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ABSTRACT  9 

Climate change is threating species’ persistence worldwide. To predict species responses to climate 10 

change we need information not just on their environmental tolerance but also on its adaptive potential. 11 

We tested how the foundation species of rocky littoral habitats, Fucus vesiculosus, responds to 12 

combined hyposalinity and warming projected to the Baltic Sea by 2070-2099. We quantified responses 13 

of replicated populations originating from the entrance, central, and marginal Baltic regions. Using 14 

replicated individuals, we tested for the presence of within-population tolerance variation. Future 15 

conditions hampered growth and survival of the central and marginal populations whereas the entrance 16 

populations fared well. Further, both the among- and within-population variation in responses to climate 17 

change indicated existence of genetic variation in tolerance. Such standing genetic variation provides the 18 

raw material necessary for adaptation to a changing environment, which may eventually ensure the 19 

persistence of the species in the inner Baltic Sea.   20 

 21 
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1. INTRODUCTION 25 

Climate change is significantly impacting biodiversity and ecosystem functioning 26 

worldwide, and by the end of the twenty-first century it may become the most important driver of 27 

biodiversity loss and species range shift (Bellard et al. 2012; Poloczanska et al. 2013; Lenoir et al. 28 

2015; Gruner et al. 2016). In the light of the predicted environmental changes, some species may 29 

persist by adapting evolutionarily to new conditions but many will shift their distribution with the 30 

changing environmental regimes while some may be lost to extinction (Parmesan and Yohe 2003; 31 

Perry et al. 2005; Harley et al. 2012; Poore et al. 2016). The challenge for predicting species 32 

responses to climate change is to know their environmental tolerances and, in particular, to 33 

understand the adaptive potential of tolerance which may rescue populations from local extinction. 34 

Tolerance to a certain range of environmental conditions determines  species’ geographical 35 

distribution (Levins 1968; Banta et al. 2012). Although species are often treated as if they 36 

responded uniformly to environmental stress (Banta et al. 2012) populations of broadly distributed 37 

species experience distinct gradients of abiotic and biotic factors and typically show phenotypic 38 

and/or genotypic differences (Sanford and Kelly 2011, Valladares et al. 2014). The species may 39 

adjust its phenotype to the new environmental conditions through phenotypic plasticity (Chevin et 40 

al. 2010; Lande 2014; Valladares et al. 2014). Alternatively, populations may differ in traits 41 

related to tolerance, and when such variation exists, some of them may be more prone to 42 

extinction in the face of widespread environmental alterations such as climate change (Pearson et 43 

al. 2000; Hämmerli and Reusch 2002; Kelly et al. 2011; Lamichhaney et al. 2012; Stockwell et al. 44 

2003; Berteaux et al. 2004; Reusch et al. 2005). Our understanding of how tolerance, genetic 45 

variation of tolerance and phenotypic plasticity may vary among populations and how it affects 46 

species responses to changing environment is still in its infancy. 47 
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Here we study variation in tolerance to climate change of a broadly distributed brown alga 48 

Fucus vesiculosus along the environmental gradient in the Baltic Sea. The Baltic Sea is an 49 

ecologically marginal habitat for marine species due to its brackish water nature. The inflow of 50 

freshwater from many rivers, together with a poor exchange of seawater with the Atlantic, causes 51 

a strong salinity gradient, which decreases from approximately 20 PSU (Practical Salinity Unit) in 52 

the southwest, in the Kattegat, to 1 PSU in the north (Rönnberg and Bonsdorff 2004). In addition, 53 

the sea surface temperature of the Baltic Sea shows large geographic and seasonal variation. 54 

During summer, the temperature exceeds 20°C, while during winter it might drop below zero 55 

(Swedish Environmental Protection Agency, 2001). Climate change is predicted to bring changes 56 

in surface seawater temperature, salinity, turbidity, and ice coverage and duration (Meier and 57 

Eilola 2011; Meier et al. 2012). In particular, a rise in seawater temperature and a remarkable drop 58 

in salinity are projected for the years 2070-2099 (Meier et al. 2011), with the biggest absolute 59 

change in salinity occurring in the entrance region.  60 

 Fucus vesiculosus (hereafter Fucus) is the major perennial macrophyte and foundation species 61 

in the Baltic Sea littoral (Wikström and Kautsky 2007), where it inhabits the shallow hard-bottom 62 

areas (Snoeijs, 1999). It plays a key ecological role by forming a highly structured habitat for 63 

many epibionts and other associated organisms (Korpinen et al. 2007), thus providing food and 64 

shelter to the benthic community (Lotze et al. 2001). The increased surface seawater temperature 65 

and decreased salinity expected for the next century may affect Fucus populations in the Baltic 66 

