
SUBSHIFTS WITH SPARSE TRACES
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Abstract. We study two-dimensional subshifts whose horizontal trace
(a.k.a. projective subdynamics) contains only configurations of finite
support. Our main result is a classification result for such subshifts sat-
isfying a minimality property. As corollaries, we obtain new proofs for
various known results on traces of SFTs, nilpotency, and decidability re-
sults for cellular automata and topological full groups. We also construct
various (sofic) examples illustrating the concepts.

1. Introduction

Multidimensional subshifts are Zd-actions by translations on closed sub-

spaces of ΣZd
. The best-known examples of such are subshifts of finite type

(SFTs), which are isomorphic to sets of tilings by square tiles with adja-

cency contraints. Much of the theory of multidimensional subshifts revolves

around the phenomenon that the set of tilings, while defined by finitely

many local constraints, can have complex dynamical and computational

properties [8, 41, 29, 11, 26, 16]. While two-dimensional SFTs can be highly

complex, they have severe limitations that follow trivially from their def-

inition by local rules – for example, an SFT containing a nontrivial finite

configuration1 has positive entropy.

Another popular class are the sofic shifts, images of SFTs through fac-

tor maps. These subshifts are already much more general. For example,

substitutive subshifts (satisfying some technical conditions) are sofic in two

dimensions [38], and the (horizontal) traces, i.e. sets of rows appearing in

configurations, of sofic shifts exactly coincide with the class of computable

subshifts [24, 15, 4]. The latter in particular shows that the theory of mul-

tidimensional SFTs, and especially sofics, leads quite naturally to general

computable subshifts. While not all computable subshifts are sofic, under-

standing which of them are is an active research area [20, 39], and many

simple-looking questions are open.
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1The term “finite” is used when a zero state 0 ∈ Σ is fixed, and a finite configuration

is one where all but finitely many values are 0.
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Spacetime subshifts of cellular automata are a standard class of exam-

ples of SFTs, and correspond roughly to rational deterministic directions.

Similarly as with SFTs, there is much freedom in constructing cellular au-

tomata; many properties turn out to be (algorithmically) undecidable, and

many kinds of behavior are possible for cellular automata [28, 30].

However, also limitations are known. In this paper, we concentrate on

limitations arising from having very simple horizontal traces,2 and from

various types of nilpotency. A well-known result of this type is that the

horizontal trace of an infinite SFT cannot be sparse, that is, it cannot

consist of only configurations with finitely many nonzero symbols. This is

a corollary of the full characterization of possible sofic traces of SFTs given

in [40].

Other similar results in the nilpotency framework appear in [21] and [44],

where the assumption of SFTness is in some sense replaced with determin-

ism, and the multidimensional subshift is not discussed explicitly. In [21]

it is in particular shown that on certain one-dimensional SFTs, asymptoti-

cally nilpotent cellular automata are nilpotent, and in [44] a result of similar

flavor is proved for CA on countable sofic shifts, in particular showing that

nilpotency is decidable on these subshifts.

This paper is an attempt to clarify and unify such results; our main re-

sult gives new proofs for the results of [40, 21, 44] mentioned in the previous

paragraphs.3 However, our result is much more general, in that it applies to

all subshifts with sparse traces, not only SFTs or sofic subshifts. We also

contribute two techniques that we find quite universally helpful in struc-

turing such proofs, namely restricting to an almost minimal subsystem and

studying paths drawn on configurations.

The corollaries listed above are discussed in more detail in Section 1.2.

In addition to them, we obtain for example results that apply to subshifts

where the trace is sparse in an irrational direction and some observations

about expansive directions in sparse subshifts. We also extract results for

topological full groups.

We make tiny contributions to the construction side of multidimensional

subshifts, and show that general subshifts (and already sofic shifts) with

sparse traces can be quite nontrivial. We summarize these results in Sec-

tion 1.3.

2Of course there are many other known restrictions that force subshifts and cellular
automata to behave, for example countability [5, 6], expansivity of CA [9] and algebraicity
[48].

3All three papers also contain many other results, which we do not reproduce.
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(a) A finite con-
figuration: a single
nonzero symbol.

(b) A highway: dis-
cretization of an ir-
rational line.

(c) A cluster frac-
tal: a subshift based
on Cantor’s dust.

Figure 1. Folklore examples of the three cases that can ap-
pear in Theorem 1.2. The trace of the cluster fractal given
here is not actually sparse, as we are not aware of such exam-
ples in the literature – see Section 7 for a cluster fractal with
a sparse trace.

1.1. The main theorem. In this section, we state the main structure the-

orems, and need some terminology for configurations of various forms. A

finite configuration is a configuration whose support is finite (that is, all

but finitely many cells contain the symbol 0). A highway (Definition 4.4) is

a configuration whose support consists of a single ascending path of bounded

width whose movement is guided by a uniformly recurrent sequence. Cluster

fractals (Definition 2.1) are recursively defined configurations where finite

patterns padded with zeroes (clusters) are collected into larger finite clusters

with larger and larger separation. See Figure 1 for illustrations.

When studying a minimal subshift, it is useful to express it in a substi-

tutive way, by listing its words of some length, organizing them into longer

words that occur in the subshift, each long enough to contain all previ-

ous ones, and continuing inductively. This is often formalized by Bratteli-

Vershik diagrams [23].

An almost minimal subshift (Definition 3.1) is one containing a fixed-

point for the dynamics – the constant zero configuration –, with the property

that every configuration except the fixed one generates the whole subshift.

Equivalently, in every configuration, every nonzero pattern appears at a

bounded distance from every nonzero symbol. We can give a substitutive

structure to such subshift in the following sense (proved as Theorem 5.1),

which is a one-dimensional version of our main theorem:

Theorem 1.1. Let X be any almost minimal one-dimensional subshift.

Then X is the orbit-closure of a finite configuration or a cluster fractal.
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Our main result is Theorem 1.2 below (proved as Theorem 5.3). It clas-

sifies two-dimensional subshifts that are almost minimal, and whose trace

is sparse (Definition 3.4), that is, contains only configurations with finitely

many nonzero symbols.

Theorem 1.2. Let X be any almost minimal two-dimensional subshift with

a sparse trace. Then X is the orbit-closure of a finite configuration, a high-

way, or a cluster fractal.

As a corollary, we find these kinds of configurations in all subshifts where

there is suitable directional convergence to a fixed point. The following is

our main extraction result of this type, proved as Theorem 6.1:

Theorem 1.3. Let X be any two-dimensional subshift whose trace Y sat-

isfies one of the following:

• every configuration in Y is eventually zero to the right, or

• Y is countable, and the only periodic configuration in Y is 0Z.

Then X contains a finite configuration, a highway, or a cluster fractal whose

trace is sparse.

The way we prove Theorem 1.2 is by taking an arbitrary nonzero config-

uration in the subshift X (as the orbit of any such configuration is dense in

the subshift), and attempting to build a cluster fractal structure for the con-

figuration. This process ends if the configuration is finite, or if its support

contains an infinite path. We then show that every sparse almost mini-

mal subshift where the support of some configuration contains an infinite

path in fact contains only uniformly recurrent ascending paths of uniformly

bounded width, i.e. highways, which is the most technical part of the proof.

Intuitively, once we have a configuration containing a path, we first show

that it can be made ascending, and then a bounded-width ascending path

configuration is found as follows: Since the subshift has sparse trace, there is

a global limit on the number of parallel paths one can find in a configuration.

So we take a maximal number of paths that can be laid parallel to each

other (with arbitrarily large separation) in a configuration. Then we observe

that if the width of one of these paths is not bounded, we can extract one

more path, which is a contradiction. It follows that all the paths must be

of bounded width, and we have found our path. By finding a uniformly

recurrent point in the orbit-closure of the path, we obtain a highway.

Our formalization of the notion of ‘path’ is quite explicit. Namely, we

study dynamical systems of paths as objects in their own right in Section 4,

and then study the path covers of subshifts, where paths are overlaid on



SUBSHIFTS WITH SPARSE TRACES 5

top of nonzero symbols of the configuration. This allows a relatively direct

translation of the above idea to a proof.

1.2. Corollaries. In this section, we briefly discuss four theorems from

the literature that are given new proofs in this paper using Theorem 1.2.

The first one is the following theorem of Pavlov and Schraudner [40, Theo-

rem 6.4]:

Theorem 1.4. If a Z-subshift Y has universal period and is not a finite

union of periodic configurations, then it is not the horizontal trace of any

Z2-SFT X.

Universal period means that every configuration is periodic, except pos-

sibly at a bounded number of cells. Reducing this to Theorem 1.2 is straight-

forward, but somewhat technical, and we do this in Theorem 6.6. However,

the following weaker version of Theorem 1.4 is a direct corollary of Theo-

rem 1.2:

Theorem 1.5. If a nontrivial Z-subshift Y is sparse, then it is not the

horizontal trace of any Z2-SFT X.

This follows from Theorem 1.2 by restricting to an almost minimal sub-

shift of X and observing that horizontal translates of configurations of any

of the three types in Theorem 1.2 (finite configurations, highways or cluster

fractals) can be freely glued within the SFT to obtain a non-sparse trace

(even positive entropy). This is proved as Theorem 6.4.

Nilpotency is an important notion in the theory of cellular automata,

and it is perhaps the best-known undecidable property for cellular automata

on the full shift [27, 2]. The next theorem is due to Guillon and Richard

[21, Theorem 4]. A CA is nilpotent if every configuration is mapped in

finite time to the all-zero configuration, and asymptotically nilpotent if every

configuration tends to the all-zero configuration.

Theorem 1.6. Let X be a one-dimensional transitive SFT and f : X → X

a cellular automaton. Then f is nilpotent if and only if it is asymptotically

nilpotent.

This is a direct corollary of the following, proved as Proposition 6.15,

which in turn is a direct corollary of Theorem 1.2. By a glider we mean a

non-trivial finite configuration that is shifted by some power of the cellular

automaton.
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Proposition 1.7. Let f : X → X be a cellular automaton on a one-

dimensional subshift X. If either f is asymptotically nilpotent, the limit set

of f is sparse, or the closure of the asymptotic set of f is sparse, then f has

a glider.

An asymptotically nilpotent CA on an SFT cannot have a glider, as

gluing infinitely many gliders together with bounded gaps would clearly

give a configuration that does not tend to the all-zero configuration. Thus

Theorem 1.6 follows from Proposition 1.7.

We also state two decidability results obtained by the author and coau-

thors, for which we obtain new proofs. The following is one of the main

decidability results in [44].

Theorem 1.8. If X is a one-dimensional countable sofic shift, then nilpo-

tency of cellular automata on X is decidable.

After characterizing countable sofic shifts as ones consisting of periodic

patterns and finitely many transitions between them, this theorem follows

from Proposition 1.7 by observing that the existence of gliders for a CA on

a sofic shift is semidecidable, and nilpotency is semidecidable.

Finally, we mention an observation made in [7] about the topological full

group of a full shift, which follows from Theorem 1.2, after interpreting the

topological full group of a one-dimensional subshift as a two-dimensional

subshift in a suitable way. See Theorem 6.20 for the proof.

Theorem 1.9. If X is a one-dimensional full shift, then the torsion problem

of the topological full group of X is decidable.

In higher dimensions, this problem is in general undecidable even for

finitely-generated subgroups of the topological full group [7].

1.3. Constructions. In Section 7, we give some constructions of subshifts

with sparse traces and path spaces.

To prove the theorems listed in the previous section, we only use the

first two cases of the classification result Theorem 1.2, as in all those cases

cluster fractals turn out to be impossible. However, in general cluster fractals

do exist, and in some informal sense they are the more common case, as

the other two cases are in some sense degenerate cluster fractals (finite

configurations can be seen as cluster fractals where the separation between

clusters is infinite, and infinite paths can be seen as clusters of infinite size).

We show in particular that subshifts with sparse traces generated by cluster

fractals need not contain any nonzero configurations where the diameter of



SUBSHIFTS WITH SPARSE TRACES 7

the support of every row is bounded. In fact, this fails as badly as possible,

see Example 7.1.

We also discuss the computational side of subshifts with sparse traces.

We show that a subshift where the support of every configuration is an

ascending path is Π0
1 if and only if it is sofic when the movement speed

of the path is bounded, but construct a Π0
1 non-sofic subshift with sparse

traces. (See Section 2 or [13] for definitions.)

Our main technical tool besides almost minimality are uniformly recur-

rent paths. Paths are (up to a small change in viewpoint) a standard object

in the dynamical systems literature, and can be viewed as examples of cocy-

cles [17, Definitions 2.1]. We prove a classification of minimal path spaces,

and show that there are four types of such spaces: every path is ascending,

every path is descending, every path is bounded, or no path is bounded but

some path enters the origin infinitely many times. In Section 7, we show

how to build representative examples of paths in each of these classes, and

show that the last class splits further into subclasses.

2. Definitions

See [34] for a reference on symbolic dynamics. A topologically closed

shift-invariant subset of ΣZd
is called a (Zd-)subshift, and more generally

we call expansive actions on closed subsets of Cantor space subshifts. Two

subshifts are conjugate if there is a shift-commuting homeomorphism be-

tween them. Conjugate subshifts have the same dynamical properties. Can-

tor space is metrizable, and on occasion we use a metric d on this space (the

fact d has multiple meanings should not cause confusion).

Configurations, or sometimes points, are elements of ΣZd
. A unary con-

figuration is a configuration x ∈ ΣZd
with ∀v ∈ Zd : xv = a, for some

fixed a ∈ Σ. We write this as aZ
d
. The shift or translation on ΣZd

is

σv(x)u = xu+v.

