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1Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
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SUMMARY
POLR3G is expressed at high levels in human pluripotent stem cells (hPSCs) and is required for maintenance of stem cell state

through mechanisms not known in detail. To explore how POLR3G regulates stem cell state, we carried out deep-sequencing anal-

ysis of polyA+ and smallRNA transcriptomes present in hPSCs and regulated in POLR3G-dependent manner. Our data reveal

that POLR3G regulates a specific subset of the hPSC transcriptome, including multiple transcript types, such as protein-coding

genes, long intervening non-coding RNAs, microRNAs and small nucleolar RNAs, and affects RNA splicing. The primary function

of POLR3G is in the maintenance rather than repression of transcription. The majority of POLR3G polyA+ transcriptome is regu-

lated during differentiation, and the key pluripotency factors bind to the promoters of at least 30% of the POLR3G-regulated tran-

scripts. Among the direct targets of POLR3G, POLG is potentially important in sustaining stem cell status in a POLR3G-dependent

manner.
INTRODUCTION

Human embryonic stem cells (hESCs) are pluripotent cells

having a unique capacity to self-renew and differentiate

into all specialized cell types found in somatic tissues

(Thomson et al., 1998). Similar properties are gained by

human induced pluripotent stem cells (hiPSCs) reprog-

rammed from cells found in adult tissues (Yu et al., 2007;

Takahashi et al., 2007). The core factors known to be crucial

for maintenance and control of pluripotency include

POU5F1, SOX2, andNANOG (Boyer et al., 2005; Chambers

and Tomlinson, 2009). These transcription factors operate

in activation or repression of genes important for pluripo-

tency and differentiation, and form an autoregulatory

loop to positively regulate their own expression. In addi-

tion, POU5F1 and SOX2, in combination with either

KLF4 and CMYC or NANOG and LIN28, were used in

the first studies reprogramming adult cells back to the

pluripotent state, highlighting the importance of these

factors in the regulation of pluripotency (Yu et al., 2007;

Takahashi et al., 2007). Moreover, epigenetic regulation

and post-transcriptional mechanisms, such as microRNAs

(miRNAs), are important in the regulation of pluripotency

(Young, 2011). However, the mechanisms underlying the

unique property of pluripotency are still not completely

understood.

In eukaryotic cells, three DNA-directed RNA polymer-

ases, polymerases I, II, and III (Pol I–III), regulate tran-
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scription of different sets of target genes. Pol III regulates

transcription of structural RNAs (tRNAs and 5S rRNAs)

and several small non-protein-coding RNAs (ncRNAs)

including miRNAs (Ozsolak et al., 2008; Borchert et al.,

2006; Oler et al., 2010; Dieci et al., 2007). Pol III, like

Pol I and Pol II, is composed of multiple subunits of

which POLR3G (DNA-directed RNA polymerase III sub-

unit, RPC32, RPC7) is a Pol III-specific subunit with no

counterpart in Pol I or Pol II. POLR3G subunit is needed

for transcriptional initiation of Pol III, thus being impor-

tant for the proper function of this polymerase (Wang

and Roeder, 1997).

Intriguingly, consistent with previous studies (Wong

et al., 2011; Enver et al., 2005; Haurie et al., 2010), our

data show that POLR3G is highly expressed in pluripo-

tent stem cells and is required for maintenance of the

pluripotent state. However, the mechanisms by which

how POLR3G contributes to maintenance of stem cell

state and its targets in stem cells are not well known.

To explore the function of POLR3G in stem cells, we

have carried out deep transcriptome analysis of mRNAs

and smallRNAs present in hESCs and regulated in a

POLR3G-dependent manner. Our data reveal a special-

ized function for POLR3G in the transcriptional mainte-

nance of the hESC state and regulation of develop-

mental programs through a specific subset of coding

and non-coding transcriptomes and regulation of alterna-

tive splicing.
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Figure 1. Deep SmallRNA and PolyA+ RNA Reference Transcriptome of Human Embryonic Stem Cells
(A–C) PolyA+ and smallRNAs were isolated from three independent experiments with two different human embryonic stem cells lines
(H9p38, HS360p62, HS360p66). The deep transcriptome was analyzed with smallRNA-seq and mRNA-seq. The sequence data were mapped
to the hg19 reference genome assembly and miRBase database (based on hg19 build). Transcriptome annotations were taken from gencode
v19 and tRNA annotations from UCSC genome browser (in addition to miRBase). The polyA+ transcripts with a minimum RPKM value of 0.5
and the smallRNA transcripts with a minimum RPM value of 0.5 were extracted from the data and classified into different transcript type
categories. In (A) the bars represent the proportion of each transcript class detected in hESCs in comparison with the total number
(indicated in the figure) of each transcript type present in the reference genome. The proportions of different transcript classes present in
hESCs and detected with mRNA-seq (B) and smallRNA-seq (C) are visualized as pie charts.
RESULTS

