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Abstract

We present a system for automatically identifying a multitude of biomedical entities

from the literature. This work is based on our previous efforts in the BioCreative VI:

Interactive Bio-ID Assignment shared task in which our system demonstrated state-of-

the-art performance with the highest achieved results in named entity recognition. In

this paper we describe the original conditional random field-based system used in the

shared task as well as experiments conducted since, including better hyperparameter

tuning and character level modeling, which led to further performance improvements.

For normalizing the mentions into unique identifiers we use fuzzy character n-gram

matching. The normalization approach has also been improved with a better abbreviation

resolution method and stricter guideline compliance resulting in vastly improved results

for various entity types. All tools and models used for both named entity recognition and

normalization are publicly available under open license.

Database URL: https://github.com/TurkuNLP/BioCreativeVI BioID assignment

Introduction

Named entity recognition and normalization are funda-
mental tasks in biomedical natural language processing
(BioNLP) and finding solutions for them has been the
main focus of various shared tasks organized within the

BioNLP community (1, 2). BioCreative VI: Interactive Bio-
ID Assignment (Bio-ID) track is one of the most recent
shared efforts in developing these tools with the goal of
automatically annotating text with the entity types and
identifiers (IDs) for mentions such as genes and organ-
isms, in order to facilitate the curation process. The task
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Figure 1. All processing steps included in the whole pipeline.

principally consists of two major subtasks: (i) named entity
recognition (NER) and (ii) named entity normalization
(NEN) (3).

On one hand, several machine learning-based ap-
proaches, such as support vector machines and neural net-
works, have been applied to NER tasks with varying entities
ranging from genes to diseases, chemicals and anatomical
parts (4, 5). The most recent successful approaches include
conditional random field (CRF) classifiers and neural
networks (5–7). The approaches for NEN, on the other
hand, are largely based on string edit distance and term
frequency-inverse document frequency (TF-IDF) weighted
vector space representations with a variety of preprocessing
approaches to remove the written variations (8, 9). Some
neural approaches have also been suggested for the
normalization task (10, 11) and, furthermore, strong results
have been achieved by modeling NER and NEN tasks
jointly (12).

The methods seen in the BioCreative shared task fol-
low the same general trends; Sheng et al. (13) rely on
a neural NER model with stacked recurrent layers and
a CRF output layer. Their internal experiments showed
promising results for this approach in comparison to tra-
ditional CRFs, but the model did not achieve state-of-the-
art results in the official evaluation. However, their nor-
malization system utilizing external Application program-
ming interfaces (APIs) resulted in excellent performance.
Another strong normalization approach is suggested by
Dai et al. (14). Their system benefits from the full context of
the target document instead of only relying on the caption
text and attempts to find the most frequently mentioned
identifiers in the case of ambiguous terms. They also suggest
a convolutional neural model for the task but were not
able to produce comparable results to their other approach.
Moreover, Dai et al. only focus on organism entities, a
major disadvantage of their system.

Our system, capable of recognizing six types of entities
and assigning the corresponding identifiers, is based on
CRF classifiers, fuzzy matching and a rule-based system
(15). Our model achieved state-of-the-art results in the
BioCreative shared task, being the best performing system
in the NER subtask as well as the best performing

system in normalization task for various entity types.
Since the shared task we have improved the system in
both of these subtasks even further. For the NER task
we demonstrate an increased performance with an entity
type-specific hyperparameter optimization protocol and
character level modeling. For normalization, we improve
the system by expanding the abbreviation resolution
context to the full-text documents and by increasing the
coverage of used ontologies. Both systems are publicly
available at https://github.com/TurkuNLP/BioCreativeVI
BioID assignment.

Methods

Our system utilizes a pipeline of independent processing
steps for solving the tasks of NER and NEN. The used
processing modules as well as the used data are described
in this section. The whole processing pipeline including
preprocessing, named entity recognition and normalization
is illustrated in Figure 1.

Data

The Bio-ID data set consists of annotated figure panel
captions extracted from 570 and 196 full-text documents
as training and test data, respectively (3). The annotations
include nine entity types; Protein/Gene (Protein), Small
molecules (Molecule), Cellular compartment (Cellular),
Cell types and cell lines (Cell), Tissues and Organs (Tissue),
Organisms and Species (Organism), microRNA (miRNA),
BioAssay (Assay) and Protein Complexes (Complex).
The majority of annotated entities belong to the Protein
class, contributing ∼55% of the whole training set, while
Complex is the least-annotated entity type.

In these experiments we ignore entity types Assay,
miRNA and Protein Complex as they were not evaluated in
the BioCreative shared task. Hence, the total entity counts
are 58 321, 7476, 6312, 11 213, 10 604 and 7888 for
Protein, Cellular, Tissue, Molecule, Cell and Organism,
respectively. We randomly partition the provided training
data into a training and a development set, containing 455
and 115 documents, respectively. The development set is
utilized in hyperparameter selection.
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Preprocessing

We preprocess the documents by using a publicly available
tool for converting the character encodings to American
Standard Code for Information Interchange (ASCII) (16).
The characters with missing mapping, such as smiley faces
and calendar symbols, are replaced with ‘-’ (dash). Subse-
quently we split the documents into sentences and further
tokenize and part-of-speech (POS) tag them using GENIA
sentence splitter (17), NERsuite tokenizer and NERsuite
POS tagger modules (18), respectively.

