation.

While testing is an extensively used software and security develop
ment practice, low use of systematic test plans is a trend noted in related
software industry research [57]. Although reliance upon automation
and extended use of automated security testing tools is a positive

Fig. 6. Use at implementation phase.

Fig. 7. Perceived impact at implementation phase.

K. Rindell et al.

Information and Software Technology 131 (2021) 106488

9

security trend, the significantly low rate of reviewing security testing
plans possibly indicates a straightforward absence of security test plans,
supported by these general findings.

Although the survey design does not allow to draw definite conclu
sions, it seems that many of the commonly used activities during the
verification phase align with the implementation-time activities such as
static analysis. Such alignment is also a typical problem because tradi
tional security (safety) engineering emphasizes post-development
testing, whereas agile practices concentrate on development-time
testing [23]. To some extent, this potential problem is also visible in

the results shown: the auditing of the development-time testing practices
is the least used activity. That said, it should be recalled that formal
audits have been a rare requirement in the projects the respondents have
worked with.

It is also worth to emphasize that not all testing techniques are
equally used: dynamic (run-time) analysis and fuzzing are only rarely
used by the respondents and their projects. Limited use of dynamic
analysis has been reported also in other surveys [47]. Furthermore,
dynamic analysis is perceived to have only a low impact upon security,
whereas fuzz testing is seen to have a high impact. Development effi
ciency offers a plausible explanation for these results. For instance,
dynamic analysis requires heavy human involvement and strong tech
nical skills [37]. Likewise, building and configuring a fuzzing environ
ment requires a substantial amount of time.

A typical fuzz testing period is 24 h for each tested software instance
[33]. As fuzz testing tools keep finding crashes also after that, fuzzing
should be applied for long periods of time or even continuously. Thus,
the required effort and the time restraints may again conflict with
typical agile work flow. Such a conflict may also explain the misalign
ment observed: even though the respondents perceive fuzzing as an
efficient way to improve software security, they also acknowledge the
limited use of this testing technique.

4.2.5. Release phase
In security development life cycle, the release phase activities pre

pare the software for release and ensure its secure maintenance.
Although the increasing use of continuous integration and continuous
delivery practises have somewhat blurred the boundaries of the life
cycle models, many issues related to maintenance must be still specif
ically addressed. Regulatory requirements also constrain the trend to
ward full automation of release engineering [36]. Thus, the security
activities performed at this phase include auditing the product to be
released, producing security assurance and documentation for mainte
nance and operations, and ensuring that different operational security
mechanisms are in place. The results on the surveyed release-time ac
tivities are shown in Figs. 10 and 11.

The most used activity at the release phase relates to work required
to ensure that host and network security are in place. Given the

Fig. 8. Use at verification phase.

Fig. 9. Perceived impact at verification phase.

Fig. 10. Use at release phase.

K. Rindell et al.

Information and Software Technology 131 (2021) 106488

10

contemporary deployment practices, this work presumably involves also
addressing the security questions related to cloud computing platforms
[82]. Given that most of the respondents are dealing with web appli
cations and cloud platforms (see Section 4.1.1), it may also be that the
requirements for host and network security can be replicated across
multiple projects. These can be further seen as prerequisites for other
security requirements [61]. This fundamental nature may also explain
the apparent misalignment: none of the respondents perceive host and
network security basics as having a high or a very high security impact.
A competing explanation for the observation would be that general
network security aspects are over-emphasized at the expense of security
of the software itself.

The survey questionnaire contained also a specific question about
whether the respondents’ organizations had at some point obtained at
least one security certificate through a formal auditing process. To this
question, 18% of the respondents answered positively. The Finnish na
tional standards VAHTI and KATAKRI were both among the most
frequently audited ones. As seen in Fig. 11, the respondents found the
audits to have a high positive impact on security. Furthermore, activities
inherent to security audits, such as various reviews and security tests,
were considered among the most impactful throughout the surveyed
phases.

The respondents also commonly produce documents required by
regulations. This observation indicates that security engineering prac
tices can be useful in augmenting the typically minimal documentation
produced in agile development. This result can be combined with the
relatively frequent documentation activities during the earlier devel
opment phases. Agile software development has been criticized for “ad
hoc, inaccurate, incomplete, or non-existing documentation” [16]. As
such, the results presented do not seem to support this argument, at least
when security matters are concerned.

On the side of rarely used release-time activities, various audits and
certifications were only seldom used in the projects the respondents
have worked in. As these are typical activities imposed by regulations
and other external constraints, the explanation is again partially related
to the sample characteristics. On the other hand, these observations can
be also interpreted to reflect a generally low demand for audit-related
security assurance. However, when used, both internal and external

security audits are perceived to have a substantial impact upon security.
The release-time activities further exhibit the general mismatch between
the frequency of use and the perceived security impact of software se
curity activities.

