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1 INTRODUCTION 

 

In the relatively humid climate of Northern Europe, water availability is generally 

adequate to meet the needs of modern societies and to sustain water-demanding boreal 

ecosystems. However, prolonged meteorological dry spells do occur. Meteorological 

drought, sometimes also referred to as climatological drought (Tate and Gustard, 2000), 

is defined as a prolonged period with little or no rainfall. Prolonged spells of limited 

precipitation are sometimes, but not always, followed by severe agricultural and 

hydrological types of drought that cause problems for agricultural water supply, 

hydropower production and domestic and industrial uses of water (for examples in 

Northern European countries, see Hansen, 1992; Silander and Järvinen, 2004). Severe 

drought events often affect wide geographical areas and several sectors of society and, 

therefore, their financial costs are typically very high. This underlines the importance of 

understanding the spatial and temporal variation of meteorological drought and makes it 

a crucial topic for water resource studies. Knowledge of drought events, including 

information about average values, variations and extreme events, are important since, 

generally, societies and ecosystems are adapted to local “climatologically appropriate” 

water availability (Palmer, 1965) and will eventually suffer if the conditions deviate too 

much, and for too long from the normal level. 

 

The methods used to analyse meteorological drought based on precipitation time series 

vary widely in the research literature. There are also several studies focusing on the 

analysis of agricultural and hydrological types of drought; these use variables such as 

lowered soil moisture status (Heikinheimo et al., 1996; Narasimhan and Srinivasan, 

2005) or river discharges (Hisdal et al., 2000) as drought indicators. A drought event 

can only seldom be considered simply either meteorological, hydrological or soil 

moisture related. Typically, dry periods involve impacts across all these drought types. 

The occurrence and spatial extent of the drought events have been examined, e.g., by 

Hannaford et al. (2011) and Parry et al. (2011). For example, in a study including north-

western Scandinavia, Hannaford et al. (2011) noted that spatial coherence of 

hydrological droughts in the studied area is normally low with many short events 

affecting only a small proportion of the region at a time. On the other hand, using 
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similar analysis, Parry et al. (2011) found the infrequently occurring hydrological 

droughts in southern Scandinavia to be spatially very coherent. The same was not true 

for the meteorological droughts, though. Even though drought is not as typical a 

characteristic of the Northern European climate as it is, for example, of the 

Mediterranean climate, it still occurs quite often. In the Appendix, we have listed 

drought events that have occurred in Northern Europe since the beginning of the 

twentieth century. Although the list is not complete, it appears that drought has taken 

place almost every year somewhere in Northern Europe. 

Analyses of long precipitation statistics suggest that the total annual precipitation in 

Northern Europe has increased since the beginning of the 20th century (Trenberth et al., 

2007). However, the changes have varied in different regions and in different seasons 

(Heino et al., 2008). Generally, the increase in precipitation has been largest in winter 

months during the last half of the century (Beck et al., 2005). Summer rainfall has 

decreased in parts of northern and south-western Europe and increased in southern 

Finland, south-eastern and northern Sweden and in the Baltic countries. Lloyd-Hughes 

and Saunders (2002) found significant wetting trends in Standardized Precipitation 

Index (SPI) computed for all 12 months and for three winter months in wide areas in the 

Nordic and Baltic countries in the 20th century. SPI is a commonly used drought index, 

calculated solely from the precipitation statistics (Hayes et al., 1999). To a lesser extent, 

Lloyd-Hughes and Saunders (2002) also found similar spatial trends in the Palmer 

Drought Severity Index (PDSI), which is based on multiple drought variables. During 

summer, no significant trends were detected in SPI or in PDSI. On the other hand, Bordi 

et al. (2009) found drying trends over Fennoscandia and Baltic countries in 1949-1997 

and wetting trends in 1997-2009 when they studied SPI computed for 24 months. Parry 

et al. (2011) studied the Regional Standardised Precipitation Index (RSPI) for 3 months 

in North-West Scandinavia and suggested that the meteorological drought has decreased 

in this area during the twentieth century. 

It is possible that over various time scales, the change in the frequency of dry spells is 

not equally dependent on the change in total accumulated precipitation over various 

time scales. It has been suggested that, over time periods lasting less than one month, 
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precipitation extremes are mostly related to the intensity of individual precipitation 

events (Räisänen, 2005). These events are partly dependent on the maximum 

atmospheric moisture content according to the Claussius-Clapeyron relation and are, 

therefore, associated with short-term temperature variation (Trenberth, 1999; Allen and 

Ingram, 2002; Trenberth et al., 2003). Dynamical effects related to convective 

precipitation also affect the short-term precipitation extremes. A more detailed 

description of these can be found in the studies of Doswell III et al. (1996) and 

Lenderink and Van Meijgaard (2008). Changes in precipitation extremes on longer time 

scales are more likely to follow changes in mean precipitation (Räisänen, 2005). Annual 

total precipitation increase may be caused either by higher frequency or higher intensity 

of rainfall events, or both. Thus, the essential factors in the development of a 

meteorological dry spell are the time between the consecutive precipitation events and 

the timing of the low precipitation period with respect to evaporative conditions. In 

other words, fluctuation in the mean annual precipitation does not necessarily indicate 

change in short term or seasonal drought occurrence. 