Sea both directly and indirectly, possibly causing distributional shifts  (Leidenberger et al. 2015, 67 

reviewed in Takolander et al. 2017a). Warming has been found to impair survival (Wilson et al. 68 

2015) as well as to speed reproductive maturation with decreasing germination success 69 

(Maczassek et al. 2014; Kraufvelin et al. 2012). Warming may also have positive effects on 70 
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growth of germlings (Steen and Rueness 2004) or adults, and it may benefit Fucus indirectly by 71 

reducing grazers (Werner et al. 2015; 2016). On the other hand, some indirect effects of warming 72 

such as increased consumption rate of herbivorous isopods (Leidenberger, Harding and Jonsson 73 

2012; Gutow et al. 2016; Rothäusler et al. 2017), changes in quality of the thallus as food 74 

(Weinberger et al. 2011), or increase of light-absorbing phytoplankton (Alexandridis et al. 2012) 75 

may be harmful for Fucus. So far, much less is known about the effects of declining salinity on 76 

Fucus. Bäck et al. (1992a) showed that Baltic Fucus evolved higher tolerance to low salinity than 77 

its Atlantic counterpart. Laboratory experiments found that salinities lower than 4 PSU are a 78 

physiological boundary for reproductive efficiency of F. vesiculosus, and this would therefore 79 

limit the distribution of this species (Serrão et al. 1999; Serrão et al. 1996a, b). However, Fucus 80 

individuals have been found in salinity down to 2 PSU in the Bothnian Sea, Gulf of Finland, and 81 

the White Sea. This is possibly due to periodic salinity fluctuations during their reproductive 82 

period or a localised higher salinity (Ruuskanen and Bäck, 2002, Ardehead et al. 2016). A 83 

decrease in salinity between 6 and 3 PSU in the Gulf of Finland was associated with a decrease in 84 

thallus size Baltic of F. vesiculosus (Ruuskanen et al. 1999). 85 

 Even though F. vesiculosus experiences different gradients of salinity and temperature across 86 

the Baltic Sea, experimental studies seldom account for this interactive effect, and typically only a 87 

single environmental factor has been manipulated  (Wernberg et al. 2012; Forsman et al. 2016). In 88 

the present study, we exposed Baltic Fucus to a long-term climate change experiment (140 days) 89 

to test if it has the potential to tolerate and adapt to the projected simultaneous summer-time future 90 

temperature and salinity conditions expected for the years 2070-2099 in the Baltic Sea (Meier et 91 

al. 2011). Based on these climate projections, we tested the following hypotheses: (i) Populations 92 

originating from the entrance, central and marginal regions of the Baltic Sea are differently 93 



6 

 

affected by the predicted future conditions of their region: the expected future shift in salinity and 94 

temperature for the entrance region can be within the tolerance range but for the populations in the 95 

central and marginal regions it may be challenging to tolerate the predicted combination of 96 

warming and low salinities. (ii) Populations within regions may vary in their responses to future 97 

conditions due to their local differentiation. Such among-population variation represents either 98 

geographic genetic variation or phenotypic plasticity in tolerance, both of which may enhance 99 

persistence through dispersal from the more tolerant populations. (iii) Populations may harbor 100 

within-population variation in tolerance. Also such variation can be based on standing genetic 101 

variation or individual variation in phenotypic plasticity. Within population variation indicates 102 

potential for adaptive responses to climate change. Given the important role of Baltic Fucus, this 103 

information is essential in evaluating the consequences of global climate change on rocky littoral 104 

communities within this basin. 105 

2. MATERIALS AND METHODS 106 

2.1 Sampling of Fucus 107 

We collected Fucus vesiculosus from three different regions – entrance, central, and marginal – of 108 

the Baltic Sea (Fig. 1, Table 2) in summer 2014. Within each of these region, we randomly sampled 109 

three populations, and from each population we collected 25 individuals. Herein, one individual is 110 

defined as all the apical tips of a thallus growing from a single stem attached to a holdfast. We detached 111 

the individual in at least 5 m distance between each other to ensure the uniqueness of samples (see 112 