5. Discussion and analysis

Filling a novel gap in software engineering research, the survey
produces an interesting insight into the way software practitioners
organize their security-related work in an agile software development
setting. This chapter discusses these findings and their implications to
both industry and the research community.

5.1. Key results

The iterative and incremental agile software development is often
seen as an ill-match to many security engineering models that require
up-front design that may diminish agility. Given this motivation, the
paper presented an industry survey on the use and perceived impact of
various security engineering activities in the context of agile software
developments.

Two research questions were asked. The answers (A) to the RQs can
be summarized as follows:

RQ1: To what extent are security engineering activities utilized in
the context of agile software development?
A1: The two activity types are used in conjunction with each other.
Agile practices concentrate on requirements engineering, imple
mentation, and extensive testing. In contrast, much of security en
gineering work is done in the verification phase.
RQ2: What is the perceived security impact of security engineering
activities in agile software development?
A2: The results prompt two main observations: (1) The earlier the
security activity is performed, the more effective it is perceived to be.
These include requirement, design and implementation phase ac
tivities; (2) the use of automated testing tools and specific security
testing methods are deemed most effective security practices
together with release-time security audits. This is a clear indication
of a strong preference to ensure the security and secure imple
mentation before deployment, enabling cost-efficient modifications
to the software and its security configurations.

The selected research questions describe the targeted population of
software security professionals. The measured activities were gathered
from security frameworks, standards and life cycle models. This also
removed much of the relevance of analyzing e.g. the use of individual
activities within the life cycle phases: the results describe the industry
best practices in a focused target group, and thus provide a benchmark
for general population. Inferring patterns for general population of
software developers from these results would provide very little benefit.

5.2. Implications for industry

The survey and the research questions draw an interesting the field of
software security practitioners: the selection of practices, and to a de
gree, the factors guiding the security work. First of all, the respondents
have thoroughly embraced the agile practices while combining them to
a variety of security engineering practices. Agile practitioners tend to
use simpler security techniques, which are concentrated on the early
phases of the SSDLC.

The demand for software security and assurance of security’s exis
tence is increasing from the perspectives of the regulators and the
software users. This is best achieved by introducing security elements
into the software from the very beginning of its life cycle [55]. This calls
for rigorous management practices and unified security metrics usable
for several types of software products and projects. On tool support for

Fig. 11. Perceived impact at release phase.

K. Rindell et al.

Information and Software Technology 131 (2021) 106488

11

effective ways to bind together the security requirements, design,
implementation and verification activities would provide means for e.g.
dependency management and vulnerability tracking in software mod
ules and connected components.

Regulation is a main driving force in the security work, although not
the only one. The results imply a need for improvement in the mecha
nisms how security regulation imposes requirements to software
development. Especially the security assurance items regarding security
policies and security enforcement mechanisms have a decreased level of
usage despite their perceived effectiveness, implying bad conformance
with software development processes. Formal compliance requirements
have strayed quite far from the practical work done in day-to-day soft
ware development. This has an implication that certain process-related
security improvement practices, although effective, remain mostly un
used in mainstream software development projects. It is understandable,
however, that formal or semi-formal process and documentation reviews
are performed only under direct regulatory requirements.

5.3. Implications for research

Many of the security engineering activities in the Software Security
Life Cycle model are used also in agile software development. However,
neither the SSDLC nor other models are usually adopted wholesale.
These typically act as security engineering frameworks from which
practitioners pick and choose the practices deemed most suitable for
their work. Another important point is the poor alignment between the
use of the activities and their perceived impact upon software security.
While this misalignment can be attributed to several possible factors,
there is a dual implication from the mismatch. On one hand, software
development organizations should be more proactive in updating their
processes; on the other, the research community working on software
security development models should pay more attention to their
adaptability.

The adaptability question can be considered also at the level of in
dividual software security engineering activities. To this end, a good
problem for further research would be the identification of activities that
are synergic. In other words, some particular security engineering ac
tivity might be used more efficiently as a part of a general software
development activity. For instance, elicitation of security requirements
might be reasonably attainable as a part of Scrum’s backlog formation.
Likewise, coding standards and code reviews are in line with core agile
principles [39]. Furthermore, static and dynamic analysis should be
integrated into code review processes instead of being treated as isolated
activities [45]. The reverse direction should be also considered; there
are also certain security engineering activities that have a poor synergy
with traditional agile software development activities.

By comparing synergic and non-synergic security engineering ac
tivities, it might be also possible to better understand the impact of se
curity engineering on software development efficiency. The relationship
between security and efficiency is a complex one, however. Practical
evaluation requires that a software development organization has
knowledge about the level of security attained and the development
efficiency attainable via the use of a particular set of security engi
neering activities. A good question for further research would be the
means by which the evaluation on the security-efficiency nexus could be
carried out.

