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Abstract: Typically, practical nonsmooth optimization problems involve functions
with hundreds of variables. Moreover, there are many practical problems where the
computation of even one subgradient is either a difficult or an impossible task. In
such cases derivative free methods are the better (or only) choice since they do not
use explicit computation of subgradients. However, these methods require a large
number of function evaluations even for moderately large problems. In this paper, we
propose an efficient derivative free limited memory discrete gradient bundle method for
nonsmooth, possibly nonconvex optimization. The convergence of the proposed method
is proved for locally Lipschitz continuous functions and the numerical experiments
to be presented confirm the usability of the method especially for medium size and
large-scale problems.
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1 Introduction

We introduce a new derivative free method for solving unconstrained minimiza-
tion problems of the form {

minimize f(x)

subject to x ∈ Rn,
(P)

where the objective function f : Rn → R is supposed to be locally Lipschitz
continuous (LLC). In particular, our aim is to design a derivative free method
for solving Problem (P) with the size from medium to large (i.e. problems with
more than 50 variables). Note that no differentiability or convexity assumptions
are made and we do not assume that a (sub)gradient of the objective function
can be evaluated.

Nonsmooth optimization (NSO) problems (P) are encountered in many ap-
plication areas: for instance, in economics [48], mechanics [46], engineering [45],
control theory [16], optimal shape design [27], machine learning [30], and data
mining [5, 12] including cluster analysis [18] and classification [2, 3, 10]. Most of
these problems are large-scale.

NSO problems are in general difficult to solve. The direct application of
gradient-based methods to nonsmooth problems may lead to a failure in con-
vergence, in optimality conditions, or in gradient approximation (see, e.g. [37]).
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Methods for solving NSO problems include subgradient methods (see e.g. [8,
9, 52, 53]), bundle methods (see e.g. [20, 28, 35, 39, 41, 42, 50, 51]), algorithms
based on smoothing techniques [49], and the gradient sampling methods [13]. In
most of these algorithms the computation of at least one arbitrary subgradient
(generalized gradient [15]) at each iteration is required. However, there are many
practical problems where computation of even one subgradient is a difficult (or
an impossible) task. In such cases derivative free methods are the preferable (or
the only) choice since they do not require explicit computation of subgradients.

Most of existing derivative free methods like the genetic algorithm (see,
e.g. [21]) or Powell’s method (see, e.g. [19]) are inefficient for solving nonsmooth
optimization problems with even tens of variables. For the other derivative free
methods the convergence can only be proved under differentiability or strict dif-
ferentiability assumptions (see, e.g. [4, 17, 19]). The exceptions are the discrete
gradient method [7] and the approximative subgradient method [6], where the
convergence are proved for quasidifferentiable semismooth functions.

In addition to problematic subgradients, nonconvexity adds another challenge;
NSO is traditionally based on convex analysis and most solution methods rely
strongly on the convexity of the problem. Fortunately, several nonconvex algo-
rithms have been introduced only recently, for instance, in [1, 13, 25, 26, 33, 47].
Nevertheless, these algorithms need to compute subgradients at each iteration
point, just like the convex solution methods.

In this paper we introduce a new limited memory discrete gradient bundle
method for derivative free nonconvex nonsmooth optimization. The idea of the
new method is to combine the discrete gradient method DGM [7] and the limited
memory bundle method LMBM [23, 24, 25]. DGM is a derivative free method
for (small-scale) nonconvex nonsmooth optimization while LMBM utilizes sub-
gradient information to solve large-scale nonsmooth problems. Although these
two are totally different methods they have some similarities in their structures
that makes combining of them rather an interesting task. The convergence of the
proposed method is proved for semismooth functions.

The paper is organized as follows. In Section 2 we recall some basic definitions
and results from nonsmooth analysis. We also discuss briefly DGM and LMBM.
In Section 3 we introduce the new method and study its convergence properties.
The results of the numerical experiments are presented and discussed in Section 4
and, finally, Section 5 concludes the paper.

2 Background

In this section, we first recall some basic definitions and results from nonsmooth
analysis. Then, we discuss basic ideas of LMBM and DGM.

2.1 Preliminaries

We denote by ‖·‖ the Euclidean norm in Rn and by aTb the inner product of
vectors a and b (bolded symbols are used for vectors). An open (closed) ball with
center x ∈ Rn and radius r > 0 is denoted by B(x; r) (B̄(x; r)). That is,

B(x; r) = {y ∈ Rn | ‖y − x‖ < r} and B̄(x; r) = {y ∈ Rn | ‖y − x‖ ≤ r}.
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The subdifferential ∂f(x) [15] of a LLC function f : Rn → R at any point x ∈ Rn

is given by

∂f(x) = conv{ lim
i→∞
∇f(xi) | xi → x and ∇f(xi) exists },

where “conv” denotes the convex hull of a set. A vector ξ ∈ ∂f(x) is called a
subgradient. The Goldstein ε-subdifferential [22]) with some ε ≥ 0 is a set

∂Gε f(x) = conv{ ∂f(y) | y ∈ B̄(x; ε)}.

Note that ∂f(x) ⊆ ∂Gε f(x) for all ε ≥ 0.
The point x∗ ∈ Rn is called substationary if 000 ∈ ∂f(x∗). Substationarity is a

necessary condition for local optimality and, in the convex case, it is also sufficient
for global optimality. An optimization method is said to be globally convergent if
starting from any arbitrary point x1 it generates a sequence {xk} that converges
to a substationary point x∗, that is, {xk} → x∗ whenever k →∞.

