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Abstract

The aim of this paper is to introduce a new proximal double bundle method
for unconstrained nonsmooth DC optimization, where the objective function
is presented as a difference of two convex (DC) functions. The novelty in
our method is a new stopping procedure guaranteeing Clarke stationarity for
solutions by utilizing only DC components of the objective function. This
optimality condition is stronger than the criticality condition typically used
in DC programming. Moreover, if a candidate solution is not Clarke station-
ary, then the stopping procedure yields a descent direction. With this new
stopping procedure we can avoid some drawbacks, which are encountered
when criticality is used. The finite convergence of the method is proved to a
Clarke stationary point under mild assumptions. Finally, some encouraging
numerical results are presented.

Keywords: Nonsmooth optimization, Nonconvex optimization, DC func-
tions, Bundle methods, Cutting plane model, Clarke stationarity

TUCS Laboratory
Turku Optimization Group (TOpGroup)



1 Introduction

Although convexity is a preferred feature in optimization, it is too restric-
tive assumption in many practical applications, since functions involved are
often nonconvex. In addition to the nonconvexity, we frequently encounter
nonsmoothness in real-life optimization problems, which means that func-
tions are not necessarily differentiable and have discontinuous gradients.
Therefore, we need to handle problems which are at the same time both
nonsmooth and nonconvex.

A class of functions represented as a difference of convex (DC) functions
constitutes an important subclass of nonconvex functions as these functions
preserve, with some modifications, important properties of convex functions.
Another advantage is that the set of DC functions maintains the DC struc-
ture under simple algebraic operations frequently encountered in optimiza-
tion, like scalar multiplication and lower and upper envelopes. In addition,
this class is very broad. For example, every continuous function, defined
on a compact convex set, can be approximated by a DC function with any
desired precision [16, 36].

Mathematical programming problems with DC objective and constraint
functions are called DC programming problems. DC programming is an
important subclass of nonconvex optimization and many practical problems
can be modelled as a DC programming problem. These problems include the
production-transportation planning [15], location planning [30], engineering
design [21], cluster analysis [4, 29], clusterwise linear regression analysis [5]
and supervised data classification [1] to name a few.

In all the above mentioned problems, objective and/or constraint func-
tions can be explicitly expressed in a DC form. Although, for some im-
portant functions such a representation is available, exploiting this repre-
sentation for an arbitrary DC function may become a hard task, since DC
representations appear often in an implicit form. It is also worth noting
that DC decompositions are not unique and each DC function has an infi-
nite number of different DC representations.

To date, DC programming has been considered as a part of global opti-
mization and several algorithms have been designed to solve it globally (see
[16, 36] and references therein), while the development of local search meth-
ods in DC programming has attracted significantly less attention. There ex-
ist also DC algorithms designed to handle nonsmoothess encountered in DC
programming problems. For example, in [2] an algorithm based on quasid-
ifferentials of DC functions and discrete gradients is developed. Some other
alternatives for nonsmooth DC programming include a codifferential method
[6], a proximal linearized algorithm [34] and a proximal bundle method [17]
utilizing nonconvex cutting planes. In addition, a gradient splitting method
introduced in [12] can be modified for minimizing DC functions.

A stopping condition in most nonsmooth DC programming algorithms
guarantees only criticality of the solution point and this condition is weaker
than Clarke stationarity typically used in general nonconvex nonsmooth
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optimization. Unfortunately, it may happen that these DC programming
algorithms stop at a point which is neither a local minimizer nor a saddle
point. This nondesirable feature is often a consequence of the selected DC
decomposition, since it affects the criticality condition tested. However,
there is no efficient way to detect the most suitable DC decomposition among
the infinite set of possible ones, in general. In addition, the very specific
structure of a problem may have a strong influence on this selection.

In this paper, we introduce a new proximal double bundle method DBDC
for unconstrained nonsmooth DC minimization problems. The main idea
in DBDC is to combine the proximal bundle method for nonsmooth DC
programming PBDC [17] with a new stopping procedure. With this combi-
nation our aim is to guarantee a stronger optimality condition than the one
typically used in DC programming, but at the same time, preserve all the
good features obtained from the usage of the DC structure in the PBDC
method. In this way, we can be more assured about the quality of the
solutions obtained and avoid in some sense arbitrary solution points.

The new DBDC method shares the good properties of PBDC, which is
to our knowledge the only bundle method utilizing explicitly the DC decom-
position of the objective function. Using this decomposition, the nonconvex
cutting plane model is developed to capture both the convex and the con-
cave behaviour of the objective and describe well the actual behaviour of a
DC function. The new stopping procedure, in its turn, is designed to en-
sure Clarke stationarity for candidate solutions by using only information
about the DC components. This way we are able to exploit the DC struc-
ture through the algorithm. To prove the finite convergence for the stopping
procedure we assume that the subdiffrentials of DC components are poly-
topes. This assumption is not very restrictive and in practical applications
it is nearly always satisfied.

The rest of the paper is organized as follows: In Section 2, we present
some basic definitions and results from nonsmooth analysis and DC pro-
gramming. In Section 3, we point out some disadvantages of critical points,
which are the most natural choice for the candidate solutions in DC pro-
gramming. The new stopping procedure guaranteeing Clarke stationarity
is presented in Section 4 together with its convergence analysis. Section 5
describes the new minimization algorithm DBDC utilizing the new stopping
procedure. Some numerical results are reported in Section 6 and, finally, in
Section 7 we give some concluding remarks.

2 Preliminaries

Consider an unconstrained DC minimization problem of the form

{

minimize f(x) = f1(x) − f2(x)

subject to x ∈ R
n,

(1)
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where the objective function f : R
n → R is a difference of two convex

functions f1 and f2. Such a function f defined on R
n is called a DC function

and the representation f1 − f2 is the DC decomposition of the function f .
The convex functions f1 and f2 defined on R

n are called DC components of
f . Note that f is often nonconvex and it needs not to be differentiable. In
addition, when f is nonsmooth then at least one of the DC components is
also nonsmooth.

Next we present briefly some concepts and basic results from nonsmooth
analysis and DC programming. For more details we refer to [3, 7, 13, 21, 26,
31, 32]. In what follows, ‖·‖ is the norm in the n-dimensional real Euclidean
space R

n, Bε(x) is the open ball with a center x ∈ R
n and a radius ε > 0

and xTy is the usual inner product of vectors x and y.
The subdifferential (or generalized gradient) of a convex function f at a

point x ∈ R
n is the set [32]

∂cf(x) =
{

ξ ∈ R
n | f(y) ≥ f(x) + ξT (y − x) for all y ∈ R

n
}

and each vector ξ ∈ ∂cf(x) is called a subgradient of f at x. In particular,
if f is both convex and differentiable, then ∂cf(x) = {∇f(x)}.

The generalized subdifferential (or Clarke’s gradient) of a locally Lips-
chitz continuous function f at a point x ∈ R

n is given by [7]

∂f(x) = conv
{

lim
i→∞

∇f(xi)
∣

∣ xi → x and ∇f(xi) exists
}

,

where conv denotes the convex hull of a set. Each ξ ∈ ∂f(x) is a subgradient
calculated at x. A point x∗ ∈ R

n is called Clarke stationary if 0 ∈ ∂f(x∗).
Clarke stationarity is a necessary condition for local optimality and, in the
convex case, it guarantees the global optimality of the solution. It is also well
known that for a convex function f defined on R

n we have ∂f(x) = ∂cf(x)
[7]. In what follows, we denote the subdifferential of a convex DC component
fi by ∂fi(x) for i = 1, 2.

For ε ≥ 0, the Goldstein ε-subdifferential of a locally Lipschitz continuous
function f at a point x ∈ R

n is defined as [26]

∂G
ε f(x) = cl conv {∂f(y) | y ∈ Bε(x)} .

The set ∂G
ε f(x) is an extension of the generalized subdifferential and

∂f(x) ⊆ ∂G
ε f(x) for each ε ≥ 0. In practice, we are usually satisfied

with solutions fulfilling the condition 0 ∈ ∂G
ε f(x), since the Goldstein ε-

subdifferential approximates the set ∂f(x).
Unlike a convex function, a general locally Lipschitz continuous function

is not necessarily directionally differentiable. However, our objective func-
tion f is a finite valued DC function and it is directionally differentiable at
any x ∈ R

n [3]. This means that the directional derivative of f at x exists
in every direction d ∈ R

n being defined as

f ′(x;d) = lim
t↓0

f(x + td) − f(x)

t
.
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Moreover, for a DC function we have f ′(x;d) = f ′
1(x;d) − f ′

2(x;d). If
f ′(x;d) < 0 for some d ∈ R

n, then d is a descent direction meaning that
there exists ε > 0 such that f(x + td) < f(x) for all t ∈ (0, ε] [3].

Next we present for a DC function some necessary conditions for local
optimality.

Theorem 2.1. [21, 35] Let f1 and f2 be convex functions. If x∗ ∈ R
n is a

local minimizer of f = f1 − f2, then

∂f2(x∗) ⊆ ∂f1(x∗) (2)

and points satisfying (2) are called inf-stationary points. Furthermore, the
condition (2) guarantees local optimality if f2 is a polyhedral convex function

of the form f2(x) = maxi=1,...,m

{

aT
i x − bi

}

, where ai ∈ R
n and bi ∈ R.

Unfortunately, the inf-stationarity condition (2) is not easy to verify,
since in practice we usually do not know or cannot calculate the whole
subdifferentials of the DC components f1 and f2 at some point. Therefore,
in solution algorithms a relaxed form of the condition (2) is often used
requiring that [14, 21, 35]

∂f1(x∗) ∩ ∂f2(x∗) 6= ∅ (3)

and a point x∗ ∈ R
n satisfying this condition is called a critical point. Due

to Theorem 2.1, the condition (3) is also a necessary optimality condition
for local optimality, and all the minimizers of f can be found among the set
of critical points.

There exist some interesting relationships between inf-stationary, Clarke
stationary and critical points. First of all, inf-stationarity always implies
Clarke stationarity. Second, a Clarke stationary point is always also a critical
point. However, for another way around these implications do not hold
without some extra assumptions. One exception is the case, where f2 is
differentiable at a critical point x∗ ∈ R

n, since then we have [7]

∂f2(x∗) = {∇f2(x∗)} ⊆ ∂f1(x∗) and 0 ∈ ∂f(x∗) = ∂f1(x∗) − ∂f2(x∗)

indicating also inf-stationarity and Clarke stationarity of the point x∗. If
only the first DC component f1 is differentiable at a critical point x∗ ∈ R

n,
then we are able to obtain only Clarke stationarity. This is due to the fact
that [7]

0 ∈ ∂f(x∗) = ∂f1(x∗) − ∂f2(x∗) = {∇f1(x∗)} − ∂f2(x∗),

but the subdifferential of f2 at x∗ contains more than one element and,
therefore, it cannot be a subset of ∂f1(x∗) = {∇f1(x∗)}. The relationships
between different stationary points are also presented in Figure 1.
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Inf-stationarity: ∂f2(x
∗) ⊆ ∂f1(x

∗)

Clarke stationarity: 0 ∈ ∂f(x∗)

Criticality: ∂f1(x
∗) ∩ ∂f2(x

∗) 6= ∅

f1 or f2 differentiable

f2 differentiable

Figure 1: Relationships between different stationarities

3 Difficulties caused by criticality

Even if critical points are good candidates for the minimizer of a DC function
f , they have some disadvantages. First, criticality is a weaker condition than
Clarke stationarity. This follows from the subdifferential calculus which only
guarantees that for a DC function f = f1 − f2 we have [7]

∂f(x) ⊆ ∂f1(x) − ∂f2(x). (4)

Therefore, the difference of arbitrary subgradients of f1 and f2 does not
need to belong to the set ∂f(x). Nevertheless, there are some exceptions to
this as we have already seen in the previous section. Second, it is possible
that a critical point is neither a local optimum nor a saddle point of the
original objective f . Thus, a critical point might fail to give us any useful
information about the objective. In some sense this means that, in practice,
solution algorithms may stop in the middle of nowhere if criticality is used
as a stopping condition.