Deep PolyA+ Transcriptome of hESCs

To explore the regulation of transcription by POLR3G in

hESCs, we first established a comprehensive reference tran-

scriptome for hESCs. For this purpose we explored how

large a proportion of the different transcript types are pre-

sent in hESCs. Using mRNA sequencing (mRNA-seq),

from the total number of 181–224 3 106 reads per sample

we detected altogether 13,613 polyA+ transcripts, which

were present in all of the three hESC samples examined

with a minimum RPKM (reads per kilobase per million

mapped reads) value of 0.5 (Table S1A). This represents

22% of the total 60,679 transcripts present in the hg19

and miRBase reference genomes (Figure 1A). The most

abundant class of transcripts detected in hESCs was pro-

tein-coding genes, which included 11,855 transcripts rep-

resenting 58% of the protein-coding genes in the gencode

(hg19) annotations (Figure 1A) and 87% of all the polyA+

transcripts that were detected in hESC transcriptome (Fig-

ure 1B). The three other most abundant classes of tran-

scripts were pseudogenes (n = 621, 5% of hESC transcrip-

tome), long intervening non-coding RNAs (lincRNAs)

(n = 428, 3% of hESC transcriptome), and antisense tran-

scripts (n = 361, 3% of hESC transcriptome). However, in

all these other classes less than 5% of the transcripts pre-
sent in the reference human genome were detected with

mRNA-seq (Figure 1A).

SmallRNA Transcriptome of hESCs

With smallRNA-seq we detected altogether 1,361 tran-

scripts present in all hESC samples with a minimum read

per kilobase of 0.5 and a maximum length of 250 bp (Table

S1B). This represented 2% of all the transcripts in hg19 and

miRBase reference genomes (Figure 1A). The most abun-

dant class of smallRNA transcripts was mature miRNAs

(n = 864), which represent 33% of the miRNAs in the

miRBase reference annotations or 63%of all the smallRNAs

thatwere detected inhESC small transcriptome (Figure 1C).

The other most abundant classes of transcripts were small

nucleolar RNAs (snoRNAs) (n = 147 transcripts, 11% of

hESC smallRNA transcriptome) and pre-miRNAs (n = 81,

6% hESC small transcriptome), rRNAs (n = 118, 9% of

hESC smallRNA transcriptome), and tRNAs (n = 57, 4% of

hESC smallRNA transcriptome).

POLR3G-Dependent PolyA+ Transcriptome in hESCs

Consistent with previous findings (Enver et al., 2005;

Wong et al., 2011; Haurie et al., 2010), we found both

POLR3G mRNA and protein to be expressed at high level

in hPSCs and to be rapidly downregulated during early

differentiation (Figures 2A, S1A, and S1B). Expression of
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Figure 2. POLR3G-Dependent Human Embryonic Stem Cell Transcriptome
(A) Normalized gene expression levels for POLR3G from ESTOOLS data@hand database as measured with Affymetrix arrays in 384 samples.
The combined number (n) of replicated samples from different studies is indicated in the figure. Average fold changes and statistical
significance (unpaired t test) between hPSCs in comparison with late embryonic bodies (EB) and other cell types is indicated in the figure.
See also Figure S1.
(B) The proportions of different polyA+ transcript types regulated in POLR3G-dependent manner in hESCs with minimum fold change of 1.5
and FDR %0.05 in three independent biological replicates.
(C) The fold changes and FDR values for all POLR3G-dependent transcripts in mRNA-seq data.
(D) The proportions of different smallRNA transcript types regulated in POLR3G-dependent manner in hESCs with minimum fold change of
1.5 and FDR %0.05 in four siRNA samples in comparison with three non-targeted siRNA controls.
(E) The average fold changes and FDR values for all POLR3G-dependent transcripts with size below 250 bp in smallRNA-seq data from four
siRNA samples in comparison with three non-targeted siRNA controls.
See also Figure S2.
POLR3G protein was reciprocal to alternative form

POLR3GL, which was induced in response to differentia-

tion (Figures S1A and S1B). In addition, POLR3G was ex-

pressed consistently in a POU5F1-dependent manner (Fig-

ure S1C). To study the function and importance of POLR3G

in hESCs, we carried out small interfering RNA (siRNA)-

mediated knockdown of POLR3G in two different hESC
1444 Stem Cell Reports j Vol. 8 j 1442–1454 j May 9, 2017
lines (H9 and HS360) with two different siRNAs and

siRNA pool (see Supplemental Experimental Procedures).