A function f : Rn → R is called semismooth at x ∈ Rn if it is LLC at x and
for every d ∈ Rn the limit

lim
ξ∈∂f(x+hd′),
d′→d, h→0+

ξTd

exists [43]. If the function f is semismooth, the classical directional derivative
f ′(x,d) = limh→0+ h

−1[f(x+ hd)− f(x)] exists and

f ′(x,d) = lim
ξ∈∂f(x+hd′),
d′→d, h→0+

ξTd.

The class of semismooth functions contains convex, concave, max-type and min-
type functions inter alia.

Let us denote by
S1 = {g ∈ Rn | ‖g‖ = 1}

the sphere of the unit ball and by

P = {z | z : R+ → R+, ζ > 0, ζ−1z(ζ)→ 0, ζ → 0}

the set of univariate positive infinitesimal functions. In addition, let

G = {e ∈ Rn | e = (e1, . . . , en), |ej| = 1, j = 1, . . . , n}

be a set of all vertices of the unit hypercube in Rn. We take any g ∈
S1, e ∈ G, z ∈ P , a positive number α ∈ (0, 1], and compute i =
argmax {|gj| | j = 1, . . . , n}. For e ∈ G we define the sequence of n vectors
ej(α) = (αe1, α

2e2, . . . , α
jej, 0, . . . , 0) j = 1, . . . , n. For x ∈ Rn and ζ > 0, con-

sider the points

x0 = x+ ζg, xj = x0 + z(ζ)ej(α), j = 1, . . . , n. (1)

Definition 2.1. Let g ∈ S1, e ∈ G, z ∈ P , α ∈ (0, 1], ζ > 0 and take i =
argmax {|gj| | j = 1, . . . , n}. The discrete gradient of the function f : Rn →
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R at the point x ∈ Rn in the direction g is the vector Γi(x, g, e, z, ζ, α) =
(Γi1, . . . ,Γ

i
n) ∈ Rn with the following coordinates:

Γij = [z(ζ)αjej)]
−1 [f(xj)− f(xj−1)] , j = 1, . . . , n, j 6= i,

Γii = (ζgi)
−1

[
f(x+ ζg)− f(x)− ζ

n∑
j=1,j 6=i

Γijgj

]
.

It follows from Definition 2.1 that

f(x+ ζg)− f(x) = ζgTΓi(x, g, e, z, ζ, α) (2)

for all g ∈ S1, e ∈ G, z ∈ P , α ∈ (0, 1] and ζ > 0.

Remark 2.1. The discrete gradient is defined with respect to a given direction
g ∈ S1. To compute the discrete gradient we first define a sequence of points
x0, . . .xn (see (1)) and compute the values of the function f at these points.
That is, we compute n+ 2 values of f including the point x. The ith coordinate
is defined so that it satisfies equality (2) which can be considered as some version
of the mean value theorem.

It has been proved in [7] that for any x ∈ Rn, g ∈ S1, e ∈ G, ζ > 0, z ∈ P ,
and α > 0 we have ‖Γi‖ ≤ C(n)L, where C(n) = (n2 + 2n3/2 − 2n1/2)1/2 and L
is a Lipschitz constant of function f at x. Furthermore, the closed convex set of
discrete gradients

V0(x, ζ) = cl conv{v ∈ Rn |∃ (g ∈ S1, e ∈ G, z ∈ P, α > 0)

such that v = Γi(x, g, e, z, ζ, α)}

is an approximation to the subdifferential ∂f(x) for sufficiently small ζ > 0 as
stated in the following proposition [7]:

Proposition 2.2. Let f : Rn → R be a semismooth function at x. For ζ > 0
and g ∈ S1 define

o(ζ, g) = f(x+ ζg)− f(x)− ζf ′(x, g).

If ζ−1o(ζ, g)→ 0 uniformly with respect to g as ζ → 0+, then for any ε > 0 there
exists ζ0 > 0 such that

V0(x, ζ) ⊂ ∂f(x) +B(000; ε)

for all ζ ∈ (0, ζ0).

2.2 Discrete Gradient Method

Next we briefly describe the discrete gradient method (DGM) by Bagirov et. al.
More details can be found in [7]. The idea of DGM is to hybridize derivative free
methods with bundle methods. In contrast with bundle methods, which require
the computation of a single subgradient of the objective function at each trial
point, DGM approximates subgradients by discrete gradients using function val-
ues only. Similarly to bundle methods the previous values of discrete gradients
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are gathered into a bundle and the null step is used if the current search direction
is not good enough.

We start by describing the direction finding procedure. As mentioned before,
the closed convex set of discrete gradients V0(x, ζ) is an approximation to the
subdifferential ∂f(x) for sufficiently small ζ > 0. Thus, it can be used to compute
the descent direction for the objective. However, the computation of the whole
set V0(x, ζ) is not easy, and therefore, in DGM only a few discrete gradients from
the set are used to calculate the descent direction.

