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H I G H L I G H T S

• Porous silicon nanoparticles are conjugated with an antibody (anti-PSA-NCAM-PE) for targeting neuroblasts in the brain.

• Akt pathway activator SC-79 is delivered to neuroblasts by anti-PSA-NCAM-PE-PSi-conjugated porous silicon nanoparticles to promote proliferation of neuro-
blasts for neuron regeneration.

• The Akt signaling pathway is increased by the conjugated nanoparticles in doublecortin positive neuroblasts both in cultured cells and in vivo in the rat brain.

• The conjugated nanoparticles are a novel tool for future studies to develop new therapeutic strategies, aiming at regenerating functional neurocircuitry after
stoke.
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A B S T R A C T

Generation of new neurons by utilizing the regenerative potential of adult neural stem cells (NSCs) and neu-
roblasts is an emerging therapeutic strategy to treat various neurodegenerative diseases, including neuronal loss
after stroke. Committed to neuronal lineages, neuroblasts are differentiated from NSCs and have a lower pro-
liferation rate. In stroke the proliferation of the neuroblasts in the neurogenic areas is increased, but the limiting
factor for regeneration is the poor survival of migrating neuroblasts. Survival of neuroblasts can be promoted by
small molecules; however, new drug delivery methods are needed to specifically target these cells. Herein, to
achieve specific targeting, we have engineered biofunctionalized porous silicon nanoparticles (PSi NPs) con-
jugated with a specific antibody against polysialylated neural cell adhesion molecule (PSA-NCAM). The PSi NPs
loaded with a small molecule drug, SC-79, were able to increase the activity of the Akt signaling pathway in
doublecortin positive neuroblasts both in cultured cells and in vivo in the rat brain. This study opens up new
possibilities to target drug effects to migrating neuroblasts and facilitate differentiation, maturation and survival
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of developing neurons. The conjugated PSi NPs are a novel tool for future studies to develop new therapeutic
strategies aiming at regenerating functional neurocircuitry after stoke.

1. Introduction

The striking discovery of adult neurogenesis has uplifted the hope
for generating new neurons in the adult brain to restore the brain and
its functions after injuries or neurodegeneration [1,2]. In principle,
multi-potent self-renewing neural stem cells (NSCs) present in a
germinal niche, such as the subventricular zone (SVZ) have the po-
tential to replace or repair the damaged neurons that can positively
impact the treatment of brain injuries or neurodegenerative diseases
[3,4]. There is a great demand for utilizing the regenerative potential of
NSCs to modulate their differentiation and survival to replace dead
neurons for therapeutic purposes [5,6]. In this direction, new ther-
apeutic strategies are needed to directly stimulate the endogenous NSCs

and/or committed neuronal progenitors (neuroblasts) in situ and en-
hance their survival [7,8], particularly in stroke where survival of mi-
grating neuroblasts is the limiting factor [9,10]. To attain an efficient
biological or therapeutic response, effective and selective delivery of
bioactive molecules to targeted migrating neuroblasts is one of the main
prerequisites. To achieve this, nanoparticles (NPs) can be a promising
platform for selective cell targeting and modulation of the fate of NSCs
[11–13]. Although large arrays of NPs have been developed for targeted
drug delivery [14–16], including for the brain [17], applications in
neuronal differentiation/neurogenesis are scarce [18]. For example, it
has been reported that polymeric NPs loaded with retinoic acid can
stimulate neurogenesis in vivo through the controlled, intracellular re-
lease of retinoic acid from NPs in SVZ [19]. However, in this study NPs

Fig. 1. Physicochemical characterization of developed anti-PSA-NCAM-PE-UnPSi NPs. (a) Schematic representation of anti-PSA-NCAM-PE conjugated UnPSi NPs
loaded with a small molecule drug to target endogenous DCX+ and PSA-NCAM+ neuroblasts and activate the Akt signaling pathway to enhance cell survival both in
vitro and in vivo. (b) Surface functionalization scheme. (c) Particle size, PdI and zeta (ζ)-potential of UnPSi NPs, before and after conjugation with anti-PSA-NCAM-PE
antibody and in simulated conjugation condition (physical mixing). (d) Representative TEM images of UnPSi NPs before (i) and after conjugation with anti-PSA-
NCAM-PE (ii). (e) ATR−FTIR analysis of UnPSi NPs (black line) and anti-PSA-NCAM-PE-UnPSi (red line). Dotted lines indicate the shift in the bands that corresponds
to conjugation. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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were not targeted to any specific type of neural lineage cells, instead it
was reported to achieve intracellular drug release non-selectively in
different cell types in and around the SVZ. To the best of our knowl-
edge, so far only one NP-based system has been developed to target
endogenous NSCs in vivo, mainly due to the lack of specific targeting
moieties. In this recent study, it was shown that lipid capsules adsorbed
with neurofilament-derived peptides (NFL-TBS.40–63), which were
reported to selectively interact with NSCs in the SVZ, were able to
target the endogenous NSCs in vivo [20]. However, the biological or
therapeutic significance of this targeting system has not been reported
and the limited survival of migrating neuroblasts after stroke remains.

Adult neurogenesis is a finely regulated multistep process that in-
volves the proliferation of NSCs and transit-amplifying cells, migration
and differentiation of neuroblasts, and integration of newly differ-
entiated neurons into already existing neuronal circuitries [21,22].
NSCs can differentiate into several classes of neural lineage cells, in-
cluding astrocytes and oligodendrocytes [23]. Hence, directing in vivo
differentiation of endogenous NSCs into specific neural lineage cells,
particularly into neurons, is difficult to achieve. Moreover, due to their
high proliferative potential, stimulation of NSCs in vivo may potentially
facilitate carcinogenesis, which raises the concern for clinical applica-
tions [24,25]. Unlike NSCs, neuroblasts are committed neuronal pro-
genitors with limited proliferation potential. Neuroblasts are char-
acterized by the expression of doublecortin (DCX+) and cell surface
glycoprotein polysialylated neural cell adhesion molecule (PSA-
NCAM+) [26,27]. Furthermore, increased expression of DCX in neu-
roblasts is known to enhance their migration and at the same time limit
their proliferation [28]. Therefore, developing targeted NPs using an
anti-PSA-NCAM antibody as a ligand for endogenous neuroblasts, fol-
lowed by loading bioactive molecules to promote their survival and
differentiation, can support the generation of new neurons (Fig. 1a). In
this study, we demonstrate that targeted anti-PSA-NCAM antibody-
conjugated NPs successfully bind neuroblasts both in vitro and in vivo.
The novelty of our study lies in the anti-PSA-NCAM antibody-con-
jugated NPs that show specificity to neuroblast targeting. Moreover, we
demonstrate the in vivo activation of the Akt pathway after in-
traventricular injection of targeted NPs loaded with an Akt stimulating
drug SC-79 [29]. To test our hypothesis regarding the design and
characterization of drug loaded, antibody conjugated NPs, we selected
porous silicon (PSi) NPs, a versatile drug delivery platform, which can
readily accommodate a wide range of payloads, tunable with surface
chemistry to allow biofunctionalization, biocompatible, and biode-
gradable as favorable biological properties [30–32]. PSi NPs are highly
degradable at pH > 7 and the degradation of PSi is highly dependent
on the porosity of the NPs. Thus, in the brain, it will take few days for
the PSi NPs to degrade to non-toxic silicic acid [33]. Our results on the
toxicity of PSi NPs demonstrate their safety and biodegradability in
different cell culture conditions and in vivo [31,32,34].