Next we present two simple examples illustrating the fact that a critical
point can be easily located in an unfavourable place. The first one of these
examples shows the effect of the bad selection of the DC decomposition.
However, in the second example it is not easy to see if the DC decomposition
of f could be selected such a way that the undesirable behaviour could be
avoided.

Example 3.1. Let us consider a linear function f(x) = x, where x ∈ R. A
DC decomposition of f is obtained when we select

f1(x) = max{−x, 2x} and f2(x) = max{−2x, x}.

Therefore, at a point x∗ = 0 the DC components f1 and f2 are not differen-
tiable and the subdifferentials are

∂f1(0) = [−1, 2] and ∂f2(0) = [−2, 1].
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From this we obtain

∂f1(0) ∩ ∂f2(0) = [−1, 1] 6= ∅

and the point x∗ is a critical point. However, since the original objective
f is differentiable at x∗ = 0 and ∂f(0) = {1}, the point x∗ is not Clarke
stationary and describes no interesting feature for the function f .

Example 3.2. Let us consider a simple nonlinear problem, where the ob-
jective function f : R → R has DC components defined as

f1(x) = max{x2, x} and f2(x) = max{0.5x2, −x}.

Let us look closer the point x∗ = 0. First of all, the DC components f1 and
f2 are not differentiable at x∗ and their subdifferentials are

∂f1(0) = [0, 1] and ∂f2(0) = [−1, 0].

Since
∂f1(0) ∩ ∂f2(0) = {0} 6= ∅,

the point x∗ = 0 is a critical point of f . However, calculating the subdiffer-
ential of the function f at x∗ = 0, we notice that f is actually differentiable
at x∗ and ∂f(0) = {1}. Therefore, the point x∗ is not a local minimizer
or even a saddle point and criticality does not give us any useful informa-
tion. Graphs of the DC components and the objective f are illustrated in
Figure 2.
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Figure 2: The DC components f1(x) and f2(x) and the objective f(x)

The nondesirable behaviour in critical points is often a result of the se-
lected DC decomposition. However, since a DC function has an infinite num-
ber of different DC decompositions, it may be impossible to know which one
of them should be selected and this problem is in general an open question
in DC programming. One exception is a polynomial case: in [9] a special
algorithm is designed to find the best DC representation of polynomials.
In some easy cases, we can also see directly how a good DC decomposi-
tion should be chosen (e.g. in Example 3.1 we could set f1(x) = x and
f2(x) = 0). However, in real world applications the situation is rarely this
simple but it depends on the overall structure of the problem. Therefore,
there is no efficient way to avoid this bad feature of critical points in solution
algorithms.
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4 Guaranteeing Clarke stationarity

In this section, we describe the new stopping procedure which either guar-
antees Clarke stationarity for a point under consideration or generates a
descent direction yielding a better iteration point. The novelty in the proce-
dure is its ability to compute subgradients for a DC function utilizing only
its DC components. This means that the new stopping procedure will ensure
that the difference of subgradients of the DC components f1 and f2 belongs
to the subdifferential of f = f1 − f2. As seen in the previous section, this
does not hold in general. Later on, the stopping procedure is used in the
’main iteration’ of the DBDC method to detect the cases where a critical
point or a promising candidate solution fulfils also Clarke stationarity.

Next we consider the convex DC components fi : Rn → R for i = 1, 2.
The support function of the subdifferential ∂fi(x) at x ∈ R

n is

σi(d) ≡ f ′
i(x;d) = max

{

vTd | v ∈ ∂fi(x)
}

for i = 1, 2.

Taking any direction d ∈ R
n such that d 6= 0, we can consider the following

set
Gi(x;d) =

{

ξ ∈ ∂fi(x) | ξTd = σi(d)
}

for i = 1, 2.

Since f1 and f2 are convex, they are also weakly semismooth [27, 33]. This
implies that

f ′
i(x;d) = lim

k→∞
vT

k d (5)

for i = 1, 2 and any sequences {vk}, {tk} such that vk ∈ ∂fi(x + tkd) and
tk ↓ 0 as k → ∞. Consider the set

Ui(x;d) = {ξ ∈ R
n | ∃{vk} and {tk},vk ∈ ∂fi(x+tkd), vk → ξ and tk ↓ 0 as k → ∞}

for i = 1, 2. It follows from (5) that

Ui(x;d) ⊆ Gi(x;d) for i = 1, 2. (6)

From the definition of the set Ui(x;d) we also obtain that for any ε > 0 and
i = 1, 2 there exists t0 > 0 such that

∂fi(x + td) ⊂ Ui(x;d) + Bε(0) ∀t ∈ (0, t0).

This together with (6) implies that

∂fi(x + td) ⊂ Gi(x;d) + Bε(0) (7)

for i = 1, 2 and all t ∈ (0, t0).
Since the support function σi is locally Lipschitz continuous [3], it is

differentiable almost everywhere. This means that at the point x ∈ R
n

there exists a set Ti ⊂ R
n of full measure such that the set Gi(x;d) is

singleton for any d ∈ Ti. In the following, we let a set

TDC = T1 ∩ T2 ⊂ R
n

be the set of full measure where both G1(x;d) and G2(x;d) are singleton
for any d ∈ TDC at x.
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Theorem 4.1. Let f = f1 − f2 be a DC function, x ∈ R
n, d ∈ TDC ,

G1(x;d) = {ξ1} and G2(x;d) = {ξ2}. Then

ξ1 − ξ2 ∈ ∂f(x).

Proof. It follows from (7) that for any ε > 0 there exists t0 > 0 such that

∂f1(x + td) ⊂ {ξ1} + Bε(0), ∂f2(x + td) ⊂ {ξ2} + Bε(0) ∀t ∈ (0, t0).

This means that
‖v − ξ1‖ < ε, ‖w − ξ2‖ < ε (8)

for all v ∈ ∂f1(x+ td), w ∈ ∂f2(x+ td) and t ∈ (0, t0). On the other hand,
the rule (4) implies that

∂f(x + td) ⊆ ∂f1(x + td) − ∂f2(x + td), t ≥ 0.

Therefore, for any ξt ∈ ∂f(x + td) there exists vt ∈ ∂f1(x + td) and wt ∈
∂f2(x + td) such that ξt = vt − wt and taking into account (8) we obtain

‖ξt − (ξ1 − ξ2)‖ ≤ ‖vt − ξ1‖ + ‖wt − ξ2‖ < 2ε

for all ξt ∈ ∂f(x + td) and t ∈ (0, t0). This means that

ξ1 − ξ2 ∈ ∂f(x + td) + B2ε(0) ∀t ∈ (0, t0). (9)

Upper semicontinuity of the subdifferential ∂f(x) [7] implies that for any
ε > 0 there exists t1 > 0 such that

∂f(x + td) ⊂ ∂f(x) + Bε(0) ∀t ∈ (0, t1).

Then from (9) we have

ξ1 − ξ2 ∈ ∂f(x) + B3ε(0).

Since ε > 0 is arbitrary we get that ξ1 − ξ2 ∈ ∂f(x), which proves the
theorem.

Corollary 4.2. Let x ∈ R
n, f = f1 −f2 be a DC function and TDC ⊂ R

n be
a set of full measure such that the sets G1(x;d) and G2(x;d) are singleton
for d ∈ TDC . Consider the following set

∂TDC
f(x) = cl conv {ξ ∈ R

n | ∃d ∈ TDC , ξ = ξ1 − ξ2, ξ1 ∈ G1(d), ξ2 ∈ G2(d)} .

Then
∂TDC

f(x) ⊆ ∂f(x).

These results show that, in order to compute subgradients from the
Clarke subdifferential of a DC function utilizing only subgradients of DC
components, it is important to design an algorithm which allows for any
direction d ∈ R

n to find a direction d̄ ∈ TDC such that ‖d − d̄‖ < δ for any
sufficiently small δ > 0.

REMARK 4.3. In [8] directions d ∈ R
n whose sets Gi(x;d) are singleton

are used to define the so-called Demyanov difference of two convex compact
sets in R

n.
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4.1 Calculation of appropriate directions

Next we will show how we can find the direction d̄ ∈ TDC for any d ∈ R
n.

For that reason we utilize the so-called R-sets [3] and make the following
assumption:

A1 the subdifferentials ∂f1(x) and ∂f2(x) are polytopes at any x ∈ R
m.

Let A ⊂ R
n be the polytope, that is, it can be represented as:

A = conv A0

where
A0 = {a1, . . . ,am}, ai ∈ R

n, m ≥ 1.

Let
V = {g ∈ R

n | g = (g1, . . . , gn), |gi| = 1, i = 1, . . . , n} .

For a given g ∈ V , introduce the following sets:

R0(g) ≡ R0 = A0,

Rj(g) = arg max {vjgj | v ∈ Rj−1(g)} , j = 1, . . . , n.

It is clear that

Rj(g) 6= ∅, ∀j ∈ {0, . . . , n} and Rj(g) ⊆ Rj−1(g), ∀j ∈ {1, . . . , n}.

Moreover,
vk = wk ∀v,w ∈ Rj(g), k = 1, . . . , j. (10)

Lemma 4.4. For any g ∈ V , the set Rn(g) is a singleton.

Proof. It follows from (10) that for any v,w ∈ Rn(g) we have v = w.

For g ∈ V and α > 0, we introduce the sequence of n vectors
ej(α) = (αg1, α2g2, . . . , αjgj , 0, . . . , 0), j = 1, . . . , n. Denote by σA the sup-
port function of the set A, that is, σA(d) = max{vTd |v ∈ A} and let

GA(ei(α)) =
{

a ∈ A | aTei(α) = σA(ei(α))
}

, i = 1, . . . , n.

Lemma 4.5. Let A be a polytope with a finite number of vertices A0. For
a given g ∈ V , there exists α0 ∈ (0, 1] such that the set GA(en(α)) is a
singleton for all α ∈ (0, α0].

Proof. If the set A0 is a singleton, then the proof is obvious. Therefore,
assume that A0 is not a singleton. According to Lemma 4.4, the set Rn(g)
is a singleton and without loss of generality we can assume that a ∈ A0 is
the vertex such that Rn(g) = {a}. Moreover, A0 \ {a} 6= ∅.