The DGM consists of an outer and an inner iterations. Let us denote by k
the index of the outer iteration and by s the index of inner iteration. In what
follows we use only the iteration counter s whenever possible without confusion.
At every iteration k we first (i.e. s = 1) compute the discrete gradient v1 =
Γi(xk1 , g1, e, z, ζ, α) (see Definition 2.1) with respect to any initial direction g1 ∈
S1 and we set the initial bundle of discrete gradients V̄1(xk1) = {v1}. Then we
compute the vector

v̄s = argmin v∈V̄s(xks )‖v‖2,

that is the distance between the convex hull V̄s(xks) of all computed discrete
gradients and the origin. If this distance is less than a given tolerance δ > 0 we
accept the point xks as an approximate substationary point and go to the next
outer iteration. Otherwise, we compute another search direction

gs+1 = − v̄s
‖v̄s‖

and we check whether this is a descent direction. That is, we have

f(x+ ζgs+1)− f(x) ≤ −c1ζ‖v̄s‖,

with the given numbers c1 ∈ (0, 1) and ζ > 0. In this case, we set dks = gs+1

and stop the direction finding procedure. Otherwise, we take a null step. That
is, we compute another discrete gradient vs+1 = Γi(xks , gs+1, e, z, ζ, α) into the
direction gs+1, update the bundle of discrete gradients by

V̄s+1(xks) = conv{V̄s(xks) ∪ {vs+1}}

and continue the direction finding procedure with xks+1 = xks and s = s+1. Note
that, at the null steps the approximation of the subdifferential ∂f(x) is improved.
It has been proved in [7] that the direction finding procedure is terminating such
that either the descent direction dks is found or ‖v̄s‖ ≤ δ.

When the descent direction dks has been found, we need to compute the next
(inner) iteration point xks+1 = xks + tksdks , where the step size tks is defined as

tks = argmax {t ≥ 0 | f(xks + tdks)− f(xks) ≤ −c2t‖v̄ks‖}

with given c2 ∈ (0, c1].
The pseudo-code of DGM is the following:
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Program DGM
Initialize x1 ∈ Rn and k = 1;
Outer iteration
Set s = 1 and xks = xk;
Compute the first discrete gradient vk1;
Set V̄ (xk1) = {vk1};
While the termination condition is not met

Inner iteration
Compute the vector v̄ks = argmin v∈V̄ (xks )‖v‖2;
If ‖v̄ks‖ ≤ δk with δk > 0 s.t. δk ↘ 0 when k →∞ then

Set xk+1 = xks and k = k + 1;
Go to the next Outer iteration;

Else
Compute the search direction dks = −v̄ks/‖v̄ks‖;
Find a step size tk;
If Descent condition holds then
Construct the following iteration xks+1 = xks + tkdks;
Compute a new discrete gradient vks+1 at xks+1;

Set V̄ (xks+1) = {vks+1};
Else
Compute a new discrete gradient vks+1 at xks
in direction dks;

Update the set V̄ (xks+1) = conv{ V̄ (xks) ∪ vks+1 };
Set xks+1 = xks;

End If
Set s = s+ 1 and go to the next Inner iteration;

End If
End Inner iteration

End While
End Outer iteration
Return final solution xk;

End DGM

It has been proved that DGM is globally convergent for quasidifferentiable LLC
functions under the assumption that the set of discrete gradients uniformly ap-
proximates the subdifferential [7].

2.3 Limited Memory Bundle Method (LMBM)

In this subsection, we describe the limited memory bundle algorithm (LMBM)
by Karmitsa (née Haarala) et. al. [23, 24, 25, 32] for solving general, possibly non-
convex, large-scale NSO problems. Here we assume that at every point x we can
evaluate the value of the objective function f(x) and one arbitrary subgradient
ξ from the subdifferential ∂f(x).

LMBM is a hybrid of the variable metric bundle methods [39, 54] and the
limited memory variable metric methods (see e.g. [14]), where the first ones have
been developed for small- and medium-scale nonsmooth optimization and the
latter ones for smooth large-scale optimization. LMBM exploits the ideas of
the variable metric bundle methods, namely the utilization of null steps, simple
aggregation of subgradients, and the subgradient locality measures, but the search
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direction dk is calculated using the limited memory approach. That is,

dk = −Dkξ̃k,

where ξ̃k is (an aggregate) subgradient and Dk is the limited memory variable
metric update that, in the smooth case, represents the approximation of the
inverse of the Hessian matrix. Note that the matrix Dk is not formed explicitly
but the search direction dk is calculated using the limited memory approach.

In order to determine a new step into the search direction dk, LMBM uses
so-called line search procedure: a new iteration point xk+1 and a new auxiliary
point yk+1 are produced such that

xk+1 = xk + tkLdk and (3)

yk+1 = xk + tkRdk, for k ≥ 1

with y1 = x1, where tkR ∈ (0, tmax] and tkL ∈ [0, tkR] are step sizes, and tmax > 1 is
the upper bound for the step size. A necessary condition for a serious step to be
taken is to have

tkR = tkL > 0 and f(yk+1) ≤ f(xk)− εkLtkRwk, (4)

where εkL ∈ (0, 1/2) is a line search parameter and wk > 0 represents the desirable
amount of descent of f at xk. If the condition (4) is satisfied, we have xk+1 = yk+1.
On the other hand, a null step is taken if

tkR > tkL = 0 and − βk+1 + dTk ξk+1 ≥ −εkRwk, (5)

where εkR ∈ (εkL, 1/2) is a line search parameter, ξk+1 ∈ ∂f(yk+1), and βk+1 is the
subgradient locality measure [38, 44] similar to standard bundle methods. That
is,

βk+1 = max{|f(xk)− f(yk+1) + (yk+1 − xk)Tξk+1)|, γ‖yk+1 − xk‖2 }. (6)

Here γ ≥ 0 is a distance measure parameter supplied by the user. Parameter γ
can be set to zero when f is convex.