Some of the documents contain incorrect word bound-
aries such as ‘mouseliverlysosomes’ which should have been
written as ‘mouse liver lysosomes’. While the used tokeniza-
tion tool is overall satisfactory, it is incapable of correctly
splitting these spans into tokens. We thus resolve this by
additional tokenization using the known tokens from the
corresponding full-text document. Specifically, we split the
tokens using the span of the longest-matching document
tokens. To reduce the chance of mistakenly tokenizing cor-
rect tokens, we only re-tokenize the tokens that belong to
noun phrases. Finally, we re-apply POS tagging to complete
the data preprocessing.

Ontologies and controlled vocabularies

We prepare a set of controlled vocabularies and ontolo-
gies to assist named entity recognition and normalization.
List of concept names and ontologies we use includes
ChEBI (19) and PubChem (20) (for Molecule), Entrez Gene
(21) and Uniprot (22) (for Protein), NCBI Taxonomy (23)
(for Organism), Uberon (24) (for Tissue), Gene Ontol-
ogy (25) (for Cellular) and Cellosaurus (http://web.expasy.
org/cellosaurus/) and Cell Ontology (http://purl.obolibrary.
org/obo/uberon.owl) (for Cell).

We preprocess the lists by removing non-alphanumeric
characters and lowercasing the symbols. Specifically for
NCBI Taxonomy, we additionally expand the ontology
by adding the commonly used abbreviations for scientific
names. For binomial nomenclature of names in species
rank, we abbreviate the genus while the rest of the names
such as species epithet, varieties, strains and substrains,
remain the same. For example, ‘Escherichia coli O.1197’
is abbreviated as ‘E. coli O.1197’, ‘E coli O.1197’, ‘Es.
coli O.1197’ and ‘Es coli O.1197’. This rule applies to
all organisms, except for scientific names of organisms
in Viruses and Viroids superkingdoms, since the scientific
names do not usually follow binomial nomenclature but
are in the form of [Disease] virus (26). Acronyms are
often used as abbreviated scientific names for viruses,
for example ZYMV is the acronym of Zucchini yellow
mosaic virus, and thus we also add acronyms to the
ontology.

NER

We train our NER system on the training set using NERsuite
(http://nersuite.nlplab.org/)—a NER toolkit—and optimize
model hyperparameters to maximize performance on our
development set. The tokens are labeled with the IOB
scheme, B denoting the beginning of an entity, I the fol-
lowing tokens of the same entity and O tokens not part
of any entity. For our original shared task submission,
we trained a single CRF model capable of detecting all
possible entity types and used micro-averaged F1-score as
the optimization metric, derived from the official evaluation
script. To achieve higher performance in NER, we directly
provide NERsuite with dictionaries through the built-in
dictionary-tagging module with no further preprocessing or
normalization. We compare the performance of different
dictionaries on development data using default NERsuite
hyperparameters. For the predictions on the test set, we
merge the training and the development sets and re-train
the CRF on this data using the best found hyperparameters.

Since the shared task we have conducted further exper-
iments by training separate models for each entity type.
Following the same approach as with the single model
training scheme, each entity model is trained and optimized
individually using development data for evaluating model
performance. Although a single model can benefit from
mutually supporting information between entity types, the
regularization hyperparameter is global and selecting the
other hyperparameters optimally for all entity types leads
to a combinatorial explosion. Thus the advantage of sep-
arate models is that the hyperparameters can be selected
independently for each entity type. The predictions on the
test data are results of combining all the predictions from
the six models without any further post-processing.

Although we try to handle subword entities by an heuris-
tic re-tokenization, there are no guarantees that this leads

to more suitable tokens for the given task. For example,
the word ‘yeast’ can in certain contexts end up being re-
tokenized as y e as t, with one to two characters in each

token. To this end we also explore using a purely character-
based model (27, 28), which does not rely on the correctness

of the tokenization. For this experiment we train a neural

convolutional bidirectional long short-term memory con-
ditional random field (CNN-BiLSTM-CRF) model, which

reads the input sentences a single character at a time and
also predicts the IOB tags for each character separately.

This model follows the general principle of Ma et al. (29)
but does not rely on word embeddings. Each character in a

sentence is represented with a latent feature vector, i.e. an

embedding, and the convolutional kernels are applied on a
window of five consecutive characters. As the convolutional

kernels are applied only on the immediate context of the
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Figure 2. Illustration of the tested character level neural NER model.

The inputs are a character sequence (a sentence) and the correspond-

ing IOB tags from the NERsuite model converted to character level.