Next we take any b ∈ A0 \ {a}. Then there exists r ∈ {1, . . . , n} such
that b ∈ Rp(g) for all p = 0, . . . , r − 1, but b /∈ Rr(g). Therefore,

argr > brgr
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and we define
d(b) = argr − brgr > 0.

Since the set A0 is finite and d(b) > 0 for all b ∈ A0 \{a}, we can determine
the following number

δ = min
b∈A0\{a}

{

d(b)
}

> 0.

From (10) we also obtain that for any b ∈ A0 \ {a} we have at = bt for
t = 1, . . . , r − 1 and r ≥ 2. Thus, we get

aTen(α) − bTen(α) =
n
∑

t=1

(at − bt)α
tgt

= αr

[

argr − brgr +
n
∑

t=r+1

(at − bt)α
t−rgt

]

≥ αr

[

δ +
n
∑

t=r+1

(at − bt)α
t−rgt

]

.

Let D = max {‖v‖ |v ∈ A0} < ∞. Since α ∈ (0, 1] and g ∈ V we get

∣

∣

∣

∣

∣

n
∑

t=r+1

(at − bt)α
t−rgt

∣

∣

∣

∣

∣

≤ 2Dα(n − r) < 2Dαn

for any b ∈ A0 \ {a}. If we continue by choosing

α0 = min

{

1,
δ

4Dn

}

,

then for all α ∈ (0, α0]

∣

∣

∣

∣

∣

n
∑

t=r+1

(at − bt)α
t−rgt

∣

∣

∣

∣

∣

<
δ

2
.

This means that for b ∈ A0 \ {a} we have

aTen(α) − bTen(α) > αr

(

δ −
δ

2

)

=
αrδ

2
> 0

for all α ∈ (0, α0]. Therefore,

aTen(α) − bTen(α) > 0 ∀b ∈ A0 \ {a} (11)

and, since the set A0 contains all the vertices of the polytope A, the inequal-
ity (11) holds also for all b ∈ A \ {a}. This shows our claim.

Lemma 4.5 shows that for any polytope A ⊂ R
n there exists α0 ∈ (0, 1]

such that the sets GA(en(α)) are singletons for any parameter α ∈ (0, α0]
and the value of α0 > 0 depends only on a polytope.
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Lemma 4.6. Let A be a polytope with a finite number of vertices A0 and
let d ∈ R

n be any direction such that d 6= 0. Then for a given g ∈ V
there exists α0 ∈ (0, 1] such that for the direction d̄(α) = d + en(α) the set
GA(d̄(α)) is a singleton for all α ∈ (0, α0]. In addition, GA(d̄(α)) ⊆ GA(d)
for all α ∈ (0, α0].

Proof. It follows from Lemma 4.5 that for a polytope B(d) defined as

B(d) = conv GA(d)

there exists α0 ∈ (0, 1] such that the set GB(d)(e
n(α)) is a singleton for a

given g ∈ V and all α ∈ (0, α0]. This means that there exists v0 ∈ GA(d)∩A0

such that

vT
0 e

n(α) ≥ vTen(α) + δ1 ∀v ∈ GA(d) \ {v0}

for some δ1 > 0. On the other hand, there exists δ2 > 0 such that

vTd ≥ wTd + δ2 ∀v ∈ GA(d), w ∈ A0 \ GA(d).

By defining
d̄(α) = d + en(α)

we obtain
‖d̄(α) − d‖ ≤ nα

for any α ∈ (0, 1]. We also denote by D = max{‖a‖ | a ∈ A0} < ∞. It is
clear that

vT
0 d̄(α) ≥ vT d̄(α) + δ1 ∀v ∈ GA(d) \ {v0}. (12)

Moreover, for any w ∈ A0 \ GA(d) we have

vT d̄(α) − wT d̄(α) = (v − w)Td + (v − w)Ten(α)

≥ δ2 − 2Dnα

for all v ∈ GA(d). By choosing

α1 = min
{

1,
δ2

4Dn

}

,

we get that for any α ∈ (0, α1]

vT d̄(α) − wT d̄(α) ≥ δ2/2 ∀v ∈ GA(d), w ∈ A0 \ GA(d).

Combining this with (12) yields

vT
0 d̄(α) − wT d̄(α) ≥ min{δ1, δ2/2} > 0 ∀w ∈ A0 \ {v0}

and, since A is a polytope, this means that the set GA(d̄(α)) = {v0} ⊂
GA(d) for all α ∈ (0, α2) where α2 = min{α0, α1}. This proves the lemma.
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Now we are ready to present the main results of this section, which are
utilized to guarantee the convergence of our new stopping procedure.

Theorem 4.7. Let x ∈ R
n and d ∈ R

n be any direction such that d 6= 0

and assume that a DC function f = f1 − f2 satisfies the assumption A1.
Then for a given g ∈ V there exists α0 ∈ (0, 1] such that for all α ∈ (0, α0]:

(i) d̄(α) = d + en(α) ∈ TDC ;

(ii) G1(x; d̄(α)) ⊆ G1(x;d) and G2(x; d̄(α)) ⊆ G2(x;d);

(iii) f ′(x;d) = (ξ1 − ξ2)Td for ξ1 ∈ G1(x; d̄(α)) and ξ2 ∈ G2(x; d̄(α));

(iv) ξ1 − ξ2 ∈ ∂f(x) for ξ1 ∈ G1(x; d̄(α)) and ξ2 ∈ G2(x; d̄(α)).

Proof. The properties (i) and (ii) follow immediately from Lemma 4.6.
Therefore, f ′

1(x;d) = ξT
1 d for ξ1 ∈ G1(x; d̄(α)) and f ′

2(x;d) = ξT
2 d for

ξ2 ∈ G1(x; d̄(α)). Since f ′(x;d) = f ′
1(x;d) − f ′

2(x;d), we obtain the case
(iii). The property (iv) is obtained directly from Theorem 4.1 when we take
into account (i).

4.2 Algorithm

Next we introduce our new algorithm to check Clarke stationarity of a can-
didate solution. This verification process is designed for a DC function
f = f1 − f2 and it requires that the assumption A1 holds. In what follows,
the set Uk approximates ∂G

ε f(x), which on the other hand is an approxi-
mation of ∂f(x), and we have Uk ⊂ ∂G

ε f(x) for all k ≥ 1. In addition, the
smaller the parameter ε > 0 is, the more accurate approximation of the set
∂f(x) is used. Let S1 = {d ∈ R

n | ‖d‖ = 1} be a unit sphere in R
n.

Algorithm 1. Guaranteeing Clarke stationarity

Data: The point x ∈ R
n under consideration, the descent parameter m1 ∈

(0, 1), the stopping tolerance δ ∈ (0, 1) and the proximity measure ε > 0.

Step 0. (Initialization) Select a direction d1 ∈ S1. Set x̃ = x, U0 = ∅
and k = 1.

Step 1. (New subgradient) Find d̄k(α) ∈ TDC using dk. Compute sub-
gradients ξ1,k ∈ ∂f1(x̃) and ξ2,k ∈ ∂f2(x̃) such that ξ1,k ∈
G1(x̃; d̄k(α)), ξ2,k ∈ G2(x̃; d̄k(α)). Set ξk = ξ1,k − ξ2,k and
Uk = conv {Uk−1

⋃

{ξk}}.

Step 2. (Clarke stationarity) Find ūk as the solution to the problem

min
u∈Uk

1

2
‖u‖2. (13)

If

‖ūk‖ ≤ δ (14)

then EXIT with x∗ = x+ (Clarke stationarity achieved).

12



Step 3. (Search direction) Compute dk+1 = −ūk/ ‖ūk‖. If

f ′(x;dk+1) ≤ −m1‖ūk‖ (15)

then go to Step 4. Otherwise set x̃ = x and k = k + 1 and go to
Step 1.

Step 4. (Step-length) Calculate the step-length β∗ ≥ 0 from the formula

β∗ = arg max {β ≥ 0 | f(x + βdk+1) − f(x) < 0} . (16)

If β∗ ≥ ε then set x+ = x+β∗dk+1 and EXIT from the algorithm
(a better iteration point achieved). Otherwise set x̃ = x+β∗dk+1

and k = k + 1 and go to Step 1.

REMARK 4.8. The assumption A1 requiring that the subdifferentials of
DC components f1 and f2 are polytopes is not really restrictive, since in
practical applications this property is nearly always satisfied.

The next theorem shows the finite convergence of our new stopping pro-
cedure.

Theorem 4.9. Let the assumption A1 be valid. Algorithm 1 is terminated
after at most

Nmax =

⌈

4

(1 − m1)2

(

L

δ

)4
⌉

iterations where ⌈·⌉ is a ceiling of a number and L > 0 is the Lipschitz
constant of f at a point x ∈ R

n.

Proof. Algorithm 1 is stopped if either the stopping condition (14) is satisfied
or a new iteration point is found in Step 4. We prove that one of these
alternatives will be fulfilled after a finite number of steps. First we show
that, if none of these stopping options is satisfied during the iteration k, then
the new subgradient ξk+1 computed in Step 1 does not belong to the set
Uk ⊂ ∂G

ε f(x). In fact, since ūk is the solution to the quadratic programming
problem (13), it follows from the necessary and sufficient condition for a
minimum that

ūT
k u ≥ ‖ūk‖2 ∀u ∈ Uk.

This implies that

uTdk+1 ≤ −‖ūk‖ ∀u ∈ Uk. (17)

In addition, we have two options for the next x̃, namely x or x + β∗dk+1.
If x̃ = x this means that the condition (15) is not satisfied and we obtain

f ′(x̃;dk+1) = f ′(x;dk+1) > −m1‖ūk‖. (18)

13



In the latter case, x̃ = x + β∗dk+1 for β∗ < ε and, therefore, a subgradient
calculated at x̃ belongs to the set ∂G

ε f(x). Moreover, the step-length deter-
mination rule (16) together with the definition of the directional derivative
guarantees that

f ′(x̃;dk+1) = f ′(x + β∗dk+1;dk+1) ≥ 0 > −m1δ > −m1‖ūk‖, (19)

where the last inequality is obtained from the fact that ‖ūk‖ > δ. Moreover,
the properties (iii) and (iv) of Theorem 4.7 yield that ξ1,k+1 − ξ2,k+1 ∈
∂f(x̃) and f ′(x̃;dk+1) = ξT

k+1dk+1 = (ξ1,k+1 − ξ2,k+1)Tdk+1 for ξ1,k+1 ∈

G1(x̃; d̄k+1(α)) and ξ2,k+1 ∈ G2(x̃; d̄k+1(α)). This together with the in-
equalities (18) and (19) implies that

ξT
k+1dk+1 > −m1‖ūk‖. (20)

Since m1 ∈ (0, 1), the inequalities (17) and (20) yield that ξk+1 /∈ Uk. This
means that, if the algorithm does not stop during one iteration, then the
new subgradient allows us to significantly improve the approximation of the
set ∂G

ε f(x).
In order to show that Algorithm 1 is finite convergent, it is sufficient

to prove that the condition (14) will be satisfied after a finite number of
iterations if a new iteration point is never found. It is obvious that tξk+1 +
(1 − t)ūk ∈ Uk+1 for any t ∈ (0, 1) and, thus, we get

‖ūk+1‖2 ≤ ‖tξk+1 + (1 − t)ūk‖2

= ‖ūk + t(ξk+1 − ūk)‖2

= ‖ūk‖2 + 2tūT
k (ξk+1 − ūk) + t2‖ξk+1 − ūk‖2.