2. Materials and methods

2.1. Fabrication of undecylenic acid thermally hydrocarbonized PSi
(UnPSi) NPs

Monocrystalline boron doped p + Si ⟨100⟩ wafers with
0.01–0.02 Ω cm of a resistivity were electrochemically anodized in a
1:1 (v/v) hydrofluoric acid (38%)-ethanol electrolyte, pulsed with al-
ternating low and high current density etching profiles to create frac-
ture planes into the porous layer at periodic intervals. Afterwards, the
etching current was increased to the electropolishing region to lift off
the obtained multilayer film from the substrate. The films were dried
and placed under N2 flow (1 Lmin−1) for 30min at room temperature
to eliminate oxygen and residual moisture. At room temperature,
acetylene (C2H2) flow (1 Lmin−1) was added to the N2 flow for 15min
before increasing the temperature for 15min to 500 °C under the 1:1
(v/v) N2/C2H2 flow. The PSi (THCPSi) films were then allowed to cool

down to room temperature under N2 flow and further treated by im-
mersion in undecylenic acid for 16 h at 120 °C to provide a carboxyl
functionalization (UnPSi). The NPs were produced by ball milling the
UnPSi films in 10 vol-% undecylenic acid-decane solution and the
particle size selection was done by centrifugation.

2.2. Physicochemical characterization of the nanoparticles

Dynamic and electrophoretic light scattering (DLS and ELS). The hy-
drodynamic diameter (Z-average), polydispersity index (PDI), and ζ-
potential of the NPs were determined by DLS and ELS using a Zetasizer
Nano ZS instrument (Malvern Instruments Ltd). The measurements
were performed in Milli-Q water and PBS at a NP concentration of
~25 μgml−1.

Fourier transform infrared (FTIR) spectroscopy. The surface chemistry
of the dry NPs was evaluated by ATR-FTIR using a Bruker VERTEX 70
series FTIR spectrometer (Bruker Optics, Germany) and an ATR sam-
pling accessory (MIRacle, Pike Technology, Inc.). The ATR–FTIR
spectra were recorded in the wavenumber region of 4000−500 cm−1

with a resolution of 4 cm−1 at room temperature using OPUS 5.5 soft-
ware.

Transmission electron microscopy (TEM). The NPs were first dispersed
in Milli-Q water, and dropped onto plasma treated, carbon (C)-coated
copper TEM grids, followed by staining with 2% uranyl acetate. The
samples were allowed to dry overnight at room temperature before
analysis and images were acquired using Tecnai TEM.

2.3. Bioconjugation

The fabricated UnPSi NPs were covalently conjugated to anti-PSA-
NCAM antibody labeled with PE (anti-PSA-NCAM-PE, Miltenyi Biotec,
Germany) in the 1:10 (w/w) ratio of anti-PSA-NCAM:UnTHCPSi using a
1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride/N-hy-
droxysulfosuccinimide (EDC/NHS) chemistry. Briefly, 200 μg of UnPSi
NPs was suspended in 400 μL of 10mM 2-(N-morpholino)ethane-
sulfonic acid (MES; pH 5.5), containing 10mM of EDC and 10mM of
NHS. The reaction was carried out for 1.5 h at room temperature with
continuous stirring to activate the carboxyl groups on the surface of
UnPSi NPs. The activated NPs were exposed to 20 μg of anti PSA-
NCAM-PE in PBS (pH 7.2) with stirring overnight in the dark at room
temperature, and anti PSA-NCAM-PE-UnPSi NPs were washed with PBS
(pH 7.2). After washing steps through centrifugation, the amount of
antibody conjugated onto the surface of the PSi NPs was determined by
fluorescence analysis, using a fluorescence spectrometer (VarioskanTM
LUX Multimode Microplate Reader, Thermo Fisher Scientific). To de-
termine the conjugation efficiency, the fluorescence of antibody-con-
jugated NPs was measured against the established standard calibration
curve of predetermined concentration of free anti PSA-NCAM-PE. In
addition, the average number of antibody to each PSi NP is calculated
as follows:

The amount of the antibody conjugated to 100 μg of the nano-
particles= 4.66 μg.

Mw of the antibody=900 000 Da.
Molarity of the antibody= ∗

−4.66   10
900 000

6
=5.18× −10 12 mol.

Molarity of the antibody: 1mol=Avogadro's
number= 6.02×1023

The number of the antibody conjugated to 100 μg of the nano-
particles:

= (5.18× −10 12)× (6.02× 1023)= 3.12×1012

The number of the PSi NPs in 100 μg of the particles (considering
spherical shape)= 4.31×1010

The average number of antibody conjugated to each nanoparticle=
×

×

3.12 10
4.31 10

12
10 =72.39.
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2.4. Drug loading, determination of loading degree

Drug loading and determination of loading degree (LD). UnPSi NPs or
anti-PSA-NCAM-PE-conjugated UnPSi NPs (200 μg) were suspended in
1ml of DMSO: ethanol (1:9 ratio) mixture, containing 2mgml−1 of SC-
79 (Tocris Bioscience, #4635) drug and stirred for 2 h at room tem-
perature. Next, the sample was washed with Milli-Q water by cen-
trifuging at 13 000 rpm for 5min and excess unloaded drug in super-
natant was removed. The washing procedure was repeated thrice to
remove the unloaded SC-79 drug. Then, the NPs were suspended in
ethanol and stirred at room temperature for 1 h. After centrifugation,
supernatant was collected and analyzed in high-performance liquid
chromatography (HPLC) to determine the amount of SC-79 loaded in
Un-PSi NPs and calculate the loading degree of SC-79 using the estab-
lished standard calibration curve of predetermined concentration of
free SC-79.