The used example phrase demonstrates the tokenization issue as

‘Dis3lcompared’ is missing a word boundary and as a result is tagged

as an entity as a whole in the NERsuite system. The neural model aims

at detecting only the span ‘Dis3l’.

given character, a bidirectional long short-term memory
(LSTM) layer is utilized for analyzing the larger context
and longer dependencies between the characters. A CRF
layer is used for the final outputs for better modeling of the
dependencies between the output labels.

In addition to the character information we use the
predictions from the original NERsuite model, converted
to character level labels, as an additional input for the
LSTM layer (Figure 2). Thus this approach can be seen as
an ensemble method where the two models are stacked on
top of each other. Providing this information is crucial as
the CNN-BiLSTM-CRF model is not given any word level
information and is unable to achieve good performance
based solely on the characters. Thus the purpose of the
neural model is not to learn the tagging task from scratch
but to mainly correct the predictions made by the NERsuite
model.

The benefit of such model is not only that it doesn’t
depend on the tokens, but also that it is able to learn
richer character level feature representations than NER-
suite, which may improve generalizability on entity types
such as Proteins which for a large part consist of short
acronyms instead of the full names and tend to follow
certain patterns.

As the neural model is trained on the same training
data as NERsuite, but requires the NERsuite predictions

as features, we simply apply the NERsuite model on its
own training data. This inevitably leads to overly optimistic
performance and the neural model learns to rely heavily on
the NERsuite predictions. To mitigate this issue, the neural
network inputs are regularized with the dropout method
and the training is stopped once the performance is no
longer improving on the development set. Due to the early
stopping approach the final model is not trained with the
merged training and development sets like NERsuite.

NEN and disambiguation

Our normalization approach is primarily based on fuzzy
string matching algorithm where both entity and ontology
terms are converted into vectors using character n-gram
frequencies. Cosine similarity is then used for calculating
similarity between a detected entity and ontology terms. In
this study, we use Simstring (30), a library for approximate
string matching, to retrieve the ontology terms with highest
cosine similarity with the queried entity. We utilize approxi-
mate string matching approach to all entity types except for
Protein, which we instead map with exact string matching
to the corresponding identifiers.

Prior to the similarity comparison the tagged entities
resulting from the NER system are preprocessed by sub-
stituting the abbreviated names with full names using an
abbreviation definition detector, Abbreviation Plus Pseudo-
Precision (Ab3P) (31). In this study, we enhance our abbre-
viation detection to the provided unannotated full-text,
rather than limiting to the annotated figure caption panels,
as used in the previously submitted system. Subsequently,
we preprocess the entities by the same approaches used
on dictionaries and ontologies, i.e. lowercase all spans and
remove punctuations, as described previously.

As some of the ontology terms cannot be uniquely linked
to a single identifier, but correspond to multiple ones, our
system thus selects an identifier randomly for Cell, Cellular,
Molecule and Tissue. However, for Molecule and Cell,
which can be mapped to multiple ontologies, we adopt
the annotation guideline in selecting equivalent identifiers
from different resources: for Molecule, ChEBI identifiers are
preferred over PubChem, whereas Cellosaurus identifiers
are primarily selected over Cell Ontology for Cell.

For most of the entity types, Cell, Molecule, Cellular
and Tissue, each entity mention can be disambiguated and
normalized independently. However, this approach is not
applicable to Organism and Protein as the normalization
of each mention depends on the normalization of previous
mentions. For Organism and Protein, we hence develop two
separate rule-based systems to uniquely assign an identifier.

For Organism, it is common to use a systematic abbrevi-
ation such as using genus name instead of binomial names
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to refer to the same species throughout the document.
Subsequent mentions of those species, if abbreviated, should
thus be normalized to an earlier mention of its corre-
sponding binomial name. We use taxonomy tree and the
following disambiguation rules to assign a taxon identifier
to Organism. These rules are sequentially applied if the
previous rule results in more than one identifier:

1. Take identifier with highest cosine similarity score and
taxonomic rank under species, including subspecies,
strain, variety and no rank.

2. Take identifier of a previously mentioned Organism if
abbreviations match.

3. Take identifier of a previously mentioned Organism if
acronyms match.

4. Take identifier of a previously mentioned Organism of
the same genus.

5. Take identifier of a model organism of the same genus.
6. Take identifier of the most studied organism in PubMed

Central Open Access section.
7. Take a random identifier.

Protein entities contain the most ambiguous names as
the same protein names can be found in multiple organisms
if they have the same function or shared sequence identity
(32). Therefore, the information about the Organism is cru-
cial for Protein entity normalization. We therefore employ
the results of our Organism normalization system and use
the taxon identifiers to disambiguate Protein entities. How-
ever, multiple taxon identifiers can be recognized in a single
document, hence we adapt rule-based system proposed by
(9) to generate candidate taxon identifiers for the Protein.
The list of candidate taxon identifiers are ordered according
to the following rules:

1. Organism mentioned inside Protein text span,
2. Organism mentioned before Protein within the same

sentence,
3. Organism mentioned after Protein within the same

sentence,
4. Organism mentioned in the previous caption and
5. Organism mentioned in the same document.