Since a DC function f is locally Lipschitz continuous at any point, the
Goldstein subdifferential ∂G

ε f(x) is bounded at x ∈ R
n with a Lipschitz

constant [3]. Let L > 0 be the Lipschitz constant of f at x. Then ‖ξ‖ ≤ L
for all ξ ∈ ∂G

ε f(x) implying that

‖ξk+1 − ūk‖ ≤ 2L.

Moreover, from (20) we obtain ξT
k+1ūk ≤ m1‖ūk‖2, since dk+1 = −ūk/‖ūk‖

and, therefore,

‖ūk+1‖2 ≤ ‖ūk‖2 + 2tūT
k (ξk+1 − ūk) + 4t2L2

≤ ‖ūk‖2 − 2t(1 − m1)‖ūk‖2 + 4t2L2.

By selecting

t =
(1 − m1)‖ūk‖2

4L2

it is obvious that t ∈ (0, 1) and, thus, we have

‖ūk+1‖2 ≤ ‖ūk‖2 −
(1 − m1)2‖ūk‖4

4L2
.
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If the stopping criterion (14) is never met, then ‖ūk‖ > δ for any k > 0 and
we get

‖ūk+1‖2 ≤ ‖ūk‖2 −
(1 − m1)2δ4

4L2
.

Writing this inequality for all k > 0 and summing up them we have

‖ūk+1‖2 ≤ ‖ū1‖2 − k
(1 − m1)2δ4

4L2
. (21)

This yields ‖ūk‖ → −∞ which is a contradiction. Therefore, the stopping
condition (14) will be satisfied after a finite number of iterations. Note that
‖ū1‖ ≤ L and, since

L2 − k
(1 − m1)2δ4

4L2
≥ 0

according to (21), we have

k ≤
4L4

(1 − m1)2δ4
.

Then the maximum number Nmax of iterations to reach the stopping con-
dition (14) can be given by the following number

Nmax =

⌈

4

(1 − m1)2

(

L

δ

)4
⌉

.

This completes the proof.

5 Double bundle method for DC functions

In this section, we will describe a new proximal double bundle method
DBDC for solving unconstrained DC minimization problems. The DBDC
method combines the ideas of the proximal bundle method PBDC [17] to
the new stopping procedure Algorithm 1 designed to find Clarke station-
ary points. The PBDC method, in turn, utilizes the DC decomposition of
the objective in the model construction and, due to this, the cutting plane
model used describes quite well the actual behaviour of f . In addition, the
PBDC method has fast convergence speed, but since only approximate crit-
icality of the solutions is guaranteed, the stopping condition used can lead
to "arbitrary" points where the Clarke stationarity of the original objective
is not satisfied. Therefore, the aim of our hybridization is to utilize the
PBDC method to obtain a promising candidate solution and after that use
the new stopping procedure to guarantee Clarke stationarity of the solution
obtained. In other words, our goal is to provide a more reliable method for
nonsmooth DC problems, which preserves the good features of the PBDC
method but at the same time improves the quality of the solutions obtained.
The usage of Clarke stationarity as a stopping condition also enables us to
escape from "arbitrary" solution points encountered when criticality is used.
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5.1 Model for DC functions

We start with presenting the cutting plane model for nonsmooth DC func-
tions, which is used to determine a search direction in the method DBDC.
Since the main idea in the model construction is to utilize separately infor-
mation about both DC components, we assume that at each point x ∈ R

n

we can evaluate the values of DC components f1(x) and f2(x) as well as
arbitrary subgradients ξ1 ∈ ∂f1(x) and ξ2 ∈ ∂f2(x).

In order to take into account both the convex and the concave behavior
of the objective f , we approximate the whole subdifferentials of both DC
components. Therefore, we collect subgradients of those components into a
bundle. This means that for each DC component we have its own bundle
containing subgradient information gathered from the previous iterations.
Thus, we maintain two completely separate bundles and the bundle for the
DC component fi at the current iteration point xk ∈ R

n is denoted by

Bk
i =

{

(

yj, fi(yj), ξi,j

)
∣

∣ j ∈ Jk
i

}

for i = 1, 2,

where Jk
i is a nonempty set of indices and ξi,j ∈ ∂fi(yj) is a subgradient

calculated at an auxiliary point yj ∈ R
n. Note that the index sets Jk

1 and
Jk

2 need not to be similar and only the current iteration point xk is always
assumed to be included in both bundles Bk

1 and Bk
2 with a suitable index.

Utilizing the convexity of the DC component we can easily form a convex
piecewise linear model to approximate it at the iteration point xk. This
model is the classical cutting plane model used in convex bundle methods
(see, e.g., [19, 24, 26, 33]) and for the DC component fi, i = 1, 2, it is
constructed by

f̂k
i (x) = max

j∈Jk
i

{

fi(xk) + (ξi,j)T (x − xk) − αk
i,j

}

with the linearization error

αk
i,j = fi(xk) − fi(yj) − (ξi,j)T (xk − yj) for all j ∈ Jk

i .

A nice feature of this model is that at every point the first order expansion
supports from below the epigraph of a convex function and linearization
errors are always nonnegative, that is, αk

i,j ≥ 0.

The approximation for the original objective f is now obtained when we
combine the previous convex cutting plane models of the DC components.
Thus, the piecewise linear nonconvex cutting plane model of f is defined by

f̂k(x) = f̂k
1 (x) − f̂k

2 (x).

This cutting plane model can be rewritten as follows

f̂k(xk + d) = f(xk) + ∆k
1(d) + ∆k

2(d),
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2 (x) of the DC
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Figure 4: The nonconvex cutting plane model f̂k(x) of the objective f(x)

when we denote by d = x− xk the search direction at the current iteration
point xk and by

∆k
1(d) = max

j∈Jk
1

{

(ξ1,j)Td − αk
1,j

}

and ∆k
2(d) = min

j∈Jk
2

{

−(ξ2,j)
Td + αk

2,j

}

the piecewise affine functions associated with the DC components f1 and
f2. Note that this cutting plane model is nonconvex and takes into account
both the convex and the concave behavior of the objective f . Thus, we avoid
the somewhat arbitrary downward shifting of first order expansions and we
need not to use the so-called subgradient locality measures [18] commonly
used in nonconvex bundle methods.

One illustration of the cutting plane model for a function f = f1 − f2

with a DC component selection f1(x) = max
{

x2 − x − 1, x
}

and f2(x) =
0.5x2 + max {0, −x} is presented in Figures 3 and 4. Linearizations of both
DC components are constructed only at three points −2, 0.5 and 3.5.

5.2 Direction finding

The DBDC method uses the above presented nonconvex cutting plane model
to compute the search direction. However, this model cannot be directly ap-
plied, since we cannot always guarantee the existence of the search direction
for our piecewise linear model. Thus, we need to add a quadratic stabilizing
term into our approximation. The search direction dk

t is obtained by solving
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globally the nonconvex DC minimization problem

{

minimize P k(d) = ∆k
1(d) + ∆k

2(d) + 1
2t

‖d‖2

subject to d ∈ R
n,

(22)

where t > 0 is a proximity parameter used in most bundle methods. Another
purpose of the quadratic term is to keep our approximation local enough [24],
since usually the farther away we are from the current iteration point the
more unreliable the cutting plane model becomes.

Now the term ∆k
1(d) + ∆k

2(d) in the problem (22) can be seen as a
predicted descent for the actual decrease in the objective function value
f(xk + d) − f(xk). The following Lemma 5.1 supports this interpretation,
since it guarantees that the approximation ∆k

1(dk
t ) + ∆k

2(dk
t ) is always non-

positive and, thus, gives an estimate for a descent. Similarly the separate
values ∆k

1(d) and ∆k
2(d) approximate the changes in the values of the DC

components f1 and −f2, respectively.

Lemma 5.1. The following properties hold:

(i) ∆k
1(d) ≤ f1(xk + d) − f1(xk);

(ii) ∆k
2(d) ≥ −f2(xk + d) − (−f2(xk));

(iii) For any t > 0, we have ∆k
1(dk

t ) + ∆k
2(dk

t ) ≤ −
1

2t
‖dk

t ‖2 ≤ 0.

Proof. The properties (i) and (ii) follow directly from the features of the
convex cutting plane model. For the case (iii) see [17].

We can also establish a bound for the norm ‖dk
t ‖ as is shown in the next

lemma.

Lemma 5.2. For any proximity parameter t > 0, it holds that

‖dk
t ‖ ≤ 2t (‖ξ1(xk)‖ + ‖ξ2,max‖)

where ξ1(xk) ∈ ∂f1(xk) and ‖ξ2,max‖ = maxj∈Jk
2

{‖ξ2,j‖}.

Proof. From the definition of ∆k
2(d) we obtain that for all d ∈ R

n

∆k
2(d) = min

j∈Jk
2

{

−(ξ2,j)Td + αk
2,j

}

≥ min
j∈Jk

2

{

−(ξ2,j)Td
}

≥ −‖ξ2,max‖‖d‖,

since αk
2,j ≥ 0 for any j ∈ Jk

2 . On the other hand, the definition of ∆k
1(d)

yields

∆k
1(d) ≥ (ξ1,j)Td − αk

1,j for all j ∈ Jk
1

and, when we combine this inequality with the previous one, we get

∆k
1(d) + ∆k

2(d) ≥ (ξ1,j)Td − αk
1,j − ‖ξ2,max‖‖d‖ (23)

18



for all d ∈ R
n and j ∈ Jk

1 . In addition, the element (xk, f1(xk), ξ1(xk)),
where ξ1(xk) ∈ ∂f1(xk), belongs to the bundle Bk

1 with some index ̄ and
the corresponding linearization error is zero. Therefore, the inequality (23)
holds for ̄ ∈ Jk

1 and for all d ∈ R
n

∆k
1(d) + ∆k

2(d) ≥
(

ξ1(xk)
)T

d − ‖ξ2,max‖‖d‖

≥ −‖ξ1(xk)‖‖d‖ − ‖ξ2,max‖‖d‖

= −
(

‖ξ1(xk)‖ + ‖ξ2,max‖
)

‖d‖.

Finally, taking into account the property (iii) of Lemma 5.1 we obtain the
inequality

−
1

2t
‖dk

t ‖2 ≥ ∆k
1(dk

t ) + ∆k
2(dk

t ) ≥ −
(

‖ξ1(xk)‖ + ‖ξ2,max‖
)

‖dk
t ‖,

which gives the desired bound for the solution dk
t of the problem (22).

