
HiCH: Hierarchical Fog-assisted Computing Architecture for
Healthcare IoT

IMAN AZIMI, University of Turku
ARMAN ANZANPOUR, University of Turku
AMIR M. RAHMANI, University of California Irvine and TU Wien
TAPIO PAHIKKALA, University of Turku
MARCO LEVORATO, University of California Irvine
PASI LILJEBERG, University of Turku
NIKIL DUTT, University of California Irvine

�e Internet of �ings (IoT) paradigm holds signi�cant promises for remote health monitoring systems. Due
to their life- or mission-critical nature, these systems need to provide a high level of availability and accuracy.
On the one hand, centralized cloud-based IoT systems lack reliability, punctuality and availability (e.g., in case
of slow or unreliable Internet connection), and on the other hand, fully outsourcing data analytics to the edge
of the network can result in diminished level of accuracy and adaptability due to the limited computational
capacity in edge nodes. In this paper, we tackle these issues by proposing a hierarchical computing architecture,
HiCH, for IoT-based health monitoring systems. �e core components of the proposed system are 1) a novel
computing architecture suitable for hierarchical partitioning and execution of machine learning based data
analytics, 2) a closed-loop management technique capable of autonomous system adjustments with respect to
patient’s condition. HiCH bene�ts from the features o�ered by both fog and cloud computing and introduces
a tailored management methodology for healthcare IoT systems. We demonstrate the e�cacy of HiCH via a
comprehensive performance assessment and evaluation on a continuous remote health monitoring case study
focusing on arrhythmia detection for patients su�ering from CardioVascular Diseases (CVDs).

Additional Key Words and Phrases: Internet of �ings, Remote Patient Monitoring, Hierarchical Computing,
Fog Computing, MAPE-K, Machine Learning

1 INTRODUCTION
�ere is a growing demand for dependable autonomous health monitoring services for patients
su�ering from acute diseases [56]. �e main function of automated health monitoring systems is to
detect medical emergencies and patient health deterioration early enough, as rapid response (i.e.,
from a few seconds to a few minutes) is instrumental to implement e�ective countermeasures [45,
53]. �anks to recent advancements in Internet of �ings (IoT) technologies, it is possible to develop
remote monitoring services with 24/7 availability for early-detection and preventive purposes.

�e IoT paradigm envisions a network scenario where objects (e.g., sensors) are connected
and uniquely identi�ed over the global communication infrastructure [9]. Within the healthcare
sector, IoT architectures can be decomposed into three main layers [3], as shown in Figure 1.
At the �rst layer, data collection is performed by distributed and mobile sensors. At the second
layer, gateways and access points provide continuous connectivity and conventional services such
as protocol conversions. �ese two layers are located at the vicinity of the monitored person.
Di�erent communication protocols such as Wi-Fi and Bluetooth LE are o�en used at this layer to
communicate with sensors [54]. In a traditional (i.e., client-server cloud-based) architecture for

2017. 1539-9087/2017/10-ART1 $15.00
DOI: 0000001.0000001

�is article was presented in the International Conference on Embedded So�ware 2017 and appears as part of the
ESWEEK-TECS special issue

1 I. Azimi et al.

Fig. 1. IoT-based system for remote patient monitoring.

remote health monitoring, gateways only act as a relay between sensors and remote servers. �e
third layer consists of cloud resources interconnected to the local edge layers through multi-hop
networks. �e cloud layer stores and process the sensory data to extract information, and possibly
generate noti�cations as a form of actuation. A broad range of data analytics, machine learning and
arti�cial intelligence algorithms have been implemented at this layer to provide a wide spectrum of
services [16]. For instance, the cloud can serve as a pre-processing layer for data whose extracted
content is eventually post-processed by experts (e.g., health providers). Alternatively, the extracted
information can be stored for later actions (e.g., health coaching) [41, 47].

�e cloud-based IoT architecture can provide acceptable performance and reliability to support
non-safety and latency critical applications. Examples of such services are several commercial and
smart city applications [16]. However, remote patient monitoring systems necessitate a higher
degree of dependability, accessibility, and robustness. �erefore, a straightforward extension of the
classic client-server model used in the Internet to encompass “things” is not suitable for a large
class of IoT applications, among which lies that at the focus of this investigation.

Important issues which interests traditional cloud-based architectures is the occurrence of
disconnection from the core network or bandwidth and latency variations. Clearly, these issues
can have a severe negative impact on remote health monitoring services, where the end-user is
o�en a patient with critical and time-sensitive needs. For instance, in emergency situations, a delay
in establishing a connection may lead to fatal consequences for the patient. In addition, remote
monitoring of several patients over time can overload storage and processing capabilities of the
cloud, as well as generate an excessive load (i.e., big data) to communication networks, possibly
disrupting existing services [13, 37]. Although producing a large volume of data is inevitable in
many IoT applications, intelligent pre-processing techniques at the edge can signi�cantly mitigate
the volume of the generated data as well as the stress to the network infrastructure.

Alternative approaches propose the use of an intermediate Fog computing layer [15] capable of
data processing to enhance reliability and e�ciency of the IoT architecture. An intelligent use of
such resource can lead to performance su�cient to meet the stringent requirements of healthcare
applications. �e fog layer is equipped with (limited) computational capacity, which enables the
system to locally provide basic, and yet critical, services, and locally controlled distributed systems.
�us, to implement reliable healthcare applications and services, there is the need for e�ective and
application-centric methodologies to map computational and resource management tasks across
the layers of the IoT architecture. In our context, an e�ective model can leverage the available
resources and manage �ow of data within the system from sensors to computational resources, as
well as the reverse �ow of control.

In this paper, we present a hierarchical fog-assisted computing architecture, HiCH, for remote
IoT-based patient monitoring systems featuring autonomous data management and processing at
the edge. We �rst show that the conventional Observe-Decide-Act (ODA) control strategy [38]
is not capable of fully exploiting the features o�ered by the fog computing paradigm, and then,

�is article was presented in the International Conference on Embedded So�ware 2017 and appears as part of the
ESWEEK-TECS special issue

HiCH: Hierarchical Fog-assisted Computing Architecture for Healthcare IoT 1

propose to exploit and customize the concept of MAPE-K autonomic computing – with adaption
control loops – introduced by IBM [33] as a more e�cient alternative. �e main contributions of
this paper are as follows:

• We propose a hierarchical computing architecture and a methodology to e�ciently partition
and accommodate the existing machine learning methods for fog-enabled healthcare IoT
systems.

• We customize, enhance, and map IBM’s MAPE-K model for the proposed architecture to
be�er manage system resources.

• We present a closed-loop management technique featuring an adaptive data transmission
solution based on patient’s conditions.

• We demonstrate a full system implementation for continuous remote health monitoring
case study focusing on arrhythmia detection for patients su�ering from CardioVascular
Diseases (CVDs).

�e rest of the paper is organized as follows. Section 2 outlines background and related work for
this research. We detail our proposed approach, HiCH, in Section 3. In Section 4, we demonstrate a
full system prototype and evaluate HiCH via a case study. In Section 5, we brie�y discuss advantages,
limitations and future work of HiCH. Finally, Section 6 concludes the paper.