Silencing of POLR3G led to clear loss ofmorphology typical

for pluripotent hESCs and decreased the number of cells

present in the cultures (Figure S2A). In particular with

siRNA1, due to rapid and strong decrease in cell numbers,

not enough material was always obtained for further



Table 1. Functional Enrichment of the POLR3G-Dependent
PolyA+ Transcripts

Functional Category
No. of
Molecules

Fisher Exact
Test p Value

Cellular and Molecular Functions

Cellular assembly and organization 174 0.0025

Cellular function and maintenance 150 0.0024

Cell cycle 109 0.0026

DNA replication, recombination, and repair 41 0.0023

Cell morphology 148 0.0024

Physiological System Development and Function

Embryonic development 122 0.0026

Nervous system development and function 145 0.0024

Organ development 79 0.0021

Organismal development 172 0.0023

Tissue development 139 0.0024
analysis, indicating the importance of POLR3G in hESC

maintenance. We did not observe an increase in the

number of dead cells in response to POLR3G knockdown,

although these cells would have been washed off in the

daily media change (Figure S2A).

We next examined the function of POLR3G in the regu-

lation of hESC transcriptome. Comparison of the polyA+

transcriptomes of hESCs before and after POLR3G silencing

revealed changes in expression of 718 transcripts represent-

ing 5% of the hESC transcriptome (Table S2A). The most

abundant transcriptional class regulated by POLR3G (Fig-

ure 2B) was protein-coding genes (n = 593), which repre-

sented 83% of all the polyA+ transcripts regulated by

POLR3G and 5% of the protein-coding genes present in

hESC transcriptome. The other less abundant polyA+ tran-

script classes regulated by POLR3G included 36 lincRNAs

(5%), 27 pseudogenes (4%), and 23 antisense transcripts

(6% of POLR3G-dependent transcripts). No increase in

the expression of alternative variant POLR3GL was de-

tected at either mRNA or protein level (data not shown),

although this variant is induced during early differentia-

tion and is expressed in reciprocal manner to POLR3G (Fig-

ure S1). Consistently with our observations from cell cul-

tures and cell counts (Figure S2), among the genes with

the strongest decrease in response to POLR3Gwas amarker

of proliferation,MKI67 (fold change =�5.9, false discovery

rate [FDR] = 1.71 3 10�8, Table S2), indicating decreased

proliferation of the cells. Our findings show that POLR3G

regulates a specific subset of transcripts in hESCs consisting

of multiple transcript types. However, the most abundant
POLR3G-dependent transcript group in our mRNA-seq

data is clearly the protein-coding genes. Most of the

POLR3G-dependent polyA+ transcripts were decreased

(n = 681, 94.8%) rather than increased (n = 37, 5.2%) in

response to POLR3G knockdown (Figure 2C), indicating

that POLR3G has a function primarily in maintenance

rather than repression of transcription in hESCs.

POLR3G-Dependent SmallRNA Transcriptome

in hESCs

The smallRNA-seq revealed changes in 97 POLR3G-depen-

dent smallRNAs representing 7% of the hESC smallRNA

transcriptome (Table S2B). The most abundant transcrip-

tional class regulated by POLR3G (Figure 2D) was mature

miRNAs (n = 59) representing 61% of all the smallRNAs

regulated by POLR3G and 7% of the miRNAs present in

hESC smallRNA transcriptome. The other abundant small-

RNA classes regulated by POLR3G included pre-miRNAs

(n = 20) and snoRNAs (n = 10), representing 21% and

10% of all POLR3G-dependent smallRNAs, respectively.

Similarly to polyA+ transcriptome, most of the POLR3G-

dependent smallRNAs (n = 84, 87%) were downregulated

and only a small proportion (n = 13, 13%) was upregulated

in response to POLR3G knockdown (Figure 2E and Table

S2B). Interestingly, most of the smallRNAs (n = 10, 77%)

induced in response to POLR3G silencing were snoRNAs.

Half of these were from imprinted locus in the chromo-

some 14q32. In comparison with polyA+ transcripts, the

impact of POLR3G depletion on smallRNAs was strong in

magnitude. For polyA+ transcripts the average fold change

for repressed transcripts in response to POLR3G silencing

was 1.9, whereas for smallRNAs it was 5.9. These results

indicate that in addition to multiple types of polyA+ tran-

scripts, POLR3G is required for maintenance of a specific

subset of miRNAs in hESCs. In addition, POLR3G represses

transcription of a small fraction of snoRNAs.