Most subshifts considered in this article contain the unary configuration

0Zd
, and are pointed, in the sense that this zero configuration 0Zd

is thought

of as being part of the structure (in particular morphisms, by default, map

the zero configuration to the zero configuration). In particular, the alphabets

of our subshifts almost always contain 0, and in almost all notions where a

‘zero symbol’ is needed, this zero symbol is 0. We write Σ = Σ+∪{0} where

Σ+ 63 0 is the set of nonzero symbols. In this article, a nontrivial subshift

is one containing at least two configurations. A finite configuration is one
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where only finitely many nonzero symbols occur. Such configurations are

also known as homoclinic.

A subshift is an SFT (subshift of finite type) if it is defined by a finite

set of forbidden patterns (in the sense that it is the largest subshift of some

full shift that misses a defining clopen set), and sofic if it is the image

of an SFT under a shift-commuting continuous function ψ. We call the

SFT preimage the cover and ψ-preimages of configurations are often called

covering configurations.

A Π0
1-subshift is a subshift X ⊂ ΣZ that is on the Π0

1 level of the

arithmetical hierarchy (equivalently the lightface Borel hierarchy). In other

words, there exists a Turing machine that outputs a sequence w1, w2, ...,

wi ∈ Σ∗, such that X is defined by forbidding the words wi. See [13].

In the study of nilpotency and pointed subshifts, two particularly im-

portant subshifts are the all-zero or trivial subshift {0Z}, and the subshift

X≤1 = O(· · · 00100 · · · ), called the sunny-side-up subshift, one-one subshift

or one-or-less subshift, consisting of two-sided sequences over a binary alpha-

bet with at most one nonzero symbol. The two-dimensional sunny-side-up

is defined similarly as the binary subshift whose configurations sum to at

most one.

A (d-dimensional) pattern is a function P : D → Σ where D = D(P ) ⊂
Zd is a (possibly infinite) subset called the domain of P . Patterns are

closely related to cylinders. If P is a pattern, we define the cylinder [P ] =

{x | x|D(P ) = P}. However, we more commonly use the terminology that a

pattern occurs or appears in a configuration, or in another pattern, and by

this we mean that a translate of the configuration is in the cylinder defined

by the pattern. We denote this by P < x. We say P occurs (or appears)

at v in x if σv(x)|D(P ) = P . This allows the use of descriptive terminology

such as ‘P occurs at a bounded distance from every occurrence of Q’. For

a subshift X we define P < X ⇐⇒ ∃x ∈ X : P < x.

In the one-dimensional case, patterns with a contiguous domain are usu-

ally called words, and the set of words occurring in a one-dimensional sub-

shift (or a configuration) is called its language.

Abusing notation, if P : D → Σ is a pattern and E ⊂ Zd, we write

P |E : E → Σ for the pattern defined by P |E(v) = P |D(v) for v ∈ D ∩ E,

P |E(v) = 0 otherwise. In particular for a pattern P : D → Σ, P |Zd is the

corresponding configuration in ΣZd
padded with zeroes. If P is a pattern,

write S(P ) ⊂ D(P ) for the support of P , that is, the set of cells in D(P )

where P has a nonzero symbol.
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Two-dimensional patterns with domain {i} × Z are called columns and

ones with domain Z×{i} are called rows. We identify rows and columns with

one-dimensional configurations in an obvious way. The (horizontal) trace of

a subshift X ⊂ ΣZ2
is the set of configurations y ∈ ΣZ such that y is a row

in a configuration of X, and the row y defined by yj = xj,i is denoted by

xi. The trace is a Z-subshift. We similarly define the vertical trace of a Z2-

subshift. We mostly stay in the two-dimensional case, but for Zd-subshifts,

by the trace we mean the one-dimensional subshift whose configurations are

seen on the first axis; in particular one-dimensional subshifts are their own

traces. On occasion, we refer to traces in other rational directions, and the

meaning should be clear (configurations seen along stripes).

The trace is not the same as the dynamical system obtained by con-

sidering a subaction by a subgroup of Z2 – the trace is a one-dimensional

subshift, thus always expansive, but subactions need not be. Note that the

trace is not a conjugacy-invariant, but most properties of the trace that are

of interest to us – for example, sparseness, boundedness, countability and

configurations being eventually zero – are.

A direction is an element v ∈ R2\{(0, 0)}, under the equivalence relation

that v and rv are considered equal for all r ∈ R+ = {r ∈ R | r > 0}. A

direction v ∈ R2 is rational if it is equal (as a direction) to a vector in Q2,

equivalently one of Z2. Note that any direction is defined by a point of the

unit circle up to translation, but a rational direction may not be equal to a

point of Q2 ∩ S1.

A cellular automaton is a shift-commuting continuous function f : X →
X on a Z-subshift X. We say f is nilpotent if ∃n ∈ N : ∀x ∈ X : fn(x) = 0Z

and asymptotically nilpotent if fn(x)→ 0Z for all x ∈ X. The limit set of f

is
⋂∞
n=0 f

n(X), and the asymptotic set is
⋃
x∈X

⋂∞
n=0

⋃
m≥n f

m(x).

The spacetime subshift of a cellular automaton f : X → X is the Z2-

subshift Y whose trace is the limit set of f , and in every configuration,4 the

(i + 1)th row is the f -image of the ith row for every i ∈ Z. A half-plane

in direction v ∈ R2 is a closed half-plane whose boundary is orthogonal to

v and whose interior contains all vectors −rv for large enough r ∈ N. A

subshift X is deterministic in direction v if, for every half-plane H ⊂ R2 in

direction v, the map x 7→ x|H∩Z2 is injective on X.

We sometimes use English words for directions: (1, 0) is right, (0, 1) is

up. With cellular automata, we also use the terminology that application

of the CA is ‘temporal movement’, and applying the shift means ‘spatial’

4Note that the trace of a cellular automaton refers to the vertical trace of the spacetime
subshift in most references, but this should not cause confusion.
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movement. In particular, spatial periodicity for x ∈ X means ∃n ∈ Z :

σn(x) = x, and temporal periodicity means fn(x) = x for some x ∈ X,n > 0.

When we say x is eventually periodic we typically refer to spatial periodicity,

and mean that x = . . . uuuvwww . . . for some words u, v, w. For such x, the

minimal choice of |v| is the preperiod of x.

On Zd, we use the metric d(u,v) = max |ui − vi| and sometimes the `2-

norm |u|2 =
√∑

u2
i . The zero-vector in every dimension is called 0. Write

Br(v) for the ball of radius r around v ∈ Zd, Br(v) = {u | d(u,v) ≤ r},
and Br = Br(0). Write Br(S) =

⋃
s∈S Br(s).

A subset S of Zd is r-connected if the undirected graph with nodes S

and edges {(u,v) | d(u,v) ≤ r} is connected. The r-components of a subset

of Zd are defined as its maximal r-connected subsets.

A pattern P is r-padded if D(P ) ⊃ Br(S(P )), that is, P contains all cells

that are at most r away from the support of P . An r-cluster is an r-padded

pattern for which

• the domain’s nonzero cells are r-connected and

• the domain’s zero cells are all at most r away from the support.

Note that a cluster is uniquely determined by its support and need not be

finite (though we mostly deal with finite clusters). In every configuration,

every nonzero cell i is in precisely one r-cluster, for every r: the r-cluster is

the r-connected component of the nonzero cells that i belongs to, r-padded

with 0-symbols.

The zero-gluing of two patterns P,Q is a pattern obtained by taking

their ‘disjoint’ union configuration, in the sense that only zero symbols may

come from both patterns. More precisely, R is a zero-gluing of P and Q if

we have D(R) = D(P ) ∪ D(Q), P |D(P )∩D(Q) = Q|D(P )∩D(Q) = 0D(P )∩D(Q),

and R|D(P ) = P and R|D(Q) = Q. We sometimes write this as R = P + Q,

and write x + y for the zero-gluing of two configurations when the full

patterns they define on Z2 can be zero-glued. For an infinite sequence of

configurations xi, we also use the notation
∑

i x
i for the limit of the finite

gluings
∑k

i=1 x
i when it exists.

A subshift allows zero-gluing if there exists r such that when P and Q are

r-padded patterns that occur in the subshift, and their zero-gluing exists,

then the zero-gluing occurs in the subshift. Note that every SFT allows zero-

gluing. Not every strongly irreducible subshift allows zero-gluing: On Z, the

even shift [34] is such an example, and in higher dimensions we can take

the subshift where every row independently contains configurations from

the even shift.
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Definition 2.1. A configuration x ∈ (Σ+ ∪ {0})Z
d

is a cluster fractal if

it is nontrivial and there is an increasing sequence r1, r2, r3, . . . of natural

numbers and for all ri a finite set Bi of finite ri-clusters such that for all i,

• each cluster in Bi+1 is obtained by zero-gluing translates of clusters

in Bi and adding the ri+1-padding,

• each cluster in Bi+1 contains a translate of every cluster in Bi,

• each cluster in Bi+1 contains at least two translates of clusters in Bi

with disjoint supports, and

• x = limj→∞ σ
vj(bj|Zd) for some sequences vj ∈ Zd, bj ∈ Bj.

3. Almost minimality and traces

A subshift is minimal if it is the orbit closure of every configuration

that it contains. Because trace sparse subshifts (see Definition 3.4) always

contain the all-zero configuration by compactness, they clearly cannot be

minimal (unless trivial). The next best thing is almost minimality – every

configuration except the all-zero configuration generates the subshift in its

orbit closure. It turns out that we can generally extract almost minimal

subshifts from our subshifts of interest.

Definition 3.1. Let X be a zero-dimensional compact metric space and let

G be a finitely-generated discrete group acting on X by a continuous map

σ : G×X → X. Then (X,G, σ) is called a G-system. The subsystem poset

S(X) of X is the poset whose elements are subsystems of X with order

Y ≤ Z ⇐⇒ Y ⊂ Z. We say X is minimal if it is an atom of this poset,

that is, S(X) = {∅, X}, and almost minimal if S(X) = {∅, Y,X} for some

one-point system Y = {y} 6= X.

The proof of the following combinatorial characterization is straightfor-

ward (also on non-abelian groups). We will use this lemma throughout the

paper, usually without specific mention.

Lemma 3.2. A subshift X ⊂ ΣZd
is almost minimal with unique subsystem

Y = {0Zd} if and only if for every pattern P ∈ ΣD with finite D ⊂ Zd such

that X ∩ [P ] 6= ∅ there exists n such that P appears at distance at most n

from every cell of the support of every configuration, i.e.

∀x ∈ X : x0 6= 0 =⇒ ∃u : |u| ≤ n ∧ σu · x ∈ [P ].

Remark 3.3. Note that in our definition a trivial system is not almost

minimal. Almost minimality is discussed in [14]. We called systems with

finite S(X) quasiminimal in [42]. Systems with a unique minimal subsystem
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are called essentially minimal [23]. Clearly almost minimal subshifts are

essentially minimal and quasiminimal, but neither essential minimality nor

quasiminimality implies almost minimality by easy examples, and essential

minimality and quasiminimality are orthogonal concepts.

Definition 3.4. A configuration x ∈ ΣZd
is k-sparse if it satisfies

|{v ∈ Zd | xv 6= 0}| ≤ k,

and sparse if it is k-sparse for some k, equivalently if its support is finite. A

subshift is k-sparse if all its configurations are k-sparse, uniformly sparse if

it is k-sparse for some k, and (nonuniformly) sparse if all its configurations

are sparse. A Zd-subshift is (nonuniformly) trace sparse if its trace is sparse,

and uniformly trace sparse if its trace is uniformly sparse. We say that a Zd-
subshift is trace countable if its trace is a countable subshift. The essential

sparseness of a sparse subshift X ⊂ ΣZd
is the minimal k such that for

some m and r, the support S of every x ∈ X contained in the union of

m many r-balls, that is, ∃n1, . . . , nk : S ⊂
⋃
iBr(ni). The essential trace

sparseness of as subshift is the essential sparseness of its trace. For any

of these properties, a configuration x ∈ ΣZd
has the property if the orbit

closure O(x) does.

A (trace) countable subshift obviously need not be (trace) sparse. A

(trace) sparse subshift need not be uniformly (trace) sparse:

Example 3.5: There is a sparse Z-subshift that is not uniformly sparse: Let

xn ∈ {0, 1}Z be the point where xni = 1 ⇐⇒ i ∈ nZ ∩ [0, n2]. Then

O({xn | n ∈ N}) is sparse, but not uniformly sparse. #

In the next sections, we give some technical tools that are helpful when

applying the main theorem outside the almost minimal trace sparse setting–

namely we give sufficient conditions that allow us to extract almost mini-

mal trace sparse subshifts from a multidimensional subshift. In Section 3.1,

we give sufficient conditions for the extractability of an almost minimal

subsystem. In Section 3.2, we show that among almost minimal subshifts,

trace sparseness is implied by various weaker properties. These conditions

are somewhat different, and the main extraction result combining them is

stated and proved in Section 3.3.

3.1. Extracting an almost minimal subsystem.

Lemma 3.6. Let X be an essentially minimal Zd-subshift containing the

point 0Zd
. Then X contains an almost minimal subsystem.
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Proof. Since {0Zd} is minimal, it is the unique minimal subsystem. If (Xi)i∈I

is a decreasing net of subshifts containing a nonzero symbol, then by the

pigeonhole principle some nonzero symbol a ∈ Σ+ occurs in these subshifts

for arbitrarily large i ∈ I, and thus for all i ∈ I. The intersection Ci =

Xi∩ [a] is a nonempty compact set for all i, and (Ci)i∈I is then a decreasing

net of nonempty closed sets. By compactness there exists x ∈
⋂
iCi ⊂ [a],

so also the intersection contains a nonzero symbol. The result follows from

Zorn’s lemma. �

A configuration x ∈ ΣZ is eventually zero to the right if xi = 0 for all

large enough i ∈ N.