2 BACKGROUND AND RELATEDWORK
In this section, we �rst brie�y survey contemporary IoT-based health monitoring systems published
in the literature. We then describe the computing models typically deployed in IoT systems.

2.1 IoT Architecture and Fog Computing
IoT-enabled systems for health monitoring are typically designed to provide health applications such
as early-detection and prediction for users (e.g., patients and health providers) by implementing
data collection from patients, data transmission and data analytics. �ese scheme are broad in
scope, ranging from simple to complex monitoring systems. In simple IoT-based monitoring
systems, only data collection, transmission and visualization for the users are implemented, and
no decision nor analytics concerning patient’s health condition is reported [7]. Hence, these
simple IoT-based monitoring systems are insu�cient for ubiquitous monitoring that demands the
additional capabilities of analytics and decision-making.

Similarly, there are various medical cyber-physical system (MCPS) solutions designed to au-
tonomously actuate tasks w.r.t the sensor data and local decision making. Instances are arti�cial
pancreas for insulin injection regulation [27] and a brain machine interfaces [57]. Such solutions
are mostly restricted to typical data processing techniques (e.g., peak detection) using local com-
putational capacity. �erefore, they do not use heavy data analytics such as complex learning
algorithms for predictions mainly due their resource constraints.

On the other hand, more complex monitoring systems augment intelligent services using data
analytic methods varying from rule-based method to di�erent learning algorithms [32]. Cloud-
based services are conventionally responsible for these analytics. In such systems, medical data is
collected from the individual via sensors; the data is delivered to cloud servers through a gateway;
and extracted information and awareness regarding individual’s conditions are shared with users
(e.g., health providers). Several IoT-based architectures have been proposed for remote monitoring
using this model. Some examples are ECG monitoring systems using wearable devices [10, 41,
52], Early Warning Score (EWS) systems for health deterioration detection [5, 11] and remote
physiological parameter monitoring [21, 25, 26, 28, 30]. Unfortunately, these systems critically
rely on uninterrupted Internet connections during monitoring; loss of (or degraded access to)

�is article was presented in the International Conference on Embedded So�ware 2017 and appears as part of the
ESWEEK-TECS special issue

1 I. Azimi et al.

Internet connections during monitoring may result in loss of important services such as emergency
situation noti�cation and abnormality prediction. �erefore, remote health monitoring with fully
cloud-based services run a risk of having �aws in case of patient health deterioration.

In addition to cloud-based IoT systems, there are IoT architectures enabled by fog computing
concepts. Fog computing [14, 49] is the concept of extending the cloud computing paradigm to
the edge of the network and has been recently proposed to enable new types of services such
as local computation, storage, and control for IoT systems. One approach to realize this concept,
in particular for the healthcare domain, is by forming an intermediary layer of networked smart
gateways between sensors and the cloud [50]. Fog computing o�ers a variety of advantages to
IoT-based applications from both user and system perspectives. Geographic diversity, improved
privacy, enhanced reliability and latency reduction are among these bene�ts [17, 20, 55, 58].

In fog-based architectures, gateway devices perform local data processing along with data
transmission to cloud servers. Several research studies have investigated fog computing for health
monitoring systems. In these systems, di�erent analytics such as feature extraction [43] and data
processing methods [18, 19, 23] are pushed to the fog layer. Moreover, fog computing enables
resource management at the local layer, however the management techniques are mostly limited
to methods with low computation costs such as rule-based methods [2, 6]. Although these fog-
based systems o�er notable bene�ts for remote health monitoring systems, their functionality is
bounded due to the limited computational capacity at the edge nodes. �erefore, powerful machine
learning algorithms for local decision making cannot be implemented in the fog. Furthermore, the
performance, �ality of Service (QoS) and �ality of Experience (QoE) of the system might be
degraded since these fog-based algorithms may not as powerful/sophisticated as cloud-based ones.

In sum, ubiquitous health monitoring applications need to provide a high level of quality in
a�ributes such as availability and accuracy, most of which cannot be satis�ed by the aforementioned
systems. Although both cloud-based and fog-based architectures provide bene�ts for the monitoring,
their applications are insu�cient due to their architectural limitations. In this regard, a new
architecture is needed to overcome the limitations while leveraging the best features o�ered by
both schemes. �is could be achieved by amalgamating both computing paradigms and partitioning
the health analytics in a hierarchical behavior. Moreover, a management technique enabled by
learning algorithms is required to adjust system behavior with respect to the analytics and based
on the context. We overcome these issues in our HiCH approach by presenting an autonomic
computing model for the IoT architecture as described next.

2.2 Computing Models
�e computation model plays an important role in IoT systems to e�ciently implement various
analytics at di�erent architectural layers. �erefore, to enhance di�erent system characteristics, it
is crucial to identify, customize, and map a proper computing model to IoT system tiers (i.e., sensor
network, gateway, and cloud). Depending on the application, di�erent computing models can be
utilized for this purpose.

�e conventional Observe-Decide-Act (ODA) management strategy [38] is an existing popular
model that is composed of three parts: to manage data collection (Observe), to analyze data and
exploit knowledge (Decide) and to implement suitable actions (Act). Due to its centralized nature
for analytics and decision making, this model is well-suited for cyber physical systems (CPS) with
local computation capacity at the sensor network or centralized cloud-based IoT systems; however
it cannot fully exploit available resources in distributed or hierarchical computing systems.

MAPE-K is an alternative computing model introduced by IBM [33]. MAPE-K provides automated
management components for computational units and speci�es system behaviors. �e architecture

�is article was presented in the International Conference on Embedded So�ware 2017 and appears as part of the
ESWEEK-TECS special issue

HiCH: Hierarchical Fog-assisted Computing Architecture for Healthcare IoT 1

Fig. 2. IBM’s MAPE-K model [33]

for MAPE-K model is speci�ed in four di�erent computing components: Monitor, Analyze, Plan,
and Execute with access to a partially or fully shared knowledge base (see Figure 2).

Monitor collects data coming from di�erent resources (i.e., sensors). It is the closest computing
component to the sensing fabric. It can also track and determine events that need to be analyzed.
Analyze provides data analytics to model situations. Data pa�ern, prediction techniques and
metadata are exploited in this component. Plan is in charge of selecting or generating a procedure
for the system w.r.t. the inputs received from the Analyze component. �is procedure can be either
a single command or a complicated plan. Finally, Execute provides necessary changes in the system,
to implement procedures generated in Plan component and in general to adjust the behavior of the
system.

In this work, we address the reliability, e�ciency, and management issues in the existing health
monitoring systems by leveraging the concept of MAPE-K and proposing a novel partitioning
strategy to hierarchically compute data analytics and manage system resources. Our approach
aims at exploiting the best of both worlds, cloud and fog computing.