In addition, we perform query expansion to generate
candidate Protein names to cover potential Uniprot and
Entrez Gene symbol variations by using a stripping algo-
rithm (33). The algorithm recursively removes common
words, such as protein, gene, RNA and Organism names
from Protein mentions to produce a canonical form which
includes minimal symbols that are gene symbols in the
Entrez Gene database. For instance, ‘p53 protein’ will result
in ‘p53’. Finally, the canonical forms are subsequently low-
ercased and punctuation-removed. The list of candidate
Protein names are then ordered by the string length.

For each taxon identifier, we use exact string matching to
retrieve corresponding Protein identifier. The search starts
with the longest candidate Protein name and stops when the
identifier is found. In case of multiple identifiers, a random
one is selected. For each taxon identifier, we use exact string
matching to retrieve corresponding Protein identifier fol-
lowing the ordered list of candidate organisms. The search
starts with the longest candidate Protein name and stops
when the identifier is found. In case of multiple identifiers
found in the current organism, a random one is selected. The
search continues to the subsequent organism if no identifier
is found for the current organism. For example, we first
obtain the list of organisms for the mention of protein ZEB1
from the sentence ‘Pearson correlation between ZEB1 and
MITF mRNA expression in 61 melanomacell lines available
through the CCLE.’ As there are no mentions of other
organisms within the sentence or previous caption, only
human (NCBI Taxonomy:9606) and mouse (NCBI Tax-
onomy:10090) are found in the document. Starting from
human, we then map ZEB1, the longest span of candidate
gene names, to human gene identifier (NCBI Gene:6935)
and the search stops as identifier is found for ZEB1.

Result and discussion

The results presented in this section are based on the official
evaluation scripts provided by the BioCreative shared task
organizers. The NER task is evaluated on strict entity span
matching, i.e. the character offsets have to be identical
with the gold standard annotations. For the normaliza-
tion task, only the normalized IDs returned by the sys-
tems are evaluated. The performance of the systems is
reported as micro-averaged precision, recall and F-score on
corpus level.

NER

Incorrect word boundaries can result in multiple types of
entity annotations for a given token. For example, ‘mous-
eskinfibroblasts’ contains the annotations for Organism,
Tissue and Cell. Since we train a single CRF-based model to
recognize all types of entities, one token representing multi-
ple entities causes the loss of training examples as NERsuite
does not support multilabel classification. As mentioned
in Method section, we resolve this issue by re-tokenizing
the tokens using known tokens from the provided full-text
document. The result for recovering the training examples
is significant as tokenization from NERsuite alone yields
roughly 97% of the annotations, while this step increases
the number of annotations by additional 2 pp, equivalent to
more than 2000 annotations. As a result, we recover more
than 99% of the original annotations with Organism entity
with the highest increase in coverage (Table 1).
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Table 1. Comparison of annotation counts between tokenization approaches

Re-tokenization Protein Cellular Tissue Molecule Cell Organism

Without 97.178 99.772 95.951 96.107 97.099 93.691
With 99.187 99.866 99.842 99.424 99.559 98.921

The comparison of annotation counts between preprocessing with only NERsuite tokenization module (without) and with both NERsuite tokenization and additional tokenization (with).
The numbers are percents of annotations compared to the provided data presented for each entity type.

Table 2. Comparison of NER system on the development data

Entity Combined entity model Independent entity model CNN-BiLSTM-CRF model

Cell 0.796 / 0.698 / 0.744 0.796 / 0.714 / 0.752 0.803 / 0.639 / 0.712
Cellular 0.759 / 0.611 / 0.677 0.710 / 0.682 / 0.696 0.725 / 0.633 / 0.676
Protein 0.771 / 0.726 / 0.748 0.755 / 0.738 / 0.746 0.833 / 0.779 / 0.805
Organism 0.878 / 0.696 / 0.776 0.872 / 0.757 / 0.810 0.856 / 0.713 / 0.778
Molecule 0.825 / 0.579 / 0.681 0.724 / 0.653 / 0.687 0.740 / 0.595 / 0.659
Tissue 0.816 / 0.566 / 0.668 0.750 / 0.696 / 0.722 0.730 / 0.607 / 0.663
All 0.788 / 0.686 / 0.734 0.761 / 0.721 / 0.741 0.809 / 0.718 / 0.761

Evaluation of the original model submitted to the shared task (combined), improved CRF model (Independent) and the neural character level model (CNN-BiLSTM-CRF) based on the
official evaluation script with strict entity span matching on the development data. Numbers within cells are precision/recall/F-score.

While training a single model for all types of entities
offers a relatively good performance, the model is tuned
toward predicting Protein, the entity type with highest
frequency in the training data. As a result, the performance
of the model on other entities, such as Cellular, Molecule
and Tissue, is lower than the overall performance. We thus
resolve the issue by training NER model to detect entity
types individually. The performance of these two training
schemes for each entity type is shown in Table 2.