The challenge in the problem (22) is to find the global solution, since
even though the problem is quadratic, it is still a nonconvex nonsmooth DC
minimization problem with DC components ∆k

1(d) + 1
2t

‖d‖2 and −∆k
2(d).

However, since in the objective function P k the DC component −∆k
2(d) is

polyhedral convex, the global solution can be easily obtained by utilizing a
specific approach [20, 21, 31]. The main idea in the approach is based on
the observation that, when the objective function P k is reformulated as

P k(d) = min
i∈Jk

2

{

P k
i (d) = ∆k

1(d) − (ξ2,i)
Td + αk

2,i +
1

2t
‖d‖2

}

,

then the problem (22) can be rewritten in the form

min
d∈Rn

min
i∈Jk

2

{

P k
i (d)

}

= min
i∈Jk

2

min
d∈Rn

{

P k
i (d)

}

.

Thus, we are allowed to change the order of the minimizations and solve
first separately for each i ∈ Jk

2 the convex nonsmooth subproblem
{

minimize P k
i (d) = ∆k

1(d) − (ξ2,i)
Td + αk

2,i + 1
2t

‖d‖2

subject to d ∈ R
n,

(24)

whose solution is denoted by dk
t (i). After we have solved all |Jk

2 | convex
subproblems the global solution dk

t of the original nonconvex problem (22)
is obtained by

dk
t = dk

t (i∗) where i∗ = arg min
i∈Jk

2

{

P k
i

(

dk
t (i)

)

}

.

This means that we select the best solution from all the subproblem mini-
mizers. Moreover, for each i ∈ Jk

2 the subproblem (24) can be reformulated
in a smooth form















minimize v + 1
2t

‖d‖2

subject to (ξ1,j − ξ2,i)
Td − (αk

1,j − αk
2,i) ≤ v for all j ∈ Jk

1

v ∈ R, d ∈ R
n

(25)

19



and this way nonsmoothness does not cause any difficulties. Alternatively,
instead of the problem (25), it is also possible to solve its quadratic dual
problem















minimize 1
2t‖

∑

j∈Jk
1

λjξ1,j − ξ2,i‖
2 +

∑

j∈Jk
1

λjα
k
1,j − αk

2,i

subject to
∑

j∈Jk
1

λj = 1

λj ≥ 0 for all j ∈ Jk
1 ,

(26)

which is typically easier to solve than the primal problem. The next
theorem establishes the relationship between the optimal primal solution
(vk

t (i), dk
t (i)) and the optimal dual solutions λk

t,j(i) for j ∈ Jk
1 .

Theorem 5.3. For each i ∈ Jk
2 , the problems (25) and (26) are equiva-

lent, and they have unique solutions (vk
t (i), dk

t (i)) and λk
t,j(i) for j ∈ Jk

1 ,
respectively, such that

dk
t (i) = −t

(

∑

j∈Jk
1

λk
t,j(i)ξ1,j − ξ2,i

)

vk
t (i) = −

1

t
‖dk

t (i)‖2 −
∑

j∈Jk
1

λk
t,j(i)α

k
1,j + αk

2,i.

Proof. See [26], pp. 115–117.

5.3 Algorithm

Next we describe our new proximal double bundle algorithm DBDC for
unconstrained DC minimization. This method combines the new stopping
procedure presented in the previous section to the proximal bundle method
PBDC [17].

To perform properly the method DBDC requires that a starting point
x0 ∈ R

n satisfies the following assumption:

A2 the level set F0 = {x ∈ R
n | f(x) ≤ f(x0)} is compact.

This assumption is often made in bundle methods and it is not a restrictive
one if the problem (1) is well-posed.

To make the presentation more clear we have divided our algorithm
into smaller parts: the first part illustrates mainly the outline of the overall
DBDC algorithm while a more significant role is on the algorithm presenting
the ’main iteration’, which consists of a sequence steps where the current
iteration point remains unchanged. However, whenever we exit from the
’main iteration’ algorithm we have either confirmed Clarke stationarity or
found a new iteration point decreasing the value of the objective function.
To guarantee Clarke stationarity the ’main iteration’ utilizes Algorithm 1
whenever a promising candidate solution is found. If in this verification
process the current iteration point xk satisfies the required stopping con-
ditions, then the overall bundle method DBDC terminates with xk as the
final solution.
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Algorithm 2. Double bundle method for DC functions (DBDC)

Data: Choose the stopping tolerance δ ∈ (0, 1), the proximity measure
ε > 0, the enlargement parameter ε1 > 0, the decrease parameters r ∈ (0, 1)
and c ∈ (0, 1), the increase parameter R > 1 and the descent parameters
m1 ∈ (0, 1) and m2 ∈ (0, 1).

Step 0. (Initialization) Choose a starting point x0 ∈ R
n, set y1 = x0

and compute the DC component values f1(x0) and f2(x0). Ini-
tialize the iteration counter k = 0. Calculate subgradients
ξ1,1 ∈ ∂f1(y1) and ξ2,1 ∈ ∂f2(y1) and set αk

1,1 = αk
2,1 = 0.

Initialize the bundles by setting

Bk
1 =

{

(ξ1,1, αk
1,1)
}

and Bk
2 =

{

(ξ2,1, αk
2,1)
}

.

Step 1. (Main iteration) Execute ’main iteration’ Algorithm 3 to find
xk+1. If xk+1 = xk then Clarke stationarity is achieved and
STOP with x∗ = xk as the final solution.

Step 2. (Bundle update) Compute the new DC component values and
subgradients

fi(xk+1) and ξi(xk+1) ∈ ∂fi(xk+1) for i = 1, 2.

Select the bundles Bk+1
1 ⊆ Bk

1 and Bk+1
2 ⊆ Bk

2 for the next round
and update the linearization errors using the formula

αk+1
i,j = αk

i,j + fi(xk+1) − fi(xk) − (ξi,j)T (xk+1 − xk) (27)

for all i = 1, 2 and j ∈ Jk+1
i . Insert also the element

(ξ1(xk+1), 0) into Bk+1
1 and (ξ2(xk+1), 0) into Bk+1

2 .

Finally, update k = k + 1 and go back to Step 1.

REMARK 5.4. In the bundles Bk
1 and Bk

2 , it suffices to store only subgra-
dients ξi,j ∈ ∂fi(yj) together with linearization errors αk

i,j. This is due to
the fact that the linearization errors can be updated by using the formula
(27) and, therefore, the new values for the next iteration round are easily
obtained whenever a new iteration point xk+1 is found. Thus, we need not
to store the auxiliary points yj or the function values fi(yj).

REMARK 5.5. At the beginning of Step 2, the bundles Bk+1
1 and Bk+1

2

for the next round can be freely chosen and, therefore, every element stored
can also be deleted at this point. Regardless of this the bundles Bk+1

1 and
Bk+1

2 always contain at least the element corresponding to the new iteration
point xk+1 since it is inserted into both bundles at the end of Step 2. This
guarantees that the bundles are never empty when we start the execution
of a new ’main iteration’.
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Next we present the ’main iteration’ being the core of DBDC. This
algorithm uses some local parameters, which are initialized each time a
new ’main iteration’ is started. To simplify notations we have omitted
the superscript k except for xk ∈ R

n, since the current iteration point xk

does not change during the execution. In addition, ξ1(xk) ∈ ∂f1(xk) and
ξ2(xk) ∈ ∂f2(xk) are the subgradients calculated at xk.

Algorithm 3. Main iteration

Data: The stopping tolerance δ ∈ (0, 1), the enlargement parameter ε1 > 0,
the decrease parameters r ∈ (0, 1) and c ∈ (0, 1), the increase parameter
R > 1 and the descent parameter m2 ∈ (0, 1).

Step 0. (Criticality) If ‖ξ1(xk) − ξ2(xk)‖ < δ then go to Step 3.

Step 1. (Initialization) Calculate the index j∗ = arg maxj∈J2
{‖ξ2,j‖}, set

ξ2,max = ξ2,j∗ and initialize the parameters

tmin = r ·
ε1

2
(

‖ξ1(xk)‖ + ‖ξ2,max‖
) and tmax = R tmin.

Choose the value t ∈ [tmin, tmax].

Step 2. (Search direction) Solve the search direction problem

min
d∈Rn

{

∆1(d) + ∆2(d) +
1

2t
‖d‖2

}

(28)

and using the solution dt calculate the predicted changes

∆1(dt) = max
j∈J1

{

(ξ1,j)Tdt − α1,j

}

and

∆2(dt) = min
j∈J2

{

−(ξ2,j)Tdt + α2,j

}

.

If ‖dt‖ < δ then go to Step 3 else go to Step 4.

Step 3. (Clarke stationarity) Execute Algorithm 1 for the point xk. Set
xk+1 = x+ and EXIT from the ’main iteration’.

Step 4. (Descent test) Set y = xk + dt. If

f(y) − f(xk) ≤ m2

(

∆1(dt) + ∆2(dt)
)

(29)

then choose xk+1 = y and EXIT from the ’main iteration’.

Step 5. (Bundle update) Compute ξ1 ∈ ∂f1(y), ξ2 ∈ ∂f2(y) and set

α1 = f1(xk) − f1(y) + ξT
1 dt and α2 = f2(xk) − f2(y) + ξT

2 dt.

(a) If f(y)−f(x0) > 0 and ‖dt‖ > ε1, then set t = t−r(t−tmin)
and go back to Step 2.
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(b) Otherwise insert (ξ1, α1) into B1 and, if ∆2(dt) ≥ 0, then
insert (ξ2, α2) into B2. If

f(y) − f(xk) ≥ −m2

(

∆1(dt) + ∆2(dt)
)

(30)

then set t = t − c(t − tmin).

Step 6. (Parameter update) If ‖ξ2‖ > ‖ξ2,max‖ then update

ξ2,max = ξ2 and tmin = r ·
ε1

2
(

‖ξ1(xk)‖ + ‖ξ2,max‖
) .

Go back to Step 2.

The nonconvex DC minimization problem (22) is the search direction
problem (28) used in Step 2 of the ’main iteration’. Due to this, Step 2 of
the algorithm is the most time-consuming part, since during each iteration
we need to solve |J2| convex subproblems. However, after solving all the sub-
problems the global solution of the original nonconvex problem can be easily
obtained by choosing the best solution from the subproblem minimizers.

REMARK 5.6. The user can control the number of subproblems solved,
since the size of the bundle B2 can be always limited with the maximum
number of stored subgradients Jmax ≥ 1. The only restriction is that the
element (ξ(xk), 0) corresponding to the current iteration point xk cannot be
deleted or substituted during the execution of the ’main iteration’. Moreover,
it is possible to omit the update requirement used in Step 5(b) for the bundle
B2 and always include the new element into B2.

REMARK 5.7. In Step 5(b), the condition (30) is similar to (29), but
now instead of the descent we test if the decrease in the objective function
is significant. This way we can detect the cases where the model of the
objective function is inconsistent and fails to describe the actual behaviour
of f . In this case we decrease the proximity parameter t to get a more
accurate model.