Finally, it is worth remarking a positive correlation between all of the
security engineering activities and a sum variable formed based on the
arithmetic mean of the sixteen agile work practices in Fig. 1. This is a
tentative but important observation for further research. In other words,
increasing agility is associated with increasing use of software security
engineering activities, and the other way around. These are generally
interesting preliminary findings because a common folk wisdom would
entail negative correlations; that less agile or more rigid organizations
would be more likely to use security engineering activities outside of the
standard agile toolbox, or even as parallel processes [60]. In contrast,

the results indicate that organizational rigidity is associated with
decreasing use of the activities surveyed.

6. Threats to validity

Several measures were taken in the preparation, design, and execu
tion of the survey, and the analysis of the data, to mitigate or to avoid the
threats to validity of the research. The security activities were collected
from several software security frameworks and standards, and the
software activities and artifacts from an earlier study performed among
software developers in Finland.

The research instrument, an open and anonymous questionnaire,
was assessed to pose certain challenges to the independence of the data
collected. The challenges were identified as follows: (1) inability to
identify the respondents’ organization, project, or customer they are
working on; (2) acknowledging that the respondents share the same
background, have same or very similar education, and are very likely to
share the same security awareness training; (3) acknowledging that the
respondents form a group of software security specialists, that work in
same homogeneous regulatory environment, share their experiences,
and draw from the same security influences [cf. 21].

To further mitigate threats to reliability, a portion of the respondents
were individually picked from software and security companies, and the
questionnaire itself piloted with selected subject matter experts (N =

20). The questionnaire was designed to mitigate the misunderstandings
the respondents may have about the security engineering activities via
clarifying clauses and logical question grouping. To the degree the us
ability of the survey design allowed, control questions were used to
verify the answers. However, the substantial amount of security activ
ities (40) may have caused some misinterpretations, posing a possible
threat to reliability. The data was also purged of any outliers and
checked for possible vandalism, which led to the removal of one
response.

The focused sample, the strict scoping of the survey questions, and
further limiting of the surveyed projects to the agile software develop
ment projects with specific security activities, the randomness of the
sample was likely to be reduced. The respondents were selected from an
extensive precompiled list of Finnish software companies, with the re
spondents representing a subset of those organizations. As the re
spondents reported a substantial level of use of organizations’ self-
designed security constraints, a possible threat to internal validity was
recognized in the form of organizational clustering.

The respondents were experts in software security. Thus, general
izing the results from the observed sample to all software engineers was
deemed to produce potentially misleading results. To avoid this threat to
external validity, a decision was made to present the results using
descriptive statistics. The results provide the general software developer
population a clear and concise picture about how the experts conduct
software security engineering, and which activities they find to be most
impactful.

7. Concluding remarks

The survey, performed among software practitioners working with
Finnish software development companies, gives a positive view of the
level of professionalism and security capabilities of the respondents. The
respondents give the appearance of taking security work seriously, and
they genuinely worry about the security of the software products they
develop.

This survey opens some quite interesting research avenues. It was
also designed to give a clear baseline for comparison to coming surveys.
The effect of various regulative security practices should be thoroughly
examined, as the body of national and international security regulation
is constantly growing in response to increasing security concerns.
Effectiveness of security work in software development gives a
competitive edge to the early adapters, and to those who best manage

K. Rindell et al.

Information and Software Technology 131 (2021) 106488

12

the integration of the processes. Qualitative approaches drilling into
these crucial topics should provide immediately useful and interesting
results for both security researchers and practitioners.

CRediT authorship contribution statement

Kalle Rindell: Conceptualization, Methodology, Validation, Formal
analysis, Investigation, Resources, Data curation, Writing - original
draft, Writing - review & editing, Visualization, Supervision, Project
administration. Jukka Ruohonen: Conceptualization, Methodology,
Validation, Formal analysis, Investigation, Resources, Data curation,
Writing - original draft, Writing - review & editing, Visualization, Project
administration. Johannes Holvitie: Conceptualization, Methodology,
Validation, Formal analysis, Investigation, Resources, Data curation,
Writing - original draft, Writing - review & editing, Visualization, Project
administration. Sami Hyrynsalmi: Conceptualization, Methodology,
Validation, Formal analysis, Writing - original draft, Writing - review &
editing, Supervision, Project administration. Ville Leppänen: Concep
tualization, Methodology, Validation, Formal analysis, Resources, Data
curation, Writing - original draft, Writing - review & editing, Supervi
sion, Project administration.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at 10.1016/j.infsof.2020.106488

References

[1] R. Anderson, Security Engineering: A Guide to Building Dependable Distributed
Systems, 2nd ed., Wiley, Indianapolis, 2008.