Supporting Information for more details). We only genotyped two populations from the marginal region 113 

where clonality has been previously recorded to ensure that they were different genotypes (for the 114 

analyses see Tables S1, S2 and S3). For the rest of the populations (from the entrance and central 115 

regions), the distance between samples collected and the fact that we were detaching only one stem from 116 
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one holdfast ensured the uniqueness of the genotypes. Individuals were collected by snorkeling and at 117 

all sites they were detached in the range between 0.5 to 2m depth. 118 

From 27th to 28th June 2014, we collected the marginal populations, while the central populations 119 

were gathered between the 2nd and 3rd of July. On the 3rd and 4th of July, we collected the entrance 120 

populations. All individuals were kept in coolers between wet paper tissues to avoid dehydration and 121 

transported to the Archipelago Research Institute (University of Turku) at Seili (60° 14’ N, 21° 58’ E), 122 

where they were carefully rinsed with freshwater to remove associated grazers and epiphytes. Then, we 123 

stored the algal individuals in their native salinities until the experiment started.  124 

2.2 Fucus preparation for the experiment 125 

Once our sampling was complete we split each algal individual (N = 25 per population and 126 

region) into eight similar sized branches (we hereafter refer to one branch as a ramet - initial length, 127 

mean ± SE: 7.1 ± 0.05 cm; initial # of apical meristems: 8.7 ± 0.16; initial wet weight (WW): 0.99 ± 128 

0.02 g). Four of the branches were distributed randomly among the aquaria in the current conditions, 129 

and the other four among the aquaria in the future conditions, so that each aquarium contained a mix of 130 

25 ramets (Fig. 2a). Epiphytes were rinsed from experimental algae when necessary to avoid 131 

competition for nutrient availability and light. Micro-environmental effects were accounted for by 132 

randomly relocating the algae within each aquarium each week. In order to avoid flotation of the ramets, 133 

a small ceramic weight was attached individually with a cable tie to each ramet. To prevent any damage, 134 

we fixed a piece of a plastic mat between the cable tie and the ramet. We first started to prepare the 135 

marginal populations (11th and 12th of July), then the central populations (12th and 13th July) and finally 136 

the entrance populations (15th and 16th of July).  137 

At the starting point all aquaria were set up with current conditions. After all the ramets have been 138 

introduced in their respective aquaria racks, we simultaneously shifted the temperature and salinity of all 139 

http://www.seili.utu.fi/en/
http://www.utu.fi/en/


8 

 

future aquaria within one day. The experiment started for all populations on the 23rd of July and ended 140 

on 10th of December.  141 

2.3 Experimental setup 142 

We examined the effects of different temperature and salinity conditions on the performance of Fucus in 143 

an indoor aquarium experiment. Because climate change typically involves simultaneous shifts in 144 

several abiotic factors (IPCC Climate Change, 2007), we focused on the combined effects of 145 

hyposalinity and increased temperature. These are the main environmental factors that determine the 146 

structural and functional characteristics of aquatic biota, and they covary regionally, both currently and 147 

in the future projections.  148 

We used six aquarium racks (each consisted of 12 aquaria) to expose, separately, the algal 149 

material from each region to two different climate conditions, the current and predicted future (Table 1, 150 

Fig. 2b). We used summer conditions because during this period Fucus’ growth rate is up to three times 151 

faster than in the winter (Lehvo et al. 2001). We extended the duration of the experiment further than the 152 

natural duration of the Baltic summer to detect the long-term influence of the future conditions. The 153 

long term exposure to hyposalinity/warming may evidence patterns of among- and /or within population 154 

variation in performance that may not be evidenced by short term experiments. In order to apply a 155 

realistic setup, the current conditions within each region were based on the average summertime salinity 156 

and temperature conditions of the sampling sites within the three regions (Table 2). The data on future 157 

(2070-2099) changes in summer salinity and temperature for Baltic coastal areas come from the model 158 

RCAO-ECHAM-A2-REF from Meier et al. (2011). The data on current surface seawater temperature 159 

and surface salinity have been averaged from the mean values for June to August for each region 160 

(http://www.balticnest.org/). 161 
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Each aquarium rack consisted of a bottom tank (~ 300L) and 12 aquaria (24 L each), which were 162 

connected to each other via recirculating water system. Seawater was pumped from the bottom tank 163 

individually to each aquarium, from where it flowed back into the bottom tank. Before it was pumped 164 

up, the seawater was cleaned first by an acrylic filtration unit (SCHURAN Jetskim 120) equipped with a 165 

mechanical and biological filter, then by a protein skimmer, and finally by UV radiation. To regulate the 166 

desired water temperature, each bottom tank was equipped with a chiller/heater. We obtained the region-167 

specific water salinities for both climate conditions (current and future) by adding artificial sea salt to 168 

seawater or by dilution with distilled water. To ensure ample nutrient availability, we added 3 g of 169 