 

In this study, we will analyse the spatial and temporal variations, and potential changes, 

in the occurrence of meteorological drought in Northern Europe during the period of 

regular homogeneous instrumental precipitation measurements. Due to the limitations 

produced by the quality of available data, we restrict our analysis solely to summer 

months (May-August). We examine the total numbers of dry days and the lengths of the 

longest dry spells, defined as periods of consecutive days within which the precipitation 

accumulation total remains below a certain threshold (Venäläinen et al., 2007, 2009). 

The methods are rather simplistic compared to more complicated drought indices, such 

as SPI and PDSI, but they are easier to use and offer an insight in to the basic statistical 

drought characteristics of the study area. 
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2 METHODS 

 

2.1 Precipitation data 

 

In this study, the daily historical precipitation statistics from 12 stations in the Nordic 

countries (Denmark, Finland, Norway, Sweden) and the Baltic countries (Latvia, 

Lithuania) were used (Fig. 1).  The data were retrieved from the database of the 

European Climate Assessment and Dataset (ECA&D) project (Klein Tank, 2007), 

except for the Finnish data that were retrieved directly from the Finnish Meteorological 

Institute. The stations shown in Fig. 1 were chosen because of their relatively long and 

continuous time series and to achieve an even and representative spatial distribution.  

 

 
Fig. 1. Weather stations used in the study (Background map source: MapInfo 2008) 
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The length of the regular instrumental precipitation dataset varies from station to station 

with the longest time series extending back to the 19th century. However, shorter records 

were used for the analyses (Table 1) due to inhomogeneities in the precipitation 

observations (van Engelen et al., 2008; ECA&D, 2010). Measurement of liquid 

precipitation is generally more reliable than that of snowfall (Heino, 1994). Therefore, 

to minimize any uncertainties arising from inaccuracies in snowfall measurements, only 

dry periods that commenced during the summer months (May-August) were included. 

 

2.2 Meteorological drought parameters 

 

Two approaches for investigating meteorological drought were used in this study (Fig. 

2). First, we analysed the longest meteorological dry spell (MDS) of each summer, 

defined here as the longest period of consecutive days during which the total cumulative 

rainfall remains below a certain threshold. To select the thresholds, the average summer 

(May-August) precipitation total was first investigated. According to the precipitation 

records used in this study, it varied between 171 mm (Hammer Odde) and 292 mm 

(Vilnius) for most of the stations during 1961-1990 (Fig. 3). In the marine climate of the 

west coast of Norway (Peel et al., 2007; Jylhä et al., 2010) at Bergen, however, the total 

summer precipitation was a lot higher, at 553 mm on average. Based on these findings, 

precipitation accumulation thresholds of 10 and 100 mm were chosen to represent 

drought occurrence on different time scales. A 10 mm accumulation threshold can be 

taken to illustrate drought occurrence over time scales of days to weeks, and a 100 mm 

accumulation threshold over time scales of weeks to months. For simplicity, the 

duration of the precipitation accumulation period was allowed to continue after August. 

The MDS definition used in this study also assumes that at least one MDS occurs every 

summer. 

 

In the second approach, the meteorological drought occurrence was analysed by 

calculating the total number of meteorological dry days (MDD) with precipitation 

values <1.0 mm or <0.1 mm during May-August. The majority of precipitation 

measurements were recorded to one decimal place, 0.1 mm, as per WMO 

recommendations (WMO 2008), but some time series contained values with a precision 
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Fig. 2. Flowchart representing the phases of extraction, preprocessing and analysis of 

dry spell lengths and numbers of dry days 
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Fig. 3. Average summer (May-August) precipitation (1961-1990) at weather stations 

used in the study. (FIN=Finland, SWE=Sweden, NOR=Norway, DNK=Denmark, 

LTU=Lithuania, LVA=Latvia) 

 

of only 1 mm (Table 1). To make each individual time series consistent in this respect, 

two manipulation methods were undertaken (Fig. 2). First, in cases where the number of 

observations recorded with a precision of 1 mm was smaller than the number of values 

recorded to one decimal place, the years containing any values recorded at 1 mm 

precision were removed from the time series, leaving only observations with 0.1 mm 

precision (Table 1). Second, in the opposite case where the number of observations 

recorded to one decimal place was smaller than the number of values represented with a 

precision of 1 mm, the observations recorded to one decimal place were rounded to the 

nearest integer (see Karesuando and Karlstad in Table 1). For these two stations, only 

the number of days with no precipitation (0 mm) was examined. In the next stage of the 

analysis, the stations containing values recorded at different accuracies were treated 

separately, because for time series with a precision of only 1 mm, the number of 0 mm 

precipitation days includes days with precipitation of 0.0-0.4 mm according to the 

rounding principle. This differs from the numbers of <1.0 and <0.1 mm precipitation 

days in the time series, whose measurements were recorded to one decimal place, 

because these also include days with 0.0-0.9 and 0.0 mm precipitation, respectively. 
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2.3 Time series preprocessing 

 

The resulting time series of the longest MDSs and the number of MDDs still contained 

occasional erroneous values caused by gaps in the original precipitation statistics. 

Before further analysis, those years with the longest MDS being abnormally long, or 

with too large number of MDSs considering the climatic zone, were removed from the 

time series by using the criteria described below (Fig. 2). 