3 HICH: THE PROPOSED SYSTEM
In this section, we present HiCH, a hierarchical computing architecture tailored for fog-enabled
IoT systems and designed to leverage the bene�ts of fog and cloud computing paradigms for
remote health monitoring. HiCH o�ers a new computing and management model with two major
contributions:

1. HiCH partitions the health data analytics into two parts: the centralized part located in the
cloud, and the distributed part running on fog nodes. In contrast to traditional approaches that
use a centralized computing core in the cloud or fog tier, we propose a hierarchical autonomic
healthcare system where the computation and knowledge are distributed across di�erent tiers. �is
hierarchical computing scheme enables partitioning of analytics and decision making between the
fog and cloud, thereby signi�cantly enhancing the availability, response time and robustness of
health monitoring services at the edge. �e edge devices (e.g., gateways) are augmented with a high
degree of intelligence to provide local monitoring and noti�cation when the cloud connectivity is
unavailable or unstable.

2. HiCH deploys a closed-loop system management technique tuned to the patient’s conditions
(i.e., context). �ese conditions could be de�ned according to the patient’s medical parameters,
activities and surrounding environments. �e approach can be used to manage di�erent system
resources, although in this paper we only focus on tra�c management to control data transmission
from the fog to the cloud.

To clarify the functionality and de�nitions of the architecture, we present and exemplify di�erent
components of HiCH via a case study. Below, we �rst describe our case study of a continuous
remote health monitoring system.

�is article was presented in the International Conference on Embedded So�ware 2017 and appears as part of the
ESWEEK-TECS special issue

1 I. Azimi et al.

Fig. 3. Enhanced MAPE-K model

3.1 Case Study
Our case study focuses on arrhythmia detection in ECG monitoring for patients su�ering from
CVDs, as an exemplar of a continuous remote health monitoring using HiCH. �e deployed system
uses a typical single-channel ECG with 250 samples per second, a Microcontroller Unit (MCU), and
a wireless transmi�er integrated as a sensor node. In the setup, we consider 10-second windows
for ECG signals, and the transmission (from fog to cloud) period of 1 minute.

3.2 Architecture
�e HiCH architecture incorporates the concept of MAPE-K and fog and cloud computing paradigms
in remote health monitoring systems, enabling hierarchical partitioning and execution of machine
learning algorithms across these computing layers.

As discussed in Section 2.2, MAPE-K model includes 4 computing components, each sharing the
system knowledge. To enable hierarchical computing, MAPE-K components need to be properly
mapped into the three layers of the IoT system. Furthermore, to ful�ll the desired closed-loop
behavior for resource management, we propose an enhanced MAPE-K model in which a new
component System Management is integrated (see Figure 3).

�e four MAPE-K components are enabled with feedback in the model. �e feedback received
from Execute, System Management is used to periodically tune the computing components with
respect to the inputs and the computations in the model.

We distribute and map the 5 components of the enhanced MAPE-K into a 3-tier IoT-based system.
Figure 4 illustrates the architecture. �e idea is to i) map the heavy training procedures in the cloud
while outsourcing the trained hypothesis (e.g., classi�er) to the fog nodes to be able to operate in a
standalone way, ii) periodically update the hypothesis at the fog, and iii) exploit the knowledge
at the edge to enhance resource management via closed-loop control. �e blue arrows in Figure
4 show the closed-loop behavior: the �ow of action to the user and the �ow of feedback to the
system through the sensors.

Monitor is the �rst computing component in HiCH located in the sensor layer. �is component
is a bridge between sensors and other units. Analyze is the only computing component located in
the cloud to process and model complex monitoring conditions. �e component receives data from
System Management. �e data contains various information regarding patient health conditions
and presumably his surrounding contexts. Analyze derives a hypothesis function (i.e., model) from
the data and transfers it to Plan.
Plan is placed in the fog layer to enable local decision making that determines the patient’s

condition. �e decision making is enabled by receiving the hypothesis from Analyze and continuous
sensory data. �e sensor data are received through System Management. Execute is the second
computing component in the fog layer to set system behaviors during monitoring. Finally, System
Management is the third component in the Fog layer to locally manage the system con�gurations.
It determines the current state of the system considering previous states and the decision received

�is article was presented in the International Conference on Embedded So�ware 2017 and appears as part of the
ESWEEK-TECS special issue

HiCH: Hierarchical Fog-assisted Computing Architecture for Healthcare IoT 1

Fig. 4. HiCH: Our proposed IoT-based architecture

regarding the patient condition. In this architecture, we only allocate data transmission (i.e.,
bandwidth) management to this component although it can be extended to cover other types of
system resources (e.g., energy).

In the following, we present the role of each component in the architecture, and exemplify them
via our case study.

3.2.1 Monitor. �e Monitor component is shown in Figure 5(a). It includes an Analog-to-Digital
Converter (ADC) to convert sensor analog outputs to digital parameters and signals. Moreover, a
Microcontroller Unit (MCU) is integrated to enable data aggregation in a local data storage and
data pre-processing such as noise �ltering and normalization. Finally, the data are packetized
and periodically transmi�ed to System Management. �e packet size and the transmission period
depend on the data type collected by sensors.

In our case study, a sensor node including a digitized single-channel ECG, a Microcontroller Unit
(ATmega328P), and a wireless transmi�er (RN42) is used.

3.2.2 Analyze. According to the type of sensor data, di�erent machine learning algorithms can
be chosen for data analytics in the Analyze component (Figure 5(b)). Since the generated hypothesis
function (model) needs to be executed at the edge in the Plan, the limited processing power and data
storage capacity of the gateways at the edge needs to be considered in the proposed techniques.

To indicate the functionality in HiCH, we assume a simple supervised learning model [1] in
Analyze. To this end, we de�ne h as a hypothesis function in a hypothesis set (h ∈ H) to satisfy:

h : X → Y (1)

where X ∈ Rd represents the input space including n samples with d a�ributes and Y is output
space that is a vector of patient or context conditions. To simplify the model, we consider an output
vector with two possible outcomes, that is, normal and emergency conditions. However, the model
can be extended to provide multi-class classi�cations (more details in [42]).

Let us consider a classi�er h inferred by a linear machine learning method (e.g., perceptron or
linear support vector machine):

h(x) = sдn(wTx + b) (2)

�is article was presented in the International Conference on Embedded So�ware 2017 and appears as part of the
ESWEEK-TECS special issue

1 I. Azimi et al.

(a) Monitor in sensor layer (b) Analyze in cloud

(c) Plan in fog (d) System Management in fog

Fig. 5. Major components of HiCH

where sдn(.) is a sign function, x is the input with d a�ributes, b is a bias value and w is a weight
vector inferred by the learning algorithm from the training data. From Equation (2), we observe
that the computational complexity of performing a prediction with hypothesis h is O (d) in both
space and time, since it requires storing the d-dimensional vectors x andw in memory and carrying
out an inner product between them.

Nonlinear classi�ers may also be ��ed to HiCH depending on their time and space complexity.
However, some nonlinear classi�ers are inappropriate for this architecture. For instance, instance-
based learning methods such as K-Nearest Neighbor (KNN) cannot be used in this architecture as
the training set would need to be stored in the fog layer, and hence the space complexity would be
O (dn), where n denotes the number of training data.