Lemma 3.7. Let a subshift X ⊂ ΣZd
with trace Y satisfy one of the fol-

lowing:

• Y is countable and the only periodic point in Y is 0Z,

• every point of Y is eventually zero to the right

• the upper Banach density of nonzero symbols is 0 in every configu-

ration of Y , or

• every point of X contains arbitrarily large balls of zeroes.

Then X contains an almost minimal subsystem.

Proof. First, we show that the first three conditions imply the fourth. The

fact the second and third do is obvious. Suppose then that the first condition

holds. Every subsystem of Y is countable, and thus contains a minimal

subsystem that must be countable, thus a single periodic orbit. Applying

this to orbit closures of points, it follows that every point has 0Z in its

orbit closure, and thus contains arbitrarily long words over 0. Since Y k is

countable for all k, it also has only the periodic point (0Z)k, and we obtain

the fourth condition.

We then show the fourth condition implies X contains an almost minimal

subsystem. If Z ⊂ X is minimal, and contains a configuration with a nonzero

symbol, then that symbol appears with bounded gaps (in a syndetic subset

of coordinates) in every configuration of Z. This clearly contradicts the

last condition. It follows that if any of the four conditions holds, the only

minimal subsystem of X is {0Zd}, so we can apply the previous lemma. �

One can strengthen this lemma to saying that every nontrivial subsystem

of X with one of these properties has an almost minimal subsystem (though

it may not be the same almost minimal subsystem – consider any union of

two almost minimal subsystems sharing the fixed point).
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One can ask, then, to what extent this stronger version has a converse,

that is, if every subsystem of X has an almost minimal subsystem, which of

the conditions does it satisfy? The fourth condition is clearly also necessary:

if there is a configuration not containing a ball of zeroes of radius r, then

its orbit closure cannot be almost minimal (with fixed point 0Z2
). The first

two conditions are not necessary:

Example 3.8: There exists a subshift X ⊂ ΣZ2
which is almost minimal and

whose trace is {0Z, 1Z}. Namely, take any one-dimensional almost minimal

subshift Y (for example, a subshift generated by a finite point) and consider

the two-dimensional subshift with constant rows, and columns taken from

Y . #

Slightly more interestingly, one can also build almost minimal subshifts

where the upper Banach density of nonzero symbols is positive in every

nonzero point of the trace (see Section 7).

The first two conditions of Lemma 3.7 are not comparable for general

subshifts: The subshift that is the orbit closure of the characteristic function

of {±2i | i ∈ N} is countable, has only the periodic point 0Z, and contains

points that are not eventually zero in either direction. Conversely, for every

y ∈ {0, 1}N construct the point xy ∈ {0, 1}Z with support {−2n+1 +yn | n ∈
N}. The set of these points generates an uncountable subshift where every

point is eventually zero to the right.

3.2. Trace sparseness of almost minimal subshifts.

Lemma 3.9. Let X be an almost minimal Z2-subshift with countable trace

Y such that Y has no isolated periodic points. Then X is uniformly trace

sparse.

Proof. Let Y be the trace of X. Because Y is countable, it is not perfect, and

thus contains an isolated point y with isolating pattern w which appears in

a point of X. By the assumption, w is not all zero, since 0Z is a non-isolated

periodic point in Y . Identify w with the corresponding two-dimensional

pattern of shape |w|-by-1. By almost minimality, there is a bound C > 0

such that whenever a point x ∈ X has a nonzero symbol x(i,j) 6= 0, w

appears at x(i′,j′) ∈ Z for some d((i′, j′), (i, j)) < C. this forces the row xj′

to be a translate of y.

If z ∈ Y has a support of at least size (2C+1)2, then its support contains

positions n0, n1, ...n2C with ni+1 − ni > 2C for all i. If z is a row in x, then

at distance at most C of each of these positions ni, the isolating pattern w

appears in x, and these occurrences are in different positions. In particular
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by the pigeonhole principle, two occurrences of w are on the same row,

and thus y must be periodic, since we find two occurrences of the isolating

pattern w in it, at a nonzero offset. But then y is an isolated periodic point,

which contradicts the assumption. Thus Y must be uniformly sparse. �

Lemma 3.10. Let X be an almost minimal Z2-subshift with trace Y such

that every point of Y is eventually zero to the right. Then X is uniformly

trace sparse.

Proof. If every word w < Y can be extended to the right by a word 0ka with

a 6= 0, then clearly Y contains a configuration that is not eventually zero

to the right. Thus, there is a word w to the right of which only an infinite

word of all zeroes can occur. Such a word occurs at a bounded distance

from every nonzero symbol of every configuration of X, and we see as in

the proof of the lemma above that X is uniformly trace sparse. �

3.3. Extracting almost minimal trace sparse subsystems. The fol-

lowing lemma combines the results of the previous sections, and is our main

tool for extracting almost minimal uniformly trace sparse subsystems.

Lemma 3.11. Let a nontrivial subshift X ⊂ ΣZ2
have trace Y satisfying

one of the following:

• Y is sparse,

• Y is countable and the only periodic point in Y is 0Z, or

• every point of Y is eventually zero to the right.

Then X contains an almost minimal uniformly trace sparse subsystem.

Proof. If Y is sparse, apply any of the four items of Lemma 3.7 to ob-

tain an almost minimal subsystem Z ⊂ X, and then apply Lemma 3.9 or

Lemma 3.10 to conclude Z is uniformly trace sparse.

If Y is countable and the only periodic point is 0Z, apply item 1 of

Lemma 3.7 to obtain an almost minimal subsystem Z ⊂ X, and then apply

Lemma 3.9 to conclude that Z is uniformly trace sparse. For this, observe

that the only periodic point 0Z cannot be isolated in the trace of Z as 0Z2

is in the orbit closure of every point of Z.

If every point of Y is eventually zero to the right, apply item 2 or item

4 of Lemma 3.7 and then Lemma 3.10. �

4. Paths and path covers

4.1. Paths. Let Pathr be the space of all functions p : Z → Z such that

p(0) = 0 and |p(i + 1) − p(i)| ≤ r for all i, and Path =
⋃
r∈N Pathr. We
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give Path the product topology (making it a Cantor space) and the action

τ : Path→ Path defined by τ(p)(i) = p(i+ 1)−p(1) (which is a homeomor-

phism), which informally is the action of sliding the center of the path along

it. Let DPathr be the space of all functions p : Z → Z with p(Z) ⊂ [−r, r]
and DPath =

⋃
r∈N DPathr. We give it the product topology and the usual

shift action, also denoted σ. The two spaces are conjugate by the discrete

derivative φ : Path → DPath defined by φ(p)(i) = p(i + 1) − p(i). By de-

fault, if neither DPath or Path is explicitly mentioned, the term path refers

to elements of Path.

As a dynamical system, DPath is just a direct union of full shifts, and

Path is then also conjugate to such a union. As the name implies, we think

of an element of Path as a two-way infinite path in Z, and DPath is the

sequence of moves that it follows.

All of the following definitions will apply to both kinds of paths, in the

sense that if we have defined a property P for elements of Path we will say

a path p ∈ DPath has property P if φ−1(p) has property P, and vice versa.

An ascending path is a path p ∈ DPath such that for some m ∈ N,∑j+m
i=j p(i) > 0 for all j, and symmetrically, we define descending paths. A

path p ∈ Path is bounded-to-one if for some m ∈ N, |p−1(n)| ≤ m for all

n ∈ Z. A finite-to-one path is a path p ∈ Path with p−1(n) finite for all

n ∈ Z, and otherwise p is infinite-to-one. A bounded path is a path p ∈ Path

with p(Z) contained in some [−m,m]. A set of paths X ⊂ DPath is uniformly

ascending (resp. descending, bounded-to-one, bounded) if every path in X

has the property, and the constant m can be chosen independently of the

path. In the case of ascending paths, we call this the ascension constant.

Uniform recurrence and minimality, for paths and systems of paths, mean

the usual dynamical notions, and in DPath have the same interpretations as

the usual ones for subshifts. Note that an ascending path can be recurrent,

since recurrence means recurrence of the sequence of moves, not the sequence

of cells the path visits.

In the two-dimensional case, we define analogous systems Path2 and

DPath2 of paths p : Z → Z2. For such paths, we define ascending and

descending paths differently: to a path p : Z → Z2, we associate its height

path p′ : Z → Z by forgetting the first coordinate of p(n) for all n. An

ascending path p : Z → Z2 is one where the height path p′ : Z → Z is

ascending, and descending paths are defined symmetrically.

A (Σ-)colored path is p : Z → Z × Σ or p : Z → Z2 × Σ for a finite set

of colors Σ. We write PathΣ and Path2
Σ for the spaces of Σ-colored path.
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All notions defined above generalize in an obvious way to colored paths (for

spatial definitions that refer to the movement of the path in space, we forget

the colors, and for dynamical definitions, we include them).

Especially in informal geometric explanations, we will also discuss a more

general class of (finite or infinite) paths, which need not go through the

origin. These are simply functions p : I → Z or p : I → Z2 where I ⊂ Z is

a (possibly one- or two-way infinite) interval, and we have some bound on

|p(i + 1) − p(i)|. We use the term geometric path to clarify when we mean

such paths, and obvious analogs of the definitions apply. A subpath is just

a restriction of a geometric path to a smaller interval.

We give a classification theorem for minimal path spaces.

Theorem 4.1. Let X ⊂ Pathr be a minimal path space. Then exactly one

of the following holds:

• X is uniformly ascending,

• X is uniformly descending,

• X is uniformly bounded, or

• every path in X is unbounded, and some path in X is infinite-to-one.

Proof. A word w < X is a cut path if whenever p ∈ X, p[0,|w|−1] = w, we

have pj /∈ [0, r − 1] for all j /∈ [0, |w| − 1]. It is easy to verify that if X has

a cut path, then we have one of three cases: One possibility is that in every

point, to the right of every cut path, the path stays above the origin, and

stays below it on the left side, in which case by the syndeticity of w (by

minimality) every point is ascending. Symmetrically, if every path is above

the origin on the left and below it on the right, every path is descending. In

the remaining case, there is a cut path that forces the rest of the path to

stay below or above it. This is easily seen to contradict minimality.

Suppose then that X does not contain a cut path. Then it is easy to

construct a path that is infinite-to-one: start with an arbitrary finite path

w1. Since it is not a cut path, we can continue it to a longer path w2 that

re-enters [0, r − 1]. Continuing inductively, in the limit we obtain a path

that enters one of the coordinates in [0, r − 1] infinitely many times. Thus,

we are in the third or the fourth case. What remains is to show that if not

every path in X is bounded, then every path in X is unbounded. This holds

since the set of paths not bounded by m is open and X is minimal. �

Path spaces of the last type are not encountered in the proofs of our

main results, but it is perhaps the most interesting case, and it splits into

further subtypes. The present classification is enough for our purposes, but
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for the interested reader, we give some examples of the different possible

types of class four minimal path spaces in Section 7.

We need the following generalization in the proof of Proposition 6.13.

The proof is exactly the same.5

Theorem 4.2. Let R ⊂ [−r, r] be a finite set of real numbers and let X ⊂
RZ be a minimal subshift. Define

Y = {f : Z→ R | f(0) = 0 ∧ ∃x ∈ X : ∀i : f(i+ 1) = f(i) + xn}.

Then with the obvious definitions, exactly one of the following holds:

• every path in Y is uniformly ascending,

• every path in Y is uniformly descending,

• every path in Y is uniformly bounded, or

• every path in Y is unbounded, and some path p ∈ Y satisfies pi ∈
[0, r] for infinitely many i.

4.2. Path covers. The (acyclic) r-path cover of a subshift X ⊂ ΣZd
is the

subshift PCr(X) ⊂ X× ({#}∪ [−r, r]d)Zd
of configurations (x, y) such that

yu 6= # =⇒ xu 6= 0 ∧ yu+yu 6= #

for all u ∈ Zd, such that in the directed graph G(y) with nodes {u | yu 6= #}
and edges {(u,u + v) | v 6= 0, yu = v, yu+v 6= #}, every node has in-degree

at most one (the out-degree is automatically also at most one), and there are

no cycles. In G(y), every node is part of a unique maximal (finite, one-way

infinite or two-way infinite) path. If (x, y) ∈ PCr(X) is such that 0 ∈ G(y),

the path through the origin 0 is two-way infinite and all nodes of G(y)

are on this path, then (x, y) is a marked path configuration, and we write

MPCr(X) for the set of such configurations, which is a compact (possibly

empty) space.

Lemma 4.3. Let X ⊂ ΣZd
be a subshift. If r is such that for every n, X

has a configuration whose support contains an r-component of size at least

n, then MPCr(X) is nonempty.

Proof. Suppose that X has, for all n, some configuration x whose support

has an r-component of size at least n. Then there are arbitrarily long dis-

tances between cells in the arbitrarily large components, so consider an

r-path of minimal length between two cells at distance at least 2n+ 1 along

the support of x, and construct a pair (x, y) ∈ PCr(X) where a path be-

tween them is drawn on the y-component. Translating such pairs so that

5Note that the possible finite sequences of moves still form a discrete set, even though
paths themselves may explore a dense set of positions.



SUBSHIFTS WITH SPARSE TRACES 19

the middle of the path is at the origin, we obtain configurations in PCr(X)

where the maximal path through 0 is of length at least n in both directions.

Any limit point of such pairs as n→∞ gives a point of MPCr(X). �

See Section 7.2 for an example of such a path extraction.

Let us now concentrate on the case d = 2. The importance of the space

MPCr(X) is that it inherits the dynamics of Path2 in an obvious way, the

action of n ∈ Z following the path written on the second component for

n steps. More precisely, if (x, y) ∈ MPCr(X) and y0 = v, define τ(x, y) =

σv(x, y), so that (MPCr(X), τ) becomes a Z-system.