Osmocote ® controlled-release fertilizer (NPK 15-9-12+2MgO+trace elements, 2 months) to each rack 170 

at the start of the experiment and every second month. 171 

Each shelf contained four aquaria, which received artificial light from two LED lamps (Radion ™ 172 

XR30w Pro lamp). We used a 17:7 h light:dark rhythm, which was similar to the average summer light 173 

conditions in the Baltic Sea. The light level slowly increased in the mornings, reached a maximum 174 

intensity (1200 μmol m-2 S-1) at the aquarium water surface between 11:00 and 14:00, and then slowly 175 

decreased in the evenings to darkness.  176 

During the experiment, we kept the water level and salinity in the aquarium system constant by 177 

adding ion-exchanged water. We monitored temperature (daily) and salinity (weekly) to ensure that 178 

conditions remained at the desired levels (Table 1). We also measured pH weekly to ensure it stayed 179 

within the natural range of the Baltic Sea (mean ± SE: 8.31 ± 0.07).  180 

 181 

2.4 Measuring responses 182 

We measured the growth rate and survival of Fucus as a proxy for sensitivity to environmental 183 

changes, since they are dependent on the ratio between respiration and photosynthetic activity and they 184 

give an overall estimate of the algal performance (Karsten, 2008). Growth rate was measured as a 185 
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change in wet biomass (g WW), in length along the major axis (cm), and in the number of apical 186 

meristems during the 140 d experiment. Therefore, each ramet was measured at the beginning and at the 187 

end of the experiment. For the growth rate in terms of biomass, we gently dried the ramets between 188 

paper tissues before determining their initial and final weight. As there was mortality during the 189 

experiment, the growth measures refer to growth of the survivors after 140 days. Therefore, we 190 

measured the growth rate of the most tolerant individuals. As the different growth rate measures lead to 191 

similar conclusions, we present here only the biomass gain rate (expressed as g WW / 140 d), but give 192 

the summary data and analyses for the length and meristem gain rate in supplementary material (Figure 193 

S1, S2 and S3, Tables S4-S5).  194 

We recorded survival throughout the experiment and at the end. We checked the ramets weekly 195 

and defined as dead those with > 90% of the thallus area showing necrosis. When an individual started 196 

to degenerate, >90 % necrosis typically proceeded relatively quickly, between the weekly observations. 197 

Survivors didn’t show dead thallus parts. Survival was expressed as the probability of being alive at the 198 

end of the experiment. Growth rate and the survival probability of each individual was calculated as the 199 

average of N = 4 ramets in the future and N = 4 ramets in the current conditions. These means were 200 

calculated using the Glimmix procedure as the ‘best linear unbiased predictors’ (BLUPs), which are 201 

considered the best estimates for random factors (Robinson, 2008).  202 

2.5 Statistical analysis 203 

We analyzed the variation in growth rate (length, number of apical meristems, and 204 

biomass) using a general linear mixed model within populations separately for each region. A 205 

normal distribution was used for the error variance, and the analyses were implemented using the 206 

procedure GLIMMIX in SAS 9.4 (SAS Institute Inc. 2013). The fixed factor in the model was 207 

climate change (future and current conditions). Random factors were population, individual within 208 
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population, aquarium, and all the possible interactions between these factors and climate change. 209 

The aquarium was included as a random factor to capture possible variations in growing 210 

conditions among aquaria within a rack (e.g. lighting, position effect, water through-flow). In the 211 

analyses of growth rate, we used the initial size as a covariate and tested all of its interactions with 212 

the fixed factor. We then simplified the model by removing non-significant effects, starting from 213 

the higher-order interactions, with the aid of the Akaike Information Criterion (AIC). The 214 

significance of fixed effects was tested using F-statistics, with the denominator degrees of freedom 215 

estimated by the use of the Kenward-Roger approximation (Kenward and Roger 1997). The 216 

significance of the random effects and the random-by-fixed effect interactions was tested by Χ2-217 

tests of the differences in the 2×log likelihood value of that factor included versus excluded from 218 

the model (likelihood ratio test, Littell et al., 2006).  219 

The survival probability (after 140 days) was analyzed using a generalized linear mixed 220 

model, with survival as a binary response variable (alive, dead). This model was similar to that 221 

described above for the growth rate analyses.  222 

3. RESULTS 223 

3.1 Growth performance among regions under climate change conditions  224 

Populations originating from different regions varied in their biomass gain in the current 225 

conditions of their respective region: entrance populations grew the most, followed by the central and 226 

marginal populations (Fig.2). The entrance populations tolerated the future conditions well: there was no 227 

overall difference in biomass gain between current and future conditions (Fig. 3, Table 3). In contrast, 228 

future conditions were harsh for the central region populations that grew less compared to their 229 
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counterparts in the current conditions (Fig. 3, Table 3). Similarly, biomass gain of the populations from 230 

the marginal region was strongly hampered by the future conditions (Fig. 3, Table 3).  231 