REMARK 5.8. The purpose of Step 5(a) of ’main iteration’ Algorithm 3
is to guarantee that the points used to constitute the elements inserted into
the bundles are on the set Fε1

= {x ∈ R
n | d(x, F0) ≤ ε1}, where ε1 > 0 is

selected and d(x, F0) = inf {‖x − z‖ |z ∈ F0}. Moreover, all the iteration
points xk are on the set Fε1

, since each new iteration point decreases the
value of the objective. In addition, the DC components f1 and f2 are locally
Lipschitz continuous and let L1 > 0 and L2 > 0 be the Lipschitz constants
of f1 and f2 on the compact set Fε1

, respectively. This implies that

‖ξ1‖ ≤ L1 for each ξ1 on B1 and ‖ξ2‖ ≤ L2 for each ξ2 on B2 . (31)

23



From this we can also deduce that the parameters t and tmin are bounded
away from zero, since

t ≥ tmin ≥ t̄min = rε1/(2L1 + 2L2) > 0.

In addition, the parameter tmax is bounded from above, since

‖ξ1(xk)‖ + ‖ξ2,max‖ ≥ ‖ξ1(xk)‖ + ‖ξ2(xk)‖ ≥ ‖ξ1(xk) − ξ2(xk)‖ ≥ δ

whenever Step 0 is not satisfied, and therefore

tmax ≤ t̄max = Rrε1/2δ < ∞.

5.4 Convergence

In this section, we prove the convergence of the method DBDC. We espe-
cially show that our method terminates after a finite number of steps and
that the solution obtained is a Clarke stationary point. As we have already
seen, a Clarke stationary point is always a critical point, but the opposite
does not need to hold. Therefore, a significant feature of the new DBDC
method is that we can guarantee a tighter and better optimality condition
than in the most of the other methods designed for DC functions.

In Theorem 4.8, we have already proved the finite convergence of Algo-
rithm 1 guaranteeing Clarke stationarity and this required the assumption
A1 to hold. Next we show that ’main iteration’ Algorithm 3 stops after a
finite number of iterations and only after that we are finally ready to present
the convergence result for DBDC Algorithm 2. To prove the convergence
we also need to require that the assumption A2 is valid.

We begin by showing the following auxiliary lemma which is utilized to
show the finite convergence. After that we are ready to prove the termination
for ’main iteration’ Algorithm 3. Both proofs follow the guidelines of [17].

Lemma 5.9. If the condition (29) at Step 4 of Algorithm 3 is not satisfied,
then

ξT
1 dt − α1 > m2∆1(dt) + (m2 − 1)∆2(dt),

where ξ1 ∈ ∂f1(y) is a subgradient calculated at the new auxiliary point
y = xk + dt and α1 = f1(xk) − f1(y) + ξT

1 dt is the corresponding lineariza-
tion error.

Proof. If the descent condition (29) is not satisfied at Step 4, then

f(y) − f(xk) > m2

(

∆1(dt) + ∆2(dt)
)

,

where y = xk + dt is the new auxiliary point calculated in the ’main itera-
tion’. Rewriting f using the DC components we obtain

f1(y) − f1(xk) > m2

(

∆1(dt) + ∆2(dt)
)

−
(

f2(xk) − f2(y)
)
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and together with the property (ii) of Lemma 5.1 this ensures that we always
have

f1(y) − f1(xk) > m2∆1(dt) + (m2 − 1)∆2(dt).

The result follows from this by noticing that

f1(y) − f1(xk) = f1(xk + dt) − f1(xk) = ξT
1 dt − α1

when ξ1 ∈ ∂f1(y) and α1 = f1(xk) − f1(y) + ξT
1 dt.

Theorem 5.10. Let the assumption A2 be valid. For any δ ∈ (0, 1), Al-
gorithm 3 cannot pass infinitely many times through the sequence of steps
from 4 to 6.

Proof. We start with supposing, contrary to our claim, that the sequence of
steps from 4 to 6 is executed infinitely many times and index by i ∈ I all
the quantities referred to the ith passage. This mean that we never execute
Step 3, since this would provide us either a new iteration point or Clarke
stationarity after a finite number of steps. Therefore, for each i ∈ I the

condition ‖d
(i)
t ‖ ≥ δ is satisfied.

First, we notice that Step 5(a) cannot occur infinitely many times. If
this would be the case, then the proximity parameter t would be decreased
infinitely many times and it would converge to tmin, since the safeguard
parameter tmin is both bounded and monotonically decreasing. Moreover,
the parameter tmin is always selected such a way that it is smaller than the

threshold ε1/2(‖ξ1(xk)‖ + ‖ξ
(i)
2,max‖) implying that after a finite number of

iterations also the proximity parameter t falls below this threshold. However,

when this happens Step 5(a) cannot be executed anymore, since ‖d
(i)
t ‖ ≤ ε1

according to Lemma 5.2. Therefore, there exists an index ı̂ ∈ I after which
Step 5(b) is always entered.

Second, we can guarantee that the sequence {d
(i)
t }i∈I is bounded in

norm, when we combine Lemma 5.2, the property (31) and the parameter
selection rule t ∈ [tmin, tmax]. Hence, there exists a convergent subsequence

{d
(i)
t }i∈I′⊆I converging to a limit d̂. From Remark 5.8 we also obtain that

all the auxiliary points yj and the iteration points xk belong to the set Fε1
.

In addition, the assumption A2 implies that the set Fε1
is compact and,

thus, there exists a constant K > 0 such that

‖xk − yj‖ ≤ K for all points yj on B1.

Moreover, this information together with (31) yields

|α1,j | = |f1(xk) − f1(yj) − (ξ1,j)T (xk − yj)|

≤ |f1(xk) − f1(yj)| + ‖ξ1,j‖‖(xk − yj)‖

≤ L1‖xk − yj‖ + L1K ≤ 2L1K
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for all points yj on B1, since we always have ‖ξ1,j‖ ≤ L1. Similar results can
be shown to point yj on B2 and, thus, all the subgradients and linearization
errors are bounded.

The boundness results imply also that the corresponding subsequences

{∆1(d
(i)
t )}i∈I′⊆I and {∆2(d

(i)
t )}i∈I′⊆I are bounded. Therefore, they both

admit a convergent subsequence for i ∈ I ′′ ⊆ I ′ and the limits are denoted
by ∆̂1 and ∆̂2, respectively. As a consequence of the property (iii) of Lemma
5.1, we then obtain

∆1
(

d
(i)
t

)

+ ∆2
(

d
(i)
t

)

≤ −
1

2ti

∥

∥d
(i)
t

∥

∥

2
≤ −

δ2

2ti
< 0 for all i ∈ I,

since ‖d
(i)
t ‖ ≥ δ and, thus,

∆̂1 + ∆̂2 ≤ −
δ2

2t̂
< 0,

where t̂ = limi→∞ ti > 0. Now Remark 5.8 guarantees that t̂ is strictly posi-
tive, since the sequence {ti} is bounded from below with a positive threshold.
Moreover, the sequence ti is nonincreasing and, therefore, a strictly positive
limit t̂ exists.

To complete the proof let r and s be two successive indices in I ′′ and

α1,r = f1(xk) − f1(xk + d
(r)
t ) + (ξ1,r)Td

(r)
t

with ξ1,r ∈ ∂f1(xk + d
(r)
t ). We have

(ξ1,r)Td
(r)
t − α1,r > m2∆1

(

d
(r)
t

)

+ (m2 − 1)∆2
(

d
(r)
t

)

(32)

and

∆1
(

d
(s)
t

)

≥ (ξ1,r)Td
(s)
t − α1,r , (33)

where the first inequality follows from Lemma 5.9 and the latter one is an
immediate consequence of the definition of ∆1(d). Finally, combining (32)
and (33) gives

∆1
(

d
(s)
t

)

− m2∆1
(

d
(r)
t

)

+ (1 − m2)∆2
(

d
(r)
t

)

> (ξ1,r)T
(

d
(s)
t − d

(r)
t

)

and passing to the limit yields

(1 − m2)
(

∆̂1 + ∆̂2

)

≥ 0.

This is a contradiction, since m2 ∈ (0, 1) and, thus, ∆̂1 + ∆̂2 < 0 cannot
hold.
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Finally, we are ready to show the finite convergence for the overall bun-
dle algorithm DBDC. The proof of this result reveals similar trends than
Theorem 3.10 in [28]. In addition, DBDC is globally convergent if the as-
sumption A2 holds for any starting point x0 ∈ R

n. This means that the
convergence result does not depend on x0 and the method always generates
a Clarke stationary point as a final solution x∗ regardless of the starting
point used.

Theorem 5.11. Let the assumptions A1 and A2 be valid. For any param-
eters δ ∈ (0, 1) and ε > 0, the execution of Algorithm 2 stops after a finite
number of ’main iterations’ at a point x∗ satisfying the approximate Clarke
stationarity condition ‖ξ∗‖ ≤ δ with ξ∗ ∈ ∂G

ε f(x∗).

Proof. The termination of DBDC can happen only if the stopping condi-
tion (14) tested at Step 2 of Algorithm 1 is satisfied and this provides the
approximate Clarke stationarity. We suppose that the ’main iteration’ is en-
tered infinitely many times and index by k ∈ K all the quantities obtained
from the kth passage. First of all, Theorems 4.9 and 5.10 guarantee that in
the ’main iteration’ we always find a new iteration point xk+1 after a finite
number of steps and this point is obtained either from Step 3 or from Step
4. Therefore, we obtain a sequence of iteration points {xk}, where

xk = xk−1 + τdk−1 such that τ ≥ min{1, ε} > 0, (34)

belonging to the compact set F0. This implies that the sequence {xk} has
an accummulation point x̄ and together with the formulation (34) of xk this
yields that the sequence {dk} → 0. From this we can deduce that for any
δ ∈ (0, 1) there exists an iteration index k′ such that ‖dk‖ < δ for all k ≥ k′.

Next let us look closer the iteration k′. First of all, we notice that a
new iteration point cannot be obtained from Step 4 of Algorithm 3. Due
to this, the only option is Step 3 of Algorithm 3. However, during the
execution of Algorithm 1 the search direction dk′ always fulfils ‖dk′‖ = 1 > δ
contradicting ‖dk′‖ < δ.

6 Numerical results

To verify the practical efficiency of the new method DBDC we have applied
it to some academic test problems with nonsmooth nonconvex DC objective
functions. In order to compare the results, we have used two proximal bundle
algorithms PBDC [17] and MPBNGC [26] for nonsmooth optimization. The
algorithm PBDC is the predecessor of DBDC and it also utilizes the DC
decomposition of the objective. MPBNGC, in its turn, is designed for a
general function and does not exploit any specific structure of the objective.
In [17], PBDC is also compared to DCA [22, 21], the truncated codifferential
method [6] and two other bundle methods [10, 11] and since most of our test
problems are from [17] we have not used those methods in our comparisons.
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The algorithm DBDC requires an unbounded storage for the bundle
B1, but this is an impossible requirement to fullfil in practice. Thus, the
implementation of DBDC slightly differs from Algorithm 2, since we have
used in the ’main iteration’ a subgradient aggregation strategy from [17] into
the bundle B1. This allows us to store some information from the previous
iterations, even though the size of B1 is bounded.