In the Analyze component, x and y are constructed in Training Data (Figure 5(b)). Since sensor
data de�ned in speci�c time-windows are heterogeneous (e.g., various signals and parameters),
we must extract a�ributes for each time-window. x is created using the extracted a�ributes from
sensor data and other a�ribute vectors from History Data and Plan feedback. In this manner, h is
learned and personalized during the monitoring not only from current sensory data but also from
patient history and system feedback (i.e., possible errors). Moreover, y as the output labels are
generated using user feedback (e.g., daily reports in occurred events) and other calibrated devices
(e.g., medical and hospital devices).
h is generated in Learning Algorithm using x and y from Training Data and possible hypotheses

from the Hypothesis Set (see Figure 5(b)). In this system, the learning is divided into two parts. At
the system initialization phase, h is generated with recorded history data. At runtime, h is updated
during the monitoring with new data.
h is stored in Final Hypothesis and subsequently is sent to Plan for local decision making. Moreover,

values such as the intensity of emergency events are sent to History Data for future learning.
In our case study, the Training Data unit is responsible for denoising the input signal by using

a bandpass �lter with the range of 3 − 45 Hz. �en, ECG cycles are identi�ed by segmenting
each window based on RR peaks. To this end, we use the Biosppy toolbox [34] in Python. Fig-
ures 6(a) and 6(b) provide examples of normal ECG cycles (60 cycles) and abnormal ECG cycles
a�ected by arrhythmia (67 cycles) referring to a one minute period. To be�er illustrate the ECG

�is article was presented in the International Conference on Embedded So�ware 2017 and appears as part of the
ESWEEK-TECS special issue

HiCH: Hierarchical Fog-assisted Computing Architecture for Healthcare IoT 1

(a) One minute of normal ECG cycles
(60 cycles).

(b) One minute of ECG cycles with ar-
rhythmia (67 cycles)

(c) An ECG cycle in temporal domain

Fig. 6. (a) and (b) indicates collected ECG cycles. (c) represents a cycle with di�erent temporal features.

cycle di�erences, the detected peaks are aligned. As shown in the �gures, when abnormality is not
present, the signal is almost unchanged across ECG cycles. In contrast, the signals corresponding
to arrhythmia present signi�cant variations across ECG cycles.

Moreover, Training Data extracts 5 features in the temporal domain [36] for each ECG cycle. �e
features include QRS complex duration, T wave duration, RR interval, PR interval and ST segment.
One ECG cycle in temporal domain is illustrated in Figure 6(c). To extract temporal features, we
implement cross-correlation between each cycle and a Triangular signal, de�ned as:

(f ∗ д) (τ)
def
=

∫ ∞

−∞

f ∗ (t)д(t + τ)dt (3)

where f is the ECG cycle, and д is a Triangular signal de�ned by:

x (t) =



0 |t | ≥ 1
A[1 − |t |T] |t | < 1

(4)

whereT is the signal length that in our case equals to a QRS complex length, and A is the amplitude
that in our case is a QRS complex amplitude. Using this cross-correlation, we utilize the two signals
similarities for detecting peaks in each ECG cycle.

We use linear Support Vector Machine (SVM), a supervised machine learning algorithm, to distin-
guish between the binary hypothesis (normal vs. arrhythmia). �e algorithm is selected because of
its low computation cost compared to other alternatives such as neural network backpropagation
in which more values (i.e., weights for di�erent layers) should be stored in Plan. Moreover, the
algorithm represents an acceptable binary classi�cation on the data (see Section 4.3).

�e implemented SVM classi�er uses the hypothesis function de�ned by Equation 2 by storing
the vector of primal variablesw along with the constant b and then sending it to Plan. Consequently,
a single inner product between w and x in Plan is deployed, instead of expensive computations.
For more details see [42]. �e classi�er is implemented using Scikit-learn [46] in Python.

3.2.3 Plan. Similar to the feature extraction approach in Analyze, a�ributes are extracted from
the sensor data in Test Data unit. �en, Decision Making input, x ′ ∈ Rd including d a�ributes, is
created (see Figure 5(c)).

�e generated hypothesis in Analyze is periodically downloaded to Hypothesis Function unit.
Such feature provides a personalized classi�er during the monitoring and subsequently increases

�is article was presented in the International Conference on Embedded So�ware 2017 and appears as part of the
ESWEEK-TECS special issue

1 I. Azimi et al.

Fig. 7. Abnormality detection implemented in the Plan.

the accuracy. �e update period (e.g., daily or weekly) is speci�ed with respect to the types of the
sensor data.

A decision vector is generated from Decision Making unit that indicates the current patient’s
condition. �e vector as the Plan output is forwarded to the Execute for system actuation.

In our case study, the incoming ECG signals de�ned in 10 windows is converted to features in
Test Data unit. �en, the window is classi�ed as normal or abnormal using the current hypothesis
function. Finally, the component sends the label assigned to each window to Execute component.
Figure 7 shows an example where abnormality is detected at the Plan component. Decisions are
indicated by the red dots, with an abnormal situation detected between the 600 to 720 second
interval.

3.2.4 Execute. Execute ful�lls the actuation in the system by forwarding updates to three other
parts in the architecture. First, it updates System Management to apply changes with respect to
the patient condition. Second, it locally noti�es patient and health providers about the patient
condition; third, it provide a system feedback for Analyze by sending the decision to the cloud.

3.2.5 SystemManagement. In this architecture, data transmission control is performed by System
Management. �is component includes 4 di�erent units to receive data from the sensor layer, to
locally store and organize the data and to transmit it to Plan and the remote cloud. Figure 5(d)
indicates the units along with data and command �ows.

�e sensory data are collected via Receiver and are stored in Data Storage. Data Storage is
designed to locally store and organize the data (e.g., data structure), to send a complete set of

Fig. 8. The state diagram for n = 4 andm = 4. S1:n shows system states while P1:m represents patient’s
conditions.

�is article was presented in the International Conference on Embedded So�ware 2017 and appears as part of the
ESWEEK-TECS special issue

HiCH: Hierarchical Fog-assisted Computing Architecture for Healthcare IoT 1

sensory data to Plan for local decision making and to implement required data reduction for the
transmission to the cloud. Transmi�er sends the data to the remote servers with a recon�gurable
transmission rate with respect to the commands from Management Algorithm.
Management Algorithm is the processing core of this component that receives updates from

Execute. It controls data reduction and data transmission rate via communicating with Data Storage
and Transmi�er. We utilize a �nite-state machine (FSM) to model Management Algorithm. In the
model, S = [s1, s2, ..., sn] includes n possible system states where s1 performs the lowest state (i.e.,
the most cost-e�ective se�ing with the lowest transmission rate from the fog to the cloud) and sn
represents the highest state (i.e., the most accurate se�ing with the highest performance). External
input of the FSM de�nes as P = [p1,p2, ...,pm] containing patient conditions where p1 indicates
normal condition and pn represents high-risk condition.