3.2 Variation among populations and individuals in growth responses to climate change 232 

Within the entrance region, the biomass response to climate change varied among 233 

populations (Fig. 3, Table 3). Algae from the population G tolerated the future conditions the best, 234 

gaining similar amounts of biomass in both climate conditions, while for the populations B and S, 235 

the difference between climate conditions was more pronounced (25% and 16% respectively; Fig. 236 

3). In the central region, we found no differences among populations in their biomass response to 237 

climate change, but, in the marginal region, we found such variation (Fig. 3, Table 3): The 238 

population R was the least tolerant to climate change and grew 98% less when exposed to future 239 

conditions, while the decrease in growth in future conditions was 80% for the population P and 240 

70% for the population H. 241 

We found pronounced among-individual variation in biomass gain in entrance and marginal 242 

populations as indicated by the significant among-individual variance component (Table 3). Most 243 

interestingly, individuals in the central populations varied in their growth response to climate 244 

change (Fig. 4, Table 3) indicating that different individuals expressed varying tolerance to future 245 

conditions. It is worth to note that the despite the among-individual variation in tolerance 246 

remained also the after strong mortality selection during the experiment  (similar among-247 

individual variance in both the climate change conditions in Fig. 4).  248 

 249 
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3.3 Effects of future climate change conditions on survival of Fucus across the Baltic Sea regions 250 

Fucus originating from the entrance region survived well in both the current and future 251 

conditions indicating high tolerance to future conditions (Fig. 5, Table 4). Instead, survival of 252 

Fucus originating from the central region and even more that from the marginal region was 253 

hampered by their future conditions (Fig. 5, Table 4). Only 34% of Fucus ramets from the central 254 

region and 23% from the marginal region survived until the end of the experiment in the future 255 

conditions.  256 

Marginal populations varied in their survival responses to climate change (Fig. 5, 257 

population-by-climate change interaction in Table 4). Furthermore, within the marginal 258 

populations individuals responded differently to climate change (individual-by-climate change 259 

interaction in Table 4). Individuals within entrance and central regions varied in their survival but 260 

not in their survival response to climate change (Table 4). 261 

4. DISCUSSION  262 

4.1 Climate change effects on algal growth and survival  263 

Our results show that the tolerance of Fucus populations to their projected future conditions 264 

varies along the Baltic Sea. Populations from the entrance region tolerated future conditions well, 265 

maintaining their growth and survival unchanged between current and future conditions. This suggests 266 

that their future hyposalinity and warming is within the current range of tolerance of the populations at 267 

the Baltic Sea entrance. Instead, future climate conditions had a pronounced negative effect on survival 268 

of populations from the central region and an even a more severe impact on those from the marginal 269 

region. Moreover, the growth reduced to about fifth of that in the current conditions in populations from 270 
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the central region, and almost completely ceased in the marginal ones. We suggest that while the 271 

populations at the Baltic Sea entrance are likely to tolerate well the future conditions, those from the 272 

central and marginal regions of the Baltic Sea are faced with serious challenges and are unlikely to 273 

persist in the current distributional range unless their tolerance cannot adapt evolutionarily with the 274 

environmental change.  275 

The negative effects of low salinity on seaweed performance have been attributed to the inability 276 

to maintain osmotic balance (cell turgor pressure) and to keep a positive ratio between photosynthesis 277 

and respiration (Hellebust 1976). Low salinity (≤ 2 PSU) is known, for instance, to damage the cellular 278 

structures responsible for protein synthesis and energy metabolism (Tropin et al. 2003). Low mannitol 279 

contents have been found in response to low salinity and combination of high temperature and 280 

hyposalinity in F. vesiculosus (Munda and Kremer, 1977; Takolander et al. 2017b), as this compound is 281 

also used for osmoregulation (Groisillier et al. 2014; Munda and Kremer, 1977). Negative effects of 282 

hyposalinity on Fucus growth have been found in experimental studies. For instance, Bäck et al. 283 