High-performance liquid chromatography (HPLC). An Agilent 1100
series HPLC system (Agilent Technologies, Germany) was used to
quantify the SC-79 compound loaded into the UnPSi NPs. A
Gemini−NX 3 μm C18 110 A reversed phase column (100×4.6mm,
Phenomenex, USA) was used. The mobile phase was 0.2% tri-
fluoroacetic acid (pH 2.0) and acetonitrile (ratio of 50:50 v/v), the flow
rate was 0.8 mL/min, the injection volume was 20 μL, and the wave-
length was 272 nm.

2.5. Iodine-125 radiolabeling of anti-PSA-NCAM-PE-UnPSi NPs for ex vivo
biodistribution study

Anti-PSA-NCAM-PE-UnPSi NPs (240–300 μg) at a 1mgml−1 con-
centration in 1× PBS (pH 7.2) were added into a 1.5-ml microtube
with 10 μl of 1× PBS (pH 7.4), 47.5–54.2MBq of Na125I in 10−5 M
NaOH, pH 10 (PerkinElmer, Boston, MA, USA) and 10 μl of chloramine-
T solution (7mgml−1). The sample was incubated for 30min at room
temperature with careful mixing periodically on a vortex mixer. Then
50 μL of ascorbic acid solution (20mgml−1) was added to quench the
reaction. The tube was centrifuged at 13 200 rpm for 10min and the
supernatant was removed. The NPs were purified with two consecutive
washes with 1×PBS (pH 7.4) with dispersal of the NP pellet with so-
nication on an ultrasonic tip in between. Radiochemical purity of the
125I-labeled NPs was confirmed with paper chromatography using
1× PBS (pH 7.4) as the eluent followed by exposure of the chroma-
tographic paper to a phosphorimaging plate (BAS-IP TR2025, GE
Healthcare Life Sciences, Marlborough, MA, USA) for digital auto-
radiography. The 125I-labeled NPs were stored at 4 °C overnight. On the
day of the experiment, the radiolabeled NPs were further purified with
sonication and wash in 1×PBS (pH 7.4), collected with centrifugation
at 7200 rpm, and resuspended in 1× PBS (pH 7.4) with sonication. The
radiochemical purity of the final formulation was checked with paper
chromatography as described previously, and the injected formulation
was confirmed to be void of free 125I.

The stability of the 125I radiolabel was measured in vitro in the
formulation and in 50% human plasma in 1×PBS (pH 7.4) at 37 °C.
For the stability assay, an aliquot of the formulated 125I-labeled anti-
PSA-NCAM-PE-UnPSi NPs (93MBq mg−1) were transferred to the assay
media at a final concentration of 240 kBq ml−1 and incubated on an
orbital shaker for the designated time. At 15, 30, 45, 60, 90, 120, 180,
240, 300, 360, and 1440min time points, 100 μl samples were drawn
and the NPs were collected by centrifugation at 13 200 rpm. The
radioactivity retained in the NPs and in the supernatant were measured
on an automated gamma counter (1480 Wizard 3″, PerkinElmer,
Waltham, MA, USA).

2.6. Animal experiments

NMRI and C57Bl6 mice (Charles River) and male Sprague-Dawley
rats (Envigo) were housed in 12-h light-dark cycle with free access to

food and water. For collecting the E13.5 embryos, the mice were mated
and the morning when the vaginal plug was found was defined as E0.5.
All animal experiments were approved by the national Animal
Experiment Board of Finland (protocol approval numbers ESAVI/5459/
04.March 10, 2011, ESAVI/7812/04.July 10, 2015, KEK16-015).

2.7. Culturing embryonic neuronal stem/progenitor cells (NSPCs)

The telencephalons of E13.5 mouse embryos were isolated and
dissociated by trituration. The cells were cultured in neurosphere
growth medium containing Dulbecco's Modified Eagle Medium
(DMEM)/F12 (Gibco) supplemented with B27 (1× Gibco, #17504044),
epidermal growth factor (EGF, 20 ngml−1, Gibco), fibroblast growth
factor-2 (FGF-2, 20 ngml−1, Gibco), GlutaMAX (1× Gibco,
#35050038) and penicillin-streptomycin (50 Uml−1, Gibco). After 5–7
days of culture, neurospheres were collected by centrifugation at 200g
for 5min. After dissociation by Accutase (Gibco) treatment for 5min at
37 °C and trituration, the NSPCs were collected by centrifugation at
300g for 6min, resuspended in 1ml fresh neurosphere medium and
filtered through 70 μm filter (Miltenyi Biotech). Approximately 5× 105

NSPCs were transferred to T25 cell culture flask (CellStar) containing
5ml fresh neurosphere medium. Neurospheres were passaged every
7–10 days; NSPCs from passages 1–2 were used for the experiments.

2.8. Cellular interaction studies by immunofluorescent staining and
confocal imaging

For confocal imaging, embryonic neurospheres were dissociated as
described above, and NSPCs were seeded at a density of ca.
4× 104 cells per well in 300 μl of neurosphere medium on poly-L-or-
nithine/laminin-coated Lab-Tek 8-chamber slides (Thermo Fisher
Scientific, USA). NSPCs were incubated with fluorescently labeled NPs
(non-targeted UnPSi loaded with TRITC and anti-PSA-NCAM-PE-UnPSi)
at different doses (25, 50, and 100 μgml−1) for 9 h or 24 h, as indicated
in the text and figure legends. The cells were fixed in 4% paraf-
ormaldehyde (PFA) solution in PBS for 20min at room temperature,
washed twice with PBS, and permeabilized for 15min with PBS con-
taining 0.2% Triton X-100 (PBST) solution. After blocking unspecific
antibody binding sites by incubation for 1 h at room temperature in
blocking solution (PBST containing 5% normal horse serum (DAKO)),
the cells were incubated with the anti-phospho-S6 ribosomal protein
(Cell Signaling, #4857; diluted 1:200 in blocking solution), anti-DCX
(Santa Cruz Biotechnology, #sc8066; 1:200), anti-nestin (Millipore,
#MAB353; 1:500), or anti-PSA-NCAM (Chemicon #MAB5324; 1:500)
antibody overnight at 4 °C, washed three times with PBS, and incubated
with corresponding AlexaFluor-488 or AlexaFluor-568 conjugated sec-
ondary antibodies (Life Technologies; diluted 1:500 in PBST) for 1 h at
room temperature. After three washes with PBS the cells were stained
with 4′,6-diamidino-2-phenylindole (DAPI, 0.2 μgml−1 in PBS) for
10min and kept in PBS at 4 °C protected from light until imaging.