As shown in Table 3, the independent entity models yield
better F-scores for all entity types, except for Protein, by
increasing recall while lowering precision. This is due to
the fact that the best performing hyperparameters for each
entity type are selected independently. In the single model
approach the same hyperparameter values are used for all
entity types, which results in them being dictated by the
most common entity-type Protein. This can be seen during
the optimization as hyperparameters for both independent
model for tagging Protein and combined model are exactly
the same. As a result, these parameters are thus suboptimal
for tagging other entity types. While training a CRF-based
model for multiple entity types can yield a better system per-
formance, as the model can rely on dependencies between
certain entity types, this is not the case in our experiment.

Even though optimizing the hyperparameters separately
has the risk of overfitting on the development set, this does
not seem to be the case in our experiments as training
the independent models improves the performance of the
system by 0.7 pp and 0.5 pp in F-score on development
and test sets, respectively (Tables 3 and 4). The difference
is most apparent on Cell, Cellular and Tissue entities with

improvements of 1.5, 2.0 and 3.2 pp on the test set F-
scores, respectively. Since these are less common entities
than Protein, the influence on the overall score is not as
pronounced.

With the neural approach a significant improvement of
+2.0 pp over the underlying system can be seen on the
development set. This improvement is solely caused by
increased precision, which is intuitive as the purpose of the
model is mostly to correct the existing predictions instead of
detecting new ones. Unfortunately these promising results
translate to a decrease of 0.5 pp on the test set compared
against the NERsuite-based model. We have not done an
exhaustive search over the neural network architectures
or hyperparameters but mostly follow decisions made in
previous studies. Thus we believe that the overfitting on the
development data is caused by the early stopping procedure
and could be alleviated by increasing the development set
slightly at the expense of the training set.

NEN and disambiguation

The performance of our normalization system is heavily
dependent on the NER system performance since unrecog-
nized and incorrect entity spans are automatically classified
as false negatives and false positives, respectively. We thus
evaluate our normalization system on the development set
based on the gold standard entity mentions to compare the
different approaches on different entity types.

As shown in Table 4, our normalization system submit-
ted to the Bio-ID task performs moderately on Cell, Cellular,
Organism and Tissue, where the F-score ranges from 0.485

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article-abstract/doi/10.1093/database/bay096/5101499 by Turun Yliopiston Kirjasto user on 15 O

ctober 2018



Database, Vol. 2018, Article ID bay096 Page 7 of 10

Table 3. Official evaluation of NER system on the test data

Entity Combined entity model Independent entity model CNN-BiLSTM-CRF model

Cell 0.783 / 0.708 / 0.743 0.767 / 0.749 / 0.758 0.769 / 0.641 / 0.699
Cellular 0.673 / 0.508 / 0.579 0.630 / 0.571 / 0.599 0.634 / 0.495 / 0.556
Protein 0.729 / 0.739 / 0.734 0.728 / 0.745 / 0.736 0.764 / 0.768 / 0.766
Organism 0.860 / 0.809 / 0.834 0.823 / 0.852 / 0.837 0.789 / 0.771 / 0.780
Molecule 0.775 / 0.587 / 0.668 0.661 / 0.681 / 0.671 0.667 / 0.595 / 0.629
Tissue 0.727 / 0.575 / 0.642 0.650 / 0.700 / 0.674 0.646 / 0.622 / 0.634
All 0.747 / 0.694 / 0.720 0.719 / 0.730 / 0.725 0.739 / 0.702 / 0.720

Evaluation of the original model submitted to the shared task (combined), improved CRF model (independent) and the neural character level model (CNN-BiLSTM-CRF) based on the
official evaluation script with strict entity span matching on the test set. Numbers within cells are precision/recall/F-score.

Table 4. Official evaluation of NEN system on the development data

Entity Micro-averaged score

Our system (submitted to Bio-ID task) Our system (this work)

Cell 0.733 / 0.770 / 0.751 0.715 / 0.766 / 0.740
Cellular 0.478 / 0.493 / 0.485 0.462 / 0.491 / 0.476
Protein 0.445 / 0.315 / 0.369 0.410 / 0.360 / 0.383
Organism 0.724 / 0.669 / 0.695 0.802 / 0.668 / 0.729
Molecule 0.292 / 0.187 / 0.228 0.595 / 0.587 / 0.591
Tissue 0.598 / 0.672 / 0.633 0.592 / 0.680 / 0.633

Comparison of our normalization systems on development data with gold standard entities. Numbers within table cells are precision/recall/F-score.

to 0.751; however, the performance drops dramatically
when evaluated on Molecule and Protein. In this study,
we thus focus on improving the system for Molecule and
Protein normalization.

For Molecule, we have improved our dictionary coverage
and changed the rule to prefer assigning ChEBI identifier to
the entity span as mentioned in the Method section. The
latter change has the most significant impact on the system
performance, increasing F-score by more than 25 pp.

For Protein, normalization is also slightly improved,
however less significantly with only 1 pp increase in F-
score. Unlike Molecule, our Protein normalization system
primarily depends on the accuracy of both exact strings
matching and the Organism normalization. As the former
component remains unchanged, the improvement is solely
determined by the latter, the Organism normalization. This
influence can also be seen by using gold standard Organism
mentions and identifiers: the precision, recall and F-score of
Protein normalization increases to 0.451, 0.397 and 0.422,
respectively. This overall 4 pp increase in F-score on Protein
normalization demonstrates that correctly normalizing the
Organism plays an important but only a limited role in
our current Protein normalization system. Significant gains
should be thus expected by improving the Protein normal-
ization system itself.