[2] A. Avizienis, J. Laprie, B. Randell, C. Landwehr, Basic concepts and taxonomy of
dependable and secure computing, IEEE Trans. Dependable Secure Comput. 1 (1)
(2004) 11–33, https://doi.org/10.1109/TDSC.2004.2.

[3] T. Ayalew, T. Kidane, B. Carlsson, Identification and evaluation of security
activities in agile projects. Secure IT Systems: 18th Nordic Conference, NordSec
2013, Ilulissat, Greenland, October 18–21, 2013, Proceedings, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2013, pp. 139–153, https://doi.org/10.1007/978-
3-642-41488-6_10.

[4] D. Baca, B. Carlsson, Agile development with security engineering activities.
Proceedings of the 2011 International Conference on Software and Systems
Process, in: ICSSP ’11, ACM, New York, NY, USA, 2011, pp. 149–158, https://doi.
org/10.1145/1987875.1987900.

[5] S. Bartsch, Practitioners’ perspectives on security in agile development. 2011 Sixth
International Conference on Availability, Reliability and Security, 2011,
pp. 479–484, https://doi.org/10.1109/ARES.2011.82.

[6] K. Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[7] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham, M. Fowler, J.
Grenning, J. Highsmith, A. Hunt, R. Jeffries, et al., Manifesto for agile software
development, Online at http://www.agilemanifesto.org(2001).

[8] L. Bell, M. Brunton-Spall, R. Smith, J. Bird, Agile Application Security: Enabling
Security in a Continuous Delivery Pipeline, O’Reilly Media, Inc., 2017.

[9] S. Bellomo, P. Kruchten, R.L. Nord, I. Ozkaya, How to agilely architect an agile
architecture, Cutter IT J. 27 (2) (2014) 12–17.

[10] L. Ben-Othmane, P. Angin, H. Weffers, B. Bhargava, Extending the agile
development process to develop acceptably secure software, IEEE Trans.
Dependable Secure Comput. 11 (6) (2014) 497–509, https://doi.org/10.1109/
TDSC.2014.2298011.

[11] K. Beznosov, P. Kruchten, Towards agile security assurance. NSPW ’04 Proceedings
of the 2004 Workshop on New Security Paradigms, 2004, pp. 47–54.

[12] G. Boström, J. Wäyrynen, M. Bodén, K. Beznosov, P. Kruchten, Extending XP
practices to support security requirements engineering. Proceedings of the 2006
International Workshop on Software Engineering for Secure Systems, SESS ’06,
ACM, New York, NY, USA, 2006, pp. 11–18, https://doi.org/10.1145/
1137627.1137631.

[13] H. Chivers, R.F. Paige, X. Ge, Agile security using an incremental security
architecture, in: H. Baumeister, M. Marchesi, M. Holcombe (Eds.), Extreme
Programming and Agile Processes in Software Engineering: 6th International

Conference, XP 2005, Sheffield, UK, June 18–23, 2005. Proceedings, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 57–65, https://doi.org/10.1007/
11499053_7.

[14] A. Cockburn, L. Williams, The costs and benefits of pair programming, Extreme
Program. Examined 8 (2000) 223–247.

[15] K. Conboy, B. Fitzgerald, W. Golden, Agility in information systems development:
athree-tiered framework, in: R.L. Baskerville, L. Mathiassen, J. Pries-Heje, J.
I. DeGross (Eds.), Business Agility and Information Technology Diffusion: IFIP TC8
WG 8.6 International Working Conference May 8–11, 2005, Atlanta, Georgia, U.S.
A., Springer US, Boston, MA, 2005, pp. 35–49, https://doi.org/10.1007/0-387-
25590-7_3.

[16] M.L. Drury-Grogan, K. Conboy, T. Acton, Examining decision characteristics &
challenges for agile software development, J. Syst. Softw. 131 (2017) 248–265.

[17] B. Fitzgerald, K.-J. Stol, R. O’Sullivan, D. O’Brien, Scaling agile methods to
regulated environments: an industry case study. Proceedings of the 2013
International Conference on Software Engineering, ICSE ’13, 2013, pp. 863–872.

[18] X. Ge, R. Paige, F. Polack, P. Brooke, Extreme Programming Security Practices, in:
G. Concas, E. Damiani, M. Scotto, G. Succi (Eds.), Agile Processes in Software
Engineering and Extreme Programming, Lecture Notes in Computer Science, 4536,
Springer Berlin Heidelberg, 2007, pp. 226–230, https://doi.org/10.1007/978-3-
540-73101-6_42.

[19] D. Geer, Are companies actually using secure development life cycles? Computer
43 (6) (2010) 12–16, https://doi.org/10.1109/MC.2010.159.