The immunostained cells were imaged with Leica TCS SP5II HCS A
confocal inverted microscope (Leica Microsystems, Germany) equipped
with a 405 Diode laser, argon laser (488 nm) and Helium Neon laser
(HeNe 633) and an HCX PL APO 63× /1.2W Corr/0,17 CS (water
immersion) objective. The obtained images were processed using Fiji
image J (1.49c) software.

2.9. Cell viability assay

For the viability assay, NSPCs were seeded at a density of ca.
1.5× 104 cells per well in 100 μl of neurosphere medium on poly-L-
ornithine/laminin-coated 96-well plates (CellStar). 24 h after plating,
NSPCs were incubated with NPs (non-targeted UnPSi and anti-PSA-
NCAM-PE-UnPSi) at different dosses (25, 50, 100 μgmL−1) for 6 h or
24 h. The cell viability was analyzed using CellTiter-Glo® Luminescent
Cell Viability Assay (Promega, USA) by measuring the luminescence
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using a Varioskan Flash microplate reader (Thermo Fisher Scientific
Inc., USA).

2.10. In vivo targeting

2.10.1. Intravenous delivery of iodine-125 -radiolabeled anti-PSA-NCAM-
PE-UnPSi NPs in a rat model of stroke

Biodistribution studies were conducted in male Sprague-Dawley
(Hsd:SD) rats (8–10 weeks, Envigo, Huntingdon, UK). Ischemic stroke
was induced by the transient 60-min ligation of the bilateral common
carotid arteries (CAA) and the right middle cerebral artery (MCA) under
chloral hydrate anesthesia (10ml/kg) as described previously [35], and
were used for the radiolabeled NP biodistribution study 48 h after the
surgery. Operation-naïve Hsd:SD rats were used as controls. 125I-labeled
anti-PSA-NCAM-PE-UnPSi NPs were administered intravenously under
isoflurane anesthesia (2.5% isoflurane in 40% oxygen in medical air
carrier) to a cannulated lateral tail vein. The administered dose was
25 μg of NPs in 200 μl of 1× PBS (pH 7.4), which yielded radioactivity
of 2.2 ± 0.6MBq (stroke cohort) and 2.2 ± 0.3MBq (naïve cohort).
At 2 h (n=3 for both cohorts) and 24 h (n=3 for both cohorts) after
administration, the rats were sacrificed by an overdose of pentobarbital
and transcardially perfused with 0.9% NaCl followed by 4% PFA. Select
tissues, including the infarct and contralateral brain hemispheres, were
collected, weighed, and the radioactivity counted on an automated
gamma counter. The results are expressed as the percentage of the in-
jected dose per gram of tissue (%ID/g) or for the brain as the differ-
ential absorption ratio (DAR) calculated according to the equation:

=DAR
Radioactivity in tissue cpm

Mass of tissue g
Injected radioactivity cpm

Body weight g
[ ]

[ ]
/

[ ]
[ ]

2.10.2. Intraventricular injections
Adult 8–10 weeks old C57Bl6 mice were used for stereotaxic in-

jections of NPs (anti-PSA-NCAM-PE-UnPSi or anti-PSA-NCAM-PE-UnPSi
loaded with SC-79) or controls (non-targeted UnPSi, non-targeted
UnPSi loaded with TRITC or SC-79, free SC-79, free TRITC, free anti-
PSA-NCAM-PE antibody, UnPSi mixed with anti-PSA-NCAM-PE anti-
body) or vehicle (PBS), as indicated in the text and figure legends.
About 5 μl of corresponding solution was injected bilaterally into the
lateral ventricles (LVs) at A/P 0.0; M/L± 0.9; D/V −2.5 mm from the
bregma under isoflurane anesthesia at a rate of 1 μl/min and the needle
(WPI NanoFil 33G) was retained in place for 2min after the injection as
described elsewhere [10].

2.10.3. Immunofluorescent staining of brain sections
Anaesthetized mice were transcardially perfused with PBS followed

by 4% PFA in PBS solution. Brains were dissected, fixed in 4% PFA for
24 h and either immersed to 30% sucrose in PBS for cryosectioning or
embedded in paraffin. Brains were cryosectioned into 30 μm-thick free-
floating coronal sections, or 5 μm-thick paraffin coronal sections. For
immunostaining, paraffin sections were deparaffinized and re-hydrated
through a graded alcohol series before being subjected to antigen re-
trieval in 0.05% citraconic anhydride buffer, pH 7.4, at 100 °C for
10min.

After blocking unspecific antibody binding sites by incubation for
1 h at room temperature in blocking solution (PBST containing 5%
normal horse serum (DAKO)), the sections were incubated with anti-
phospho-S6 ribosomal protein (Cell Signaling, #4857; 1:200), anti-DCX
(Santa Cruz Biotechnology, #sc8066; 1:200) or anti-Ki67 (Thermo
Fisher, #RM-9106-S1; 1:200) antibody in blocking solution at 4 °C
overnight. For immunofluorescent staining, the sections were incubated
with corresponding AlexaFluor-488 or AlexaFluor-568 conjugated sec-
ondary antibodies (Life Technologies; diluted 1:500 in PBST) for 1 h at
room temperature. For immunohistochemistry, biotinylated secondary
antibody (Vector Laboratories; 1:400) and peroxidase-conjugated

streptavidin Vectastain ABC-detection system (Vector Laboratories)
were used. Sections were developed with diaminobenzidine peroxidase
substrate (Vector Laboratories) and imaged with Pannoramic 250 Flash
II slide scanner (3DHistech Ltd, http://www.biocenter.helsinki.fi/bi/
histoscanner/index.html).

2.11. Statistical analysis

Statistical significance was calculated by one-way analysis of var-
iance (ANOVA) followed by Holm-Sidak's multiple comparison test. All
statistical analyses were performed in GraphPad Prism 8.20 software
(GraphPad Software, Inc).