For Cell, Cellular and Tissue, the performance of the
system remains unchanged or slightly drops from our sub-

mission result. We suspect this is due to the lack of disam-
biguating rules if multiple matching identifiers are found.
The result is thus probably an oscillation of accuracy for
randomly selected identifiers.

We finally combine our normalization system with the
newly developed NER systems and evaluate their combined
performance on test data set. The performance of the
current systems is compared against our previously sub-
mitted predictions and the results from the best performing
systems.

As shown in Table 5, both of our systems developed in
this work have relatively similar performance to our sub-
mitted system for all entity types, except for Molecule, Cell
and Organism. For Organism and Molecule, the heightened
performance can be attributed to positive effects of both
NER and NEN systems. For Cell, however, the improve-
ment on normalization score can be only explained by the
improvement on NER system as our current normalization
has introduced no further improvement, on the contrary
actually lowering the F-score on the normalization of this
entity type, while evaluated on gold standard entities. A
mere increase of 1 pp in F-score on NER for Cell can
subsequently translate into over 5 pp F-score improvement
of the integrated system.

While the increase in NER system performance can
be valuable for some entities, the effect of NER on nor-
malization performance can be detrimental as well. As
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Table 5. Official evaluation of NER and NEN systems on the test data

Entity CRF-based
combined
entity model

CRF-based
independent entity
model

CNN-BiLSTM-CRF
model

Best performing
system

References

Cell 0.600 / 0.576 / 0.588 0.630 / 0.664 / 0.647 0.674 / 0.610 / 0.641 0.784 / 0.557 / 0.651 Sheng et al. (14)
Cellular 0.456 / 0.371 / 0.410 0.404 / 0.423 / 0.413 0.391 / 0.376 / 0.383 0.550 / 0.450 / 0.495 Sheng et al. (14)
Protein 0.472 / 0.343 / 0.397 0.456 / 0.358 / 0.401 0.445 / 0.388 / 0.415 0.472 / 0.343 / 0.397 Our submitted

system
Organism 0.668 / 0.667 / 0.667 0.753 / 0.725 / 0.739 0.761 / 0.703 / 0.731 0.660 / 0.883 / 0.756 Singh and Dai (34)
Molecule 0.244 / 0.240 / 0.242 0.439 / 0.489 / 0.462 0.460 / 0.456 / 0.458 0.587 / 0.473 / 0.524 Sheng et al. (14)
Tissue 0.531 / 0.490 / 0.510 0.427 / 0.565 / 0.486 0.451 / 0.542 / 0.493 0.531 / 0.490 / 0.510 Our submitted

system

Comparison of our joint named entity recognition and normalization systems and the best performing systems in the shared task on the official test set. Numbers within table cells are
micro-averaged precision/recall/F-score.

shown in Table 3, our NER systems with a slight increase
in F-score on Tissue recognition has negative impact on
normalization by lowering the F-score by 1–2 pp. One
potential explanation is that the improved NER system also
finds seemingly correct entities, which nevertheless are not
considered correct according to the annotation guidelines.
For example. in a phrase ‘smooth muscle basement mem-
branes’, our system recognizes ‘smooth muscle’ as a Tissue
entity and the normalization model is also able to find a
corresponding identifier for it, but this is not considered
to be an entity in the gold standard annotations as it is
seen as a modifier for the ‘basement membranes’ Cellular
entity. The combined NER model has plausibly learned
this type of dependency between entity types and avoids
many of these errors, whereas the independent entity type-
specific NER models are not aware of the surrounding
entities. Thus, it would be beneficial to take into account
the normalization performance while optimizing the NER
system as the recognized entities with missing or incorrect
identifiers may be harmful for the real applications relying
on the extracted information.

Our integrated system has moderate performance over-
all. Whereas the NER component achieves high F-scores
compared to other systems submitted to the shared task,
the normalization systems performance is still lagging for
most entity types. While fuzzy string matching has good
results on some of the entities, the result can be rather
different as shown by the large variance in F-score (>33 pp)
on different entity types. This signifies that the approach
is not universally good for all types of entities, and other
approaches, such as TF-IDF weighting, preprocessing and
post-processing, steps should be also considered.

Conclusions and future work

We approach BioCreative Bio-ID task by training a CRF-
based model to recognize biomedical entities and we link

them to their corresponding database identifiers using
approximate pattern matching algorithm. For Protein and
Organism entities, we utilize the ontology structure and
surrounding context to disambiguate the entities with
multiple identifier candidates.

Our CRF-based NER systems demonstrate a notable
performance overall, achieving the best score out of all
systems submitted to the Bio-ID task for all entity types,
exceeding the performance of the second best systems by 8
to 18 percentage points depending on the entity type. In this
extended study we have further improved the system with
a more fine-grained hyperparameter optimization specific
to each entity type. This approach leads to a significant
improvement in performance for the less common entity
types without sacrificing the overall performance.