In the case of a null step, we set xk+1 = xk but information about the ob-
jective function is increased because we store the auxiliary point yk+1 and the
corresponding auxiliary subgradient ξk+1 ∈ ∂f(yk+1).

LMBM uses the original subgradient ξk after the serious step and the aggregate
subgradient ξ̃k after the null step for direction finding (i.e. we set ξ̃k = ξk if the
previous step was a serious step). The aggregation procedure is carried out by
determining multipliers λki satisfying λki ≥ 0 for all i ∈ {1, 2, 3}, and

∑3
i=1 λ

k
i = 1

that minimize the function

ϕ(λ1, λ2, λ3) = [λ1ξm + λ2ξk+1 + λ3ξ̃k ]TDk[λ1ξm + λ2ξk+1 + λ3ξ̃k ] (7)

+ 2(λ2βk+1 + λ3β̃k).

Here ξm ∈ ∂f(xk) is the current subgradient (m denotes the index of the itera-
tion after the latest serious step, i.e. xk = xm), ξk+1 ∈ ∂f(yk+1) is the auxiliary

subgradient, and ξ̃k is the current aggregate subgradient from the previous itera-
tion (ξ̃1 = ξ1). In addition, βk+1 is the current subgradient locality measure and
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β̃k is the current aggregate subgradient locality measure (β̃1 = 0). The resulting
aggregate subgradient ξ̃k+1 and aggregate subgradient locality measure β̃k+1 are
computed by the formulae

ξ̃k+1 = λk1ξm + λk2ξk+1 + λk3ξ̃k and β̃k+1 = λk2βk+1 + λk3β̃k. (8)

Due to this simple aggregation procedure only one trial point yk+1 and the cor-
responding subgradient ξk+1 ∈ ∂f(yk+1) need to be stored.

In LMBM both the limited memory BFGS (L-BFGS) and the limited memory
SR1 (L-SR1) update formulae [14] are used in calculations of the search direction
and the aggregate values. The idea of limited memory matrix updating is that
instead of storing large n × n matrices Dk, one stores a certain (usually small)
number of vectors obtained at the previous iterations of the algorithm, and uses
these vectors to implicitly define the variable metric matrices. In the case of a null
step, we use the L-SR1 update, since this update formula allows us to preserve the
boundedness and some other properties of generated matrices which guarantee
the global convergence of the method. Otherwise, since these properties are not
required after a serious step, the more efficient L-BFGS update is employed (see,
for more details, [23, 24, 25]).

As a stopping parameter, we use the value

wk = −ξ̃Tk dk + 2β̃k

and we stop if wk ≤ ε for some user specified ε > 0. The parameter wk is also used
during the line search procedure to represent the desirable amount of descent.

The pseudo-code of LMBM is the following:

Program LMBM
Initialize x1 ∈ Rn, ξ1 ∈ ∂f(x1), and ε > 0;
Set k = 1 and d1 = −ξ1;

While the termination condition wk ≤ ε is not met

Find step sizes tkL and tkR;
Set xk+1 = xk + tkLdk;
Evaluate f(xk+1) and ξk+1 ∈ ∂f(xk + tkRdk);
If tkL > 0 then

Serious step
Compute the search direction dk+1 using ξk+1 and L-BFGS

update;

End Serious step
Else

Null step

Compute the aggregate subgradient ξ̃k+1;

Compute the search direction dk+1 using ξ̃k+1 and L-SR1

update;

End Null step
End If
Set k = k + 1;

End While
Return final solution xk;

End LMBM

Under the upper semismoothness assumption [11] LMBM can be proved to be
globally convergent for LLC objective functions [23, 25].
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3 Limited Memory Discrete Gradient Bundle Method

In this section we introduce the new derivative free limited memory discrete
gradient bundle method (LDGBM).

As mentioned in the introduction LMBM and DGM have some similarities in
their structures. For instance, both of these methods wipe out the old informa-
tion whenever the serious step occurs. This property is different from standard
bundle methods (see e.g. [42]) where the old information is collected near the
current iteration point and stored to be used in the next iterations nonetheless
of the step in question. In practice, storing all the old information may have
several disadvantages: first, it needs storage space, although unbounded storage
requirement may be addressed by so-called aggregation procedure introduced in
[34]; second, it adds computational costs; and, what is the worst, it may store
and use information that is no longer relevant due to the fact that it might have
been collected far away from the current iteration point. The last point may be
especially problematic in nonconvex cases.

In LMBM we bundle the subgradients that are computed in a small neighbor-
hood of the current iteration point. This is similar to standard bundle methods
although in LMBM we use this information only after null steps and, at the most,
three subgradients are needed. On the other hand, in DGM discrete gradients
calculated only at the current iteration point with respect to different directions
are gathered into a bundle (see Definition 2.1 and Subsection 2.2). In our new
method we combine these ideas and compute discrete gradients in a small neigh-
borhood of the current iteration point with respect to different directions.

In DGM , similar to standard bundle methods, a quadratic subproblem needs
to be solved to find the discrete gradient with the shortest norm and, as a conse-
quence, to calculate the search direction. Now, instead of bundling an unlimited
number of discrete gradients in null steps and computing the shortest norm, we
compute the convex combination of at most three discrete gradients and the
search direction is calculated using limited memory approach. Thus, a possibly
time consuming quadratic direction finding problem needs not to be solved and
also the difficulty with the unbounded amount of storage needed in DGM has
been dealt with.