 

For the longest 10 mm dry spells, we first excluded summers when the longest MDS 

was preceded by, or followed by, a gap, or which contained days with missing data in 

the original precipitation statistics. Next, years which, in the original precipitation 

statistics, contained more consecutive missing days than the duration of the longest 

continuous MDS of the whole time series were removed. Without this procedure, it is 

possible, in theory, for the longest MDS of a single summer to be longer than the spell 

that was determined as the longest of the whole time series, because a gap due to 

missing days would have been interpreted as a MDS. With 100 mm precipitation 

thresholds it was not possible to use the duration of the longest MDS of the time series 

as a maximum limit for the number of missing days. In this case, the longest MDSs 

were so long that many of the summers with incomplete data would have contained 

equal to or greater number of days making the criterion useless. Instead, if the longest 

dry spell contained a gap longer than one day, or if it ended, for example, because of a 

whole missing month, the summer was removed from the analysis. 

 

Those summers in the original precipitation statistics that contained less than 120 days 

(real number 123 days), were removed from the time series of the MDDs. These limits 

were defined arbitrarily, but in such a way that the number of missing days did not 

significantly affect the real number of MDDs. Table 1 shows the years that were 

removed from the time series for each station. The removal procedure had the largest 

effect for Riga and Vilnius, where 17.5% and 5.3% of the years were removed, 

respectively. However, the accuracy of the measurements was the main reason for 

discarding years from these records. In other time series, the percentage of years 

discarded was 0.0-2.8%.      
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2.4 Spatio-temporal variation of drought parameters: a statistical analysis 

 

The regional differences in the variation of the length of the longest MDSs and in the 

number of MDDs were analysed by comparing the ranges of the values at different 

weather stations. Furthermore, the different scales of drought parameters were taken 

into account by comparing the coefficients of variation of the parameters. The 

coefficient of variation is defined as the ratio of standard deviation to the mean (Spiegel 

and Stephens, 1999). In addition, the correlation between the medians of the drought 

parameter value and the average May-August rainfall (Fig. 3) were determined. The 

Spearman correlation coefficient was used to test the statistical significance of the 

correlation because the parameters were not normally distributed. The p-value 0.05 was 

used as the limit of statistical significance. 

 

Temporal changes in the length of the longest MDSs and in the number of MDDs were 

analysed separately for each threshold (Fig. 2). The statistical significance of the linear 

trends was tested with a parametric t-test (Önöz and Bayazit, 2003) and with the non-

parametric Mann-Kendall test (Helsel and Hirsch, 2002). The use of two statistical tests 

was considered necessary because both normal and non-normal distributions were found 

when the drought parameters were tested using the Shapiro-Wilk test (Shapiro and 

Wilk, 1965). It is known that the Mann-Kendall test is more likely to reject the false null 

hypothesis (H0 = no trend) when the distribution of the values is clearly skewed (Önöz 

and Bayazit, 2003). On the contrary, the t-test is more likely to reject the false null 

hypothesis when the values are normally distributed. A significance level of 0.05 was 

used for the rejection of the null hypothesis and a trend with a significance level of 0.01 

was considered “highly significant”. 

 

The monthly distribution of the longest 10 mm MDSs was determined by analysing the 

relative frequency of the onset month of the MDSs in the time series. The 10 mm 

threshold was chosen for this analysis because the timing of these MDSs during the 

summer is very important for agriculture, for example. Since the accumulation period of 

a precipitation total of 100 mm can last in some cases over four months, the timing 

analysis was considered redundant for the longest 100 mm MDSs. 
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3 RESULTS 

 

3.1 Spatial and temporal variation of drought occurrence  

 

The longest 10 mm MDSs are generally found at the stations of Hammer Odde, 

Copenhagen and Helsinki (highest medians in Fig. 4a). The longest 100 mm MDSs are 

in Hammer Odde, Karesuando and Copenhagen (highest medians in Fig. 4b). Hammer 

Odde also tend to have slightly more MDDs than the other stations (Fig. 4c-d). 

However, these stations do not differ as much from the other stations as Bergen, where 

the MDSs are noticeably shorter and the number of MDDs fewer than at other stations. 

Located on the west coast of Norway, Bergen is highly exposed to moist westerly winds 

and orographic rain due the vicinity of the Scandinavian mountains. All other stations 

are located on the leeward side of this mountain range or outside its influence thus 

receiving less rainfall. 

 

The lengths of the longest 10 and 100 mm MDSs show more inter-annual variation 

around their time-averaged mean values than the numbers of MDDs (Fig. 5). The 

coefficients for the 10 mm MDSs are the largest and also the distribution for many 

stations is positively skewed (Fig. 4a). The largest coefficients of variation are found in 

Bergen for all parameters and the lowest coefficients in Vilnius for 10 mm MDSs, 

Copenhagen for 100 mm MDSs, Hammer Odde for 1.0 mm MDDs and Karesuando for 

0.1 mm MDDs. 