We have also explored the possibility of correcting the
predictions with a character level neural model stacked on
top of the CRF model. The results suggest that such model
can potentially offer considerable performance improve-
ments, yet overfits easily to the development set. As a future
work we will look into better ways of regularizing the net-
work as well as consider the possibility of solely character
level modeling, dismissing the ensemble approach.

Our NEN system submitted to the shared task demon-
strated a lagging performance for Protein, Cellular and
Molecule when compared with other entities. In particular,
for Cellular entities the best performing systems are able
to achieve up to 11 pp higher F-scores in the official
evaluation. In this work, we have improved our system
on all entity type by improving abbreviation resolution.
For Protein normalization, even though the performance of
the system is slightly increased by Organism assignment,
we suspect that strict string matching criteria might be an
important factor in limiting the system performance.

Our current normalization system is somewhat limited
as it applies several manually generated rules which do
not generalize to normalizing other entity types, hindering
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the ability of applying the same approach for entity types
outside the scope of the BioCreative Bio-ID task. Thus
developing a machine learning system that can be trained
on the annotations of new entity type would be an ideal
solution for the normalization task. Since the conventions
of naming biomedical entities as well as the dependence on
the surrounding context vary among entity types, a unified
normalization system can be a challenging task.
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1. Delėger,L., Bossy,R., Chaix,E. et al. (2016) Overview of the bac-
teria biotope task at BioNLP shared task 2016. In: Proceedings
of the 4th BioNLP Shared Task Workshop, Berlin, Germany,
13 August 2016. Association of Computational Linguistics,
pp. 12–22.

2. Kim,J., Ohta,T., Tsuruoka,Y. et al. (2004) Introduction to the
bio-entity recognition task at JNLPBA. In: Proceedings of the
International Joint Workshop on Natural Language Processing
in Biomedicine and its Applications, University of Geneva,
Switzerland, 28–29 August 2004. Association for Computa-
tional Linguistics. pp. 70–75.

3. Arighi,C.N., Hirschman,L., Thomas,L. et al. (2017) Bio-ID
track overview. In: Proceedings of BioCreative VI Workshop,
Bethesda, MD, USA. pp. 28–31.

4. Ding,R., Arighi,C.N., Lee,J. et al. (2015) pGenN, a gene normal-
ization tool for plant genes and proteins in scientific literature.
PLoS One, 10, 1–23, e0135305.

5. Habibi,M., Weber,L., Neves,M. et al. (2017) Deep learning with
word embeddings improves biomedical named entity recogni-
tion. Bioinformatics, 33, i48.

6. Kaewphan,S., Van Landeghem,S., Ohta,T. et al. (2015) Cell
line name recognition in support of the identification of
synthetic lethality in cancer from text. Bioinformatics, 32,
276–282.

7. Pyysalo,S. and Ananiadou,S. (2013) Anatomical entity
mention recognition at literature scale. Bioinformatics, 30,
868–875.

8. Mehryary,F., Hakala,K., Kaewphan,S. et al. (2017) End-to-end
system for bacteria habitat extraction. In: Proceedings of the
16th BioNLP Workshop, Vancouver, Canada, 4 August 2017.
Association for Computational Linguistics, 80–90.

9. Wei,C.H., Kao,H.Y. and Lu,Z. (2015) GNormPlus: an inte-
grative approach for tagging genes, gene families, and protein
domains, Biomed Res. Int., 1–7, 918710.

10. Li,H., Chen,Q., Tang,B. et al. (2017) CNN-based rank-
ing for biomedical entity normalization. BMC Bioinf., 18,
385.

11. Limsopatham,N. and Collier,N.H. (2016) Normalising medical
concepts in social media texts by learning semantic representa-
tion. In: Proceedings of the Fifth Workshops on Building and
Evaluating Resources for Biomedical Text Mining (BioTxtM
2016), Osaka, Japan, 12 December 2016. The COLING 2016
Organizing Commitee, 10–19.

12. Leaman,R. and Lu,Z. (2016) TaggerOne: joint named entity
recognition and normalization with semi-Markov Models.
Bioinformatics, 32, 2839–2846.

13. Sheng,E., Miller,S., Ambite,J.S. et al. (2017) A neural named
entity recognition approach to biological entity identification.
In: Proceedings of the BioCreative VI Workshop, Bethesda, MD,
USA, 24–27.

14. Dai,H.J. and Singh,O. (2018) SPRENO: a BioC module for
identifying organism terms in figure captions. Database, 2018,
1–12, bay048.

15. Kaewphan,S., Mehryary,F., Hakala,K. et al. (2017) TurkuNLP
entry for interactive Bio-ID assignment. In: Proceedings of the
BioCreative VI Workshop, Bethesda, MD, USA, pp. 32–35.

16. Pyysalo,S., Ginter,F., Moen,H. et al. (2013) Distributional
semantics resources for biomedical text processing. In: Pro-
ceedings of the 5th International Symposium on Languages in
Biology and Medicine, Tokyo, Japan, 12–13 December 2013.
pp. 39–44.