Regarding the current state and the external input, the next state is determined, and subsequently
system con�guration is updated. In the state determination, the system instantly jumps from a low
state to higher ones to enable rapid response to emergency cases. However, it gradually decreases
(one step per iteration) from a high state to lower ones. To indicate the functionality of the proposed
FSM, we represent the state diagram of an example in Figure 8.

Fig. 9. The flowchart for data transmission from the fog to the cloud

�is article was presented in the International Conference on Embedded So�ware 2017 and appears as part of the
ESWEEK-TECS special issue

1 I. Azimi et al.

In our case study, System Management is a Python process running on gateways and being
responsible for deciding which portion of incoming data should be transferred to the cloud. �is is
a part of the local processing which dramatically reduces the external bandwidth from the gateway
device to the cloud. Given that the decision making is implemented in the fog (i.e. Plan), and the
data is transmi�ed to the cloud (i.e., Analyze) for updating the model. �erefore, this data reduction
does not a�ect the decision making. In other words, in our case, System Management eliminates
redundant features in normal conditions although in abnormal cases, it completely transmits the
data, from which new information could be obtained for the model.

In System Management, data are recorded in two cache storage units de�ned based on patient’s
conditions (i.e., normal and abnormal). Figure 9 shows the control �owchart in the System Man-
agement. We de�ne W as the number of windows in a transmission period, and Q as the portion
of data that will be transmi�ed if the patient’s condition is normal. In the considered setup, the
window length is 10 second, and the transmission period is 1 minute; so W is 6. �e �owchart
indicates a loop over each window in the transmission period. In this loop, the cache storage A
stores every window of data irrespectively of the conditions, and cache storage B stores only Q
window(s) of data whether patient’s condition is normal in the current transmission period. At the
end of each iteration, System Management sends the data in cache A to the cloud if at least one
abnormal window is detected, otherwise it sends the data in cache B.

4 SYSTEM DEMONSTRATION AND EVALUATION
In this section, we present a typical use-case for HiCH where continuous monitoring of ECG signals
is used to detect possible arrhythmia. �e detection of arrhythmia triggers a noti�cation to the
person under monitoring and health providers. In this case study, HiCH is compared with a baseline
IoT system introduced in Section 4.1.

4.1 The Baseline IoT System
As discussed in Section 2, there are various IoT-based remote health monitoring systems (e.g., cloud-
based and fog-based) that can be selected as a baseline for performance and e�ciency comparisons.
We consider the conventional and centralized ODA- and cloud-based IoT architecture as the baseline
in this study. �e baseline IoT system is illustrated in Figure 10.

In this architecture, health data is �rst collected from the sensor layer. �e data is then transmi�ed
to the cloud through an access point, (i.e., gateway device). A�erwards, incoming data is stored
and analyzed in the cloud layer to provide actions for the system and noti�cations for users. In
this architecture, no signi�cant computing resources are placed in the gateway and the computing
core is centralized in the remote server. �e computing core in this architecture can be modeled by

Fig. 10. The IoT-based system modeled by ODA

�is article was presented in the International Conference on Embedded So�ware 2017 and appears as part of the
ESWEEK-TECS special issue

HiCH: Hierarchical Fog-assisted Computing Architecture for Healthcare IoT 1

Jetson-TK1
HP

Compaq
8200 Elite

Processor
�ad-core Cortex
A15 + 192 CUDA

cores

�ad-core Core i3
2100

Architecture ARMv7-A Intel Core
Speed 2.33 GHz 3.10 GHz
RAM 2 GB 16GB

External
Storage

16 GB fast
eMMC

250GB SATA HDD

Table 1. The gateway devices’ specifications

ODA control strategy in which Observe is placed in the sensor layer and Decide and Act are placed
in the cloud, as shown in Figure 10.

4.2 Setup
For the training and test medical data, we utilize “Long-Term ST Database” available on Phys-
iobank [29, 35]. Since we use existing data, we emulate the sensing part by transmi�ing the
pre-recorded data from the MicroSD card of the sensor node. We use ATmega328P micro-controller
[8] to read the pre-recorded data, which is then sent to an RN-42 Bluetooth module [40] through
serial link.

From the available data set, we select a period of 5 hours from a healthy patient along with
5 hours from an individual su�ering from a CVD. �e samples are used to train a data analysis
module in the Analyze component. A test data set is also created to assess the performance of
the remote classi�er whose task is to detect abnormalities. In the test data set, we simulate an
emergency scenario by introducing ECG data corresponding to arrhythmia at a random point
within a normal ECG signal. To facilitate the analysis, we divide the signal into windows of 10
seconds.

For the fog layer, we use single-board computers. Speci�cally, Linux-based computing boards are
selected to run an Apache server and Python code for the data processing at the fog. In this case
study, we used an NVIDIA Jetson-TK1 [44] board and an HP Compaq 8200 Elite Linux machine, each
of which presents di�erent characteristics. �e HP Compaq 8200 Elite is powered by a �ad-core
Corei3 2100 CPU and 16GB RAM, which provides much be�er performance compared to Jetson-TK1
platform. Table 1 indicates the platforms’ speci�cations.

At the fog layer, a Python service is responsible for receiving data from sensor nodes via a
Bluetooth module using the serial communication port. �e Python service is also developed to
store and process the data. An Apache server is programmed in the gateway for transmi�ing data to
the cloud. �e fog device uses TCP protocol to establish a wireless communication link to the cloud
server. In order to implement the adaptive behavior which is the core of the proposed architecture,
the System Management has a set of transmission rates which can be dynamically selected while
relaying the data. �e rate is controlled concerning normality or abnormality detection in Plan
component.

In the baseline IoT system, the gateway sends all the data to the cloud using TCP protocol, and
waits for the acknowledgment from the cloud server. �e cloud server is a Linode VPS (virtual

�is article was presented in the International Conference on Embedded So�ware 2017 and appears as part of the
ESWEEK-TECS special issue

1 I. Azimi et al.

Predicted Value

True
Value

TN = 0,97 FP = 0,03
FN = 0,01 TP = 0,99

Table 2. Normalized confusion matrix

private server) [39] with two 2.50GHz Intel Xeon CPU(E5-2680 v3), 4GB memory and SSD storage
drive running Apache web server on Ubuntu Linux.

4.3 Accuracy Assessment
We �rst validate the outcomes of the proposed architecture. To assess the accuracy of detection at
the cloud, we use the k-fold cross-validation technique [1], where we set k to 10, the de�ned training
set of 10 hours is partitioned into 10 sub-periods where in each experiment, 9 sub-samples are
considered as training data and 1 as validation data. �e overall accuracy is equal to 0, 936 (±0, 055).
Although the portion of ECG signals with arrhythmia might be less than normal ones in practical
experiments, we utilized training set with almost equal portions of normal and abnormal ECG data
to obtain unbiased results.