 

The correlation between the average rainfall and the drought parameter medians was 

generally negative, but only the correlations for the longest 100 mm MDS (Fig. 6b) and 

for 1.0 mm MDD (Fig 6c) were statistically significant.  
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Fig. 4. Variation of the lengths of the longest dry spells (a, b) and numbers of dry days 

(c, d, e) in the data records used in the study. Note the different vertical axis scales for 

the different thresholds. The horizontal line within the box corresponds to the median, 

the ends of the box to the interquartile range. The whiskers denote the inner fence (±1.5 

times the interquartile range). Values outside the inner fence but within the outer fence 

(±3 times the interquartile range) are marked with open circles. Values outside the 

outer fence are marked with stars. 
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Fig. 5. Coefficients of variation of drought parameters 

 

 
Fig. 6. Correlation between the average summer (May-August, 1961-1990) rainfall and 

the median of the longest dry spells, and the numbers of dry days based on data at 11 

stations. Bergen was excluded from the analysis due to its substantial deviation from the 

other stations. Spearman correlation coefficients rs and p-values: 10 mm MDS:  rs=      

-0.524, p=0.098; 100 mm MDS: rs=-0.630, p=0.038*; <1.0 mm MDD: rs=-0.684, 

p=0.042*; <0.1 mm MDD: rs -0.076, p=0.847, (*) denotes a statistically significant correlation 

(p<0.05). 
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The lengths of the longest MDSs vary considerably from year to year at all weather 

stations throughout the period of the instrumental precipitation measurements (Fig. 4 

and 5) without any clear statistically significant trends (Table 2). At most stations, no 

statistically significant trends in the numbers of MDDs are found either. An indication 

of (mainly positive) linear trends can be found only at few stations. An example of the 

temporal variation of the lengths of the longest MDSs and the numbers of MDDs in 

Copenhagen (DNK) is given in Fig. 7. 

 

 
 

Fig. 7. Temporal variation of the length of the longest summer dry spells and number of 

dry days in Copenhagen (DNK). A linear trend line is displayed in the panel only if it is 

statistically significant (p<0.01). Note the variation in the y-axis scale between the 

panels. 
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3.2 Timing of the longest 10 mm dry spells 

 

For every time series, the longest 10 mm MDSs began most often in May (Fig. 8). 

Therefore May is the most probable timing of short-term meteorological drought 

occurrence. The droughts in spring and early summer can partly be associated with a 

more stable atmospheric boundary layer caused by a colder sea surface relative to the air 

mass. 

 

In Helsinki, Sodankylä, Karesuando and Hammer Odde, July displays the lowest 

frequency as an onset month of MDSs. A distinct exception is Oslo, where July displays 

the second highest frequency. In Jyväskylä, Karlstad, Bergen, Vestervig, Copenhagen 

and Riga, the 10 mm MDSs start least often in August, whereas in Oslo, the lowest 

frequency is seen in June. 
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Fig. 8. Relative frequency of onset month for the longest 10 mm dry spells during May-

August 
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4 DISCUSSION 

 

4.1 Spatial variation and timing of meteorological summer drought occurrence in 

Northern Europe 

 

When analyzing the spatial variability of the drought parameters, there are some issues 

to be taken into account. In general, the spatial differences in the occurrence of 

meteorological drought should be taken as indicative only, because the large spatial 

variation of precipitation makes the spatial interpolation of point data somewhat 

questionable over a heterogeneous area (Panu and Sharma, 2002). According to 

Groisman and Legates (1995), for example, the correlation distance of the monthly 

rainfall amount between two weather stations can vary from hundreds of kilometers 

over flat terrain to only tens of kilometers over mountainous regions. In summer, the 

correlation distance is generally shorter, due to the prevalence of rainfall of a convective 

nature (Osborn and Hulme, 1997). The furthest distance between two adjacent weather 

stations used in this study is over 300 km, between Oslo (NOR) and Bergen (NOR), and 

the shortest is 150 km, between Copenhagen (DNK) and Hammer Odde (DNK) (Fig. 1). 

Because of these distances, the lengths of the longest MDSs or the numbers of MDDs 

may be somewhat different during a single summer at adjacent stations. A larger 

number of stations or use of gridded data would be recommended to get a better 

estimation of the spatial differences in meteorological drought occurrence. As well, 

inclusion of weather radar measurements might improve the coverage of analyses. 

 

As shown above, the coefficients of variation of the lengths of the longest MDSs and 

the numbers of MDDs around the mean are the largest at Bergen where the summer 

precipitation total is also the highest. However, no significant linear correlation between 

the coefficient of variation and the mean precipitation among the other stations exist. 

Tests of Spearman correlation give p-values above 0.41 (not shown). One distinct 

character worth noting is that the 10 mm MDSs have the highest coefficients of 

variation at all stations. This indicates that the shorter term drought is more variable 

than the longer term drought, which is represented by the 100 mm MDS lengths. This is 

also supported by the fact that the numbers of dry days during the whole summer period 
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show the least variation. This has possibly some severe consequences to the agricultural 

drought, for example. Even if the whole summer was relatively moist, there is still a 

chance that a short term dry spell occurs during some critical stage of the crop growth. 

 

Intuitively it would seem clear that higher average summer precipitation corresponds to 

shorter lengths of the dry spells and fewer dry days. Generally the findings of this study 

support this hypothesis (Fig. 6). The negative correlation was the highest for the 

100 mm MDSs and for the <1.0 mm MDDs. The increase in the small precipitation 

amounts of <1.0 mm seems to contribute more to the increasing cumulative summer 

precipitation than the increase in the actual precipitation days. 

 

According to the results, the short term dry spells are most likely to start in May in 

Northern Europe. The advantage is that the temperatures and evapotranspiration are not 

as high yet as they are later in summer. The melting snow may also increase the soil 

moisture. On the other hand, the more south we go, the more likely it is that the 

moisture from the melting snow does not anymore affect the upper soil layers, where it 

would be the most needed for the early growth stages of crops. 