The obvious difference between LDGBM and LMBM is that we now use
discrete gradients instead of subgradients of the objective function. In addition,
we use both inner and outer iterations in order to avoid too tight approximations
to the subgradients at the beginning of computation (thus, we have a derivative
free method). The inner iteration of LDGBM is essentially same as LMBM.
That is, the search direction is computed by the formula

dks = −Dksṽks ,

where s and k are the indices of inner and outer iterations, ṽks is an aggregate
discrete gradient and Dks is a limited memory variable metric update. In addition,
the line search procedure (cf. (3) – (5)) is used to determine a new iteration and
auxiliary points xks+1 and yks+1

, and the aggregation procedure (cf. (7) and (8))
is used to compute a new aggregate discrete gradient ṽks+1 and a new aggregate

subgradient locality measure β̃ks+1 .
The first discrete gradient v11 = Γi(x, g11 , e, z, ζ, α), where i = argmax {|gj| |

j = 1, . . . , n}, is computed to an arbitrary initial direction g11 ∈ S1. After that
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we always use the previous normalized search direction gks+1
= dks/‖dks‖ to

compute the next discrete gradient vks+1 . Parameters z ∈ P , ζ > 0, and α > 0
are selected similarly to DGM [7].

The inner iteration is terminated if we have

1

2
‖ṽks‖2 + β̃ks ≤ δk

for some outer iteration parameter δk > 0.
We use here a new adaptive updating strategy for the selection of outer iteration

parameter δk. At the beginning, the outer iteration parameter δ1 is set to a large
number. Each time the inner iteration is terminated we set

δk+1 = min{σδk, wks},

where σ ∈ (0, 1) and wks = −ṽTksdks + 2β̃ks . Similarly to LMBM, the parameter
wks is used also during the line search procedure to represent the desirable amount
of descent (cf. (4) and (5)).

Let us assume that the sequences zk ∈ P , ζk > 0, zk → 0+, ζk → 0+, k →∞, a
sufficiently small number α > 0 and the line search parameters εksL ∈ (0, 1/2) and
εksR ∈ (εksL , 1/2) are given. The pseudo-code of LDGBM is the following (note
that obviously more details are given here than before):
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Program LDGBM
Initialize x1 ∈ Rn, g11 ∈ S1, ε > 0, δ1 > ε, ζ1 > 0, σ, ε ∈ (0, 1) and k = 1;
Outer iteration
Set s = 1 and xk1 = xk;
While the termination condition δk ≤ ε is not met

Inner iteration
Serious step 1
Compute the discrete gradient vks ∈ V0(xks , ζk) in

direction gks;

Set m = s, ṽks = vks, and β̃ks = 0;
Compute the search direction dks using ṽks and L-BFGS

update;

End Serious step 1
Inner iteration termination

If 1/2‖ṽks‖2 + β̃ks ≤ δk then;
Set xk+1 = xks, gk+11 = dks/‖dks‖, ζk+1 = εζk,

δk+1 = min{σδk,−ṽTksdks + 2β̃ks}, and k = k + 1;
Go to the next Outer iteration;

End If
End Inner iteration termination

Find step sizes tksL and tksR , and the subgradient

locality measure βks+1;

If tksL > 0 then
Serious step 2

Construct the iteration xks+1 = xks + tksL dks;
Set gks+1

= dks/‖dks‖;
Set s = s+ 1 and go to the next Serious step 1;

End Serious step 2
Else

Null step

Construct the trial point yks+1
= xks + tksR dks;

Compute the new discrete gradient vks+1 ∈ V0(yks+1
, ζk)

at the point yks+1
in the direction gks+1

= dks/‖dks‖;
Compute the aggregate values

ṽks+1 = λks1 vkm + λks2 vks+1 + λks3 ṽks and

β̃ks+1 = λks2 βks+1 + λks3 β̃ks;
Compute the new search direction dks+1 using ṽks+1

and L-SR1 update;

Set xks+1 = xks and s = s+ 1;
Go to the Inner iteration termination;

End Null step
End if

End Inner iteration
End While

End Outer iteration
Return final solution xk;

End LDGBM

The discrete gradient is computed according to Definition 2.1 and Remark 2.1.
Similarly to LMBM the search direction and the aggregate values are computed
by using the L-BFGS update after serious steps and L-SR1 update otherwise (see
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[14] for more details of limited memory matrix updating and [24, 25] for their
usage in LMBM). The step sizes tksR ∈ (0, tmax] and tksL ∈ [0, tksR with tmax > 1 are
computed such that either condition (4) for serious steps or condition (5) for null
steps is satisfied. In addition, the subgradient locality measure βks+1 as well as the

multipliers λksi satisfying λksi ≥ 0 for all i ∈ {1, 2, 3}, and
∑3

i=1 λ
ks
i = 1 utilized

in the aggregation procedure are computed similarly to LMBM (see equations
(6) and (7)).