In addition to the validation performed using training data set from the same patients, we cross-
validate the performance of the system using test data from 4 new patients, whereas the classi�er
is trained using data from the previous patients. Using the true values and the estimated values,
we have the normalized confusion matrix indicated in Table 2, whose F1score is also calculated as:
0, 98. However, we remark that di�erent implementations of the classi�er may produce di�erent
results.

In consequence, the algorithm performed an acceptable classi�cation to distinguish between
normal and abnormal ECG cycles.

4.4 Performance Evaluation
Next, we assess HiCH in comparison with the baseline IoT system from two di�erent perspectives:
(i) we consider response time, and (ii) we evaluate data tra�c (bandwidth utilization) in both
systems.

4.4.1 Response Time. We now focus on response latency, a critical metric to measure system
response to alert the user in case of emergency. Dividing time latency into data transmission time
and computation time, we have:

Fig. 11. Response time in the baseline IoT and HiCH.

�is article was presented in the International Conference on Embedded So�ware 2017 and appears as part of the
ESWEEK-TECS special issue

HiCH: Hierarchical Fog-assisted Computing Architecture for Healthcare IoT 1

Wi-Fi 4G 3G GPRS

Spec. (Ping, DL,
UL)

2ms
30Mb/s
15Mb/s

20ms
4Mb/s
3Mb/s

100ms
750kb/s
250kb/s

500ms
50kb/s
20kb/s

b + c (ms) 125±17 147±16 405±23 3686±4
Table 3. Latency (b + c) between the gateway devices and server with di�erent connection networks.

a) Data transmission time from the sensor node to the gateway device
b) Data transmission time from the gateway device to the cloud
c) Noti�cation transmission time from the cloud to the gateway device
d) Noti�cation transmission time from the gateway device to the patient (i.e., a node placed

in the sensor layer)
and
α) Computation time for data analytics in the cloud
β) Computation time for data analytics in the fog

�erefore, the baseline IoT system’s latency is calculated as a + b + α + c + d while the latency
for HiCH is a + β + d (Figure 11).

In our case study, the ECG data sampling rate is 250 samples per second while each sample is 3
bytes. Considering the recording time for a window (10 seconds in our case) and the header, the
sensor node should send 8000 bytes (7500 bytes of data + 500 bytes header) per transmission to
the gateway. �e transmission module (i.e., RN-42 Bluetooth) in the sensor node takes 651 ms to
transmit 8000 bytes using 115200 bit/s baud rate. �erefore, a = 651ms .

Moreover, sending a 500-bytes noti�cation header using the same module and baud rate takes
43 ms (d = 43 ms). In contrast with {a and d}, {b and c} are not �xed values and depend on the
available network speci�cation. Table 3 shows {b + c} values for Wi-Fi, 4G, 3G and GPRS networks,
each of which has di�erent latency (i.e., ping time), download and upload speeds. �ese values
were obtained from data transmission for 1 hour monitoring.

�e computation time in our case study is measured as follows: α equals (22± 3ms), and β (using
di�erent boards) equals: (27 ± 2ms) using HP and (65 ± 3ms) using Jetson-TK1. Given that Plan has
the most computation burdens compared to the two other components at the edge. �e response
time for the systems are shown in Figure 12. �e respond time for the baseline systems (illustrated
with violet bars) depends on the network transmission rate while the response time in HiCH system
(illustrated with red bars) relies on the computational capacity of the gateway device. Compared to
the baseline IoT systems, HiCH reduces the response time when using any of the gateway devices.
�is improvement is particularly signi�cant when the connection provided by the network is weak
or lost. However, we remark that gateway device speci�cation is important in this system. To
this end, we also tested HiCH on a less powerful edge device, Raspberry Pi Zero device[51], and
obtained the response time of 1414ms .

4.4.2 Bandwidth Utilization and Storage. Next we evaluate the bandwidth savings in our system
compared to the baseline IoT system, by assessing data transmission from the gateway to the cloud
and data storage in the cloud.

We use the cache size to estimate the required bandwidth to transmit the data and the required
memory to store the data in the cloud. Table 4 shows the tra�c handled by the System Management
as a function of the parameter Q (i.e., the portion of data that will be transmi�ed if the patient�s

�is article was presented in the International Conference on Embedded So�ware 2017 and appears as part of the
ESWEEK-TECS special issue

1 I. Azimi et al.

Base
lin

e IoT
:

GPRS netw
ork

Base
lin

e IoT
: 3G

netw
ork

Base
lin

e IoT
: 4G

netw
ork

Base
lin

e IoT
:

WiFi
netw

ork

HiCH: Je
tso

n

dev
ice

HiCH: H
P dev

ice

1000

2000

3000

4000

5000
4402

1121
863 841 759759 721

Re
sp

on
se

Ti
m

e
(m

s)

Fig. 12. Response time for di�erent approaches

condition is normal). �e obtained values indicates a signi�cant reduction in the bandwidth
utilization over a 1 hour monitoring period if Q is small. �is data tra�c reduction is 82% if Q is 1.
Note that if Q is set to 6, all the data is transmi�ed to the cloud, so it can be considered the same
situation as in the baseline system. �is reduction becomes more signi�cant when the number and
resolution of monitored vital signs or patient activities is increased.

Similarly, Table 5 indicates the volume of stored data in the cloud for 1 hour monitoring (with
8 minutes abnormality). �e volume of data during abnormality detection does not change with
varying Q , due to the maximum transmission rate. However, the stored data in normal condition is
remarkably reduced. �is reduction of unnecessary data transmission becomes particularly more
signi�cant in long-term health monitoring scenarios where large amounts of health data need to
be stored in the cloud for every patient.

Q
Data to be

transferred to
the cloud (KB)

Data de-
scription

(KB)

TCP
overhead

(KB)

Total
tra�c
(KB)

1 439 29 13 481
2 879 29 25 933
3 1318 29 37 1384
4 1756 29 49 1836
5 2197 29 61 2287
6 2636 29 73 2738
Table 4. Data tra�ic for 1 hour monitoring with di�erent Q

�is article was presented in the International Conference on Embedded So�ware 2017 and appears as part of the
ESWEEK-TECS special issue

HiCH: Hierarchical Fog-assisted Computing Architecture for Healthcare IoT 1

Q
Data in
normal

cond. (KB)

Data in
abnormal
cond. (KB)

Data stored
in the cloud

(KB)

Reduction
in data

size
1 406 355 761 71 %
2 787 355 1142 57 %
3 1167 355 1522 43 %
4 1549 355 1904 29 %
5 1929 355 2284 14 %
6 2310 355 2665 0 %
Table 5. Data storage for 1 hour monitoring with di�erent Q

5 DISCUSSION
We now discuss the advantages, limitations and potential of HiCH in remote health monitoring
systems from both user and system perspectives.

From the user perspective, enhancing �ality of Service (QoS) and �ality of Experience (QoE)
are the main targets in HiCH. Cloud-based systems heavily depend on the connectivity between
local devices and the server, and hence, binds the system functionality to the availability of Internet
connection. HiCH, on the other hand, has no constraint on ubiquitous Internet connection due to
local decision making and noti�cation.