 

 

4.2 Interannual variation and long-term temporal trends of meteorological 

drought occurrence  

 

The lengths of the longest dry spells and the numbers of dry days vary greatly from one 

year to another (see for example Fig. 7). However, over longer time periods, the limits 

of the variation in the lengths of MDSs and the numbers of MDDs become apparent, 

giving a clearer picture of the local meteorological drought occurrence. The lack of 

long-term trends in the time series (Table 2) also suggests that the distributions of the 

lengths of the MDSs and numbers of MDDs presented in this study are also valid in the 

current climate. 

 

The time series analysis suggests that meteorological drought occurrence has not 

significantly changed at any of the stations in this study during the observation periods. 
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Only at three Danish stations, and at Riga, there are weak statistically significant 

increasing trends. At Sodankylä, Northern Finland, there is one statistically significant 

decreasing trend. These trends may be related to the possible long-term decrease in total 

precipitation in the southern region of Northern Europe and an increase in the northern 

region of Northern Europe (Beck et al., 2005; Trenberth et al., 2007).  On the other 

hand, the lack of statistically significant trends in summer drought statistics may be 

explained by the fact that most of the increase in total annual precipitation has occurred 

during winter months (Heino et al., 2008). 

It has been postulated that a rise in global temperatures potentially intensifies the global 

hydrological cycle, which in turn, may influence the frequency and intensity of extreme 

hydrological events such as droughts and floods (Trenberth, 1998; Huntington, 2006). 

However, the effect may vary greatly across the globe. Generally, higher temperatures 

increase the moisture holding capacity of the atmosphere leading to higher 

evapotranspiration, which increases the risk of drought occurrence. The increase in 

moisture holding capacity is greater at lower latitudes than at higher latitudes 

(Trenberth, 1998). Conversely, an increase in the moisture holding capacity may also 

increase the intensity of rainfall events. However, the amount of actual 

evapotranspiration is dependent on the available moisture, which varies spatially. 

In summer (June-August), according to Lehtonen et al. (2013), the number of dry days, 

with precipitation less than 1 mm, is projected to slightly increase in southern 

Fennoscandia, including South-West Finland, but to decrease rather than increase 

further north. Nonetheless, these projected changes from 1971–2000 to 2081–2100 were 

not significant at the 95% level. 

In this study, we have analysed linear trends. However, it should be noted that there is 

no particular reason to assume that changes in nature would occur linearly (Bordi et al.

2009). For example, the time series of drought parameters for Copenhagen appears to 

show  strong  fluctuations  (Fig.  7).  Recent  results  from  the  study  of  the  relationship  

between large-scale atmospheric circulation patterns and European summer 

precipitation (Zveryaev and Allan, 2010) suggest that the interannual variability of 
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summer precipitation is probably not related to the irregular fluctuation of the large-

scale circulation patterns such as the North Atlantic Oscillation (NAO) or Scandinavian 

teleconnection, but more likely to the local temporal variation of evaporation from land 

and sea areas. On the other hand, it has been observed that the wintertime NAO index is 

connected to summer temperatures through soil moisture, especially in the 

Mediterranean area (Wang et al., 2011), which is then linked to the evaporation and 

summertime drought. Van der Schrier et al. (2006) also found relatively high positive 

correlations between the extended wintertime (December-March) NAO index and 

summer index of self-calibrating Palmer Drought Severity Index (SC-PDSI) in Northern 

Europe, especially in the south-western coast of Norway, in years 1901-2002. The 

larger values of SC-PDSI indicate increasing wetness and vice versa and, therefore, the 

negative phases of NAO seem to be related to lower SC-PDSI values and increasing 

drought. Hannaford et al. (2011) also found a similar wintertime correlation between 

NAO index and Regional Standardized Precipitation Index (RSPI), as well as between 

NAO index and Regional Deficiency Index (RDI), which is used as a hydrological 

drought indicator, in north-western and southern Scandinavia. In addition, they found 

negative correlation between those indices and NAO during May and autumn months 

and an interesting positive correlation in southern Scandinavia in July.  

The positive and negative phases of the NAO index last for several years and have 

varied irregularly in the past (Jones et al., 1997, UCAR, 2008), which may explain the 

wavelike pattern in the drought occurrence. However, the existence of a link between 

the wintertime NAO index and summer droughts in Northern Europe, and to which 

extent the droughts in Northern Europe may be connected to Central or even Southern 

European droughts, requires further research, which is beyond the scope of this study. 

Also other less prominent large-scale atmospheric patterns, such as the East Atlantic 

pattern, Eurasian type-1 and Eurasian type-2, have been shown to correlate, at least to 

some extent, with the drought occurrence in Northern Europe (van der Schrier et al.

2006; Hannaford et al. 2011). 
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4.3 Applicability of the described methods in drought analysis 

 

The high values of the length of the longest MDSs, and the number of MDDs, illustrate 

the association between meteorological drought and precipitation in Northern Europe. 

In comparisons between the stations, it should be noted that the precipitation climate of 

Bergen is different from the rest of the stations (Fig. 3) due to its maritime location. 

Actually, it is rather obvious that the longest MDSs of similar length in Bergen and in 

other stations do not actually have similar effects on the development of other drought 

types, such as agricultural drought. For example, it is quite common for the longest 

accumulation period of 10 mm rainfall to take around 30 days in Helsinki, but in Bergen 

this rarely occurs, and can therefore be considered a sign of an extreme event. This 

underlines the relative nature of the drought phenomenon and adaptation of organisms 

and functions to the dominant moisture conditions. Use of different kind of thresholds 

when comparing different climatic regions is therefore recommended in further studies.  