3.1 Convergence Analysis

We now prove the global convergence of the LDGBM-algorithm. In addition to
assuming that the objective function f : Rn → R is LLC, the level set {x ∈
Rn | f(x) ≤ f(x1) } is supposed to be bounded for every starting point x1 ∈ Rn.
Furthermore, we assume that each execution of the line search procedure is finite
and the assumptions of Proposition 2.2 are satisfied. The line search procedure
has been proved to be finite under the assumption of semismoothness (see [54]).
On the other hand, in Proposition 2.2 we assume that function f is semismooth.
Since the class of semismooth functions includes the class of upper semismooth
functions, we here assume that the objective function f is semismooth.

Definition 3.1. Let ε > 0 and ζ > 0. We define the ε-set of discrete gradients
by

Vε(x, ζ) = conv{V0(y, ζ) | y ∈ B̄(x; ε)}.

Lemma 3.2. For all inner iterations ks, there exists εks ≥ 0 such that

ṽks ∈ Vεks(xks , ζk).

Proof. After a serious step we have ṽks+1 = vks+1 ∈ V0(xks+1 , ζk) and, hence,
the case is trivial. After a null step the aggregate discrete gradient ṽks+1 is com-
puted as a convex combination of three discrete gradient: vks ∈ V0(xks , ζk),
vks+1 ∈ V0(yks+1

, ζk) and ṽks . For null steps we use the scaled direction vec-
tor θkdk with θk = min { 1, C/‖dk‖ } and predefined C > 0 in the line search
(for more details, see [25]). Thus, by (3) we have ‖yks+1

− xks‖ ≤ tmaxC, and we
have vks+1 ∈ Vεks(xks , ζk) with some 0 < εks ≤ tmaxC. Since the first aggregate
discrete gradient ṽks after a serious step is equal to vks , they both belong to the
set Vεks(xks , ζk) with any εks ≥ 0.

As a convex combination of these three discrete gradients, the second aggregate
discrete gradient ṽks+1 after the serious step belongs to the set Vεks(xks , ζk) with
some 0 < εks ≤ tmaxC. The rest of the proof follows by induction. �

Lemma 3.3. Suppose that the assumptions of Proposition 2.2 are satisfied at every
y ∈ B̄(x; ε) with some ε > 0. Then, there exists ζ0 > 0 such that the ε-set of
discrete gradients approximates the Goldstein subdifferential by

Vε(x, ζ) ⊂ ∂Gε f(x) +B(000; ε)

with all ζ ∈ (0, ζ0).

Proof. Let v ∈ Vε(x, ζ). Then v =
∑
λiv

y
i , where vyi ∈ V0(yi, ζ), yi ∈ B̄(x; ε),∑

λi = 1 and λi ≥ 0 for all i. Now, by Proposition 2.2 there exists ζ i0 for any
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ε > 0 such that V0(yi, ζ) ⊂ ∂f(yi) + B(000; ε) for all ζ ∈ (0, ζ i0). Thus, we have
vyi = ξyi + sεi , where ξyi ∈ ∂f(yi) and sεi ∈ B(000; ε). Hence,

v =
∑

λi(ξ
y
i + sεi )

=
∑

λiξ
y
i +

∑
λis

ε
i

⊂ conv{∂f(yi) | yi ∈ B̄(x; ε)}+B(000; ε)

= ∂Gε f(x) +B(000; ε)

with all ζ ∈ (0,mini{ζ i0}). �

Definition 3.4. A point x is called a (ζ, δ)-stationary point of the function f ,
if

min
v∈V0(x,ζ)

‖v‖ ≤ δ.

Theorem 3.5. Let f : Rn → R be a LLC semismooth function. Then the number
of inner iteration loops in the LDGBM-algorithm is finite and, at the termina-
tion, the point xk+1 is a (ζk,

√
2δk) -stationary point of the function f .

Proof. The inner iteration loop in the LDGBM-algorithm is essentially the
same as LMBM with subgradients replaced by discrete gradients. It has been
shown in [25] that LMBM terminates after finite number of iterations, if the
stopping parameter (cf. δk here) is greater than zero. The usage of discrete gra-
dients does not alter this result. Thus, the inner iteration loop in the LDGBM
-algorithm is terminating after finite number of steps.

At the termination we have

δk ≥
1

2
‖ṽks‖2 + β̃ks ≥

1

2
‖ṽks‖2.

By Lemma 3.2 we have ṽks ∈ Vµ(xks , ζk) with some µ ≥ 0 and we set xk+1 = xks
at the termination. Thus, we have

min
v∈V0(xk+1,ζk)

‖v‖2 ≤ ‖ṽks‖2 ≤ 2δk.

Then by Definition 3.4, xk+1 is a (ζk,
√

2δk) -stationary point of the function f .�

Theorem 3.6. Let f : Rn → R be a semismooth LLC function and suppose that
the level set {x ∈ Rn | f(x) ≤ f(x1)} is bounded. Then every accumulation point
of the sequence {xk} generated by the LDGBM-algorithm is substationary for f .

Proof. Since f is LLC and the level set is bounded, we have

f ∗ = inf{f(x) | x ∈ Rn} > −∞.