Definition 4.4. An r-road (configuration) x is one whose support, up to

translation, is the range of a two-way infinite ascending r-path p : Z→ Z2.

If we can choose p so that the corresponding colored path q defined by

q(i) = (p(i), xp(i)) is uniformly recurrent, then we call the configuration x

an r-highway. An r-preroad (resp. r-prehighway) configuration is one whose

support contains a translated image of an infinite ascending (resp. ascending

and uniformly recurrent) r-path.

The essential trace sparseness of a road configuration is 1, and the es-

sential trace sparseness of a preroad is at least 1, but need not be finite.

Note that r-prehighways do not, in the general case, have anything to do

with paths – the all-1 point is an r-prehighway for every r.

Lemma 4.5. Let X be a trace sparse Z2-subshift. If MPCr(X) is nonempty,

then X contains an r-preroad.

Proof. Take any minimal subsystem of MPCr(X) in the Z-action τ and a

point (x, y) in it. Then the support of y is the range of a uniformly recurrent

path p ∈ Path2. It follows from Theorem 4.1 that p is either ascending,

descending or not finite-to-one. The last case is impossible because X is

trace sparse. If the path is descending, its reversal is ascending, so in both

of the other two cases we obtain that the support of x contains the range

of an infinite ascending path. �

We also need the following simple observations.

Lemma 4.6. Let x ∈ ΣZ2
be a preroad and p : Z → Z2 an ascending path

whose range is contained in the support of x. If the support of x is contained

in Bm(p(Z)) for some m ∈ N, then x is a road.

Proof. Suppose xv 6= 0 =⇒ ∃n : |p(n) − v| ≤ m. Let a = |[−m,m]2|
and construct a path q as follows: Let n ∈ Z and enumerate all cells in
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the support of x at distance at most m from p(n) as v0,v1, . . . ,v`−1, where

` ≤ a. Define q(na + j) = vj for all j ∈ [0, ` − 1] and q(na + j) = v1

for j ∈ [`, a − 1]. Clearly the support of x is precisely the range of q, and

the path q is clearly ascending since p is (though possibly with different

ascension constant). �

Lemma 4.7. Let X ⊂ ΣZ2
be almost minimal and x ∈ X be a road. Then

x is a highway.

Proof. Shift x suitably to obtain an ascending path p ∈ Path2 with p(0) = 0

whose range is equal to the support of x. Let p′ be the corresponding colored

path p′(i) = (p(i), xp(i)). Take a uniformly recurrent path q in the orbit

closure of p′ in Path2
Σ. Then q is obtained by taking a limit of some sequence

of translates of p′, say q = limj τ
mj(p′). Define y ∈ ΣZ2

by yv = a if

q(n) = (v, a) for some n ∈ Z, a ∈ Σ, and yv = 0 otherwise.

We show that y is well-defined and is in the orbit closure of x. The

obvious sequence of shifts of x to choose is the one defining q: we show

y = limj σ
p(mj)(x). It is easy to see that if q(m) = (~v, a) for some m, then

limj σ
p(mj)(x)~v = a (even without using the fact p is ascending). Suppose

then that the range of the q(m) (ignoring the colors) does not contain ~v.

Then we claim limσp(mj)(x)~v = 0.

To see this, it is helpful to introduce the following auxiliary definition:

say a path q : Z→ Z2 is uniformly coarsely proper if

∀m ∈ N : ∃n ∈ N : ∀i ∈ Z : ∀k ≥ n : |q(i+ k)− q(i)| ≥ m.

It is not difficult to show that every ascending path is uniformly coarsely

proper. This property implies that σp
′(mj)(x)~v 6= 0 holds if and only if p(mj+

k) = p(mj) + ~v for k ∈ C, where C ⊂ Z2 is a finite set depending only on

~v. Thus if σp
′(mj)(x)~v 6= 0, then because the limit q = limj τ

mj(p′) exists, we

have q(k) = (~v, a) for some a 6= 0, contradicting the assumption that the

range of q does not contain ~v.

Since q is uniformly recurrent, y is a highway. By almost minimality y

contains the same patterns as x. It follows that also x must be a highway:

every finite pattern in x is traced by a subpath of q (up to translation), and

thus we see (with the same argument as above) that the support of x is the

range of a colored path in the orbit closure of q. �

Note that the paths p, p′ need not be uniformly recurrent. It is always

possible to parametrize the range of a uniformly recurrent path in a non-

recurrent way, for example for a uniformly recurrent injective p ∈ Path2

consider q(n) = p(n− 1) for n ≥ 1, q(n) = p(n) otherwise and observe that
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the zero vector appears in the derivative φ(q) only at the origin so q is not

uniformly recurrent. The lemma states that there is always automatically

also a uniformly recurrent parametrization (for q, one such parametrization

is p).

5. The main theorem

In this section, we prove our main theorem, the characterization of al-

most minimal trace sparse subshifts. Before this, as a warm-up, we give a

characterization of one-dimensional almost minimal subshifts.

Theorem 5.1. Let a subshift X ⊂ ΣZ be almost minimal and nontrivial.

Then exactly one of the following holds:

• X is the orbit closure of a finite point, or

• X is the orbit closure of a cluster fractal.

Proof. Fix a nonzero point x ∈ X with support S ⊂ Z. If the language

of x does not contain arbitrarily long words of the form 0n, then the orbit

closure does not contain 0Z, contradicting almost minimality. It follows that

for every r ∈ N, there exists n ∈ N such that for all i ∈ Z the r-connected

component of i in S is of diameter at most n. Collecting the subwords of

x corresponding to these connected components, we obtain a set of finite

r-clusters, which must be finite, since the clusters are words of length at

most n+ 2r.

Now, we start building a cluster fractal structure for x. Let r1 ∈ N be

arbitrary, and let B1 be the finite collection of clusters obtained across all

i ∈ S as in the previous paragraph. If x is not a finite point, then |i− j| can

be arbitrarily large for i, j ∈ S. From this, it follows that for large enough

r, there is an r-cluster b whose support is strictly larger than that of any of

the clusters in B1. By picking r large enough, this is true for all r-clusters,

because b appears at a bounded distance from every nonzero symbol by

almost minimality. By increasing r yet more, every cluster in B1 appears

as a subpattern of every r-cluster. Pick r2 � r1 with these properties, and

define B2 as the set of r2-clusters.

Continuing inductively, we obtain that x is a cluster fractal. �

Lemma 5.2. Let X ⊂ ΣZ2
be the orbit closure of a nontrivial finite con-

figuration (highway, or a cluster fractal, respectively). Then X is almost

minimal, and every nonzero configuration in X is a finite configuration

(highway or cluster fractal, respectively). The three categories of nontrivial

configurations (finite, highway, cluster fractal) are disjoint.
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Proof. The fact a configuration cannot be of two different categories is ob-

vious: only highways and cluster fractals can have infinite support, and only

highways have infinite r-clusters for finite r.

In the case of finite configurations, it is obvious that the orbit closure

is almost minimal and contains only finite configurations and the trivial

configuration.

For highways x, let P be a nonzero pattern in x with a connected domain.

Pick an arbitrary nonzero cell v in P and follow the colored path p giving

the support of x forward and backward from the cell v for t steps, to obtain

some finite subpath q of p of length 2t+1 in the support of x. Similarly as in

the proof of Lemma 4.7, we see that because the support of x is the range of

p and p is ascending, there is a function f of the size of the domain D(P ) of

P such that if t > f(|D(P )|) then q visits all cells in the support of P and p

can never again visit the domain D(P ). Since p is uniformly recurrent, the

subpath q is traced every m steps for some m, so in particular P occurs at

a bounded distance from every cell in the support of x, and thus the same

is true for its orbit closure X. With similar reasoning, we see that every

configuration in the orbit closure of x is a highway (and the path proving

this is in the orbit closure of the path of x, under the τ action).

For cluster fractals, let X be the orbit closure of cluster fractal x ∈ X
let Bi be the sets of ri-clusters as in the definition. Let P be a nonzero

pattern in x, and let i be such that ri is larger than the diameter of the

domain of P . Then P is contained in a single ri-cluster B ∈ Bi in x. Now,

let y be any point in X and v any nonzero cell in y, i.e. yv 6= 0. Since y

is in the orbit closure of x, it is also a limit of clusters, and thus v must

be contained in the support of a translate of some ri+1-cluster. This cluster

B′ ∈ Bi+1 contains a copy of B, and thus the pattern P . We have shown that

an arbitrary nonzero pattern P appears at a bounded distance from every

vector in the support of y, which implies almost minimality by Lemma 3.2.

The same reasoning shows that y has a cluster fractal structure, with the

same clusters as x. �

Theorem 5.3. Let X be an almost minimal and trace sparse Z2-subshift.

Then exactly one of the following holds:

• X is the orbit closure of a finite configuration,

• X is the orbit closure of a highway, or

• X is the orbit closure of a cluster fractal.

Proof. By the previous lemma, X ⊂ ΣZ2
cannot be the orbit closure of two

of these types of configurations. An almost minimal trace sparse subshift
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is uniformly trace sparse by Lemma 3.10. Suppose the trace is k-sparse.

By the assumption of almost minimality, we only have to find a point of

one of these types in X. We begin with exactly the same argumentation

as in Theorem 5.1. Take a point x ∈ X and start building a cluster fractal

structure for it by increasing r, collecting the r-clusters that occur in x, and

iterating.

If we can continue this for an infinite number of steps, and at each step

we obtain finitely many clusters up to translation, which each contain at

least two clusters of the previous size, we get in the limit that X is the

orbit-closure of a cluster fractal (the fact that all Bi+1-clusters contain all

Bi-clusters is automatic if we increase r fast enough, again due to almost

minimality). This process can stop for two reasons. First, it can stop because

Bi is a singleton, and all ri+1 > ri only give padded versions of the cluster

in Bi. In this case, x is a finite configuration. In the other case, x either

contains infinitely many r-clusters which are not equal up to translation, or

we have a single infinite r-cluster in x, for some r. In particular, supports

of configurations of X contain arbitrarily large r-components for some r.

By Lemma 4.3, X then contains a preroad configuration. In the rest of the

proof we show that if this occurs, then X is the orbit closure of a highway.

Define the set Ym ⊂ (ΣZ2
)m as the set of m-tuples of configurations

such that for any n, the size (2n + 1) × (2n + 1) central patterns of those

configurations can be found in the same 2n+1 rows of a configuration of X,

separated by at least distance 3n (but allowing said configuration to contain

more nonzero symbols on those rows, and anything outside these m many

((2n+ 1)× (2n+ 1))-rectangles). More precisely,

(x1, . . . , xm) ∈ Ym ⇐⇒ ∀n : ∃x ∈ X : ∃n1, . . . , nm ∈ Z : ∀i 6= j :

|ni − nj| ≥ 3n ∧ σ(ni,0)(x)[−n,n]2 = (xi)[−n,n]2

Note that every Ym is closed under simultaneous translation in all coordi-

nates σv(x1, . . . , xm) = (σv(x1), . . . , σv(xm)). It is also closed under horizon-

tal translation of any individual component: (x1, . . . , xi, . . . xm) ∈ Ym =⇒
(x1, . . . , σ(j,0)(xi), . . . xm) ∈ Ym.

What we have shown is that in Y1 = X, for some r we find an r-preroad

configuration. Let m be maximal such that in Ym we find an m-tuple

(x1, . . . , xm) of r-preroad configurations.6 We have m ≤ rk, since the as-

cending paths through the supports of the xi all go through one of the rows

0, 1, . . . , r − 1. Now, for each i ∈ [1,m], fix an ascending geometric r-path

6The r must be the same, but the ascension constants of the paths can a priori be
different.
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pi : Z→ Z2 whose image is contained in the support of xi. The path pi visits

one of the rows 0, 1, ..., r− 1 and Ym is closed under horizontal translations,

so we may assume pi(0) ∈ [0, r − 1]2.7 If every nonzero symbol in xi is at

most a bounded distance away from the range of pi, then xi is a road by

Lemma 4.6, and we can find a highway in its orbit closure, finishing the

proof.

Suppose then that xi is not a road for some i, and let x = xi and p = pi.

We refer to p as the central path. We claim that m is not maximal. Namely,

let ` ∈ N, take a finite geometric subpath q of length ` in p, and let Q be

the corresponding pattern. Take h such that a translate of Q appears in

the h-ball around every cell in the support of every configuration in X (by

almost minimality). Now, take a cell v in the support of x that is at distance

at least `+ r`+ h from the central path p. Then a translate of Q occurs in

x in the h-ball around v, and thus every coordinate of the translate of Q is

at distance at least ` from the path p.

Now, we are in the following situation: The pattern Q appears in x

in some position (am+1, b), and on a nearby row in x, there is a nonzero

coordinate (ai, b) + ri that lies on the central path, where ri ∈ [−r, r]2

(because the path is ascending, and thus visits a syndetic set of rows), and

|ai − am+1| ≥ `. Similarly, the paths pj in the other points xj visit some

coordinates (aj, b) + rj where rj ∈ [−r, r]2.

By translating (x1, . . . , xm) by σ(ai,b)+ri , and taking ` large enough, for

any `′ ∈ N we may assume that a translate of Q occurs in the support of

x at distance at least `′ from the origin, visiting some cell v`
′

on one of the

rows 0, 1, . . . , r − 1 and extending at least `′ steps both below and above

row zero (this is because as ` → ∞, since p is ascending, eventually any

finite subpath of length ` extends `′ steps vertically), and the central path p

goes through the origin of x. By applying the horizontal translations σ(aj ,0)

to the jth component for all j 6= i, we may assume the path pj in xj, for all

j ∈ [1,m], visits one of the coordinates in [−r, r]2.