3. Results and discussion

In this work, undecylenic acid modified thermally hydrocarbonized
PSi (UnPSi), as studied earlier for other drug delivery applications
[32,36–38], was developed to bio-conjugate with targeting ligands. To
develop NPs targeting endogenous neuroblasts, we used carbodiimide
crosslinking chemistry to covalently link the R-phycoerythrin-con-
jugated anti-PSA-NCAM antibodies (anti-PSA-NCAM-PE) to the surface
of UnPSi NPs (Fig. 1b). The size, size distribution, charge and mor-
phology of the NPs were analyzed by dynamic light scattering, zeta (ζ)-
potential measurements and transmission electron microscopy (TEM)
(Fig. 1c and d). The results showed that an average particle size of bare
UnPSi NPs was 176 nm (polydispersity index, PdI: 0.07, Fig. S1) and the
size was increased to 358 nm (PdI: 0.229) for the anti-PSA-NCAM-PE-
UnPSi (Fig. 1c, and Fig. S1). A titration modification was tested with
different ratios of antibody to NPs (5, 10 and 20 μg of antibody to
200 μg of NPs). The size of the NPs increased gradually by increasing
the amount of antibody used to conjugate to the NPs (Table S1 and Fig.
S1). Taken into consideration that anti-PSA-NCAM is a large IgM anti-
body (Mw~ 900 000 g mol−1, pentameric form) and its physical size
can be ~40 nm [39], the size increase of anti-PSA-NCAM-PE-UnPSi NPs
could be due to the surface conjugation of anti-PSA-NCAM-PE. The ζ-
potential measurements of bare UnPSi NPs showed highly negative
surface charges (−27mV), whereas the anti-PSA-NCAM-PE-UnPSi NPs
showed a decrease in the surface charge to (−19mV), due to the pre-
sence of amine groups in anti-PSA-NCAM-PE (pentameric form of IgM)
(Fig. 1c). This indicates the successful conjugation process. We also
used the TEM technique to analyze the particle size (Fig. 1d). Due to the
contrast of PSi NPs and the antibody, we could only see the PSi NPs in
the TEM. In the TEM images, the size of the NPs before and after an-
tibody modification were similar, which is consistent with other studies
[40,41]. The physical mixing of anti-PSA-NCAM-PE and UnPSi NPs
(simulated conjugation condition/non-conjugated) showed no sig-
nificant increase in size (204 nm) and minor changes in surface charge
(−25mV), which was comparable to bare UnPSi NPs. These results
indicate that the possibility of non-specific adsorption of anti-PSA-
NCAM-PE on the surface of UnPSi NPs can be ruled out. Furthermore,
the antibody modified NPs anti-PSA-NCAM-UnPSi presented increased
stability in the artificial cerebrospinal fluid (ACSF) (Fig. S2).

The surface conjugation of anti-PSA-NCAM-PE to the UnPSi was
confirmed using attenuated total reflectance Fourier transform infrared
spectroscopy (ATR−FTIR). FTIR is a very sensitive method to de-
termine the surface modification and to identify the functional groups,
such as amide, carboxylic acid, aldehyde, ethylene, ethyne, etc. As
previously demonstrated, the conjugation of both peptides and poly-
mers to PSi NPs can be detected by FTIR [40–42]. The attenuation of
the carbonyl C]O stretching band at 1710 cm−1 after the conjugation
of anti-PSA-NCAM-PE to UnPSi, was evidenced, along with appearance
of the bands at 1635 cm−1 and 1532 cm−1 corresponding to formation
of amide bonds, indicating successful conjugation (Fig. 1e). We have
quantified that 4.66 μg of anti-PSA-NCAM-PE were conjugated to
100 μg of UnPSi NPs using fluorescent analysis, which allowed us to
calculate the conjugation efficiency of about 45%. Since the anti-PSA-
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NCAM is an IgM antibody, excess of free amine groups that exist in the
pentameric form facilitated the efficient conjugation process. Further-
more, from the given amount of anti-PSA-NCAM-PE conjugated to the
given amount of UnPSi NPs, we estimated that an average of 70 anti-
PSA-NCAM-PE molecules were conjugated to the surface of each single
UnPSi NP.

Next, we evaluated the cellular interactions of NPs with cultured
primary embryonic NSPCs. First, the cytotoxicity of the UnPSi NPs
before and after conjugation with anti-PSA-NCAM antibody was tested
in cultures of primary embryonic NSPCs at different NP concentrations
(25, 50, and 100 μgmL−1) after 6 and 24 h (Fig. S3). Both UnPSi and
anti-PSA-NCAM-UnPSi NPs did not shown any significant cytotoxicity
at all the tested concentrations suggesting the cytocompatibility of the
NPs with embryonic NSPCs, in line with previous publications [32,43].

To investigate the cellular interactions of NPs, anti-PSA-NCAM-PE-
UnPSi NP uptake by embryonic NSPCs, containing both NSCs (nestin+)
and neuroblasts (PSA-NCAM+ and DCX+) was analyzed by confocal
imaging and TEM (Fig. 2a–c). Confocal images confirmed the pheno-
type of embryonic NSPCs by immunostaining of the cell biomarkers
PSA/NCAM, nestin+, and DCX+. (Fig. S4). We observed increased in-
teraction and accumulation of anti-PSA-NCAM-PE-UnPSi NPs in the
cells by increasing the concentration of anti-PSA-NCAM-PE-UnPSi NPs,
suggesting a concentration-dependent cellular uptake (Fig. 2a). Control
UnPSi NPs loaded with tetramethylrhodamine (TRITC) fluorophore did

not show any significant interaction with NSPCs even at the highest
dose (100 μgml−1) among the different doses (25, 50 and 100 μgml−1)
tested (Fig. 2a), suggesting negligible nonspecific interaction of non-
targeted UnPSi NPs with NSPCs. Flow cytometry analysis showed that
NSPCs treated with anti-PSA-NCAM-PE-UnPSi NPs increased the po-
pulation of cells with high fluorescence intensity, whereas non-targeted
UnPSi-TRITC NPs at different concentrations showed lower fluores-
cence intensity in the cells. All these results suggest that the NP uptake
was mediated by the anti-PSA-NCAM antibody (Fig. 2b). Cellular in-
ternalization is a critical requirement, particularly if NPs are designed
to deliver bioactive molecules and modulate intracellular signaling
pathways. In order to analyze whether the anti-PSA-NCAM-PE-UnPSi
NPs were internalized by embryonic NSPCs and to gain further insight
into their intracellular localization, we visualized the cellular uptake
using TEM. After 3 h of incubation, TEM images showed that anti-PSA-
NCAM-PE-UnPSi NPs were present in the intracellular regions, while
some were found in the endo-/lysosome compartments, and few were
present in the cytoplasm of NSPCs (Fig. 2c). Furthermore, we also ob-
served that anti-PSA-NCAM-PE-UnPSi NPs were interacting with the
cellular membrane. These results collectively suggest that anti-PSA-
NCAM-PE-UnPSi NPs interact with embryonic NSPCs through an anti-
body-mediated ligand-receptor interaction, which facilitates the cel-
lular internalization via receptor-mediated endocytosis. It should be
noted that cellular uptake may be affected by particle size. Often the