 

The temporal variation of drought parameter values can also be used to estimate the 

effect of climate change on drought occurrence at a general level. Although changes in 

the amount of precipitation are the main driving force in the occurrence of drought, 

there are additional climatic factors to consider (Sheffield and Wood, 2008). For 

example, Briffa et al. (2009) showed that changes in temperature and evapotranspiration 

have potentially had a large impact on drought occurrence in Europe. The drought 

definition should also somehow link meteorological drought conditions to their 

consequences, such as a lower soil moisture or stream discharge. Without this, it is 

difficult, if not impossible, to estimate, for example, how many dry days would be 

required to make a summer actually “dry”. The closest approximations of the normal 

levels of summer drought parameters within the climatic zone represented in this study 

are the median values shown in Fig. 4. However, around these median values, additional 

factors, such as the rate of potential evaporation and preceding soil moisture, determine 

the emergence of drought conditions. 

 

An example of the number of “drought” days defined according to soil moisture 

content, also known as the Finnish Forest Fire index (FFI), is given in Fig. 9 for the 
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exceptionally dry summer at 2006 in Finland. According to the soil moisture index 

statistics of the Finnish Meteorological Institute, in summer 2006 the number of 

“drought” days was above the long term average at all four Finnish weather stations 

used in this study. In Helsinki, for example, the number of drought days in May-August 

2006 was 78, whereas in the years 1966-1995, the average number was approximately 

50 days. However, care must be taken in comparing these figures because different data 

sources were used before 1997. The lengths of the longest MDSs in Helsinki in 2006, 

were 63 and 153 days for 10 and 100 mm thresholds, respectively. The numbers of the 

MDDs were 108 and 92 days for <1.0 and <0.1 thresholds respectively. These were 

among the highest on record. Compared to the number of “drought” days, it seems that 

the dry spell length measured with 10 mm precipitation threshold underestimates the 

drought occurrence, whereas the other parameters tend to overestimate it. The soil 

moisture parameter includes more variables and therefore, presents a broader 

approximation of drought development. However, none of these measures seems to 

offer a completely objective or universal definition for drought.  

 

 

5 CONCLUSIONS 

 

For most of the Northern European stations analysed in this study, the summer time 

MDS length ranged between 9-73 days (10 mm) and 42-168 days (100 mm), and the 

numbers of MDDs ranged between 34-101 days (0.1 mm), 63-108 (1.0 mm), with no 

significant variation between the stations. The notable exception is the station of 

Bergen, which receives a plenty of orographic precipitation due to its location on the 

west coast of Norway between the North Atlantic and the Scandinavian mountain range. 

Therefore, it is recommended to use different kind of precipitation thresholds to analyse 

MDS lengths and numbers of MDDs in stations in different kind of precipitation climate 

in future studies. 
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Fig. 9. Number of ”drought days”  in Finland in summer 2006 (May-August) according 

to the soil moisture index (also known as the Finnish Forest Fire index, FFI) 

(Heikinheimo et al. 1996; Venäläinen and Heikinheimo 2003). When the index value is 

4.0-5.9 the day is regarded as “moderately dry” or “dry” and the forest fire warning is 

given. In 2006, the number of these “drought” days was well above long-term average 

in all the Finnish stations used in this study. 

 

The longer term drought parameters (100 mm MDDs) show less variation around their 

mean values than the 10 mm MDSs. This suggests that it is possible for a short term dry 

spell to occur during some critical crop growth stage even if the summer as a whole was 

relatively moist. Most short term dry spells start in May. The melting of snow can help 

to counteract drought by increasing the soil moisture and stream discharges in some 

areas. However, the longer the MDS, the more severe are the consequences in other 

stages of the hydrological cycle. 

 

The positively skewed distributions and high coefficients of variation of the length of 
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the 10 mm MDSs suggest that even though relatively short 10 mm MDSs are more 

common, longer 10 mm MDSs also occur from time to time. It is hence highly possible 

that rainy summers with short MDSs are sooner or later followed by dry summers with 

very long MDSs. This should be taken into account when water-dependent activities, 

such as agricultural production, and drought management strategies are planned, 

including preparation for a large variation in climatic circumstances. 

 

The analysis of the temporal variation in the length of the longest MDSs and the number 

of MDDs suggests that meteorological summer drought occurrence has remained 

relatively unchanged in Northern Europe during the period of homogeneous 

instrumental precipitation observations. Statistically significant increasing trends were 

found to be rare and were detected mainly in the time series of MDDs of the Danish 

stations located in the south-western part of the study region. For example, in Hammer 

Odde, the number of days with <1.0 mm precipitation has increased from 68 to 75 

during the 20th century. One decreasing trend was found at Sodankylä in Northern 

Finland. It is possible that these trends are related to long-term changes in summer 

precipitation totals as a consequence of climate change. However, it should be kept in 

mind that most of the trends are not statistically significant. Besides, most of the long-

term changes in mean precipitation have occurred in winter. In any case, the strong 

interannual variation of the length of the longest MDSs and the number of MDDs makes 

differentiation of any linear trends difficult. 