It follows that for every `′ we can find a tuple (y1, . . . , ym) ∈ Ym where

each yj contains a path that visits one of the cells in [−r, r]2, and in yi, a

finite ascending path extends `′ rows upward and downward from some cell

v`
′

arbitrarily far from the origin, but at vertical distance at most r from

row zero. As `′ →∞, we then find in the limit a tuple (z1, . . . , zm+1) ∈ Ym+1

where all of the zi are preroads. This is a contradiction with the maximality

of m, and thus x must have been a road. By Lemma 4.7, x is a highway. �

7One could make the pi into actual paths in Pathr by recoding.
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Finite configurations and highways (even roads) of course always have

essential trace sparseness one, so the theorem says that in these two cases,

up to conjugacy trace sparseness implies even uniform trace 1-sparseness.

Cluster fractals on the other hand essential trace sparseness any finite num-

ber even in the trace sparse case, see Section 7.

6. Corollaries

In this section, we give a list of corollaries of Theorem 5.3. The most

general extraction theorem obtained from Theorem 5.3 and Lemma 3.11 is

the following, which we mentioned in the introduction.

Theorem 6.1. Let X be any two-dimensional subshift whose trace Y sat-

isfies one of the following:

• Y is sparse,

• every configuration in Y is eventually zero to the right, or

• Y is countable and the only periodic configuration in Y is 0Z.

Then X contains a finite point, a highway, or a (trace sparse) cluster fractal.

Proof. In any of the three cases, Lemma 3.11 applies and we find an almost

minimal trace sparse subsystem. The result follows from Theorem 5.3. �

6.1. SFTs, sofics and zero-gluing.

Proposition 6.2. Let X be a nontrivial trace sparse Z2-subshift such that

for some r, in the supports of all configurations of X all r-components are

infinite. Then X contains a highway.

Proof. If X is trace sparse, then it contains an almost minimal trace sparse

nontrivial subsystem by Lemma 3.7. Let Y be an almost minimal subshift

of X. Then Y is the orbit closure of a finite configuration, a highway or a

cluster fractal by Theorem 5.3. Only highways have an infinite r-component

for some r. �

Proposition 6.3. No trace sparse nontrivial Z2-subshift allows zero-gluing.

Proof. As above, in all three cases of the classification theorem, applied to

an almost minimal subsystem Y of X, we can use zero-gluing to show that

the trace is not sparse: For finite and highway configurations, simply glue

them to their horizontal translates. For cluster fractals, take an ri-cluster

for ri larger than the gluing radius, and the cluster must extend to a finite

point because we can legally zero-glue it to the all-zero point. �

Theorem 6.4. No nontrivial two-dimensional SFT is trace sparse.
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Proof. SFTs allow zero-gluing, so this follows from Proposition 6.3. �

Proposition 6.5. Let X be a nontrivial two-dimensional sofic shift with

SFT cover Y such that the only preimage of 0Z2
is 0Z2

. Then X does not

have a sparse trace.

Proof. Since all preimages of a large ball of zeroes in the covering map

necessarily have a large ball of zeroes as their central pattern, such a sofic

shift allows zero-gluing. �

General sofic shifts can have sparse traces. See Section 7.

A Z-subshift has universal period n (n ∈ N, n ≥ 1) if there exists a

bound M ∈ N such that for every point x ∈ X there is a finite set Fx ⊂ Z
of coordinates with |Fx| ≤ M and a periodic point y ∈ X with σn(y) = y

such that x|Z\Fx = y|Z\Fx . We say it has universal period if it has universal

period n for some n. (see Definition 4.3 in [40])

The following is Theorem 6.4 in [40], and it is the non-implementability

part of their characterization of zero-entropy sofic traces of two-dimensional

subshifts of finite type.

Theorem 6.6. If a Z-subshift Y has a universal period and is not a finite

union of periodic points, then it is not the trace of any Z2-SFT X.

Proof. Suppose Y is the trace of a Z2-SFT X. Consider the blocking of the

subshiftX, defined as the subshift with spaceX and Z2-dynamics γ(a,b)(x) =

σ(na,b)(x). Picking n to be the universal period of Y , this turns Y into a finite

disjoint union of sparse subshifts Y1, ..., Ym with their own zero symbols.

Since there is a uniform bound on the number of coordinates where a point

y ∈ Y can differ from a unary point, we may assume that the zero symbol

of Yi cannot appear in Yj for j 6= i.

Thus, we may assume that X is an SFT whose trace has universal period

1, and is a finite disjoint union of sparse subshifts Y1, ..., Ym with the above

disjointness property on their designated zero-symbols. Let Z = ψ(X) be

a factor of X in the factor map ψ that maps all the distinct zero symbols

(of the subshifts Yi) on every row of x ∈ X to the same symbol 0. We may

assume ψ is a symbol map. Note that no non-unary row is mapped to 0Z.

Now, Z is clearly trace sparse and nontrivial, so by Lemma 3.7, it contains

an almost minimal subsystem W .

By Theorem 5.3, W contains either a finite configuration, a highway

configuration or a cluster fractal. If z ∈ W ⊂ Z is finite or a highway,

and x ∈ X is a covering configuration for z, then clearly the zero-gluing
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i∈Z σ

(ik,0)(z) is in Z: we can in a natural way “glue” the preimage x of z

together with its large enough shifts, since on each row the same preimage

of the zero-symbol (i.e. ψ-preimage of 0) must be used on the left and right

side of the support of z, by the assumption of a universal period, and the fact

that supports of rows of finite configurations and highways have uniformly

bounded diameter. But this clearly contradicts the assumption that X has

universal period 1.

If z is a cluster fractal, then pick any ψ-preimage x ∈ X and some r-

cluster b in z with r larger than the maximal size of a forbidden pattern of

the SFT X. In x, replace every cell outside the support of b that is not one

of the zero symbols with the zero-symbol used on that row of x to obtain a

configuration x′ ∈ X, where all but finitely many of its rows are periodic.

If ψ(x′) = z′, then as in the previous paragraph
∑

i∈Z σ
(ik,0)(z′) ∈ Z for any

large enough k, and the corresponding gluing on the side of X proves X

does not have universal period 1. �

More generally, we obtain that there are singly periodic points in all

SFTs whose traces are countable sofic shifts. A language L ⊂ Σ∗ is bounded

if it is contained in the language w∗1w
∗
2 · · ·w∗` for some words w1, w2, ..., w`,

where w∗ = {ε, w, ww,w3, w4, ...}. We say a Z-subshift Y is bounded if its

language is bounded. In [43] it is shown that all countable sofic shifts are

bounded. A singly periodic configuration is a configuration with a nontrivial

period whose orbit in the shift action is infinite. The following proposition

should be constrasted with [5, Theorem 3.11], where it is shown that all

countably infinite two-dimensional SFTs contain a singly periodic point.

A configuration x ∈ ΣZ2
is (totally) periodic if {u ∈ Z2 | σu(x) = x}

spans R2 as an R-vector space, equivalently the orbit in the shift-action is

finite. We say a point x ∈ ΣZ2
is asymptotic to a periodic point if there

exists a totally periodic y ∈ ΣZ2
such that xv = yv for all but finitely many

v. We say x is strictly asymptotic to a periodic point if it is asymptotic to

a periodic point but is not periodic. The following lemma is easy to prove.

Lemma 6.7. Suppose X ⊂ ΣZ2
is an SFT containing a point that is strictly

asymptotic to a periodic point. Then the trace of X is uncountable.

Proposition 6.8. If X ⊂ ΣZ2
is an SFT whose trace is a bounded infinite

subshift, then it contains a singly periodic point.

Proof. Suppose X is an SFT whose trace is a bounded infinite subshift, and

suppose it contains no singly periodic point. We begin by showing that X

contains only finitely many points which have a horizontal period. The trace
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of X contains only finitely many periodic points. Considering the periodic

rows as a finite alphabet, the set of points with all rows periodic is an SFT

under the vertical action. If this one-dimensional SFT were infinite, it would

contain an eventually periodic aperiodic point, giving a singly periodic point

in X. Thus this one-dimensional SFT is finite, implying that indeed there

are only finitely many points with a horizontal period.

Let now n be such that every point with some horizontal period has

horizontal and vertical period dividing n, and suppose that X is defined

by forbidden patterns of size at most n-by-n. Suppose 0 /∈ Σ and consider

the subshift Z obtained from X as the image of the factor map f : X →
(Σ ∪ {0})Z2

defined by f(x)v = 0 if xv+(a,b) = xv+(a+n,b) = xv+(a,b+n) =

xv+(a+n,b+n) for all 0 ≤ a, b < n, and f(x)v = xv otherwise. The trace of Z

is then sparse by the assumption that X has bounded trace. On the other

hand, since the trace of X is infinite, the trace of Z is not {0Z}. We get

from Theorem 6.1 that Z contains a nontrivial finite point, a highway or a

cluster fractal.

If Z contains a highway z, then from a covering configuration of z in X,

we obtain a singly periodic point in X by the pigeonhole principle. To see

this, observe that there is a bound on the diameter of the support of a row

of z (by the definition of a highway). If x is any preimage configuration of z,

then by the definition of the factor map, any n-tuple of consecutive rows of

x is eventually periodic when seen as a one-dimensional configuration, with

eventual periods (dividing) n in the left and right tails, and with a central

(non-repeating) pattern of bounded diameter. In particular, the same n-

tuple of rows must appear twice, up to translation. From such a repetition,

it is easy to build a singly periodic configuration.

If z is a nontrivial finite configuration, we can find a covering configura-

tion x ∈ X of the following form: for some m, xv = xv+(n,0) = xv+(0,n) =

xv+(n,n) for all |v| ≥ m, but x is not periodic. But then x is strictly asymp-

totic to a periodic point, a contradiction with Lemma 6.7.

Now, let z be a cluster fractal in Z and let x ∈ X be a covering config-

uration. We claim that it is enough to show that around any 1-component

of the support of z (note that for the definition of 1-components we use the

king grid, that is, the graph whose path metric is the `∞-metric d), we can

draw a path along zeroes around it with movements in cardinal directions

only. More precisely, that we can find a simple cycle p in the standard grid

(Z2, {(u, v) | |u1 − v1| + |u2 − v2| = 1}) whose interior (as a Jordan curve)

contains the component, and zp(i) = 0 for all i.
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To see that this suffices, once we have such a path, by the assumption

on the factor map and on n, throughout this cycle, we see a horizontal

and vertical period of n in x, meaning that the unique point y in X with

horizontal and vertical period n that agrees with x in some 2n-by-2n square

with bottom left corner on the path p agrees with x in all the 2n-by-2n

blocks on the path p. If b is the cluster corresponding to the component,

then by the assumption that its support is contained in the interior of p, we

can ignore the configuration outside b, and continue the period to obtain a

point strictly asymptotic to the periodic point y, which is a contradiction

by Lemma 6.7.

For the existence of the path, consider the family of counterclockwise

cycles in the standard grid, whose interior contains the support of b and

which do not visit b. One such Jordan curve exists because b is finite, and

thus there exists such a curve p of minimal area. A simple case analysis

shows that every cell p(i) is in the king grid neighborhood of the support

of b, or we could decrease the area of the curve by cycling around more

internal nodes. It follows that zp(i) = 0 for all i, since b is a 1-cluster.8 �

Of course this implies also that two-dimensional SFTs with bounded

trace contain doubly periodic points, but this has an easier direct proof by

passing to a minimal subsystem.

6.2. Subshifts with deterministic or expansive directions. SFTness

can often be replaced by determinism. The main thing we need is that if v

is a deterministic direction, then a half-plane in direction9 v containing only

0s (or other doubly periodic content), can only be continued periodically. If

there is a configuration x ∈ X where two extensions exist for a half-plane

with doubly periodic content, we say something appears from nothing. The

vertical deterministic directions are {r(0, 1), r(0,−1) | r ∈ R+}.

Proposition 6.9. If X ⊂ ΣZ2
is a subshift with a vertical deterministic

direction whose trace is a bounded infinite subshift, then it contains a singly

periodic point.

Proof. Suppose X is deterministic upward.

8For a more rigorous proof, one needs that the two sides of a curve are really on
different sides, so that always we have an internal side to decrease in area (and that we
have a notion of area at all). The polygon version of the Jordan curve theorem suffices
for this [49, Lemma 1].

9Recall that by this we mean that the boundary is perpendicular to v – we think of
the half-plane as moving in direction v and eating up the configuration.
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The first two paragraphs of the proof of the previous proposition go

through with minor modifications, in the first observing that a one-dimensional

subshift with a deterministic direction is a finite SFT,10 and in the second

picking n to be the radius of the local rule of upward determinism instead

of the SFT window. Let Z be as in that proof.

Let now x ∈ X be a covering configuration of a highway configuration z ∈
Z. Determinism means that a lower half-plane containing half of the path

will have a unique extension to a configuration of X. Since the determinism

is given by a local rule, in fact a finite number ` of rows already determines

the next row upward. Since every `-tuple of consecutive rows of x (seen

as a one-dimensional configuration) is eventually periodic with uniformly

bounded preperiod (by the definition of a highway, and the definition of the

factor Z), there are, up to shifting, only finitely many `-tuples of consecutive

rows. It follows from the pigeonhole principle that the direction of the path

is rational, and thus x is singly periodic.