Fig. 2. In vitro cellular interaction of NPs and Akt pathway activation after loading SC-79. (a) Confocal images of embryonic NSPCs after 9 h of treatment with non-
targeted (UnPSi NPs) and targeted (anti-PSA-NCAM-PE-UnPSi) NPs (red: cell membrane labeled with CellMask DeepRed, green: NPs) at concentrations of 25, 50, and
100 µg/mL. (b) Flow cytometry analysis of cellular uptake of both non-targeted and targeted nanoparticles after 9 h of incubation. (c) TEM images of cellular uptake
and intracellular localization of anti-PSA-NCAM-PE-UnPSi NPs in NSPCs after 3 h of incubation. Scale bars are: 500 nm, 2 µm, and 1000 nm. (d) Activation of Akt
signaling pathway in NSPCs after 24 h of treatment with free SC-79, non-targeted UnPSi NPs, non-targeted UnPSi NPs loaded with SC-79, and anti-PSA-NCAM-PE-
UnPSi NPs loaded with SC-79 (blue: DAPI (cell nuclei), green: PE (NPs); red: phospho-S6). Scale bar: 100 μm (same for all images). (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)
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particle size plays an important role regarding passive cellular uptake,
when the particle size is in the range of less than 200 nm and that
smaller NPs have better cellular uptake [44]. In our study, the NPs
before and after modification are around 200 and 350 nm, respectively.
Furthermore, the increasing particle size after antibody modification is
a drawback for cellular uptake. However, our results show that anti-
body modification increased the cellular interaction and the improve-
ment by the antibody-mediated internalization is so significant that the
effect due to the size is not dominant.

Akt pathway activation plays an important role in mediating cell
survival and preventing apoptosis of different neuronal populations
[45]. A small molecule, SC-79, has been identified as a potent Akt
pathway activator in different cells [29]. SC-79 binds the pleckstrin
homology region of Akt, thereby enhancing Akt phosphorylation and
activating the Akt signaling pathway. Thus, to promote survival of the
targeted endogenous neuroblasts, we loaded SC-79 in anti-PSA-NCAM-
PE-UnPSi NPs and analyzed their efficiency to activate the Akt pathway
in embryonic NSPCs. From the quantitative analysis of SC-79 loading in
anti-PSA-NCAM-PE-UnPSi NPs using high-performance liquid chroma-
tography, we calculated that 30 μg of SC-79 were loaded in 100 μg of
anti-PSA-NCAM-PE-UnPSi NPs, corresponding to a loading degree of
23% (wt-%). SC-79 was utilized as the only commercially available
drug stimulating Akt pathway; during the course of the experiments we

have found out its low stability in aqueous solutions. Confocal images
showed that after 24 h of incubation, the SC-79 loaded anti-PSA-NCAM-
PE-UnPSi NPs extensively activated the Akt pathway (detected by the
immunofluorescent staining for phospho-S6 ribosomal protein) in
NSPCs at all the NP doses tested (25, 50, 100 μgml−1), compared to
different controls (free SC-79, non-targeted UnPSi and non-targeted
UnPSi NPs loaded with SC-79) (Fig. 2d). These results demonstrate that
internalized anti-PSA-NCAM-PE-UnPSi NPs can deliver the SC-79 in-
tracellularly and modulate the Akt signaling pathway in NSPCs.
Moreover, these data also show that the NPs with antibody modifica-
tion still had better cellular uptake and drug delivery efficiency after
the short time immerging in the solution of DMSO/ethanol during SC-
79 loading.

In order to demonstrate the feasibility of targeting of PSA-NCAM+

neuroblasts in vivo after systemic administration, anti-PSA-NCAM-PE-
UnPSi NPs were radiolabeled with iodine-125 (t1/2= 59.408 d,
Eγ=35.4919 keV), and the ex vivo biodistribution and capability of the
nanovector to extravasate to the brain was evaluated in a rat surgical
model of ischemic stroke. In the model, a stroke is induced by a 60-min
ligation of the bilateral common carotid arteries (CAA) and the right
middle cerebral artery (MCA), and the procedure results in impairment
of the blood-brain barrier (BBB) at the ischemic hemisphere [35].
Therefore, we postulated that the anti-PSA-NCAM-PE NPs might pass

Fig. 3. In vivo targeting and accumulation of anti-PSA-NCAM-PE-UnPSi NPs to DCX+ neuroblasts in SVZ. Confocal images of mouse brain sections at different time
points after local bilateral intraventricular injections of anti-PSA-NCAM-PE-UnPSi NPs (blue: DAPI (cell nuclei); green: DCX+ neuroblasts; red: PE (NPs)). Scale bar:
200 μm (same to all images). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

V. Balasubramanian, et al. Biomaterials 227 (2020) 119556

7



the BBB passively in the stroke model, and could then be used to target
to the endogenous neuroblasts expressing NCAM and DCX in the SVZ in
vivo. Anti-PSA-NCAM-PE-UnPSi NPs were successfully labeled with 125I
to the tyrosine residues of the anti-PSA-NCAM-PE antibody using
Chloramine-T as an oxidizer with 59–65% radiochemical yield, radio-
chemical purity of 97.7–98.6%, and specific radioactivity ranging from
91.3 to 121.7MBqmg−1 (n=2). The radiolabel was stable in the for-
mulated solution (1×PBS, pH 7.4) and in physiological conditions
(50% human plasma) with over 93% of the radiolabel remaining in the
NPs after 6 h of incubation (Fig. S5). After intravenous administration
to the stroke model rats (48 h post-surgery) and to operation-naïve
controls, the biodistribution of the 125I-labeled anti-PSA-NCAM-PE-
UnPSi NPs was determined by ex vivo radioactivity measurements of
excised tissues at 2 h and 24 h after NP administration. Systemically
administered 125I-labeled anti-PSA-NCAM-PE-UnPSi NPs showed max-
imum signal in the brain at 2 h post injection (p.i.), but with prominent
accumulation to the liver and spleen, the principal organs of the re-
ticulo-endothelial system (RES). There was a ca. 2-fold statistically
significant increase in the 125I signal in the stroke hemisphere compared
to the signal in either the contralateral non-operated hemisphere in the
same animal or the corresponding hemisphere in the operation-naïve
control (Fig. S6), suggesting that BBB penetration of the 125I-labeled
anti-PSA-NCAM-PE-UnPSi NPs is feasible. At 2 h p.i., the degree of
dehalogenation in vivo was comparable to that reported for radio-
iodinated monoclonal antibodies [46] (Fig. S7a), but at the later time
point, at 24 h p.i., the radioactivity signal in the thyroid (indicative of
dehalogenation in vivo) exceeded that typically reported for radio-
iodinated bioconjugates, which is unsurprising given the high enzy-
matic activity in the liver and the accumulation of the NPs there (Fig.
S7b). Since it was clear from these results that the systemic bioavail-
ability to the brain of the anti-PSA-NCAM-PE-UnPSi NPs was limited,
the targeting efficacy of anti-PSA-NCAM conjugated UnPSi NPs was
further evaluated through local bilateral intraventricular injections. To

improve the ability of the construct to evade immune recognition and
RES clearance an intracranial approach was warranted.