 

The methods employed in this study proved applicable in the evaluation of 

meteorological drought occurrence at a general level and with respect to variation of 

precipitation amounts. Including potential evapotranspiration in the analysis would give 

more insight into the effect of changing temperatures on meteorological drought 

occurrence. To improve the analysis of spatial variance of drought parameters a larger 

number of stations should be included. 
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APPENDIX: REPORTED DROUGHT EVENTS IN NORTHERN EUROPE 

Table A1 lists some of the drought events that have occurred in Northern Europe since 

the beginning of the twentieth century. The list is not complete. It should also be noted 

that  in  this  paper,  Northern  Europe  is  limited  to  cover  only  the  Baltic  and  Nordic  

Countries, excluding Iceland and Estonia (Fig. 1) and many of the droughts included 

were selected from studies covering wider regions. The way the drought was studied in 

the reference research is mentioned in the list by naming the drought type, which 

indicators were analysed. However, this does not mean that a drought event could 

simply be considered meteorological, hydrological or soil moisture related, but in 

reality, many of these dry periods may involve impacts across all those drought types. 

All  the  referred  studies  in  Table  A1  do  not  cover  the  whole  of  Northern  Europe  and  

therefore it is not valid to draw conclusions on the spatial extent of the drought events. 

Table A1. Drought events in Northern Europe since the beginning of the twentieth 

century. Drought type is marked as meteorological (M) if the respective study is based 

merely on the analysis of precipitation anomalies, or if no other particular effects have 

been mentioned in the reference. The drought types of the analyses based on river flow 

data and soil moisture status are named as hydrological (H) and soil moisture (S) 

drought, respectively. References: 1 = Bradford (2000), 2 = Hannaford et al. (2011), 3 

= Hisdal and Tallaksen (2003), 4 = Mauget (2006), 5 = Parry et al. (2005), 6 = Stahl 

(2001), 7 = van der Schrier et al. (2006), 8 = Wilhite and Glantz (1985), 9 = Zaidman 

et al. (2001). 

Region 1 = Northern Europe including the British Isles and western parts of Russia; 

Region 2 = North-west Scandinavia including northern and western parts of Norway 

and north-west Sweden, >50% of the area affected by drought; 

Region 3= Southern Scandinavia including Denmark and southern parts of Norway and 

Sweden, >50% of the area affected by drought 

Time period Affected region Type Reference 

1901–1911 Region 1 M 4

1901 July, September Region 2 M 5
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Time period Affected region Type Reference 

1901 September, November Region 3 M 5

1902 May- July Region 2 M 5

1902-1903 November-January Region 3 M 5

1904 January, July-September Region 3 M 5

1904 February-April Region 2 M 5

1905-1906 December-January Region 3 M 5

1906 September Region 3 M 5

1907 December Region 2 M 5

1908 May-June, October Region 2 M 5

1908 October-December Region 3 M 5

1909 February Region 3 M 5

1910 July-September Region 2 M 5

1911 July-September Region 3 M 5

1911 July, December Region 2 M 5

1912 January-February, July-
August

Region 2 M 5

1913 June, October Region 3 M 5

1914 July Region 2 M 5

1914 July-November Region 3 M 5

1914-1915 December-February Region 2 M 5

1915 October-December Region 2 M 5

1915 June, October-November Region 3 M 5

1916 April Region 2 M 5

1917 January Region 2 M 5

1917 March, July Region 3 M 5

1918 May Region 3 M 5

1919 January-February, July Region 2 M 5

1919-1920 December-January Region 2 M 5

1920 October-December Region 2 M 5

1920 November-December Region 3 M 5

1921 summer Denmark, Southern Sweden M 7
1921 summer Baltic countries M 7
1921 June-July, November Region 3 M 5

1922 November-December Region 3 M 5

1923 April-May Region 2 M 5
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Time period Affected region Type Reference 

1926 February Region 2 M 5 

1928 January, May Region 2 M 5 

1928 January, May-June Region 3 M 5 

1929 February Region 2 M 5 

1929 February-April Region 3 M 5 

1930 September-October Region 2 M 5 

1931 February-April Region 2 M 5 

1931 November-December Region 3 M 5 

1932 February-March Region 3 M 5 

1932 May-June Region 2 M 5 

1932–1947 Region 1 M 4 

1933 January, May Region 3 M 5 

1933 June-July, November Region 2 M 5 

1933-1934 December-February Region 3 M 5 

1935 December Region 2 M 5 

1936 January-February, June Region 2 M 5 

1937 March-May Region 2 M 5 

1937 December Region 3 M 5 

1938 April Region 3 M 5 

1938-1939 December-January Region 2 M 5 

1939 May, October-November Region 3 M 5 

1939 October-November Region 2 M 5 

1940 February, June Region 3 M 5 

1940 May-June Region 2 M 5 

1941 February-March, May-July, 
November 

Region 3 M 5 

1941 April-June Region 2 M 5 

1942 January-April Region 3 M 5 

1942 March Region 2 M 5 

1944 April Region 3 M 5 

1944 November Region 2 M 5 

1945 September Region 2 M 5 

1945 November Region 3 M 5 

1946 May Region 3 M 5 

1947 February, June-October Region 3 M 5 

1947 January-March Region 2 M 5 
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Time period Affected region Type Reference 

1948 January Region 2 M 5 

1950 October Region 2 M 5 

1951 January-March Region 2 M 5 

1952 November-December Region 2 M 5 

1953 March, December Region 3 M 5 

1954 April, November Region 2 M 5 

1955 March-April, July-
September 

Region 3 M 5 

1955 April-September Region 2 M 5 

1956 April-May, November-
December 

Region 3 M 5 

1957-1958 December-January Region 3 M 5 

1959 July-October Region 3 M 5 

1959-1960 December-March Region 2 M 5 

1960 May Region 3 M 5 

1960 -1961 October-January Region 2 M 5 

1962-1963 December-March Region 3 M, H 5 

1962-1963 October -  May (8 
months) 