As we have already seen, the execution of Algorithm 1 is continued if at
Step 4 the stepsize β∗ < ε. However, in practice, it might be advantageous
to stop the whole algorithm DBDC at this point, since if the stepsize β∗

is really small it yields the consecutive iteration points to be very close to
each other. Therefore, in the implementation of DBDC, the execution of
Algorithm 1 is stopped with x∗ = x as the final solution, if β∗ < ε .

DBDC, utilizing the aggregation scheme, is implemented in double preci-
sion Fortran 95 and it uses the subroutine PLQDF1 [23] to solve the quadratic
problems (13) and (25). The code of PBDC is also implemented in double
precision Fortran 95 and the implementation of MPBNGC is done with double
precision Fortran 77. Both PBDC and MPBNGC use also the subroutine PLQDF1

[23] to solve the quadratic direction finding problems. All the codes are
compiled using f95, the Fortran 95 compiler, and tests are performed under
Linux Ubuntu system.

The codes have been tested on a set of 16 academic nonconvex test prob-
lems. Problems 1–10 are from [17] whereas Problems 11–16 are introduced
in Appendix at the end of the paper. The input parameters of DBDC have
been chosen as follows: the stopping tolerance

δ =

{

10−5, if n ≤ 200

10−4, if n > 200,

the proximity measure

ε =

{

10−6, if n ≤ 50

10−5, if n > 50,

the enlargement parameter ε1 = 0.00005, the decrease parameters c = 0.1
and

r =















0.75, if n < 10

the first two desimals of n/(n + 5), if 10 ≤ n < 300

0.99, if n ≥ 300,

the increase parameter R = 107 and the descent parameters m1 = 0.01 and
m2 = 0.2. The size of the bundle B1 is set to min{n+5, 1000} and the size of
B2 is 3. The maximum size of the set Uk in Algorithm 1 is restricted to 2n.
In PBDC, we have used the default settings of the code [17]. Furthermore, in
MPBNGC we have used mostly the default values of the parameters [25], but
the maximum size of the bundle is selected to be min{n + 3, 1000} and the
final accuracy is set to 10−10 to get about the same accuracy in solutions.
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Before presenting the comprehensive analysis of the numerical results
we will consider a simple example showing the most fundamental difference
between the methods DBDC and PBDC. We will see how the criticality
condition used in PBDC can cause serious difficulties, which however can
be avoided in DBDC, when the new stopping procedure is utilized.

Example 6.1. Lets consider the DC function presented in Example 3.2. If
the starting point x0 is selected from the set A = {x ∈ R | x < −2 or x > 1},
then the subgradients of DC components are ξ1(x0) = 2x0 and ξ2(x0) = x0.
Therefore, the bundles are initialized by setting

B0
1 = {(ξ1(x0), 0)} and B0

2 = {(ξ2(x0), 0)}

in both methods DBDC and PBDC. In addition, both solvers use the same
direction finding problem (22), which during the first iteration round is

min
d∈R

{

P 0(d) = ξ1(x0)d − ξ2(x0)d +
1

2t
‖d‖2 = x0d +

1

2t
‖d‖2

}

.

The solution to this is dt = −tx0 and with the proximity parameter selection
t = 1 we obtain a new auxiliary point y = x0+dt = x0−x0 = 0. Moreover, in
both solvers we use the same descent test (29) and, if the descent parameter
m2 is selected from the interval (0, 1/2), then the objective function decreases
enough, that is,

f(y) − f(x0) = −0.5x2
0 ≤ −m2x2

0 = m2(∆1(dt) + ∆2(dt)).

Thus, we obtain a new iteration point x1 = 0. However, when we continue
the execution of the algorithms it is possible that the new subgradients of the
DC components at x1 are ξ1(x1) = ξ2(x1) = 0. In PBDC, this will lead to the
fulfillment of the criticality condition and the algorithm is terminated with
the final solution x∗ = 0. However, as we have already seen, this solution
is nothing interesting for f . In DBDC, the selection ξ1(x1) = ξ2(x1) = 0
leads to Algorithm 1, where we first calculate utilizing the DC components
a subgradient ξ for f using either a direction d1 = 1 or d1 = −1. Regardless
of this selection we obtain a subgradient ξ = 1 and a new search direction
d2 = −1. In addition, the condition (15) is now satisfied, since

f ′(x1; d2) = f ′(0; −1) = −1 ≤ −m1 = −m1‖ξ‖

and m1 ∈ (0, 1). This proves that we have obtained a descent direction,
which provides a better iteration point. Therefore, the solver DBDC by-
passes the point x1 = 0 and does not stop at the problematic critical point.

The results of our numerical experiments are presented in Tables 1 and
2 and we have used the following notations:

• Prob. is the number of the problem
• n is the number of variables
• nf is the number of function evaluations for the objective function f
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• nξ is the number of subgradient evaluations for the objective function f
• nξi

is the number of subgradient evaluations for the DC component fi

• time is the CPU time in seconds
• f is the obtained value of the objective function when the algorithm stops.

In MPBNGC, we have nf = nξ. Moreover, in DBDC we have given separately
the function and subgradient evaluations used in Algorithm 1 guaranteeing
Clarke stationarity and for this algorithm nξ1

= nξ2
. Otherwise, in the

solvers DBDC and PBDC we have reported the subgradient evaluations sep-
arately for DC components. Therefore, to obtain somewhat comparable
results with MPBNGC we have calculated combined values nξ1

+ nξ2
and used

them in the comparison, even though nξ1
+ nξ2

overestimates the computa-
tional effort when compared to nξ.

All the solvers tested are only local methods and, therefore, we are sat-
isfied with any local minimizer. Nevertheless, from Tables 1 and 2 we first
notice that we often find the global minimizer. DBDC is the most successful
solver to solve the problems globally and it fails to find a global minimizer
only in 4 cases out of 53. Moreover, those four cases seems to be quite dif-
ficult ones, since also the other solvers mostly find a local minimizer among
them. In addition, both PBDC and MPBNGC are quite reliable to find global
minimizers: PBDC provides a local solution only in 8 cases and MPBNGC in 9
cases out of 53. However, Problem 12 seems to be extremely difficult for
PBDC whereas Problems 7–10 are challenging for MPBNGC.

The results in Tables 1 and 2 also show that DBDC uses the least eval-
uations in Problems 12 and 14 and the difference with the other solvers
is significant. In Problems 2, 4–6, 11 and 16, the solvers DBDC and PBDC

need quite the same amount of evaluations and they are also more efficient
than MPBNGC. However, in Problems 4–6 DBDC often requires a little bit more
computational effort due to a stronger stopping condition verification pro-
cedure, but this does not affect CPU times except for Problem 4 (n = 250
and n = 500). In the rest of the tests (Problems 1, 7–10, 13 and 15), MPBNGC

uses the least evaluations, while the difference between DBDC and PBDC is
often quite small but for Problems 13 and 15. It is also worth noting that
in most of Problems 7–10 MPBNGC converged to a local minimizer making it
hard to say if MPBNGC is really the most efficient solver in those cases.

In terms of CPU time none of the solvers stands out from the others,
since for each solver we are able to detect both easy and hard problems.
For example, in Problems 1–11 and 16 all the solvers are equally fast, if we
leave out of the consideration Problem 4 (n = 250), where MPBNGC is faster
than the other methods, and Problem 4 (n = 500), where PBDC is the fastest
one. Moreover, the solver DBDC is fastest to provide a solution in Problem
14, whereas the CPU times of PBDC and MPBNGC have a completely differ-
ent magnitude when we increase the dimension of this problem. However,
MPBNGC beats the other solvers in Problems 12 (n = 100) and 15 (n = 100).

All in all, the numerical results confirm that DBDC is efficient to solve
nonsmooth DC minimization problems. Compared to PBDC the solver DBDC

uses sometimes more function and subgradient evaluations, but at the same
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Table 1: Summary of numerical results with DBDC, PBDC and MPBNGC

DBDC PBDC MPBNGC

Main it. Clarke alg.

P rob. n nf nξ1
nξ2

nf nξ1
, nξ2

time f nf nξ1
nξ2

time f nf , nξ time f

1 2 21 16 15 2 3 0.00 2.000000036 22 17 16 0.00 2.000000020 17 0.00 2.000000000

2 2 17 11 11 1 2 0.00 1.1036 · 10−12 21 15 15 0.00 1.1098 · 10−12 39 0.00 2.3093 · 10−14

3 4 22 11 9 4 5 0.00 2.6234 · 10−12 25 15 11 0.00 2.2689 · 10−12 22 0.00 1.8308 · 10−13

4 2 6 3 3 1 2 0.00 8.4377 · 10−15 6 3 3 0.00 8.4377 · 10−15 7 0.00 4.4409 · 10−16

4 5 13 6 5 4 5 0.00 1.7764 · 10−15 13 6 5 0.00 0.000000000 30 0.00 3.5527 · 10−15

4 10 16 11 10 9 10 0.00 1.4211 · 10−14 16 11 9 0.00 5.6843 · 10−14 61 0.00 0.000000000

4 100 105 105 32 99 100 2.18 1.8190 · 10−12 102 102 30 1.15 9.0949 · 10−13 1489 1.89 1.1731 · 10−11

4 250 477 477 190 249 250 165.9 −3.6380 · 10−12 481 481 194 121.2 −1.8190 · 10−11 3619 45.2 1.0411 · 10−10

4 500 1492 1492 699 499 500 3952.9 1.6007 · 10−10 1443 1443 687 2749.3 2.1827 · 10−10 100000 9514.1 −3.5422 · 10−10

5 2 10 4 4 1 2 0.00 0.000000000 10 4 4 0.00 0.000000000 5 0.00 8.8818 · 10−16

5 10 20 13 10 7 8 0.00 7.5859 · 10−11 21 14 11 0.01 3.5416 · 10−13 131 0.01 8.0853 · 10−11

5 100 42 23 19 11 12 0.05 2.8562 · 10−10 47 28 23 0.23 8.5659 · 10−13 45 0.01 1.0043 · 10−10

5 500 26 19 16 10 11 0.31 1.1641 · 10−8 29 22 18 0.24 2.1682 · 10−10 52 0.15 1.8440 · 10−12

5 1500 23 18 14 10 11 1.06 9.1006 · 10−9 24 19 15 0.62 5.0376 · 10−9 41 0.35 4.8965 · 10−11

6 2 28 21 13 22 1 0.00 −2.499999995 22 15 12 0.00 −2.499999731 53 0.00 −2.500000000

7 2 44 39 30 2 3 0.00 0.500165625 72 63 30 0.00 0.500000004 27 0.00 1.000000000∗

8 3 88 69 46 2 3 0.00 3.500000000 75 56 34 0.00 3.500000158 23 0.00 3.772727273∗

9 4 95 87 57 2 3 0.01 1.833333333 85 75 39 0.00 1.833333432 4 0.00 9.200000000∗

10 2 33 26 20 1 2 0.00 −0.500000000 19 12 6 0.00 −0.499999982 18 0.00 −0.500000000

10 5 36 28 21 1 2 0.00 −2.500000000 20 12 9 0.00 −2.499999876 18 0.00 −2.500000000

10 10 78 65 42 1 2 0.02 −8.500000000 55 42 22 0.01 −8.499999619 27 0.00 −6.500000000∗

10 25 123 106 57 1 2 0.04 −22.500000000 74 57 31 0.02 −22.499980760 99 0.00 −22.500000000

10 50 173 160 64 1 2 0.19 −48.500000000 138 120 53 0.10 −48.499894232 5 0.00 −0.500000000∗

10 100 354 345 110 1 2 1.50 −98.500000000 348 340 92 1.14 −98.499676380 141 0.01 −90.500000000∗

10 150 395 395 114 1 2 2.70 −146.500000000∗ 442 442 103 3.56 −126.489324007∗ 154 0.02 −134.500000000∗

10 200 431 432 121 3 3 4.94 −150.500000000∗ 466 466 124 4.68 −150.493380460∗ 8 0.00 −82.500000000∗

∗ the obtained value of the objective function f is not globally optimal
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Table 2: Summary of numerical results with DBDC, PBDC and MPBNGC (cont.)