To investigate the potential of anti-PSA-NCAM-PE-UnPSi NPs to
target endogenous neuroblasts expressing DCX in SVZ in vivo after in-
tracranial injection, the anti-PSA-NCAM-PE-UnPSi NPs were stereo-
taxically injected bilaterally to the lateral ventricles (LVs) of adult
(8–10 weeks old) mice. After dissecting the brains at different time
points (3, 6, and 29 h p.i.), brain sections were analyzed using im-
munofluorescent staining for DCX and confocal microscopy. At 3 h p.i.,
the majority of the injected anti-PSA-NCAM-PE-UnPSi NPs accumulated
around the walls of the LVs, which might be due to the increased initial
accumulation of the NPs in the confined LV and most of them were co-
localized with DCX+ neuroblasts in the SVZ (Fig. 3 and Fig. S8).
However, over time (6 and 29 h p.i.), the amount of accumulated anti-
PSA-NCAM-PE-UnPSi NPs around the walls of LVs was reduced, prob-
ably due to the flow of cerebrospinal fluid, which washed away the
unattached or loosely adsorbed anti-PSA-NCAM-PE-UnPSi NPs.

At 29 h p.i., only anti-PSA-NCAM-PE-UnPSi NPs that interacted with
or were taken up by the cells were still present next to the walls of the
LVs and in the SVZ (Fig. 3). Interestingly, other controls UnPSi-TRITC
NPs and physically mixed anti-PSA-NCAM-PE with UnPSi NPs (simu-
lated conjugation conditions) were not significantly visible in the walls
of the LVs or the SVZ (Fig. S9). Co-localization signal from anti-PSA-
NCAM-PE-UnPSi NPs and DCX+ neuroblasts indicates the specificity of
the anti-PSA-NCAM-PE-UnPSi NPs to target DCX+ neuroblasts in the
SVZ.

Furthermore, we investigated the potential of targeted delivery of
SC-79 by anti-PSA-NCAM-PE-UnPSi NPs to stimulate the Akt pathway
in endogenous DCX+ neuroblasts in the SVZ. Confocal and immuno-
fluorescent imaging analysis of the brain sections obtained from mice
treated with SC-79 loaded anti-PSA-NCAM-PE-UnPSi NPs (0.5 μg per
LV, corresponding to 0.15 μg per LV of loaded SC-79) and other controls
revealed that the SC-79 loaded anti-PSA-NCAM-PE-UnPSi NPs can

Fig. 4. In vivo analysis of targeted nanoparticle-mediated Akt pathway activation and cell proliferation. (a) Mouse brain sections 24 h after local bilateral in-
traventricular injections of the SC-79 loaded anti-PSA-NCAM-PE-UnPSi NPs compared with other controls (blue: DAPI (cell nuclei), green: phospho-S6, red: DCX+

neuroblasts). (b) Triple co-localization of SC-79 loaded anti-PSA-NCAM-PE-UnPSi NPs with DCX+ neuroblasts in the SVZ and Akt pathway activation (blue: DAPI
(cell nuclei), green: DCX+ neuroblasts, yellow: NPs, red: phospho-S6). (c) Confocal and immunofluorescence analysis of targeting and Akt pathway activation in
DCX+ neuroblasts in the SVZ with different doses (blue: DAPI (cell nuclei), green: phospho-S6, yellow: NPs, red: DCX+ neuroblasts). (d) Cellular proliferation
analysis in the SVZ and the striatum using anti-Ki67 immunostaining. Scale bar: 200 μm (a, c and d), the same to all images; 100 μm (b). (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)
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stimulate the Akt pathway (evidenced by phospho-S6 immunostaining)
in the SVZ, compared to other controls (non-targeted UnPSi NPs, phy-
sically mixed anti-PSA-NCAM-PE/UnPSi NPs, anti-PSA-NCAM-PE and
UnPSi NPs without SC-79) (Fig. 4a). In addition, the triple co-locali-
zation of the anti-PSA-NCAM-PE-UnPSi NPs, DCX+ neuroblasts and Akt
activation marker phospho-S6 showed that the anti-PSA-NCAM-PE-
UnPSi NPs can target endogenous DCX+ neuroblasts in the SVZ and in
situ stimulate the activation of the Akt pathway (Fig. 4b). However, we
have also observed phospho-S6 immunostaining in other cells in the
striatum lateral to the SVZ, which was possibly due to the facilitated
diffusion of SC-79 released from the accumulated NPs.

To further demonstrate the in vivo targeting and stimulation of the
Akt signaling pathway in endogenous DCX+ neuroblasts in the SVZ, we
evaluated the dose-dependent effects in vivo using different concentra-
tions of the SC-79 loaded anti-PSA-NCAM-PE-UnPSi NPs (0.05, 0.5, and
5 μg per LV), corresponding to the different doses of loaded SC-79
(0.015, 0.15, 1.5 μg per LV), respectively. We observed that the anti-
PSA-NCAM-PE-UnPSi NPs at high doses (5 μg per LV) were not able to
diffuse deep into the brain parenchyma from the LVs, as the diffusion
was limited to the ependymal/sub-ependymal layer (Fig. 4c, bottom
row). As the concentration can influence the aggregation, it may be that
larger aggregates of the NPs may remain trapped in those layers, lim-
iting their further diffusion. At the intermediate dose (0.5 μg/LV), anti-
PSA-NCAM-PE-UnPSi NPs aggregated significantly less than with the
highest dose, which in turn led to improved dispersion and diffusion
and, as a result, we observed that anti-PSA-NCAM-PE-UnPSi NPs could
diffuse further and target DCX+ neuroblasts in the SVZ (Fig. 4c, middle
row). Nevertheless, at the lowest dose (0.05 μg), we did not observe a
significant amount of the anti-PSA-NCAM-PE-UnPSi NPs in the walls of
the LVs and in DCX+ neuroblasts in the SVZ (Fig. 4c, top row). Alto-
gether, these results demonstrate that optimizing the concentration of
the anti-PSA-NCAM-PE-UnPSi NPs is crucial for effective in vivo tar-
geting, where high concentration may cause aggregation and low
concentration may not be sufficient to achieve effective targeting.