Denmark M 3 

1963 January-February (2 
months) 

Denmark H 3 

1963 June-July Region 2 H 5 

1963-1964 December-March (4 
months) 

West coast of Norway H 6 

1963-1964 December – May (6 
months) 

Denmark M 3 

1964 February-May Region 3 M, H 5 

1964 May-October Denmark H 3 

1964 June Region 2 M 5 

1965 March, November Region 3 H 5 

1965-1966 Winter North-western Scandinavia M, H 2 
1965-1966 January-February Region 2 H 5 

1966 January-February, 
December 

Region 2 M 5 

1966 April, July, December Region 2 H 5 

1967 September Region 2 H 5 

1968 July-November Region 2 M, H 5 

1968-1970 North-western Scandinavia M, H 2 

1969 January-March, June, 
August 

Region 2 M, H 5 

1969 summer Sweden and Denmark  1 
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Time period Affected region Type Reference 

1969 August Region 3 M 5 

1969-1970 December-March Region 3 H 5 

1969–1976 Region 1 M 4 

1970 January-April, June Region 2 M, H 5 

1970 February Region 3 M 5 

1972 March Region 2 M 5 

1972 October-November Region 3 M, H 5 

1972 September-October (2 
months) 

Southern Scandinavia H 6 

1973 September Region 3 H 5 

1973 October Region 3 M 5 

1974 spring Norway, Sweden and Denmark M 1 

1974 March-April (2 months) Parts of Europe south of 60°N H 6 

1974 April-June Region 3 M, H 5 

1974 May, November Region 2 M, H 5 

1975 May-October (6 months) Denmark M 3 

1975 June – November (6 
months) 

Denmark H 3 

1975 June-August, October-
December 

Region 3 M, H 5 

1975 summer Sweden M 1 

1975 August Region 2 M 5 

1975 October Denmark M 3 

1976 February-April (3 months) Denmark M 3 

1976 March-September (7 
months) 

Norway, Sweden and Denmark M 1 

1976 Spring-Summer Denmark M, H 9 

1976 April – November (8 
months) 

Denmark H 3 

1976 summer Denmark, Southern Sweden M 7 
1976 June-September (4 months) Denmark M 3 
1976 late summer Northern Europe H 6 
1976 March-April, June-
December 

Region 3 M, H 5 

1976 October, December Region 2 M, H 5 

1977 February Region 2 M, H 5 

1977 April Region 2 H 5 

1978 June, December Region 3 M 5 

1978 August Region 2 H 5 

1979 February Region 3 M, H 5 
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Time period Affected region Type Reference 

1979 February Region 2 M 5 

1980 March-May Region 3 M 5 

1980 March, July Region 2 M, H 5 

1981 April Region 2 H 5 

1981 October-November Region 2 M 5 

1982 January-December (12 m.) Area extending from Latvia to Lithuania 
and south-western Russia  

 8 

1982 October Region 2 H 5 

1983 January-August (8 months) Area extending from Central Europe to 
central parts of Norway and Sweden 

 8 

1983 July-December (6 months) Area extending from Sweden to Central 
Europe 

H 6 

1983 August Region 3 M 8 

1984 April Region 3 M 8 

1985 January Region 2 M 5 

1985 May Region 2 H 5 

1986 March Region 2 M 5 

1986 April, July, August Region 2 H 5 

1987 March Region 3 H 5 

1987 March Region 2 H 5 

1988 March Region 2 M 5 

1988 June Region 3 M 8 

1989 July, October, November-
December 

Region 3 H 5 

1989 January Region 3 M 8 

1989-1990 Denmark M, H 9 
1991 September Region 3 H 5 

1989 May-July (3 months) Denmark H 6 

1990 August-September (2 
months) 

Northern Europe H 6 

1991 September Region 3 M 5 

1992 June-August Region 3 H 5 

1992 July Region 3 M 5 

1992 October Region 2 H 5 

1993 April-June Region 3 M, H 5 

1993 November Region 2 M, H 5 

1994 January Region 2 H 5 

1994 April Region 2 M 5 

1994 July Region 3 M 5 
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Time period Affected region Type Reference 

1995 summer and autumn Norway and  Sweden  M, H, S 1 

1995 September Region 2 H 5 

1995-1996 December-April Region 3 M, H 5 

1996 February-March, 
September 

Region 2 H 5 

1996 March, September Region 2 M 5 

1996 May, July-October Region 3 H 5 

1996-1997 (7 months) Region 3 H 5 

1997 June-July Region 2 M 5 

1997 November Region 2 H 5 

1998 October Region 2 H 5 

2000 November Region 2 M 5 

2001 April Region 2 H 5 

2002 winter North-Western Scandinavia M, H 2 
2002 December Region 2 M 5 

2002 August, October-December Region 2 H 5 

2003 February, October Region 3 M 5 

2003 April Region 3 H 5 

2003 April, July  North-Western Scandinavia M 2 

2003 July-August (2 months) North-Western Scandinavia H 2 

2003 March, September-October 
(3 m.) 

Southern Scandinavia M 2 

2003  (3 months) Southern Scandinavia H 2 

2004 June, August Region 2 H 5 
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