(1992b) showed that Baltic Fucus from the marginal region in the Gulf of Finland could grow and 284 

survive in salinities from 6 to 12 PSU, but that salinity extremes (1.5, 34, and 45 PSU) reduced both 285 

growth and survival. Fucus from the marginal region has also been reported to tolerate short-term (26 h) 286 

exposure to hyposalinity (2.5 PSU) without any signs of photoinhibition or damage to the 287 

photosynthetic machinery (Rothäusler et al. 2016). Moreover, there is also evidence on local adaptation 288 

to local salinity (Johansson et al. 2017): a reciprocal transplant experiment indicated that F. vesiculosus 289 

from the Atlantic and Baltic Sea grows better in their local than in foreign salinity (respectively 24 and 4 290 

PSU). However, Serrão et al. (1996b) showed that sperm motility and fertilization success of F. 291 

vesiculosus decreases sharply in salinity below 5PSU, suggesting that early life stages might be most 292 

important for the persistence of the species at extremely low salinity. 293 
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Temperature plays an important role in algal physiology because it controls the photosynthetic 294 

rate (Raven and Geider 1988), which affects the rate of carbon fixation by RuBisCO (Sukenik, Bennett 295 

and Falkowski 1987). Warming temperatures become stressful for plants when they affect the balance 296 

between protein denaturation and the action of heat-shock proteins and the higher production of proteins 297 

(Csikász-Nagy and Soyer 2008). Moderately warm temperatures enhanced growth in Ascophyllum 298 

nodosum (Keser et al. 2005) and F. vesiculosus from the western Baltic Sea where it grew and survived  299 

well in temperatures ranging from 5 to 26°C, with a damaging effect on the photosynthetic system only 300 

at temperatures >26°C (Graiff et al. 2015). A similar result was reported for eastern Atlantic populations 301 

of F.vesiculosus (Russell 1987), in which high water temperature affected the sensitivity of the 302 

photosynthetic machinery. However, Al-Janabi et al. (2016) found that the effects of temperature 303 

changes on Baltic Fucus germlings depend on the season: a 5 °C increase in natural temperature 304 

enhanced the growth in early summer, but it caused a severe mortality in late summer. Warming may 305 

also be responsible for temporal changes in receptacle maturation such as shown for F. vesiculosus, 306 

under experimental conditions (Graiff et al. 2017) but also in situ (Kraufvelin et al. 2012). Indeed, if 307 

warming will increase the duration of the reproductive period of Fucus, it is possible that enhanced 308 

window for recruitment may help buffering the losses caused by hyposalinity/warming, at least in the 309 

regions where low salinity is not limiting fertilization. 310 

Because climate change modifies several abiotic factors simultaneously, we designed our 311 

experiment to detect only the combined effect of the predicted future temperature and salinity 312 

combinations in the Baltic Sea, not to separate the single factor effects. The combined effect of future 313 

seawater salinity and temperature may be simply additive, or it may involve antagonistic or synergistic 314 

interactive effects. A meta-analysis of multi-stressor studies by Wahl et al. (2011) found that for Fucus 315 

spp. the combined effects were on average additive. For instance, a short term (8 days) manipulative 316 

experiment conducted with F. vesiculosus showed that low salinity slowed down the recovery of growth 317 
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and photosynthetic performances after an exposure to high water temperature (Takolander et al. 2017b). 318 

Interactive effects may occur and are of course important, but, if present, they are included in our 319 

combined effect. Further, while our experiment was designed to measure the tolerance of F. vesiculosus 320 

to the averaged expected changes in seawater conditions, climate change effects will also enhance 321 

climate variability (e.g. frequency and intensity of heat and cold waves, Vasseur et al. 2014). For 322 

instance, Graiff et al. (2015) showed that Fucus is able to acclimate to higher temperature only if there 323 

is enough acclimation time. 324 

4.2 Potential of Fucus to adapt to future conditions  325 

The potential for adaptive responses to the predicted future salinity/temperature conditions 326 

was indicated by among-individual variation in performance, and, especially by the differential 327 

responses of individuals to climate change. The among-individual variation might have different 328 

explanations. That we cloned and reared replicated ramets of each individual in common garden 329 

conditions entails that the differences we found among clones do represent genetic differences in 330 

plasticity. However, a possibility remains that differences among clones include some carry-over 331 

effects from the original environment of the sampled individuals, the clonal mothers. It is difficult 332 

to judge the relevance of such carry-over effects but even if they contributed to variation detected 333 

among individuals (i.e. affect the main effect of individual) we find highly unlikely that they 334 

would do differently so in current and future conditions (i.e. affect the individual-by-climate 335 

change interaction). Thus, we consider the among-individual variation in responses to climate 336 

change to represent genetic variation in reaction norms, i.e. variation in phenotypic plasticity of 337 

traits responsible for tolerance. A high degree of such within-population variation in quantitative 338 

traits that are closely related to fitness is considered to be the core component of adaptive 339 