To evaluate whether activating the Akt pathway in neuroblasts can
enhance their proliferation, we analyzed the immunostaining with anti-
Ki67 proliferation marker antibody in mouse brain sections after
treatment with different doses of the SC-79 loaded anti-PSA-NCAM-PE-
UnPSi NPs. To ensure the occurrence of the Akt activation, we used the
brain sections from the same mice that were showing the dose depen-
dent Akt activation (Fig. 4c). We did not observe any significant in-
crease in cell proliferation neither in DCX+ neuroblasts nor in other
cells in the striatum (Fig. 4d).

Overall, targeting endogenous neuroblasts to promote their survival
may stimulate neuronal differentiation to generate more functional
neurons. This potentially has therapeutic benefits for the treatment of
stroke where survival of migrating neuroblasts is promoted. Here, we
demonstrate for the first time that NPs can target endogenous neuro-
blasts and stimulate the neuron survival signaling pathway both in vitro
and in vivo. The phosphatidylinositol-3-kinase (PI3K)/Akt signaling
pathway regulates NSC proliferation and differentiation, and neuroblast
migration [47]. Akt pathway activation can stimulate several anti-
apoptotic pathways [48] and protect neurons in vivo [49,50]. Small
molecule compound SC-79 can bind to Akt and facilitate its phos-
phorylation by upstream protein kinases, stimulating neuronal survival
in a mouse stroke model [29]. However, aberrant activation of the Akt
pathway also promotes carcinogenesis and is frequently associated with
malignancy [51]. In fact, Akt signaling inhibitors are considered as
promising agents for cancer therapy [51,52]. Thus, despite beneficial
effects in neurodegeneration treatment, non-targeted delivery of Akt
pathway stimulating drugs may considerably increase the risk of cancer
and therefore have limited therapeutic applicability. In contrast, our
results demonstrate that activating the Akt pathway in neuroblasts in
the SVZ using drug-loaded targeted NPs did not induce cell prolifera-
tion.

Interestingly, we observed a correlation between the concentration

dependent NP accumulation and in situ stimulation of the Akt pathway.
As suggested above, a higher dose of NPs (5 μg per LV) induced ag-
gregation and larger NP aggregates were trapped in the first ependymal
layer present next to the walls of the LVs, whereas an intermediate NP
dose (0.5 μg per LV) was relatively well dispersed and diffused more in
the SVZ and co-localized with DCX+ neuroblasts. Therefore, although
the intermediate dose of SC-79 (0.15 μg per LV) was 10 times less than
the high dose (1.5 μg per LV), the increased diffusion in the SVZ due to
the improved dispersion (reduced aggregation behavior) of NPs acti-
vated the Akt pathway much more than the other doses tested.
However, there was also Akt activation in the striatum, further way
from the SVZ. As we did not observe any NPs in the striatum (beyond
the SVZ), the SC-79 loaded anti-PSA-NCAM-PE-UnPSi NPs that accu-
mulated in the SVZ may have served as a depot of SC-79 that was most
likely released from the NPs and diffused to the neighboring brain
areas. It is worth noting that the lowest dose of NPs (0.05 μg per LV)
and the corresponding low dose of loaded SC-79 (0.015 μg per LV) were
not sufficient to target the endogenous DCX+ neuroblasts, and thus,
ultimately did not stimulate the activation of Akt signaling in the SVZ.

In the present proof-of-principle study, we aimed to demonstrate the
ability of antibody-conjugated NPs to target NSPCs in culture and in
vivo following systemic administration after stroke. We also show that
antibody-conjugated NPs can be loaded with a drug, and SC-79 was
utilized as the only commercially available drug stimulating the Akt
pathway. To demonstrate functional outcome of the treatment, several
hurdles have to be overcome. First, diffusion of NPs in the brain par-
enchyma has to be improved. Second, SC-79 is far from an optimal drug
for NP loading due to its limited stability and the ability to leak from
NPs, which can lead to unspecific targeting of neighboring cells. Third,
penetration to the brain after stroke, though detectable, will likely not
be sufficient to observe any behavioral and/or functional effects. The
specificity of NP targeting should also be studied further, most im-
portantly, in in vivo settings. Further optimization of the system is re-
quired to address these issues, as well as to improve efficacy of BBB
penetration, diffusion and targeting. Most stem-cell based therapeutic
strategies to treat neurodegenerative diseases and other brain disorders
associated with neuronal injuries are focused on either direct exo-
genous transplantation of NSCs or stimulating proliferation and differ-
entiation of endogenous NSCs to generate new neurons [4]. However,
controlling the proliferation and directed differentiation of NSCs to
functional neurons able to integrate into existing neuronal networks is
extremely challenging. Furthermore, NSC-based therapeutic ap-
proaches raise the concern of stimulating carcinogenesis due to the
possible uncontrolled proliferation of NSCs. Considering that neuro-
blasts are committed neuronal progenitors with a limited proliferation
potential, targeting endogenous neuroblasts can be an ideal choice to
stimulate neuronal differentiation. We therefore will focus our further
studies to prevent uncontrolled release of the loaded drug, find optimal
concentrations, improve specificity and brain diffusion properties of
targeted NPs, and demonstrate increased neurogenesis after treatment
with neuroblast-targeting drug-loaded NPs in vivo in a rodent model of
stroke.

It should be noted that endogenous neurogenesis after stroke is ra-
ther limited [53] and is restricted to specific small regions in the brain.
However, our results and approach can be implemented in neural stem
cell transplantation studies after stroke, in this case NPs could be in-
jected together with transplanted cells to stimulate cell survival and
differentiation. We envision that the approach could also be used in
parallel with parenchymal glial cell reprogramming, where glial cells
are converted to neurons using viral vectors [54]. These treatments can
also be combined with replacing dead tissue with ECM hydrogel
[55,56].

This study opens up new avenues to target the endogenous neuro-
blasts with NPs and stimulate their intracellular pathways supporting
survival and neuronal differentiation and adult neurogenesis, which
will potentially benefit the development of new therapeutic strategies
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aiming at replacing neuronal circuitry after stroke.
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