There cannot be any finite configurations in Z because otherwise some-

thing appears from nothing in X. Similar reasoning applies to cluster frac-

tals: in the orbit closure of a cluster fractal, for any direction v ∈ R2 \ {0}
(in particular for v = (0, 1)) one can find a half-plane in direction v of all

zeroes whose boundary contains a nonzero symbol, and again something

appears from nothing in X. �

When the deterministic direction is not vertical, X need not contain a

singly periodic point. See Example 7.6 in Section 7. However, we will show

next that in the trace sparse case, any direction of determinism implies the

existence of a singly periodic point. A much studied concept in multidimen-

sional dynamics are the directions of expansivity [10], a concept similar to

determinism. We say v ∈ R2 \ {0} is an expansive direction11 if, defining

Lv,r = Rv +Br(0) ⊂ R2, we have

∃ε > 0 : ∃r > 0 : (∀u ∈ Lv,r ∩ Z2 : d(σu(x), σu(y)) < ε) =⇒ x = y.

Determinism and expansivity are connected by the following well-known

lemma.

10A one-dimensional subshift with a deterministic direction is finite, because any as-
ymptotic pair would contradict determinism and such pairs exist if the subshift is infinite
[12]. It is well-known that a finite subshift is an SFT.

11Of course, a more natural way to define directional expansivity is to talk about
expansive subspaces of R2, but for the purpose of our discussion, we find directions
notationally easier.
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Lemma 6.10. Let X be a two-dimensional subshift. Then v is an expansive

direction for X if and only if both of the directions orthogonal to v are

deterministic.

Proof. Let D be the set of deterministic directions, and E the set of expan-

sive ones (which is of course symmetric). We will show v /∈ D =⇒ (vT /∈
E ∧ −vT /∈ E) and v /∈ E =⇒ (vT /∈ D ∨ −vT /∈ D), from which the

lemma follows easily.

If v is a direction of nondeterminism, then we have two points x, y that

agree on a v-directional half-plane, but not everywhere, and then thick strips

around the boundary of this half-plane imply the directions orthogonal to

v are non-expansive. Conversely, if v is a direction of nonexpansivity, then

we have arbitrarily thick strips Lv,r that extend in two ways in at least one

of the directions. Translating this difference to the origin, in the limit as

r → ∞ we obtain two points that agree on a half-plane in one of the two

directions orthogonal to v, but not everywhere. �

In [10], Z2-subshifts with arbitrary closed sets of nonexpansive directions

are constructed, the only exception being a single irrational nonexpansive

direction, which was left open. Since the orbit closure of a drawing of a

rational line in direction v will have v as the unique nonexpansive direction,

the obvious way to try to solve this is a single irrational line. The next result,

Proposition 6.13, shows that such an idea cannot work. See [25] for a correct

implementation of a unique nonexpansive irrational direction.

We need the following well-known fact, which can be shown analogously

as the closedness of nonexpansive directions in [10].

Lemma 6.11. Let X ⊂ ΣZ2
be a subshift. Then the set of nondeterministic

directions (scaled onto the unit circle) is closed in the unit circle.

Lemma 6.12. If a subshift X ⊂ ΣZ2
is nontrivial, almost minimal and

trace sparse, and has a direction of determinism, then it is the orbit clo-

sure of a singly periodic point, and its set of nondeterministic directions is

{rv′,−rv′ | r ∈ R+} for some v′ ∈ Z2.

Proof. Again since X has a deterministic direction, it has a rational de-

terministic direction v by the previous lemma. It cannot contain a finite

configuration or a cluster fractal since something cannot appear from noth-

ing, and thus must consist of r-highways for some fixed r. Let H be a

half-plane in direction v whose boundary is at the origin. Now, consider a

minimal subsystem Y of MPCr(X). To each path p : Z→ Z2 corresponding
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to a point in Y , associate the sequence of dot products n 7→ 〈p(n),v〉. This

sequence measures how far the path is from the boundary of H.

Since the paths are uniformly recurrent, it follows from Theorem 4.2

that either some path enters some strip around the boundary of H infinitely

many times, or every path deviates from the boundary with some uniformly

lower bounded velocity (in the sense that the sequence of dot products is

an ascending path).

First, suppose some path visits some strip around the boundary of H in-

finitely many times. Then it is easy to find a configuration where something

appears from nothing, by looking at the times when the path is maximally

far from the boundary in the direction −v. Thus, this case is impossible.

Suppose then that n 7→ 〈p(n),v〉 is a uniformly ascending for every

path p corresponding to a point in MPCr(X), that is, there exist t′,m such

that if p is any such path and p(t) is in the inner m-border of H, i.e.

p(t) ∈ A = (∂H +Bm(0)) ∩H then for all t′′ /∈ [t− t′, t+ t′], p(t′′) /∈ A.

Now, observe that the border of any translate of H is periodic, in the

sense that for any u ∈ R2 the characteristic function of (u+RvT+Bm/2(0))∩
Z2 is in the orbit of one of finitely many singly periodic configurations in

{0, 1}Z2
, and uniform ascension of paths implies that there are only finitely

many distinct configurations that can be seen on the border of H. From

determinism in direction v it follows that every path is periodic, and almost

minimality then implies that the subshift is the orbit closure of a singly

periodic point, which is a drawing of a colored path on Z2 with periodic

movement. Pick v′ orthogonal to the asymptotic direction of that path. �

By extracting an almost minimal subsystem and applying the previous

lemma, we obtain the following.

Proposition 6.13. If a subshift X ⊂ ΣZ2
is nontrivial and trace sparse

and has a direction of determinism, then it contains a singly periodic point,

and thus has a rational nondeterministic direction.

6.3. Cellular automata. Surjective cellular automata are essentially just

subshifts with a rational deterministic direction, and thus it is clear that we

obtain corollaries for cellular automata.

The main technical tool used in [45] is the Starfleet Lemma for cellular

automata on countable sofic shifts, which states that, starting from any

configuration, a ‘fleet of spaceships’ appears infinitely often, in the same

configuration. This result shows that all cellular automata on countable

sofic shifts at least occasionally behave like counter machines. We do not
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state this result precisely, but we reproduce one of the main corollaries

obtained from it in [45], namely the decidability of the nilpotency problem.

More precisely, let X ⊂ ΣZ be a countable sofic shift. A cellular au-

tomaton f : X → X is nilpotent if for some n ∈ N, fn(x) = 0Z for all

x ∈ X. A spaceship for f is a non-periodic eventually periodic configuration

x = ∞uvw∞ such that fn(x) = σm(x) for some m ∈ Z, n ≥ 1. If u,w ∈ 0∗,

then x is called a glider.

Theorem 6.14. Let X be a bounded one-dimensional subshift and f : X →
X a cellular automaton. Then either there exists k such that fk(X) is spa-

tially periodic, or there exists a spaceship for f . In particular, nilpotency is

decidable for cellular automata on countable sofic shifts.

Proof. If fk(X) is not finite for any k, then the horizontal trace of the

spacetime subshift of f is infinite, since the intersection of infinite subshifts

cannot be finite. By Proposition 6.9, the spacetime subshift contains a singly

periodic point. Such a configuration corresponds precisely to a spaceship for

f . The decidability of nilpotency follows because both “∃k : |fk(X)| <∞”

and “x is a spaceship for f” are semidecidable on sofic shifts, and in the

former case we can easily check nilpotency, while the latter implies non-

nilpotency. �

Proposition 6.15. Let X ⊂ ΣZ be any one-dimensional subshift, and let

f : X → X be a CA such that either f is asymptotically nilpotent or the

limit set of f contains only configurations that are eventually zero to the

right. Then f is either nilpotent or has a glider.

Proof. If f is asymptotically nilpotent, then consider its spacetime subshift

Y where f is run to the right, so that rows are eventually zero to the right. By

Lemma 3.11 we can extract an almost minimal trace sparse subshift Z from

Y . Then Z is a trace sparse almost minimal subshift with a deterministic

direction, and thus contains a singly periodic point, which corresponds to a

glider. The proof in the case of a limit set with all configurations eventually

zero to the right is the same, but using a vertical deterministic direction. �

We can also obtain the following proposition. We note that this is stronger

than the previous proposition in the sense that even on full shifts, there are

cellular automata such that the closure of their asymptotic set is a proper

subshift of their limit set.

Proposition 6.16. Let X ⊂ ΣZ be any subshift, and let f : X → X be a CA

such that the closure of the asymptotic set of f contains only configurations
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that are eventually zero to the right. Then f is either nilpotent or has a

glider.

Proof. If the asymptotic set of f contains only the all-zero point, then f is

asymptotically nilpotent, and the claim follows from the previous theorem.

Otherwise, the closure Z of the asymptotic set of f is a subshift on which f is

surjective and that contains at least one nonzero point. Then the spacetime

subshift of f where the horizontal traces are restricted to be in Z is a two-

dimensional nonzero subshift where every row is eventually zero to the right,

and the claim follows as in the previous theorem. �

In the case where X is an SFT, we of course cannot have any such gliders

in the nilpotent case, and we obtain the following theorem (which is also

proved in [21]).

Theorem 6.17. Let X be a one-dimensional SFT and f : X → X a cellular

automaton. Then f is nilpotent if one (equivalently all) of the following

holds:

• f has a sparse limit set,

• f has a sparse asymptotic set,

• f is asymptotically nilpotent, or

• the (one- or two-sided) vertical trace subshift of f is sparse.

Here, the two-sided vertical trace subshift of f is the vertical trace of the

spacetime subshift of f , and the one-sided vertical trace is {y ∈ ΣN | ∃x ∈
X : ∀i : yi = f i(x)0}.

6.4. Irrational sparseness. Since Theorem 1.2 applies to any almost min-

imal subshift, it in particular applies to almost minimal binary subshifts

that are coding some property of points in another system. We show one

application of this observation, namely that in Theorem 1.2 it is enough to

assume sparseness in any (possibly irrational) direction.12

If v ∈ R2 \ {(0, 0)} is a direction and X a subshift, we say x ∈ X is a

road in direction v if the support of x is the range of a path p : Z→ Z2 such

that the sequence of dot products n 7→ 〈p(n),v〉 : Z → R is a uniformly

ascending path. It is a highway in direction v if additionally the colored

path q defined by q(i) = (p(i), xp(i)) is uniformly recurrent.

12We have to repeat some (easy) arguments in the last paragraphs of the proof to refine
an infinite x into a cluster fractal or a highway in direction vT , but we nevertheless see
this as a direct application of Theorem 1.2 since even before this refinement, we see that
x behaves roughly like a cluster fractal or a highway.
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Proposition 6.18. Let X be a Z2-subshift and let L = Rv be a line with

arbitrary slope. Suppose that for some r > 0, the strip u + L + Br(0) in x

contains finitely many nonzero symbols for every u ∈ R2 and every x ∈ X.

Then X contains a finite configuration, a cluster fractal or a highway in

direction vT .

Proof. Let v be the unit vector giving the slope of L. Let R = ([0, 1)v ×
[0, 1)vT , i.e. the half-open rectangle with corner at (0, 0) and with (included)

sides v and vT . Now, to a configuration x ∈ X whose support is S ⊂ Z2, to

every w ∈ R2, associate the binary configuration ψw(x) ∈ {0, 1}Z2
defined

by

ψw(x)u = 0 iff S ∩ (w + u1v + u2v
T +R) = ∅.

Observe that each ψw is continuous (though (x,w) 7→ ψw(x) is not contin-

uous in w), and denote ψ(x) = ψ0(x).

Intuitively, ψ(x) is a coding of a rotated version of x. Observe that by

continuity of ψ, ψ(X) is closed. It is not necessarily shift-invariant, instead

if w ∈ R we have

ψw(σt(x)) = σ(m,n)(ψu(x))

where u ∈ R, m,n ∈ Z and w + t = u + mv + nvT . Let Y be the subshift

generated by the points ψ(x), and observe that the assumption implies that

Y is trace sparse, thus by Theorem 6.1 contains a point y which is finite,

a highway or a cluster fractal by Theorem 6.1. It follows from the formula

above that y = limi ψwi
(xi) for some vectors wi ∈ R and xi ∈ X, where we

may assume convergence wi → w and xi → x by compactness.

While we do not claim ψw(x) = y, the only possible issues are with

nonzero symbols moving to adjacent cells in the limit. Thus is y is finite, it

is clear that x is finite. If y is a highway, then it is clear that x is at least a

road in direction vT . By passing to an almost minimal subsystem, we find

a highway in direction vT by the same proof as that of Lemma 4.7.

If y is a cluster fractal, then it is not clear that x is a cluster fractal,

but it is clear that the support of x has a similar fractal structure: for all r,

the r-clusters are of bounded size (thus there are finitely many of them up

to translation), but the support is infinite. By the last item of Lemma 3.7,

the orbit closure of x contains an almost minimal subsystem, and it is not

difficult to show that any nonzero point in this subsystem must be a cluster

fractal by repeating the initial steps of Theorem 5.3. �

6.5. Topological full groups. The topological full group of a subshift X

is the group G of homeomorphisms h : X → X such that for some cocycle
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c : G × X → Z, c(h, x) = n =⇒ h · x = σn(x) and c is continuous in its

right argument [19]. Such a c is a cocycle in the sense of cohomology, that

is, c(g ◦ h, x) = c(h, x) + c(g, h(x)).

Lemma 6.19. Let g be an element of the topological full group G of a

subshift X ⊂ ΣZ with cocycle c. If g has infinite order, then there is a point

x ∈ X and k ≥ 1 such that n 7→ c(gkn, x) is increasing or decreasing.

Proof. Take the Z2-subshift Y where rows are unary and columns are con-

figurations of X. For x ∈ X, write x̄ for the unique configuration of Y with

central column x. Add another layer on top of Y , where in cell v ∈ Z2 of

x̄ ∈ Y , we write the vector (1, c(g, σv2(x))). To see that this gives a sub-

shift, observe that by continuity c(g, σv2(x)) is determined by σv2(x)|F for

a finite F ⊂ Z, thus by x|v2+F in a shift-invariant way, thus (1, c(g, σv2(x̄)))

is determined by the values in x̄|v+{0}×F in a shift-invariant way (since rows

are constant). Call the resulting subshift Z.