Security is an essential issue in HiCH as well as in every health IoT application since failures
could put lives at risk [50]. We consider our system security as three parts. a) Data transmission
security from the sensor network to the fog: Most wireless transmission protocols are recently
enabled to encrypt data during the transmission. Using Bluetooth protocol, communication starts
with pairing, and subsequently encrypted data is transmi�ed. In our case study, RN-42 Bluetooth
module transfers data using 128-bit AES-CCM encryption [24]. b) Data transmission security from
the fog to the cloud: In WiFi and LAN networks, data is encrypted in a higher level using Secure
Sockets Layer (SSL) connection as used in our case study. c) Data storage security on the fog and the
cloud: An a�ribute-based encryption (ABE) algorithm provides several data access levels for stored
data in fog and the cloud. It has been shown that the ABE algorithm is feasible in IoT applications
to hold multi-level data access as well as privacy [4]. Moreover, an end-to-end secure framework
for Fog-enabled IoT-systems has been recently introduced to enable e�cient authentication and
authorization while complex security algorithms perform at the edge [48].

Fully local computing systems are bounded to their processing power and data storage, so
sensitivity and speci�city of these systems are compromised compared to cloud-based systems. In
contrast, HiCH copes with this issue by moving the training phase to the cloud and periodically
updating local decision makers. �is enables the remote servers to form personalized models and
leverage patient medical history in the model building.

Moreover, system response time is reduced in HiCH particularly in case of poor connectivity.
�is is advantageous to healthcare providers since they can proactively react to possible health
deterioration cases. It should be also noted that the processing power and storage capacity of
fog devices play an important role in determining the e�ciency of the HiCH as shown in our
experiment. However, with the current trend of increasing processing power and storage of the
edge devices, the signi�cance of this concern is diminishing.

Another possible limitation in HiCH is the choice of the learning algorithm. As we discussed
in Section 3, some learning algorithms, such as instance-based learning, might not �t within this

�is article was presented in the International Conference on Embedded So�ware 2017 and appears as part of the
ESWEEK-TECS special issue

1 I. Azimi et al.

system. Hence, in some cases, the accuracy of decisions in HiCH might not be as high as in cloud-
based systems. �is concern is mostly application-speci�c, and the range of HiCH-compatible
algorithms that are widely used nowadays for machine learning is broad.

Moreover, the closed-loop local control enables a dynamic and personalized resource management
in systems where various con�gurations can be adjusted with respect to patient’s conditions. In
this paper, we only concentrated on the tra�c management between the fog to the cloud, however
HiCH can be enriched to consider more holistic resource management. Our future work in this
direction will consider personalized energy management to increase the sensors’ ba�ery life.

In addition to the healthcare domain, HiCH can be adapted to other domains, where reliability,
punctuality and availability are important, for instance IoT-based home and environmental moni-
toring applications focusing on early-detection and preventive purposes [9, 31]. Examples are �re
early-detection, environmental disaster prevention and home intrusion detection. Moreover, HiCH
can be tailored for assistive IoT-based services (e.g., assisted living and assisted driving) targeting
people with disability or frailty [12, 22].

6 CONCLUSIONS
Considering the life critical nature of remote health monitoring systems, a high level of availability
and accuracy is required. IoT-based solutions appear to be a viable scheme to deliver availability
and accuracy. However, conventional centralized cloud-based IoT systems need uninterrupted
Internet connectivity, which poses challenges in the face of mobility and/or degraded access
to the Internet. On the other hand, fully distributed fog-based IoT systems support untethered
operation but sacri�ce accuracy due to the limited computation capacity at the edge. In this paper,
we proposed a novel computing architecture, HiCH, for IoT-based health monitoring systems to
leverage the bene�ts of fog and cloud computing paradigms. �e two major contributions of HiCH
are: 1) a hierarchical computing architecture for partitioning and execution of machine learning data
analytics; 2) a closed-loop management technique enabled by autonomic system adjustment with
respect to patient’s condition. We evaluated HiCH in comparison with a baseline IoT system and
discussed the advantages and limitations of the proposed architecture in remote health monitoring
systems. Finally, as a proof of concept, we demonstrated a full system implementation targeting
continuous health monitoring for abnormal condition detection using ECG signals.

ACKNOWLEDGMENTS
We acknowledge �nancial support by the Marie Curie Actions of the European Union’s H2020
Programme.

REFERENCES
[1] Y. S. Abu-Mostafa et al. Learning From Data. AMLBook, 2012.
[2] M. Al-Faruque and K. Vatanparvar. Energy Management-as-a-Service Over Fog Computing Platform. IEEE Internet of

�ings J., 3(2):161–9, 2015.
[3] A. Al-Fuqaha et al. Internet of �ings: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Commun.

Surveys & Tuts, 17(4):2347–76, 2015.
[4] M. Ambrosin et al. On the Feasibility of A�ribute-Based Encryption on Internet of �ings Devices. IEEE Micro,

36(6):25–35, 2016.
[5] A. Anzanpour et al. Context-aware early warning system for in-home healthcare using internet-of-things. In LNICST,

2015.
[6] A. Anzanpour et al. Self-Awareness in Remote Health Monitoring Systems using Wearable Electronics. In DATE Conf.,

2017.
[7] F. Arriba-Pèrez et al. Collection and Processing of Data from Wrist Wearable Devices in Heterogeneous and Multiple-

User Scenarios. Sensors (Basel), 16(9), 2016.
[8] ATMEL. Atmega328p, Retrieved on March 2017. www.atmel.com/devices/atmega328p.aspx.

�is article was presented in the International Conference on Embedded So�ware 2017 and appears as part of the
ESWEEK-TECS special issue

www.atmel.com/devices/atmega328p.aspx

HiCH: Hierarchical Fog-assisted Computing Architecture for Healthcare IoT 1

[9] L. Atzori et al. �e internet of things: A survey. Computer Networks, 54(15):2787–805, 2010.
[10] D. Azariadi et al. ECG signal analysis and arrhythmia detection on IoT wearable medical devices. In MOCAST, 2016.
[11] I. Azimi et al. Self-aware early warning score system for iot-based personalized healthcare. In LNICST, volume 181,

2016.
[12] I. Azimi et al. Internet of things for remote elderly monitoring: a study from user-centered perspective. JAIHC,

8(2):273–89, 2017.
[13] M. Beyer. Gartner says solving ’Big Data’ challenge involves more than just managing volumes of data, Retrieved on

March 2017. www.gartner.com/newsroom/id/1731916.
[14] F. Bonomi et al. Fog computing and its role in the internet of things. MCC’12, pages 13 – 16, 2012.
[15] F. Bonomi et al. Fog computing: A platform for internet of things and analytics. Big Data and Internet of �ings: A

Roadmap for Smart Environments, 546:169 – 86, 2014.
[16] A. Bo�a et al. Integration of Cloud computing and Internet of �ings: A survey. FGCS, 56:684–700, 2016.
[17] C. Byers and W. Patrick. Fog Computing Distributing Data and Intelligence for Resiliency and Scale Necessary for IoT:

�e Internet of �ings (Ubiquity Symposium). Ubiquity, pages 1–12, 2015.
[18] L. Catarinucci et al. An IoT-Aware Architecture for Smart Healthcare Systems. IEEE Internet of �ings J., 2(6):515–26,

2015.
[19] R. Craciunescu et al. Implementation of Fog computing for reliable E-health applications. In 49th Asilomar Conference

on Signals, Systems and Computers, 2015.
[20] R. Deng et al. Optimal Workload Allocation in Fog-Cloud Computing Toward Balanced Delay and Power Consumption.