17 

 

evolution, allowing the species persistence in a changing environment (Pigliucci 2005; Wrange et 340 

al. 2014).  341 

The observed among-population variation in growth and survival within regions likely 342 

indicates variation in tolerance to climate change at a regional spatial scale, within both the 343 

entrance and marginal regions of the Baltic Sea. Within the entrance region, all populations 344 

survived equally well in current and future salinity/temperature conditions, but Fucus from the G 345 

population were the most tolerant to future conditions, with the least decrease in growth. The 346 

populations from the marginal region differed in their responses to climate change, both in 347 

survival and growth. Given the strong spatial genetic structuring (Tatarenkov et al. 2007; Pereyra 348 

et al. 2013; Ardehed et al., 2016) and reduced dispersal capacity of Baltic Fucus (Serrão et al. 349 

1996b), we consider it likely that such among-population variation within region might represent 350 

genetic differentiation in plasticity. Intra-specific geographic variation in tolerance to climate 351 

change, such as found here and also in the Atlantic F. serratus and F. vesiculosus (Pearson et al. 352 

2009; Jueterbock et al. 2014; Saada et al. 2016), means that some populations are more vulnerable 353 

than others to climate change. The tolerant populations may provide local persistence assurance 354 

through acting as sources for floating thalli that may disperse and generate gene flow over long 355 

distances (Rothäusler et al. 2015). 356 

Further, the significant individual-by-climate change interaction in growth of entrance and 357 

central populations and in survival of marginal populations suggests the existence of genetic 358 

variation in phenotypic plasticity. Also other studies have found individual-by-environment -359 

interactions in quantitative traits of Fucus indicating genetic variation in plasticity to different 360 

environmental conditions, such as growth responses to light or nutrient regimes (Jormalainen and 361 

Honkanen 2004) or phlorotannin responses to herbivory and depth distribution (Jormalainen and 362 
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Ramsay 2009). In our study, those individuals from the entrance and central regions that survived 363 

in future conditions until the end of the experiment also showed genetic variation in plasticity of 364 

growth (individual-by-climate change -interactions), with the variation in growth remaining also 365 

in future conditions after mortality. Upon this variation in plasticity, natural selection can alter the 366 

reaction norms of growth.  367 

5. Conclusion 368 

Our results imply that the projected increase in temperature and decrease in salinity will be 369 

challenging for Fucus populations, particularly in the central and marginal regions of the Baltic 370 

Sea. There, the abundance of Fucus is likely to decline unless populations cannot respond by 371 

adaptive evolution of tolerance. Our experiment with almost instant exposure to future conditions 372 

represents an extreme scenario. The future conditions we used are a projection for the end of this 373 

century (2070-2099) so Fucus will be confronted with a gradual change taking place over several 374 

generations. We found indications of phenotypic plasticity and genetic variation in tolerance of 375 

Fucus to the projected future conditions, both within and among the Baltic Sea populations, 376 

suggesting potential for adaptive responses exists. Thus, adaptive increase of tolerance may 377 

provide persistence in the face of climate change. However, our data just documents the potential 378 

for adaptation but does not allow estimations whether the speed of adaptation can match the rate 379 

of change. Furthermore, the fate of Fucus populations in the Baltic Sea will strongly depend on 380 

how the biotic interactions within the entire associated community, such as with the competing 381 

macro-and microalgae and grazers, will respond to climate change. Further research on such 382 

community responses is needed. 383 

 384 
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 Table 1. Average summer sea surface temperature (SST) and salinity (SSS) for current and future 

conditions within the three regions. Current conditions were calculated by averaging the monthly means 

from June to August obtained from the Baltic Nest Institute (http://www.balticnest.org). The future 

expected conditions were set according to the model of Meier et al. (2012). 

Region Current Future 

 SSS (PSU) SST (C°) SSS (PSU) SST (C°) 

Entrance 22 18 17 21 

Central 7 16 4 20 

Marginal 5 14 2.5 16 
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Table 2. Seawater surface salinity (SSS, Feistel et al. 2010) and seawater surface temperature (SST, 639 

Siegel et al. 2008) (mean ± SD) for the summer period (June to August). Salinity and temperature means 640 

for each site were averaged for observations from open water and coastal areas for the regions targeted 641 

by our sampling.  The number of individuals sampled for each population is corrected after the 642 

genotyping. 643 

Region Population Coordinates (N, E) SSS 

(PSU)  

SST 

(°C) 