Now, the function n 7→ c(gkn, x) tells us the vertical movement of a

path in a configuration of Z, when we interpret it as a graph G(Y ) by

following the vectors written on the second layer as in Section 4.2. This

correspondence follows from the cocycle formula: If x̄v = (1, c(g, σv2(x))) =

(1, n) then g·σv2(x) = σv2+n(x). The arrow at x̄v points to the cell v+(1, n),

which corresponds to the central coordinate of σv2+n(x).

If a path visits the same row twice, then its movement is periodic. Be-

cause g is of infinite order, we must find paths that do not revisit any cell

in arbitrarily many steps, meaning that the corresponding drawn path does

not visit the same row twice.

Now, consider a subshift W ⊂ Z × {0, 1}Z2
where we allow coloring

exactly one of the paths in Z with 1s. Forbid, in W , revisits of the colored

path to the same row. By the assumption of the previous paragraph W

still contains configurations with a colored path. Now, consider a factor of

W where the Z-component is removed. This subshift is trace sparse, and

thus contains an almost minimal subshift, which must consist of a single

uniformly ascending or descending path. By looking at the corresponding

Y -configuration, the claim is proved. �

We obtain another proof of a result of [7]. The torsion problem of a

recursively presented group G is the problem of, given g ∈ G, determining

whether the order of g is finite. The topological full group of a full shift

(more generally any Π0
1 subshift) has an obvious recursive presentation by

local rules, see [7].
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Theorem 6.20. If X ⊂ ΣZ is a full shift, then the torsion problem of the

topological full group of X is decidable.

Proof. Clearly the torsion problem is semidecidable. On the other hand, if g

has infinite order, then let c be as above. By the previous lemma there is a

point x ∈ X and k ≥ 1 such that n 7→ c(gkn, x) is increasing or decreasing.

By the pigeonhole principle, we can find such periodic x. By changing a

single coordinate in the tail of x that g does not see, we find a spatially

eventually periodic but non-periodic configuration that g shifts periodically

in one direction. This is clearly semidecidable. �

The above theorem is false in two dimensions [7], even for finitely-

generated subgroups.

7. Examples

In this section, we give some examples of almost minimal and sparse

subshifts, to illustrate to what extent the various assumptions are needed

in Theorem 1.2, and in particular show what kind of behaviors can happen

in sofic shifts. We construct these examples using existing constructions of

sofic shifts as black-boxes. In particular we use the result of Mozes [38]

that fixed-point subshifts of many substitutions (in particular rectangular

deterministic ones) are sofic, and the result of various authors that traces of

vertically constant sofics can be arbitrary computable subshifts [24, 15, 4].

We also give some examples of path spaces.

We note that many examples of subshifts (in particular sofic shifts and

SFTs) with bounded traces are constructed in [44, 46], and bounded sub-

shifts can be turned into sparse ones by blocking and factoring (see the

proof of Theorem 6.6). The proof of Lemma 6.19 shows that every element

of a topological full group of a one-dimensional subshift gives an example

of a trace sparse two-dimensional subshift.

7.1. Subshifts. The following is our first example of a trace sparse cluster

fractal, and thus shows that in Theorem 1.2, the case of cluster fractals must

indeed be included. Less trivially, it also shows that while essential trace

sparseness is always 1 in the cases of finite configurations and path config-

urations, the essential trace sparseness of an almost minimal trace sparse

subshift can in general be arbitrarily large and can match the sparseness

constant.
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Example 7.1: For every k, there exists an almost minimal two-dimensional

sofic subshift X ⊂ {0, 1}Z2
with k-sparse trace such that every nonzero

configuration has essential trace sparseness k.

See Figure 2 for a typical pattern in the subshift we construct.

Proof. For k = 1, the 2-dimensional sunny-side-up subshift has the property.

Let k ≥ 2. We inductively construct k patterns Pi,1, . . . , Pi,k of shape

[0,mi− 1]2 such that the bottom row of each contains exactly one 1, which

is at the bottom left corner: (Pi,j)0,0 = 1. The patterns also satisfy that if

j 6= j′ then the only row that is nonzero in both Pi,j and Pi,j′ is row 0 and

that no row of Pi,j contains more than k nonzero symbols. Furthermore,

each of the patterns Pi,j has at least one row with k nonzero symbols that

are pairwise separated by at least distance mi−1.

Pick as the patterns P1,j the following matrices (using P0,j′ = 1 for all

j′), and observe that the assumptions are then satisfied for i = 1. Now, for

j ∈ {1, . . . , k}, build Pi+1,j from the patterns Pi,1, . . . , Pi,k as follows. First,

set mi+1 = (k+1)mi, so that [0,mi+1−1]2 partitions into a (k+1)× (k+1)

grid of translates of the squares [0,mi − 1]2. If i ≥ 1, we define

Pi+1,j =



0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0
0 Pi,1 Pi,2 · · · Pi,k
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0
Pi,j 0 0 · · · 0



as the block matrix where the slice 0 Pi,1 Pi,2 · · · Pi,k appears on the jth

row from the bottom. It is easy to see that the induction hypothesis is

satisfied. Observe that this is simply a (k + 1)-by-(k + 1) substitution over

an alphabet of size k + 1.

Define X as the limit of the patterns Pi,1. More precisely, take the sub-

shift containing those configurations x such that for all finite D ⊂ Z2, x|D
is a subpattern of Pi,1 for some i. Since every nonzero pattern occurring in

X occurs in one of the patterns Pi,1 by definition, we can conclude that its

trace is k-sparse (by the inductive assumption).
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Now we prove13 almost minimality. Obviously the all-zero point is in

the subshift. We next note that every mi-by-mi block (not necessarily (0

mod mi)-aligned) that appears in some Pi′,1 is actually contained already in

Pi+2,1. This follows from the fact that all (0 mod mi)-aligned 2mi-by-2mi

blocks in Pi+3,1 already appear in Pi+2,1, which is clear from drawing the

support of Pi+3,1. If a (0 mod mi)-aligned 2mi-by-2mi subpattern Q in X

has a nonzero cell, then since every configuration consists of a (0 mod mi)-

aligned grid of empty blocks and Pi,j-blocks for varying j, Q contains some

pattern Pi,j′ entirely. It follows that it contains every pattern Pi−1,j′′ for

j′′ ∈ {1, 2, ..., k}, thus every mi−3-by-mi−3 block that appears in X by the

previous argument.

The previous argument also shows that, for every i, every configura-

tion contains a row with k ones with pairwise distances at least mi−1, at a

bounded distance from every nonzero symbol. Since mi−1 →∞, the subshift

has essential trace sparseness k.

Finally, we observe that X is sofic by Mozes’ theorem [38], since it is

defined by a deterministic primitive substitution. �

With modest additional effort, one sees that the subshift constructed in

the example will have essential trace sparseness k even if seen through an

arbitrary conjugacy.

Figure 2. The pattern P5,1 for k = 2 in Example 7.1 (top
third cut off).

13This mimics the standard argument for the minimality of a primitive (uniform) one-
dimensional substitution [33, Proposition 4.15] and only needs the “almost primitivity”
of the substitution. The number 3 in “mi−3-by-mi−3” in the proof plays the role of the
usual “delay until small patterns that eventually appear start appearing”.
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There are certainly sparse subshifts that are not almost minimal. Thus

the assumption of almost minimality is necessary in Theorem 5.3. The as-

sumption of trace sparseness is also necessary:

Example 7.2: There is an almost minimal binary sofic Z2-subshift where

the connected component of every 1 is infinite, but which does not contain

a highway in any direction.

Proof. Consider the constant-3-by-3 substitution τ over the alphabet A =

{ , } defined by 7→ and by mapping into the unary pattern over

. Define a two-dimensional subshift in the same fashion as in the previ-

ous example, by allowing only patterns found in τn(a) for some a ∈ A and

n ∈ N. The almost minimality of the resulting subshift can be shown as

in the previous example. See Figure 3 for a typical pattern in this subshift

(omitting the grid around white cells). Connected components are infinite

by a direct induction. There are many ways to see there are no highways,

a direct one being that because τn( ) contains the central vertical and hor-

izontal lines, for any direction w ∈ S1, the support of τn( ) contains u,v

with d(u,v) ≥ 3n−1 and u− v + s is parallel to w for some |s| ≤ 1. �

Figure 3. A pattern from the almost minimal subshift of
Example 7.2.

By varying the substitution, it is even possible to make nonzero symbols

appear with positive density in every nonzero configuration (showing that

almost minimal subshifts can support nontrivial shift-invariant probability

measures):
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Example 7.3: We give a one-dimensional example. For n ∈ N define the

substitution τn(0) = 02n and τn(1) = 12n−10. Consider wk = τ2(· · · τk(1) · · · ).
This word is of length

∏k
i=2 2i and the number of 1-symbols in it is

∏k
i=2(2i−

1), so the density of nonzero symbols in it is

k∏
i=2

(1− 1/2i) ≥ 1−
k∑
i=2

1/2i > 1/2.

Moreover, if ` ≥ k, every nonzero symbol occurring in w` is contained in a

copy of wk, and thus the ball of radius |wk| around it has nonzero symbols

with upper Banach density at least 1/4. Defining X to be the subshift whose

allowed words are the subwords of the words wk, we obtain a subshift where

every point containing a nonzero symbol contains nonzero symbols with

upper Banach density at least 1/4. #

An SFT containing a road must contain a periodic road by the pigeonhole

principle. We now show that sofic shifts can consist of computationally

complex ascending paths.

Proposition 7.4. Let X be a two-dimensional Π0
1-subshift where every

nonzero configuration is an r-road with uniform ascension constant. Then

X is sofic.

Proof. Let {0} ∪ Σ+ be the alphabet of X. Let r be such that the support

of every nonzero configuration is up to translation the range of an r-path

with ascension constant m (so starting from v, the path stays above v after

m steps). Let n = rm.

Let Y be a one-dimensional Π0
1-subshift over the alphabet D = {#} ∪

([−n, n]×[1, n]×({0}∪Σ+)[−n,n]2). (We will later explain how to pick Y as a

function of X to prove soficity of X.) From any such a subshift, we construct

a Z2-subshift where the points of Y give directions for an ascending path,

as follows. Let Z be the two-dimensional subshift over D where all rows are

constant and columns are points of Y . On every non-# row i, if the number

in the [1, n]-component is a, then call i + a the successor row of row i. We

require that Y satisfies the SFT constraints guaranteeing that the successor

of every non-# row in a Z-configuration is non-#, the rows between a row

and its successor contain only #, and that every row has a predecessor.

Thus, the [1, n]-components describe a vertical (strictly) ascending path on

the configuration starting from any non-# cell.

Now, we add a binary layer where on each row not containing #, at

most one cell contains 1, and rows containing # are all-0. In other words,

we overlay the sunny-side-up X≤1 on the non-#-rows. Call cells containing 1
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on this layer marked cells. If on the Z-layer the ([−n, n]× [1, n])-component

contains u at v, then v + u is called the successor of the cell v. We require

that v is marked if and only if its successor is marked.

At this point, we have a subshift with at most one single ascending

n-path on the binary layer, which must travel according to the guiding

sequence of directions given on the Z-layer. Now, consider the factor map

φ defined as follows: If v contains 1 on the binary layer, then write the

support of the pattern in the ({0} ∪ Σ+)[−n,n]2-component around v. Write

0 in every remaining cell. We require that Y is such that this factor map is

well-defined (this is another SFT constraint). We obtain a subshift W that

has as a factor a subshift over the alphabet ({0} ∪ Σ+) where the support

of every configuration is the range of a 3n-path, whose movement is guided

by Y .

Now, observe that for every effective subshift Y satisfying the SFT con-

straints, the subshift W constructed above is a sofic shift. For this, simply

observe that Z is sofic by [24, 15, 4], and that checking that every row

contains at most one binary symbol is doable since X≤1 is a sofic shift. Of

course, then also φ(W ) is sofic.

Finally, we need to show that some Π0
1-subshift Y yields φ(W ) = X. For

this, simply define Y as the Π0
1-subshift where for every forbidden pattern

of X we forbid every set of directions that would yield a forbidden pattern

of X in the φ-image. Then φ(W ) ⊂ X because any forbidden pattern would

have been traced by a path, guided by a word w of Y and then w would

have been forbidden in Y . On the other hand, for any configuration x of X,

one can easily find an n-path through the configuration and construct the

corresponding ({0}∪Σ+)[−n,n]2-patterns, to obtain a legal guiding sequence

in Y . �

It is easy to construct minimal Π0
1 path spaces without a well-defined

linear direction, and thus we obtain the following corollary.

Example 7.5: There exists a two-dimensional sofic shift X and Y whose

configurations are r-roads with uniform ascension rate, and

• the roads in X are not periodic and their support does not fit inside

any strip of the form L+Br(0) where L is a straight line

• the supports of roads of Y each fit inside some straight strip L +

Br(0), but L cannot be taken to be rational.

#
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With a similar idea, we also obtain an example of a sofic shift with a

bounded trace, and with only four nondeterministic directions, two of which

are irrational:

Example 7.6: Let Y be a Sturmian subshift (with any computable irrational

angle). Let Z be the two-dimensional sofic shift where each row is constant,

and columns are points of Y . Construct W ⊂ Z × {0, 1}Z2
similarly as in

Proposition 7.4: allow at most one 1 on each row, and if (y, z) ∈ Z and

zv = 1, require zv+(yv,1) = 1 and that either zv+(0,−1) = 1 or zv+(−1,0) = 1.

See Figure 4.

Now, we claim that the nondeterministic directions are precisely the

vertical ones and the ones orthogonal to the irrational slope.14 First, both

of them are easily seen to be nondeterministic, since in the vertical directions

it is impossible to know the continuation of the Y -component in general,

and in a direction orthogonal to the path (as it appears in configurations), it

is impossible to know whether the continuation of the half-plane eventually

hits the path.