17. Saetre,R., Yoshida,K., Yakushiji,A. et al. (2007) AKANE system:
protein-protein interaction pairs in BioCreAtIvE2 challenge,
PPI-IPS subtask. In: Proceedings of the Second Biocreative Chal-
lenge Evaluation Workshop, Madrid, Spain, 23–25 April 2007.
pp. 209–211.

18. Tsuruoka,Y., Tateishi,Y., Kim,J.D. et al. (2005) Developing a ro-
bust part-of-speech tagger for biomedical text. In: Bozanis P and
HoustisEN(eds.)Advances inInformatics:10thPanhellenicCon-
ference on Informatics, PCI, Valos, Greece, 11–13 November
2005. PCI 2005 LNCS, Vol. 3746. Springer. pp. 382–392.

19. Degtyarenko,K., De Matos,P., Ennis,M. et al. (2007) ChEBI:
a database and ontology for chemical entities of biological
interest. Nucleic Acids Res., 36, D350.

20. Bolton,E.E., Wang,Y., Thiessen,P.A. et al. (2008) PubChem: inte-
grated platform of small molecules and biological activities.
Annu. Rep. Comput. Chem., 4, 217–241.

21. Brown,G.R., Hem,V., Katz,K.S. et al. (2014) Gene: a gene-
centered information resource at NCBI. Nucleic Acids Res.,
43, D42.

22. UniProt Consortium. (2014) UniProt: a hub for protein infor-
mation. Nucleic Acids Res., D204–D212, gku989.

23. Federhen,S. (2011) The NCBI taxonomy database. Nucleic
Acids Res., 40, D143.

24. Mungall,C.J., Torniai,C., Gkoutos,G.V. et al. (2012) Uberon,
an integrative multi-species anatomy ontology. Genome Biol.,
13, R5.

25. Gene Ontology Consortium (2004) The Gene Ontology
(GO) database and informatics resource. Nucleic Acids Res.,
32, D261.

26. Fauquet,C.M. and Pringle,C.R. (1999) Abbreviations for
invertebrate virus species names. Arch. Virol., 144, 2265–2271.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article-abstract/doi/10.1093/database/bay096/5101499 by Turun Yliopiston Kirjasto user on 15 O

ctober 2018

https://dx.doi.org/918710
https://dx.doi.org/gku989


Page 10 of 10 Database, Vol. 2018, Article ID bay096

27. Klein,D., Smarr,J., Nguyen,H. et al. (2003) Named entity
recognition with character-level models. In: Proceedings of
the Seventh Conference on Natural Language Learning at
HLT-NAACL 2003-Volume 4, Edmonton, Canada, 31 May
2003. Association for Computational Linguistics.

28. Kuru,O., Can,O.A. and Yuret,D. (2016) Charner: character-level
named entity recognition. In: Proceedings of COLING 2016,
the 26th International Conference on Computational Linguis-
tics: Technical Papers, Osaka, Japan, 11–16 December 2016.
The COLING 2016 Organizing Committee.

29. Ma,X. and Hovy,E. (2016) End-to-end sequence labeling via
bi-directional LSTM-CNNs-CRF. In: Proceedings of the 54th
Annual Meeting of the Association for Computational Lin-
guistics, Berlin, Germany, 7–12 August 2016. Association for
Computational Linguistics. pp. 1064–1074.

30. Okazaki,N. and Tsujii,J. (2010) Simple and efficient algorithm
for approximate dictionary matching. In: Proceedings of the

23rd International Conference on Computational Linguistics.
Association for Computational Linguistics. pp. 851–859.

31. Sohn,S., Comeau,D.C., Kim,W. et al. (2008) Abbreviation defini-
tion identification based on automatic precision estimates. BMC
Bioinf., 9, 402.

32. Chen,L., Liu,H. and Friedman,C. (2005) Gene name ambiguity
of eukaryotic nomenclatures. Bioinformatics, 21, 248–256.

33. Van Landeghem,S., Ginter,F., Van de Peer,Y. et al. (2011) EVEX:
a PubMed-scale resource for homology-based generalization of
text mining predictions. In: Proceedings of the 2011 Workshop
on Biomedical Natural Language Processing, Portland, Oregon,
USA, 23–24 June 2011. Association for Computational Linguis-
tics, pp. 28–37.

34. Singh,O. and Dai,H.J. (2017) SPRENO: A BioC module for
recognizing and normalizing species and their model organisms.
In: Proceedings of the BioCreative VI Workshop, Bethesda, MD,
USA. pp. 28–31.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article-abstract/doi/10.1093/database/bay096/5101499 by Turun Yliopiston Kirjasto user on 15 O

ctober 2018


	Wide-scope biomedical named entity recognition and normalization with CRFs, fuzzy matching and character level modeling
	Introduction 
	Methods
	Data
	Preprocessing
	Ontologies and controlled vocabularies
	NER
	NEN and disambiguation

	Result and discussion
	NER
	NEN and disambiguation

	Conclusions and future work