[20] I. Ghani, A.F.B. Arbain, H. Oueslati, M.M. Rahman, L. Ben-Othmane, Evaluation of
the challenges of developing secure software using the agile approach, Int. J. Secur.
Softw. Eng. 7 (1) (2016) 17–37, https://doi.org/10.4018/IJSSE.2016010102.

[21] M.J. Grawitch, D.C. Munz, Are your data nonindependent? A practical guide to
evaluating nonindependence and within-group agreement, Underst. Stat. 3 (4)
(2004) 231–257.

[22] B. Hamid, D. Weber, Engineering secure systems: models, patterns and empirical
validation, Comput. Secur. 77 (2018) 315–348.

[23] L.T. Heeager, P.A. Nielsen, A conceptual model of agile software development in a
safety-critical context: a systematic literature review, Inf. Softw. Technol. 103
(2018) 22–39.

[24] J. Holvitie, S.A. Licorish, R.O. Spínola, S. Hyrynsalmi, S.G. MacDonell, T.
S. Mendes, J. Buchan, V. Leppänen, Technical debt and agile software development
practices and processes: an industry practitioner survey, Inf. Softw. Technol. 96
(2018) 141–160.

[25] M. Howard, S. Lipner, The Security Development Lifecycle 8, Microsoft Press
Redmond, 2006.

[26] ICS-CERT, Recommended Practice: Improving Industrial Control System
Cybersecurity with Defense-in-depth Strategies, U.S. Homeland Security, 2016.
https://ics-cert.us-cert.gov/sites/default/files/recommended_practices/NCCIC_I
CS-CERT_Defense_in_Depth_2016_S508C.pdf

[27] IEEE, Avoiding the top 10 software security design flaws, 2018. https://www.com
puter.org/cms/CYBSI/docs/Top-10-Flaws.pdf.

[28] ISO/IEC Sstandard 27034-1:2011, Information Technology - Security Techniques -
Application Security - Part 1: Overview and Concepts, ISO/IEC, 2011.

[29] ISO/IEC standard 15026-4:2012, Systems and Software Engineering – Systems and
Software Assurance – Part 4: Assurance in the Life Cycle, ISO/IEC, 2012.

[30] ISO/IEC standard 15408-1:2009, Information Technology - Security Techniques -
Evaluation Criteria for IT Security, 3rd ed., ISO/IEC, 2014.

[31] ISO/IEC standard 21827:2008, Information technology – Security techniques –
Systems security engineering – Capability maturity model (SSE-CMM), 2nd ed.,
ISO/IEC, 2008.

[32] R. Kasauli, E. Knauss, B. Kanagwa, A. Nilsson, G. Calikli, Safety-critical systems and
agile development: amapping study. 2018 44th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), 2018, pp. 470–477, https://doi.
org/10.1109/SEAA.2018.00082.

[33] G. Klees, A. Ruef, B. Cooper, S. Wei, M. Hicks, Evaluating Fuzz Testing, ArXiv e-
prints (2018).

[34] V. Kongsli, Towards agile security in web applications. Companion to the 21st ACM
SIGPLAN Symposium on Object-Oriented Programming Systems, Languages, and
Applications, OOPSLA ’06, ACM, New York, NY, USA, 2006, pp. 805–808, https://
doi.org/10.1145/1176617.1176727.

[35] R. Kuhn, M. Raunak, R. Kacker, Can reducing faults prevent vulnerabilities?
Computer 51 (7) (2018) 82–85.

[36] T. Laukkarinen, K. Kuusinen, T. Mikkonen, Regulated software meets devops, Inf.
Softw. Technol. 97 (2018) 176–178, https://doi.org/10.1016/j.
infsof.2018.01.011.

[37] J. Li, B. Zhao, C. Zhang, Fuzzing: a survey, Cybersecurity 1 (1) (2018) 6, https://
doi.org/10.1186/s42400-018-0002-y.

[38] S. Licorish, J. Holvitie, R. Spínola, S. Hyrynsalmi, J. Buchan, T. Mendes,
S. MacDonnell, V. Leppänen, Adoption and suitability of software development
methods and practices - results from a multi-national industry practitioner survey.
2016 Asia-Pacific Software Engineering Conference (APSEC), IEEE, 2016,
pp. 369–372.

[39] R.C. Martin, Clean Code: AHandbook of Agile Software Craftsmanship, Pearson
Education, 2009.

[40] J. McDermott, Abuse-case-based assurance arguments. Seventeenth Annual
Computer Security Applications Conference, 2001, pp. 366–374, https://doi.org/
10.1109/ACSAC.2001.991553.

[41] J. McDermott, C. Fox, Using abuse case models for security requirements analysis.
Proceedings 15th Annual Computer Security Applications Conference (ACSAC’99),
1999, pp. 55–64, https://doi.org/10.1109/CSAC.1999.816013.