By Theorem 3.5 the inner iterations generate (ζk,
√

2δk) -stationary points for all
k ≥ 1. Thus, it follows from Definition 3.4 that

min{‖v‖ | v ∈ V0(xk+1, ζk)} ≤
√

2δk (9)

for any k ≥ 1. Since {f(xk)} is a nonincreasing sequence, xk belongs to the level
set with all k ≥ 1. Moreover, the boundedness of the level set implies that the
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sequence {xk} has at least one accumulation point. Let x̄ be an accumulation
point of {xk} and let xki → x̄ when i→∞. Then we have from (9) that

min{‖v‖ | v ∈ V0(xki , ζki−1)} ≤
√

2δki−1. (10)

Now, by Lemma 3.3 for any y ∈ B̄(x̄;µ) with µ > 0 there exists ζ0 > 0 such that

V0(y, ζ) ⊆ Vµ(x̄, ζ) ⊆ ∂Gµ f(x̄) +B(000;µ) (11)

for all ζ ∈ (0, ζ0). Since xki converges to x̄ there exists i0 ≥ 1 such that xki ∈
B(x̄;µ) for all i ≥ i0. Moreover, since δk → 0 and ζk → 0 as k →∞, there exists
k0 > 1 such that δk ≤ ε with some ε > 0 and ζk < ζ0 for all k > k0. Then there
exists l0 ≥ i0 such that kl ≥ k0 + 1 for all l ≥ l0. Therefore, from (10) and (11)
we obtain

min{‖v‖ | v ∈ ∂Gµ f(x̄)} ≤ µ+
√

2ε.

Now, since µ, ε > 0 are arbitrary and the subdifferential is upper semicontinuous
(see, e.g. [42]), we have 000 ∈ ∂f(x). �

4 Numerical Experiments

In this section we compare the implementations of the methods described in the
previous sections and also SolvOpt, an implementation of Shor’s r-algorithm.
The test set used in our experiments consists of classical academic nonsmooth
minimization problems from the literature and their extensions.

4.1 Solvers

The tested optimization codes with references to more detailed descriptions of
the methods and their implementations are presented in Table 1.

Table 1: Tested optimization codes

Software Author(s) Method Reference

SolvOpt Kuntsevich & Kappel Shor’s r-algorithm [29, 36, 52]
LMBM Karmitsa Limited memory bundle [24, 25]
DGM Bagirov Discrete gradient [7]
LDGBM Karmitsa L-discrete gradient bundle

A brief description of each software and the references from where the code can
be downloaded are in order.

SolvOpt (Solver for local nonlinear optimization problems) is an implementa-
tion of Shor’s r-algorithm. In SolvOpt one can select to use either original subgra-
dients or difference approximations of them (i.e. the user does not have to code
difference approximations but to select one parameter to do this automatically).
In our experiments we have used difference approximations.

The MatLab, C and Fortran source codes for SolvOpt are available for down-
loading from http://www.kfunigraz.ac.at/imawww/kuntsevich/solvopt/. In our
experiments we used SolvOpt v.1.1 HP-UX FORTRAN-90 sources.
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LMBM is an implementation of the limited memory bundle method specifically
developed for large-scale nonsmooth problems (see Subection 2.3). In our exper-
iments we used the difference approximations to calculate the approximations of
the subgradients. The Fortran 77 source code and the mex-driver (for MatLab
users) are available for downloading from http://napsu.karmitsa.fi/lmbm/.

DGM is a discrete gradient solver (see Subection 2.2) for derivative free optimiza-
tion. To apply DGM, one only needs to be able to compute at every point x the
value of the objective function. The subgradient will then be approximated by
discrete gradients. The Fortran 77 source code of DGM is available for downloading
from http://napsu.karmitsa.fi/dgm/.

LDGBM is an implementation of the limited memory discrete gradient bundle
method introduced in this paper. The Fortran 95 source code of LDGBM is available
for downloading from http://napsu.karmitsa.fi/ldgbm/.

The experiments were performed on an IntelR© Core
TM

2 CPU 1.80GHz. To compile
the codes, we used gfortran-4.3, the GNU Fortran compiler.

4.2 Test problems and parameters

As already said the test set used in our experiments consists of classical academic
nonsmooth minimization problems from the literature and their extensions. That
is, we have used the small-scale problems 3.1 – 3.20 of [40] (omitting problems
3.13 and 3.14 in which DGM converged to unbounded minima) and larger problems
1 – 10 introduced in [24] that can be formulated with any number of variables.
We have used here 50, 200 and 1000 variables.

Note that in the computation of both the difference approximations and the
discrete gradients more than n function evaluations are needed per iteration.
Therefore, already a problem with 200 variables can be considered as large one
for the solvers not using (sub)gradient information and that is outstandingly true
when dealing with nonsmooth problems.

We say that a solver finds the solution with respect to a tolerance ε > 0 if

fbest − fopt
1 + |fopt|

≤ ε,

where fbest is a solution obtained with the solver and fopt is the best known (or
optimal) solution. We have accepted the results small-scale problems (n ≤ 50)
with respect to the tolerance ε = 5 · 10−4. With larger problems (n ≥ 200), we
have accepted the results with the tolerance ε = 10−3. To obtain comparable
results the stopping parameters of the codes were tuned by the procedure similar
to [31].

For DGM the maximum size of the bundle was set to min{n+3, 100}. With LMBM

and LDGBM the natural choice for the bundle size is two (the larger bundle may
be used but it is only utilized in step size selection). For all other parameters we
have used the default settings of the codes.

15



4.3 Results

The results are summarized in Tables 2 and 3. We have compared the efficiency
of the solvers both in terms of the computational time (cpu) and the number of
function evaluations (nf , evaluations for short). In the smaller problems (n ≤
20, see Table 2) we only give numbers of evaluations since there was not a big
difference in the computational time of the different solvers.