DBDC PBDC MPBNGC

Main it. Clarke alg.

P rob. n nf nξ1
nξ2

nf nξ1
, nξ2

time f nf nξ1
nξ2

time f nf , nξ time f

11 3 10 8 6 3 4 0.00 116.333333333 10 8 6 0.00 116.333333333 28 0.00 116.333333333

12 2 19 15 12 2 3 0.00 1.618034002∗ 20 17 12 0.00 1.618033989∗ 50 0.00 1.618033989∗

12 5 79 76 47 5 6 0.01 1.618070039∗ 58 53 24 0.01 1.618033996∗ 281 0.00 0.618033989

12 10 195 195 127 10 11 0.03 0.618320571 1415 1410 1103 0.22 0.618034013 380 0.01 0.618033989

12 25 465 465 274 12 13 0.50 0.618787525 100032 100032 97376 35.4 82.884884559∗ 486 0.04 0.618033989

12 50 344 344 242 12 13 1.39 0.619096167 100012 100012 47289 99.2 430.746179992∗ 3363 1.09 0.618033989

12 100 408 408 267 13 14 11.51 0.619403704 100042 100042 98998 415.5 422.561066204∗ 2969 5.06 0.618033990

13 10 102 100 44 0 1 0.01 0.000000000 172960 172956 40239 24.6 0.186079211∗ 7 0.00 0.000000000

14 2 9 5 5 1 2 0.00 2.7756 · 10−17 9 5 5 0.00 1.3878 · 10−16 9 0.00 2.7756 · 10−17

14 5 131 126 123 4 5 0.01 4.9281 · 10−14 178 173 171 0.02 9.7143 · 10−14 100000 0.54 4.7664 · 10−8

14 10 139 133 125 8 9 0.02 1.3966 · 10−10 103565 103559 103501 7.33 4.3196 · 10−11 448 0.01 1.1891 · 10−8

14 50 194 184 175 10 11 0.35 1.1724 · 10−9 100988 100978 100894 74.8 2.3835 · 10−11 11252 2.35 7.5924 · 10−10

14 100 268 230 226 11 12 1.32 5.6087 · 10−9 131661 131623 118710 426.5 1.4379 · 10−10 2535 2.61 4.3027 · 10−9

14 500 126 121 121 14 15 5.11 1.1234 · 10−5 599 594 594 67.6 1.4623 · 10−8 7978 260.3 2.5992 · 10−8

14 1000 186 180 180 17 18 25.55 1.8624 · 10−5 752 746 746 228.9 5.2580 · 10−8 7467 998.3 1.6807 · 10−8

15 2 1 1 1 0 1 0.00 0.000000000 1 1 1 0.00 0.000000000 1 0.00 0.000000000

15 5 117 82 63 102 103 0.22 1.7127 · 10−8 335 265 196 0.03 7.1054 · 10−14 31 0.00 3.9272 · 10−11

15 10 200 154 113 34 13 0.05 2.7669 · 10−5 19245 19143 11990 4.20 1.4921 · 10−12 44 0.00 1.2975 · 10−11

15 25 1281 1175 492 60 39 1.57 1.4891 · 10−4 2382 2339 1218 3.06 1.9895 · 10−13 100000 3.28 2.1333 · 10−3

15 50 2914 2805 874 265 217 15.49 6.0652 · 10−4 630 594 378 4.29 2.2217 · 10−9 257 0.22 9.5838 · 10−11

15 100 905 867 810 166 148 29.71 5.1594 · 10−5 3489 3451 2380 101.9 6.2007 · 10−8 513 2.56 6.7303 · 10−11

16 2 8 6 6 1 2 0.00 9.5223 · 10−6 9 7 7 0.00 9.0653 · 10−11 14 0.00 1.4211 · 10−13

16 5 17 11 8 1 2 0.00 2.6263 · 10−9 14 11 11 0.00 8.1340 · 10−10 28 0.00 8.6975 · 10−13

16 10 14 11 6 1 2 0.00 1.0471 · 10−10 16 13 7 0.00 1.2543 · 10−10 42 0.00 4.4409 · 10−16

16 50 10 7 6 2 3 0.00 6.8127 · 10−8 10 7 6 0.01 6.8127 · 10−8 28 0.00 9.3365 · 10−11

16 100 16 10 10 2 3 0.00 5.9585 · 10−5 17 11 11 0.00 6.3237 · 10−11 86 0.00 3.0973 · 10−11

16 250 43 23 23 1 2 0.03 1.1263 · 10−4 44 24 24 0.03 1.2957 · 10−10 183 0.04 7.8249 · 10−12

∗ the obtained value of the objective function f is not globally optimal
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time it guarantees Clarke stationarity, which is a stronger stopping condition
than criticality used in PBDC. Therefore, a little bit more computational effort
cannot be seen as a real disadvantage for DBDC, since at the same time we
are able to be more assured about the quality of the solution and also avoid
the bad features of critical points. In addition, in some problems DBDC is
clearly more efficient hen PBDC. Moreover, DBDC has the best ability to find
global minimizer among the methods tested.

7 Conclusions

In this paper, we have presented a new proximal double bundle algorithm
(DBDC) for unconstrained nonsmooth DC optimization, which utilizes ex-
plicitly the DC decomposition of the objective. The novelty of DBDC is
a new stopping procedure guaranteeing Clarke stationarity usingg only the
information about the DC components of the objective. This way DBDC
can exploit the DC structure through all the algorithm and also avoid the
problematic features of criticality, which is the stopping condition typically
used in DC optimization algorithms. In addition, the finite convergence of
the method DBDC is proved under really mild assumptions.

The numerical results reported also confirm that DBDC is efficient to
solve nonsmooth DC programming problems. Moreover, although DBDC is
only a local solution method, it nearly always found the global minimizer
of a problem. Therefore, we can conclude that DBDC is a good alternative
for existing nonconvex bundle methods, when the DC representation of the
objective can be formulated.
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Appendix: Test problems

All test problems are unconstrained DC optimization problems and in these
problems objective functions are presented as DC functions:

f(x) = f1(x) − f2(x).

Therefore, in the description of all test problems we present only functions
f1 and f2. The following notations are used to describe test problems:

x0 ∈ R
n – starting point;

x∗ ∈ R
n – known best solution;

f∗ – known best value of the objective function.

Problem 11.
Dimension: n = 3,
Component functions: f1(x) = 4|x1| + 2|x2| + 2|x3| − 33x1 + 16x2 − 24x3,

+ 100 max{0, 2|x2| − 3x1 − 7} + 100 max{0, |x3| − 4x1 − 11},
f2(x) = 20 (−7x1 + 2|x2| − |x3| − 18) ,
Starting point: x0 = (10, 10, 10)T ,
Optimum point: x∗ = (−7/3, 0, 5/3)T ,
Optimum value: f∗ = 116.33333333.
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Problem 12.
Dimension: n = 2, 5, 10, 25, 50, 100,
Component functions: f1(x) =

∑n
i=1 |xi| + 10

∑n
i=1 max

{

2(x2
i − xi − 1), 0

}

,
f2(x) = 10

∑n
i=1(x2

i − xi − 1) + maxi=1,...,n

∑

j=1,j 6=i |xi|,

Starting point: x0 = (x0,1, . . . , x0,n)T , where x0,i = 2 · i for i = 1, . . . , n,
Optimum point: x∗ = (−0.618034, . . . , −0.618034)T ,
Optimum value: f∗ = 0.61803.

Problem 13.
Dimension: n = 10,
Component functions: f1(x) =

∑n−1
i=1 |xi + xi+1| +

∑n−2
i=1 |xi + xi+2|

+ |x1 + x9| + |x1 + x10| + |x2 + x10| + |x1 + x5| + |x4 + x7|,
+ 10 max{0,

∑n
i=1 xi − 1} + 10

∑n
i=1 max{0, −xi},

f2(x) =
∑n−1

i=1 (|xi| + |xi+1|) +
∑n−2

i=1 (|xi| + |xi+2|) + 3|x1| + |x2|
+ |x4| + |x5| + |x7| + |x9| + 2|x10|,

Starting point: x0 = (10, . . . , 10)T ,
Optimum point: x∗ = (x∗

1, . . . , x∗
10)T , where

x∗
i > 0 for i = 1, . . . , 10 and

∑n
i=1 x∗

i ≤ 1
Optimum value: f∗ = 0.

Problem 14. (DC version of L1HILB)
Dimension: n = 2, 5, 10, 25, 50, 100, 500, 1000,

Component functions: f1(x) = n maxi=1,...,n

∣

∣

∣

∑n
j=1

xj

i+j−1

∣

∣

∣ ,

f2(x) =
∑n

i=1

∣

∣

∣

∑n
j=1

xj

i+j−1

∣

∣

∣ ,

Starting point: x0 = (1, . . . , 1)T ,
Optimum point: x∗ = (0, . . . , 0)T ,
Optimum value: f∗ = 0.

Problem 15. (DC version of CB3 I)
Dimension: n = 2, 5, 10, 25, 50, 100,
Component functions: f1(x) = (n − 1) maxi=1,...,n−1 gi(x),
f2(x) =

∑n−1
i=1 gi(x),

gi(x) = max
{

x4
i + x2

i+1, (2 − xi)
2 + (2 − xi+1)2, 2 exp(−xi + xi+1)

}

,
Starting point: x0 = (x0,1, . . . , x0,n)T , where

x0,i = 1 for odd i and x0,i = −1 for even i,
Optimum value: f∗ = 0.

Problem 16. (Chained Crescent I)
Dimension: n = 2, 5, 10, 25, 50, 100, 250,

Component functions: f1(x) = max
{

2
∑n−1

i=1

(

x2
i + (xi+1 − 1)2 + xi+1 − 1

)

, 0
}

,

f2(x) =
∑n−1

i=1

(

x2
i + (xi+1 − 1)2 + xi+1 − 1

)

Starting point: x0 = (x0,1, . . . , x0,n)T , where
x0,i = −1.5 for odd i and x0,i = 2 for even i

Optimum value: f∗ = 0.
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