K. Rindell et al.

https://doi.org/10.1016/j.infsof.2020.106488
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0001
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0001
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1007/978-3-642-41488-6_10
https://doi.org/10.1007/978-3-642-41488-6_10
https://doi.org/10.1145/1987875.1987900
https://doi.org/10.1145/1987875.1987900
https://doi.org/10.1109/ARES.2011.82
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0006
http://www.agilemanifesto.org
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0008
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0008
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0009
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0009
https://doi.org/10.1109/TDSC.2014.2298011
https://doi.org/10.1109/TDSC.2014.2298011
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0011
https://doi.org/10.1145/1137627.1137631
https://doi.org/10.1145/1137627.1137631
https://doi.org/10.1007/11499053_7
https://doi.org/10.1007/11499053_7
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0014
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0014
https://doi.org/10.1007/0-387-25590-7_3
https://doi.org/10.1007/0-387-25590-7_3
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0016
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0016
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0017
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0017
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0017
https://doi.org/10.1007/978-3-540-73101-6_42
https://doi.org/10.1007/978-3-540-73101-6_42
https://doi.org/10.1109/MC.2010.159
https://doi.org/10.4018/IJSSE.2016010102
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0021
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0021
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0021
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0022
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0022
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0023
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0023
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0023
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0024
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0024
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0024
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0024
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0025
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0025
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0026
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0026
https://ics-cert.us-cert.gov/sites/default/files/recommended_practices/NCCIC_ICS-CERT_Defense_in_Depth_2016_S508C.pdf
https://ics-cert.us-cert.gov/sites/default/files/recommended_practices/NCCIC_ICS-CERT_Defense_in_Depth_2016_S508C.pdf
https://www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf
https://www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0028
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0028
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0029
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0029
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0030
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0030
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0031
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0031
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0031
https://doi.org/10.1109/SEAA.2018.00082
https://doi.org/10.1109/SEAA.2018.00082
https://doi.org/10.1145/1176617.1176727
https://doi.org/10.1145/1176617.1176727
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0035
https://doi.org/10.1016/j.infsof.2018.01.011
https://doi.org/10.1016/j.infsof.2018.01.011
https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1186/s42400-018-0002-y
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0038
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0038
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0038
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0038
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0038
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0039
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0039
https://doi.org/10.1109/ACSAC.2001.991553
https://doi.org/10.1109/ACSAC.2001.991553
https://doi.org/10.1109/CSAC.1999.816013

Information and Software Technology 131 (2021) 106488

13

[42] G. McGraw, Software Security: Building Security In, Addison-Wesley Professional,
2006.

[43] Microsoft, Agile development using microsoft security development lifecycle,
2019.

[44] A. Middleton, E. Bragin, M. Parker, on behalf of the DDD Study, Finding people
who will tell you their thoughts on genomics-recruitment strategies for social
sciences research, J. Community Genet. 5 (2014) 291–302, https://doi.org/
10.1007/s12687-014-0184-2.

[45] D. Mitropoulos, D. Spinellis, Fatal injection: a survey of modern code injection
attack countermeasures, PeerJ Comput. Sci. 3 (e136) (2017) 1–40, https://doi.org/
10.7717/peerj-cs.136.

[46] P. Morrison, D. Moye, R. Pandita, L. Williams, Mapping the field of software life
cycle security metrics, Inf. Softw. Technol. 102 (2018) 146–159, https://doi.org/
10.1016/j.infsof.2018.05.011.

[47] F.D. Nembhard, M.M. Carvalho, T.C. Eskridge, Towards the application of
recommender systems to secure coding, EURASIP J. Inf. Secur. 9 (2019) 1–24,
https://doi.org/10.1186/s13635-019-0092-4.

[48] S. Nerur, R. Mahapatra, G. Mangalaraj, Challenges of migrating to agile
methodologies, Commun. ACM 48 (5) (2005) 72–78, https://doi.org/10.1145/
1060710.1060712.

[49] NIST, Source code security analyzers, 2018.
[50] I. Nurdiani, J. Börstler, S. Fricker, K. Petersen, P. Chatzipetrou, Understanding the

order of agile practice introduction: comparing agile maturity models and
practitioners’ experience, J. Syst. Softw. 156 (2019) 1–20.

[51] OWASP, Owasp top 10 application security risks, 2018.
[52] OWASP SAMM, Software assurance maturity model, 2019.
[53] T.D. Oyetoyan, D.S. Cruzes, M.G. Jaatun, An empirical study on the relationship

between software security skills, usage and training needs in agile settings. 2016
11th International Conference on Availability, Reliability and Security (ARES),
2016, pp. 548–555, https://doi.org/10.1109/ARES.2016.103.