Table 2: Summary of the results in terms of evaluations for small-scale problems

P n SolvOpt LMBM DGM LDGBM

3.1 2 270 989 1332 267
3.2 2 376 4 370 451 244
3.3 2 106 172 411 296
3.4 2 93 503 435 298
3.5 2 134 1 105 338 454
3.6 2 94 3 513 584 279
3.7 2 120 232 300 193
3.8 2 254 fail 188 487
3.9 2 122 300 371 391
3.10 2 118 633 672 234
3.11 4 166 6 654 1 662 710
3.12 5 258 7 649 2 945 1 059
3.15 6 1 039 3 059 5 544 4 286
3.16 10 896 fail 4 929 1 655
3.17 10 fail fail 4 567 fail
3.18 12 1 036 24 698 9 308 4 862
3.19 20 6 277 7 243 5 541 4 243
3.20 20 fail 102376 5720 fail

In small-scale problems SolvOpt usually used less evaluations than any of the
other solvers tested including our new solver while DGM was the most reliable
solver tested (see Table 2). However, LDGBM usually used less evaluations than
DGM and LMBM and the robustness of the solver was similar to SolvOpt and LMBM.
Thus, we can say that our new solver is comparable with the existing solvers in
small-scale settings.

Although SolvOpt solved small-scale problems both efficiently and robustly it
was not in its element when solving the medium- and large-scale problems (see
Table 3). The number of evaluations were still usually the smallest ones but the
robustness was very weak.

Also our new solver LDGBM solved only five (out of ten) problems with 1000
variables with the desired accuracy. However, the failures obtained with LDGBM

were mostly inaccurate result: with the relaxed tolerance ε = 10−2 LDGBM failed
only in one problem (problem 2) while with SolvOpt the number of failures is
still five even if the relaxed tolerance was used. This indicates that with LDGBM a
better accuracy might be achieved with more tight stopping criterion.

In smaller problems (n ≤ 200) the robustness of LDGBM was as good as that of
DGM which, on the other hand, was the most robust of the existing solvers. LDGBM
also used clearly less evaluations and computational time than DGM and LMBM.
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Table 3: Summary of the results for medium and large-scale problems

P n SolvOpt LMBM DGM LDGBM

nf/cpu nf/cpu nf/cpu nf/cpu

1 50 32 195/0.17 54 564/5.20 27 025/0.03 26 284/0.05
2 50 9 984/0.98 fail fail fail
3 50 fail 114 671/0.26 103 200/1.35 12 588/0.04
4 50 fail 97 701/1.09 89 616/1.86 13 858/0.17
5 50 2 237/0.03 84 240/0.81 36 083/0.27 6 548/0.07
6 50 854/0.01 106 807/0.74 9 201/0.04 3 969/0.02
7 50 3 728/0.13 127 804/3.05 41 548/1.09 17 760/0.47
8 50 fail fail 92 527/0.95 32 915/0.08
9 50 fail 79 547/0.13 26 112/0.03 4 163/0.01
10 50 fail 169 377/0.40 52 670/0.74 16 177/0.04

1 200 555 779/9.23 848 449/6.54 312 544/0.59 598 321/2.35
2 200 48 770/79.86 fail 379 523/313.80 fail
3 200 fail 1 165 657/10.05 553 314/14.10 173 305/1.68
4 200 fail 503 113/22.24 568 910/32.67 104 501/4.38
5 200 12 889/0.78 46 957/1.79 261 919/7.02 22 860/0.91
6 200 fail 488 559/12.88 fail 31 825/0.73
7 200 fail 418 623/39.47 378 468/37.66 68 331/7.14
8 200 fail 325 371/1.63 862 819/17.09 80 260/0.53
9 200 19 063/0.32 313 324/1.99 163 043/0.59 12 540/0.09
10 200 fail 546 940/4.75 628 636/20.48 69 233/0.69

1 1000 fail fail 10 592 047/92.43 fail
2 1000 44 213/1812.13 fail fail fail
3 1000 fail 4 910 632/208.60 3 579 840/111.49 1 484 246/61.77
4 1000 fail 1 314 594/282.92 3 085 985/452.59 762 840/165.82
5 1000 44 206/14.64 317 113/58.52 1 593 326/197.64 545 135/105.97
6 1000 fail 4 001 432/511.81 12 583 470/1107.24 fail
7 1000 fail fail 4 455 499/1609.18 fail
8 1000 fail 2 302 536/55.69 2 993 617/54.78 182 975/4.67
9 1000 fail 820 998/25.62 993 300/16.12 70 181/2.17
10 1000 fail fail fail fail
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5 Conclusions

In this paper, we have described a new limited memory discrete gradient bun-
dle method (LDGBM) for unconstrained nonsmooth optimization. LDGBM is
a derivative free method and thus applicable to a broad class of optimization
problems even if the (sub)gradient is not available. We have proved the global
convergence of the method for locally Lipschitz continuous semismooth objective
functions, which are not necessarily differentiable or convex.

The numerical experiments reported confirm that LDGBM is efficient for both
convex and nonconvex nonsmooth optimization problems. With small-scale prob-
lems (n ≤ 20) LDGBM was comparable with the existing solvers and with large
numbers of variables it usually used clearly less function evaluations than the
other solvers tested.

We can conclude that LDGBM is a good alternative to existing derivative free
nonsmooth optimization algorithms and for medium- and large-scale problems it
might well be the best choice.
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