# Individuals 

Entrance B  56°31’, 10°38’ 23±11 17±3 25 

Entrance G 57°07’, 12°12’ 24±7 17±3 25 

Entrance S 56°19’, 12°45’ 24±7 17±3 25 

Central O 56°11’, 16°23’ 7.3±2.5 16±4 25 

Central V 57°41’, 16°43’ 6.8±1.5 17±4 25 

Central K 55°41’, 14°13’ 7.7±2.5 16±3 25 

Marginal H 61°41’, 17°31’ 5±3 13±3 21 

Marginal R 61°08, 21°18’ 5.5±3 13±3 23 

Marginal P 60°08’, 22°17’ 6.3±3.5 15±2 25 
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Table 3. Results from general linear mixed models that tested the fixed effects of climate change and the random effects of population, 644 

individual, and aquarium on biomass gain for each region. Initial size was used as a covariate in the analyses. 645 

 646 

647 Source of variation Entrance  Central  Marginal 

ndf, ddf F P  ndf, ddf F P  ndf, ddf F P 
Fixed Factors            
  Cl. change 1, 2.82 3.1 0.18  1, 43 42.8 <0.001  1, 4.4 15.2 <0.05 
  In. size 1, 472 113 <0.001  1, 311 0.19 0.67  1, 321 12.9 <0.001 
  In. size × Cl. Change            
            
  χ2 P   χ2 P   χ2 P 
Random Factors 
  Population  

           
 
 

0.52 
18.8 

0.24 
<0.001 

 
 

 
 

0.86 
0.01 

0.35 
0.91 

 
 

 
 

- 
40.6 

1 
<0.001   Individual   

  Population × Cl. Change  5.12 <0.05   - 1   18.9 <0.001 
  Individual × Cl. Change  0.47 0.25   8.24 <0.01   - 1 
  Aquarium  7.71 <0.05   - 1   0.5 0.48 
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Table 4. Generalised mixed model statistics for the probability of survival at 140 days, displayed separately by region. 648 

 649 

 650 

 651 

 652 

 653 

 654 

 655 

Source of variation Entrance  Central  Marginal 

ndf, ddf F P  ndf, ddf F P  ndf, ddf F P 
Fixed Factors            
  Cl. change 1, 2 0.14 0.74  1, 2 62.4 <0.05  1, 2 90.7 <0.05 
            
  χ2 P   χ2 P   χ2 P 
Random Factors 
  Population  

           
 
 

1.31 
4.83 

0.25 
<0.05 

 
 

 
 

1.85 
60.7 

0.16 
<0.001 

 
 

 
 

0.55 
0.74 

0.46 
0.4   Individual   

  Population × Cl. Change  - 1   1.18 0.27   3.40 <0.01 

  Individual × Cl. Change  - 1   - 1   31.9 <0.001 

  Aquarium  - 1   - 1   - 1 
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Figure 1. Location of Fucus sampling sites in the marginal (black dots: H, R, and P), central (grey 

dots: V, O, and K) and entrance (white dots: S, B, and G) regions. Summertime (average values from 

June to August) sea surface salinities and temperatures for each Baltic region are indicated as average 

values for years 1990-2008, obtained from Siegel et al. (2008). Different letters denote the different 

populations sampled within a region.  

Figure 2. Schematic illustration of the experimental design. Fig. 2a. Schematic of the experimental 

design, detail about pseudo-replication of each genotype in multiple ramets. Fig. 2b shows how we 

distributed each population in the aquarium racks. 

Figure 3.  Growth rate (g WW / 140 d, mean ± SE, adjusted for the average initial size of algae) for 

Fucus populations in current and future conditions displayed by region. The biomass gain of each 

population is based on the individual estimate of each survivor. The number of individuals was N=25 

for every population except for H (N=21) and R (N=23) The identity of each population is indicated on 

the x-axis. Asterisks above denote the degree of significance indicated by the general linear model (*p 

<0.05, **p<0.01, ***p<0.001) 

Figure 4.  Individual estimates for growth rate (g WW/ 140d) in current and future conditions for 

the central populations. Lines connect the average of each individual (N=35) in the two conditions. The 

individual average was calculated averaging 1to 4 ramets for each condition. 

Figure 5. Survival estimates (mean ± SE) for Fucus populations after 140 days in current and future 

conditions, separately by region. The survival of each population is based on the individual estimate, 

obtained from the average of  N = 4 ramets for each condition. The number of individuals was N= 25 for 

every population except for H (N=21) and R (N=23). 



35 

 

 



36 

 

Figure 1 656 
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Figure 3 670 

 671 

 672 

 673 



39 

 

Figure 4 674 
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Figure 5 687 
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