In half-planes of any other slope, we see the color of every column, and

thus the contents of the half-plane determines the Y -component. If the

path visits the half-plane, we can uniquely fill its trajectory based on the

Y -component, and every path that fits in a strip L + Br(0) where L is a

straight line visits every half-plane not parallel to L. #

If we project away the guiding rows Y , it is tempting to think that the

only nondeterministic directions are the ones parallel to the irrational line,

but this is not the case. If the guiding rows are removed, Z becomes sparse,

so if it had a deterministic direction then it would have a singly periodic

point by Proposition 6.13, so in fact every direction becomes nondetermin-

istic and nonexpansive when the guiding rows are removed. Subshifts with

a single irrational nonexpansive direction are not easy to construct, though

this can also be done. This is proved in [25] for general subshifts, and [51,

Theorem 53] gives SFT implementations for all effective angles.

We do not believe it is essential that the paths be ascending in Propo-

sition 7.4, as every row carries little enough information (the finitely many

bounded offsets of finitely many paths) that it can be carried on each row.

However, adapting the proof of the theorem above to this general case seems

14We refer to the slope as it appears graphically. This is also the slope of the unique
path drawn in Z if angle is interpreted suitably: if Y is the orbit closure of a mechanical
word (see [35]) of slope α ∈ (0, 1), then the path will always stay at a bounded distance
form some translate of the line R(α, 1).
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1
1

1
1

1
1
1

1
1

1

Figure 4. A configuration of the subshift X in Example 7.6.
Gray cells denote 1s of the Y -component, 1s denote the 1s of
the second component.

to require additional tricks, if it is possible at all, and perhaps one would

need a radically different idea.

Conjecture 7.7. If X is a uniformly trace sparse two-dimensional Π0
1-

subshift where the support of every nontrivial configuration is the range of

an r-path up to translation, then X is sofic.

We also show that sparseness and computability alone are not enough

to guarantee soficness, by a slight adaptation of the well-known15 mirror

subshift.

Proposition 7.8. There exists a trace 1-sparse non-sofic two-dimensional

Π0
1-subshift.

Proof. We construct such a binary subshift. First, forbid every configuration

where the set of rows containing a nonzero symbol intersects every residue

class modulo 3, and every configuration where some row contains two ones.

If two rows whose distance is not divisible by 3 contain 1 at coordinates

(n1,m1) and (n2,m2), respectively, and m2 − m1 ≡ 1 mod 3, then require

that n1 < n2 and that if |n1 − n2| = m for some m then there exist two

infinite vertical (necessarily nonoverlapping) strips of width at most m/4

containing the support of the configuration, and that both of these strips

contain a nonzero symbol on exactly every third row. Finally, require that

for every pair of adjacent nonzero rows, the horizontal distance between the

15See e.g. [50, Figure 1.5], [31, Example 2.4], [3] or [47].
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nonzero symbols on them is the same. This is by definition a 1-sparse Π0
1

subshift (as we explained how to recognize its forbidden patterns).

This subshift is non-sofic by a variant of the usual exchange argument

for non-soficity of subshifts (see e.g. [18, Theorem 7.5] or [36]), which we

outline: A typical configuration contains, for some m, a ‘left path’ and a

‘right path’ (with upward jumps of length 3 and horizontal jumps of length

at most m/4) which stay at distance m from each other. Consider a 2m-

by-m rectangle for large m and consider all possible left paths traveling

upward from the coordinate (0, 0) (bottom left corner) on the left. For each

of these paths put the corresponding right paths on the right half of the

rectangle (starting from (m, 1)) to obtain Θ(bm
4
cbm/3c−1) legal patterns in

the subshift. Since there are superexponentially many pairs in m, picking

preimages for all of them in a purported SFT cover of window size k, for

large m two of the preimages have the same symbols on the thickness k

border of the left half, and thus we obtain a preimage for a configuration

where the leftmost paths of two of these patterns are locally exchanged. But

clearly this always yields a forbidden pattern since the separation m for the

left and right path is established by the appearance of (0, 0) and (m, 1) in

the patterns, and thus the rightmost path forces a unique leftmost path.

This proves non-soficity. �

With a slightly more elaborate construction, one can find even a 1-sparse

non-sofic Π0
1-subshift where every configuration is either finite or an infinite

ascending path (though of course they are not all r-paths for any fixed r):

pick a slowly-growing recursive function g : N → N with g(n) → ∞ and

additionally require that if there are two 1s at distance at most g(n) from

each other, then the two-columns property of the subshift holds with respect

to some m ≤ n.

7.2. Path covers. We give an example of extraction of highways through

path covers.

Example 7.9: A digital approximation scheme for integral circles is one that

produces subsets of Z2 as approximations to real Euclidean circles with

integer centers and integer radii. A standard scheme is the following: to get

the approximation of a circle in the octant between angles π/2 and π/4 (in

the standard orientation of the complex plane C or the unit circle), for each

horizontal coordinate m we include the point (m,n) where n is chosen so

that the distance to the corresponding octant of the real circle is minimal
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along the vertical line through (m,n) ∈ Z2. Since

√
r2 −m2 = n+

1

2
=⇒ r2 −m2 = n2 + n+

1

4
,

the real circle cannot go through (m,n+ 1/2), and thus the approximation

is unique. The rest of the points are produced by dihedral symmetry. This

is the scheme produced by the Bresenham circle-drawing algorithm and the

midpoint circle algorithm [22].

Say x ∈ {0, 1}Z2
is a circle configuration if there exists a circle with

center in Z2 and integral radii, such that xv = 1 if and only if the digi-

tal approximation for the circle contains v. Let X be the smallest subshift

containing every circle configuration, call this the circle subshift. Since dis-

cretizations of circles can have arbitrarily large support in configurations of

X, Lemma 4.3 shows that MPC1(C) is nonempty.

The proof of Lemma 4.3 in the case of X is illustrated in Figure 5. Say

the parameters of a circle are the vector (a, b, c) ∈ Z2×N, where (a, b) is the

center and c the radius. The subfigures show a series of configurations with

circle approximations, whose radius increases. The circles are positioned so

that they always contains the coordinate (0, 0) and their precise parameters

are given in the captions, with

P = {(a− 1, a, r) | a = −br/
√

2c,∃n ∈ N : r2 = 2n2 − n+ 1, r ≥ 373}.

Suppose P is infinite, so the radii of the circles keep increasing. Then, by

tracing finite paths partially around the circles as shown in the figure, we

obtain configurations of PC1(X) with longer and longer paths through the

origin. These paths necessarily get arbitrarily long as the radius grows. In

any limit point one can trace a bi-infinite path, thus some configuration of

MPC1(X).

It follows from [32] (see also [37] and OEIS sequence A055979 [1]) that the

set P is indeed infinite, and a direct computation shows that each circle con-

figuration with parameters in P contains the “spike” {(0, 0), (0, 1), (−1, 1)}.
It is then not hard to show that the limit configuration exists and is a sin-

gle path eventually periodic in both directions. In other words, there is a

unique limit configuration, which is just the obvious continuation of the last

subfigure of Figure 5.

The path drawn on the support is obviously ascending, so x is a preroad.

We obtain that it is a road by applying Lemma 4.6 (somewhat trivially):

the support is contained in the ball of radius 1 from the range of the path,

and we can insert the missing cell (0, 1) into it. This is the first subfigure
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(a) (−3,−2, 4) (b) (−8,−7, 11)

(c) (−95,−94, 134) (d) (a, b, c) ∈ P

Figure 5. Illustration of how to obtain that PC1(X) of the
circle subshift contains a configuration with an infinite path.

of Figure 6. In Figure 6, we illustrate how to find a highway in the orbit

closure of x, similarly as in the proof16 of Lemma 4.7. #

7.3. Paths. In Theorem 4.1, we showed that there are four kinds of minimal

path spaces. It is easy to find examples of the first three cases. Path spaces

X where all paths are bounded can be found by taking a minimal subshift

Y with alphabet contained in Z, and taking the paths of X to be the

discrete derivatives (differences between consecutive cells) of points of Y .17

Ascending path spaces can be constructed by summing points of minimal

subshifts with alphabet contained in Z where the sum of every long enough

word is positive, and descending path spaces can be found by inverting

ascending paths.

16The statement of Lemma 4.7 is morally stronger: if we assume the orbit closure
of x is almost minimal, and x is a road, then x is already a highway itself. The proof
is the same in both cases: we follow the τ -translates of the path with translates of the
configuration.

17Such paths are known as coboundaries.
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(a) x and p (b) στ(p)(x) and τ(p)

(c) στ
5(p)(x) and τ5(p) (d) limn σ

τn(p)(x) and limn τ
n(p)

Figure 6. The path illustrating 1-roadness of x with a path
p whose range is the support of x, and some shifts of x along
the τ -orbit of p.

The fourth case, where every path is unbounded-to-one and some path

is infinite-to-one was not really needed in our characterizations, as we have

concentrated on trace sparse spaces. However, this case is quite interesting,

and we show by examples that it splits into three subtypes.18 In the rest

of this section, we give representatives of each of these subtypes. All of the

examples are substitutive, and thus also give examples of (vertically) trace

sparse sofic shifts when the paths are drawn on Z2.

The three subcases of minimal path spaces we exhibit are ones where

some path visits some cell infinitely many times, and

• every path visits every cell (that it visits at all) infinitely many times

(Example 7.10, Figure 7),

18Similar examples can be found in the ascending and descending case when the paths
are graphed as two-dimensional configurations and we consider non-horizontal rows.
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Figure 7. Part of a typical path in Example 7.10.

• some path visits all cells finitely many times (Example 7.11, Fig-

ure 8), or

• some path visits some cell finitely many times, but every path visits

some cell infinitely many times (Example 7.12, Figure 9).

Write ↗ = 1 and ↘ = −1.

Example 7.10: There is a minimal subsystem of Path where every path visits

every cell either zero or infinitely many times, and always visits infinitely

many cells. Consider the substitution τ1 defined by

τ1(↗) =↗↗↘↘↗↗, τ1(↘) =↘↘↗↗↘↘ .

Let Y be the orbit closure of a two-sided fixed-point of this substitution,

considered as a minimal subshift of DPath. Then X = φ−1(Y ) ⊂ Path has

the property that every path visits every cell (that it visits at all) infinitely

many times.

Namely, to each path w ∈ {↗,↘}`, indexed w = w1w2 · · ·w`, associate

a sequence zw ∈ NZ where (zw)h records the number of times the path w

visits h ∈ Z, relative to the starting point of w. More precisely, (zw)h = k

if there are exactly k distinct j ∈ [0, `] such that
∑j

i=1wi = h (the empty

sum is 0). By induction, we see that for w = τn1 (↗) we have (zw)i ≥ 2n or

(zw)i = 0 for all i ∈ Z, and similarly the support of zw doubles in size after

each substitution. A symmetric claim holds for images of ↘.

From this, it easily follows that in every path in X, every cell (that is

visited at all) is visited infinitely many times, and that no path in X is

bounded. #

Example 7.11: Consider the substitution τ2 defined by

τ2(↗) =↗↗↘↗↗, τ2(↘) =↘↘↗↘↘ .

Define X as in the previous example. From the fact that the total height

offset (i.e. sum, as a sequence over −1, 1) f(n) = 3n of the path τn2 (↗) is

unbounded but f(n)/5n → 0, and the primitiveness of the substitution, it is

clear that paths in X are not uniformly ascending or bounded. Nevertheless,

there is a path in X where every cell is visited a finite number of times.

Namely, the limit of τm2 (↗).τm2 (↗) as m → ∞ is such a path, where the

decimal point denotes the center of the path. To see thus, on the right side

of the decimal point observe that the heights visited by (formally, running
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Figure 8. Part of a typical path in Example 7.11.

totals of) the path τn(↗) are not revisited by τn+1(↗), except for the

highest point which is revisited once (and the highest point of τn+1(↗
) is strictly higher). A symmetric claim works to the left of the decimal

point. #

Example 7.12: Consider the substitution τ3 defined by

τ3(↗) =↗↗↘, τ3(↘) =↗↘↘ .

Define X as in the previous examples. As in the above example, it is

clear that paths in X are not uniformly ascending or bounded. As in Ex-

ample 7.10, consider the configurations zn = zw ∈ NZ corresponding to

w = τn(↗) (note that τn(↘) is the reverse of τn(↗) as a word, so we

need not consider it separately). Then by induction one can show that the

support of zn is the interval [0, n+ 1], zn0 = 1 and zni ≥ n for i ∈ [1, n+ 1],

and the total height offset of the path τn(↗) is 1. Observing that zn does

not visit heights below 0 and seeing zn as an element of the group ZN, the

recurrence is zn = zn−1 + 2 · 0zn−1 − 0110ω, with cellwise addition, where

2 · 0zn−1 is deduced by reversal symmetry and 0110ω accounts for double

counting at the ends of paths.

It easily follows that all paths in X have at most one cell that is not

visited infinitely many times, as if m is visited at most k times, then for

n > k, the properties of zw ∈ NZ corresponding to w ∈ {τn(↗), τn(↘)}
established in the previous paragraph show that m must be the beginning

of a τn(↗)-path and the end of a τn(↘)-path (as every path can be written

as a composition of such subpaths). Conversely, indeed a path where 0 is

visited once, negative integers are never visited, and positive integers are

visited infinitely many times, is obtained as the limit of τn(↘).τn(↗). This

again follows from the facts about the configurations zn established in the

previous paragraph. #
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Figure 9. Part of the path in Example 7.12 where one height
is visited only once, and all other heights are visited infinitely
many times. The gray line marks the height visited only once.
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