[54] T.D. Oyetoyan, B. Milosheska, M. Grini, D.S. Cruzes, Myths and facts about static
application security testing tools: an action research at telenor digital. Proceedings
of the 19th International Conference on Agile Processes in Software Engineering
and Extreme Programming (XP 2018), Springer, 2018, pp. 86–103, https://doi.
org/10.1007/978-3-319-91602-6_6.

[55] D.M. Phillips, T.A. Mazzuchi, S. Sarkani, An architecture, system engineering, and
acquisition approach for space system software resiliency, Inf. Softw. Technol. 94
(2018) 150–164.

[56] A. Poth, S. Sasabe, A. Mas, A. Mesquida, Lean and agile software process
improvement in traditional and agile environments, J. Softw. 0 (0) (2018).

[57] J. Rahikkala, S. Hyrynsalmi, V. Leppänen, Accounting testing in software cost
estimation: acase study of the current practice and impacts.. SPLST, 2015,
pp. 61–75.

[58] T. Rice, J. Brown-White, T. Skinner, N. Ozmore, N. Carlage, W. Poland,
E. Heitzman, D. Dhillon, Fundamental practices for secure software development
3rd edition. Undamental Practices for Secure Software Development, SAFECode,
2018, p. 38.

[59] K. Rindell, S. Hyrynsalmi, V. Leppänen, Busting a myth: review of agile security
engineering methods. Proceedings of the 12th International Conference on
Availability, Reliability and Security, ARES ’17, ACM, New York, NY, USA, 2017,
pp. 74:1–74:10, https://doi.org/10.1145/3098954.3103170.

[60] K. Rindell, S. Hyrynsalmi, V. Leppänen, Case study of agile security engineering:
building identity management for a government agency, Int. J. Secure Softw. Eng.
8 (2017) 43–57.

[61] K. Rindell, J. Ruohonen, S. Hyrynsalmi, Surveying secure software development
practices in finland. Proceedings of the 13th International Conference on

Availability, Reliability and Security, ARES 2018, ACM, New York, NY, USA, 2018,
pp. 6:1–6:7, https://doi.org/10.1145/3230833.3233274.

[62] SANS, CWE/SANS top 25 most dangerous software errors, 2011.
[63] R. Scandariato, K. Wuyts, W. Joosen, A descriptive study of microsoft’s threat

modeling technique, Requir. Eng. 20 (2015) 163–180.
[64] K. Schwaber, M. Beedle, Agile Software Development with Scrum, 1st ed., Prentice

Hall PTR, Upper Saddle River, NJ, USA, 2002.
[65] T. Schweigert, D. Vohwinkel, M. Korsaa, R. Nevalainen, M. Biro, Agile maturity

model: analysing agile maturity characteristics from the SPICE perspective,
J. Softw. 26 (5) (2014) 513–520.

[66] N. Séguin, G. Tremblay, H. Bagane, Agile principles as software engineering
principles: an analysis, in: C. Wohlin (Ed.), Agile Processes in Software Engineering
and Extreme Programming, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012,
pp. 1–15.

[67] F.S. Silva, F.S.F. Soares, A.L. Peres, I.M. de Azevedo, A.P.L. Vasconcelos, F.
K. Kamei, S.R. de Lemos Meira, Using CMMI together with agile software
development: a systematic review, Inf. Softw. Technol. 58 (2015) 20–43, https://
doi.org/10.1016/j.infsof.2014.09.012.

[68] S. Stavru, A critical examination of recent industrial surveys on agile method
usage, J. Syst. Softw. 94 (2014) 87–97, https://doi.org/10.1016/j.jss.2014.03.041.

[69] J.M. Such, A. Gouglidis, W. Knowles, G. Misra, A. Rashid, Information assurance
techniques: perceived cost effectiveness, Comput. Secur. 60 (2016) 117–133,
https://doi.org/10.1016/j.cose.2016.03.009.

[70] Synopsys Software Integrity Group, The building security in maturity model, 2017.
[71] C. Theisen, N. Munaiah, M. Al-Zyoud, J.C. Carver, L.W. Andrew Meneelyb, Attack

surface definitions: a systematic literature review, Inf. Softw. Technol. 104 (2018)
94–103.

[72] I.A. Tøndel, M.G. Jaatun, P.H. Meland, Security requirements for the rest of us: a
survey, IEEE Softw. 25 (1) (2008) 20–27, https://doi.org/10.1109/MS.2008.19.

[73] K. Tsipenyuk, B. Chess, G. McGraw, Seven pernicious kingdoms: a taxonomy of
software security errors, IEEE Secur. Privacy 3 (6) (2005) 81–84.