IEEE Internet of �ings J., 3(6):1171–81, 2016.
[21] A. Dohr et al. �e Internet of �ings for Ambient Assisted Living. In ITNG, 2010.
[22] M. Domingo. An overview of the Internet of �ings for people with disabilities. JNCA, 35(2):584–96, 2012.
[23] H. Dubey et al. Fog Data: Enhancing Telehealth Big Data �rough Fog Computing. In ASE BD&SI ’15, 2015.
[24] M. Dworkin. Recommendation for block cipher modes of operation: the ccm mode for authentication and con�dentiality.

Technical report, NIST 800-38C, 2004.
[25] M. Fazio et al. Exploiting the FIWARE Cloud Platform to Develop a Remote Patient Monitoring System. In ISCC, 2015.
[26] D. Gachet et al. Big Data Processing of Bio-signal Sensors Information for Self-Management of Health and Diseases.

In IMIS, 2015.
[27] M. Ghorbani and P. Bogdan. A cyber-physical system approach to arti�cial pancreas design. In CODES+ISSS, 2013.
[28] A. M. Ghosh et al. Remote Health Monitoring System through IoT. In ICIEV, 2016.
[29] A. L. Goldberger et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex

physiologic signals. Circulation, 101(23):e215–e220, 2000.
[30] J. Gòmez et al. Patient Monitoring System Based on Internet of �ings. Procedia Computer Science, 83:90–7, 2016.
[31] J. Gubbi et al. Internet of �ings(IoT): A vision, architectural elements, and future directions. FGCS, 29(7):1645–60,

2013.
[32] A. Gulenko et al. Evaluating machine learning algorithms for anomaly detection in clouds. In IEEE Int. Conf. on Big

Data, 2016.
[33] IBM Corporation. An architectural blueprint for autonomic computing. White paper, 2006.
[34] Instituto de Telecomunicacoes. Biosppy 0.2.0: Python package index, Retrieved on March 2017. h�ps://pypi.python.

org/pypi/biosppy/0.2.0.
[35] F. Jager et al. Long-term st database: a reference for the development and evaluation of automated ischaemia

detectors and for the study of the dynamics of myocardial ischaemia. Medical & Biological Engineering & Computing,
41(2):172–183, 2003. www.physionet.org/physiobank/database/ltstdb/.

[36] T. T. Khan et al. ECG feature extraction in temporal domain and detection of various heart conditions. In ICEEICT,
2015.

[37] D. Laney. 3D Data Management: Controlling Data Volume, Velocity, and Variety. Technical report, META Group Inc.,
2001.

[38] E. Lee. Cyber Physical Systems: Design Challenges. In ISORC, pages 363–9, 2008.
[39] Linode, Retrieved on March 2017. h�ps://www.linode.com/.
[40] Microchip. RN42 - Wireless - Bluetooth Module, Retrieved on March 2017. h�p://www.microchip.com/rn42.
[41] J. Mohammed et al. Internet of �ings: Remote Patient Monitoring Using Web Services and Cloud Computing. In

CPSCom, 2014.
[42] K. P. Murphy. Machine Learning: A Probabilistic Perspective. �e MIT Press, 2012.
[43] T. Nguyen-Gia et al. Fog Computing in Healthcare Internet of �ings: A Case Study on ECG Feature Extraction. In

CIT Conf., 2015.
[44] Nvidia. Jetson tk-1, Retrieved on March 2017. www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html.

�is article was presented in the International Conference on Embedded So�ware 2017 and appears as part of the
ESWEEK-TECS special issue

www.gartner.com/newsroom/id/1731916
https://pypi.python.org/pypi/biosppy/0.2.0
https://pypi.python.org/pypi/biosppy/0.2.0
www.physionet.org/physiobank/database/ltstdb/
https://www.linode.com/
http://www.microchip.com/rn42
www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html

1 I. Azimi et al.

[45] C. O’Kee�e et al. Role of ambulance response times in the survival of patients with out-of-hospital cardiac arrest.
Emerg Med J., 28(8):703–6, 2011.

[46] F. Pedregosa et al. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.
[47] L. Pescosolido et al. An IoT-inspired cloud-based web service architecture for e-Health applications. In ISC2, 2016.
[48] S. Rahimi-Moosavi et al. End-to-end security scheme for mobility enabled healthcare Internet of �ings. FGCS,

64:108–24, 2016.
[49] A. Rahmani et al. Fog Computing in the Internet of �ings - Intelligence at the Edge. Springer, 2017.
[50] A. M. Rahmani et al. Exploiting smart e-health gateways at the edge of healthcare internet-of-things: A fog computing

approach. FGCS, 2017.
[51] Raspberry Pi Foundation. Raspberry pi zero, Retrieved on March 2017. www.raspberrypi.org/blog/raspberry-pi-zero/.
[52] E. Spanò et al. Low-Power Wearable ECG Monitoring System for Multiple-Patient Remote Monitoring. IEEE Sensors J.,

16(13):5452–62, 2016.
[53] TeleTracking. �e value of time in healthcare. White paper, 2004.
[54] F. Touati and R.Tabish. U-Healthcare System: State-of-the-Art Review and Challenges. J Med Syst, 37(3):9949, 2013.
[55] L. M. Vaquero and L. Rodero-Merino. Finding Your Way in the Fog: Towards a Comprehensive De�nition of Fog

Computing. SIGCOMM Comput. Commun. Rev., 44(5):27–32, 2014.
[56] WHO, World Heart Federation and World Stroke Organization. Global atlas on cardiovascular disease prevention and

control. Technical report, 2011.
[57] Y. Xue et al. A spatio-temporal fractal model for a CPS approach to brain-machine-body interfaces. In DATE, 2016.
[58] S. Yi et al. A Survey of Fog Computing: Concepts, Applications and Issues. In Mobidata’15, pages 37–42, 2015.

�is article was presented in the International Conference on Embedded So�ware 2017 and appears as part of the
ESWEEK-TECS special issue

www.raspberrypi.org/blog/raspberry-pi-zero/

	Abstract
	1 Introduction
	2 Background and Related work
	2.1 IoT Architecture and Fog Computing
	2.2 Computing Models

	3 HiCH: The Proposed System
	3.1 Case Study
	3.2 Architecture

	4 System Demonstration and Evaluation
	4.1 The Baseline IoT System
	4.2 Setup
	4.3 Accuracy Assessment
	4.4 Performance Evaluation

	5 Discussion
	6 Conclusions
	References