[74] R. Turner, A. Jain, Agile meets CMMI: culture clash or common cause? in: D. Wells,
L. Williams (Eds.), Extreme Programming and Agile Methods — XP/Agile Universe
2002 Springer Berlin Heidelberg, Berlin, Heidelberg, 2002, pp. 153–165.

[75] S. Türpe, A. Poller, Managing security work in scrum: tensions and challenges.
Proceedings of the International Workshop on Secure Software Engineering in
DevOps and Agile Development (SecSE 2017), CEUR Workshop Proceedings, 2017,
pp. 34–49.

[76] VAHTI, VAHTI-ohje (trans. VAHTI instruction), 2015.
[77] VersionOne, 12th annual state of agile survey, 2018.
[78] J. Viega, G. McGraw, Building Secure Software: How to Avoid Security Problems

the Right Way, 1st ed., Addison-Wesley, 2002.
[79] J. Wäyrynen, M. Bodén, G. Boström, Security engineering and extreme

programming: an impossible marriage? in: C. Zannier, H. Erdogmus, L. Lindstrom
(Eds.), Extreme Programming and Agile Methods - XP/Agile Universe 2004: 4th
Conference on Extreme Programming and Agile Methods, Calgary, Canada, August
15–18, 2004. Proceedings Springer Berlin Heidelberg, Berlin, Heidelberg, 2004,
pp. 117–128, https://doi.org/10.1007/978-3-540-27777-4_12.

[80] L. Williams, R.R. Kessler, W. Cunningham, R. Jeffries, Strengthening the case for
pair programming, IEEE Softw. 17 (4) (2000) 19–25, https://doi.org/10.1109/
52.854064.

[81] L. Williams, G. McGraw, S. Migues, Engineering security vulnerability prevention,
detection, and response, IEEE Softw. 35 (5) (2018) 76–80, https://doi.org/
10.1109/MS.2018.290110854.

[82] M. Younas, D.N.A. Jawawi, I. Ghani, T. Fries, R. Kazmi, Agile development in the
cloud computing environment: a systematic review, Inf. Softw. Technol. 103
(2018) 142–158.

K. Rindell et al.

http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0042
https://doi.org/10.1007/s12687-014-0184-2
https://doi.org/10.1007/s12687-014-0184-2
https://doi.org/10.7717/peerj-cs.136
https://doi.org/10.7717/peerj-cs.136
https://doi.org/10.1016/j.infsof.2018.05.011
https://doi.org/10.1016/j.infsof.2018.05.011
https://doi.org/10.1186/s13635-019-0092-4
https://doi.org/10.1145/1060710.1060712
https://doi.org/10.1145/1060710.1060712
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0050
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0050
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0050
https://doi.org/10.1109/ARES.2016.103
https://doi.org/10.1007/978-3-319-91602-6_6
https://doi.org/10.1007/978-3-319-91602-6_6
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0055
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0055
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0055
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0056
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0056
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0057
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0057
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0057
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0058
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0058
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0058
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0058
https://doi.org/10.1145/3098954.3103170
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0060
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0060
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0060
https://doi.org/10.1145/3230833.3233274
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0063
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0063
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0064
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0064
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0065
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0065
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0065
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0066
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0066
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0066
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0066
https://doi.org/10.1016/j.infsof.2014.09.012
https://doi.org/10.1016/j.infsof.2014.09.012
https://doi.org/10.1016/j.jss.2014.03.041
https://doi.org/10.1016/j.cose.2016.03.009
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0071
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0071
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0071
https://doi.org/10.1109/MS.2008.19
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0073
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0073
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0074
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0074
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0074
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0075
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0075
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0075
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0075
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0078
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0078
https://doi.org/10.1007/978-3-540-27777-4_12
https://doi.org/10.1109/52.854064
https://doi.org/10.1109/52.854064
https://doi.org/10.1109/MS.2018.290110854
https://doi.org/10.1109/MS.2018.290110854
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0082
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0082
http://refhub.elsevier.com/S0950-5849(20)30230-5/sbref0082

	Security in agile software development: A practitioner survey
	1 Introduction
	2 Background
	2.1 Software security engineering
	2.2 Software security development models
	2.3 Related work

	3 Research design
	3.1 Research questions
	3.2 Questionnaire
	3.3 Scales
	3.4 Survey implementation

	4 Results
	4.1 Background
	4.1.1 Demographics: experience, education, and organizations
	4.1.2 Agile development
	4.1.3 Standards, regulations, and constraints

	4.2 Use and impact
	4.2.1 Requirements phase
	4.2.2 Design phase
	4.2.3 Implementation phase
	4.2.4 Verification phase
	4.2.5 Release phase

	5 Discussion and analysis
	5.1 Key results
	5.2 Implications for industry
	5.3 Implications for research

	6 Threats to validity
	7 Concluding remarks
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Supplementary material
	References