Functional Enrichment Analysis of

POLR3G-Regulated Transcripts

To examine the function of the POLR3G-dependent tran-

scripts, we performed pathway analysis with the Ingenuity

Pathway Analysis Tool (Qiagen). Consistent with our find-

ings, the results linked the POLR3G-regulated polyA+ tran-

scripts to important functions in the cellular maintenance

and regulation of early developmental programs (Table 1).

The functions of POLR3G-dependent non-coding tran-

scripts, including smallRNAs, are largely unknown.

A total of 114 molecules linked to pluripotency function

were found in the Ingenuity Pathway database. Of these,

eight (DNMT1, APC, SMARCA4, NIPBL, RIF1, RTF1, TET1,

and LIN28A) showed downregulation from �1.5-fold to

�2.9-fold (FDR < 0.05) in response to POLR3G knockdown.

In addition, several of the miRNAs predicted to target these
Stem Cell Reports j Vol. 8 j 1442–1454 j May 9, 2017 1445



factors were regulated in a POLR3G-dependent manner.

However, most of them were downregulated rather than

upregulated. Only two of the miRNAs were upregulated

(hsa-miR-4472, 45.89-fold, FDR = 0.04; and hsa-miR-4695-

5p, 24.63-fold, FDR = 0.0005) and their predicted targets

RTF1 (�1.62, FDR = 0.0003) and RIF1 (�1.55, FDR =

0.004), respectively,weredownregulated.Among thedown-

regulated pluripotency-associated genes was also LIN28A

(�1.88, FDR = 2.12 3 10�4), which has a well-known func-

tion in the regulation of mouse ESC self-renewal through

suppression of let-7 miRNA maturation (Shyh-Chang and

Daley, 2013). Let-7 miRNAs again repress LIN28A during

stem cell differentiation. Therefore, we looked into the

let-7 levels in the data and found increased levels of hsa-

let-7b-5p (4.35-fold, p = 0.02) and hsa-let-7c (5.21-fold,

p = 0.01) with unadjusted p values in response to POLR3G

silencing.Noconsistent changeswereobserved for theother

let-7 family members.

Taken together, based on functional enrichment anal-

ysis, POLR3G is required for maintenance of transcripts

important in regulation of cellular maintenance, prolifera-

tion, and early developmental programs. Importantly, the

functions of the POLR3G-dependent non-coding RNAs

are largely unknown, highlighting the lack of knowledge

in the importance of non-coding transcriptome in the

regulation of pluripotency.

Regulation of POLR3G-Dependent Transcripts during

Early Differentiation

To study whether the POLR3G-dependent transcripts are

regulated during differentiation of hESCs, we examined

regulation of these transcripts in the deeply sequenced

RNA-seqdataavailableondifferentiationofhESCs into three

different germcell lineages (endoderm,mesoderm, andecto-

derm) byGifford et al. (2013). Of our 718 POLR3G-regulated

polyA+ transcripts, 537 were present in the data by Gifford

et al. (2013). Of these, 70% (n = 377) showed at least 1.5-

fold change (p value cutoff 0.05) in response to differentia-

tion (Table S3). This represented3.8%of the all 10,010differ-

entially regulated genes in the data by Gifford et al. (2013).

The POLR3G-regulated transcripts included both induced

and repressed genes and were associated with all three

germ cell lineages endoderm (98 down, 120 up), ectoderm

(108 down, 116 up), and mesoderm (151 down, 104 up).

From these observations we can conclude that POLR3G reg-

ulates a specific subset of transcripts inhESCs,most ofwhich

are differentially regulated during early differentiation of

hESCs to all the different germ cell lineages.

Impact of POLR3G Silencing onAlternative Splicing of

Transcripts

We next analyzed the impact of POLR3G silencing on the

alternative splicing of transcripts. Using the rMATSmethod
1446 Stem Cell Reports j Vol. 8 j 1442–1454 j May 9, 2017
(replicate multivariate analysis of transcript splicing) (Shen

et al., 2014), the number of splicing events detected in the

samples ranged from thousands (retained intron) to tens of

thousands (skipped exon) based on counts from readsmap-

ping to exon junctions and alternative exons (and similar

numbers based on just junction counts), whereas the com-

bined number of alternative splicing events (ASEs) from

both junction counts and counts from junction and alter-

native exon reads (FDR < 0.05, DJ > 0.2) for the following

subclasses were: 109 (71) skipped exon (SE), 25 (16) alter-

native 50 splice site (A5SS), 15 (7) alternative 30 splice site

(A3SS), 62 (49) retained intron (RI), and 22 (11) mutually

exclusive exons (MXE) (Table S4). The numbers in paren-

theses indicate the number of ASEs wherein the sign of

DJ was consistent among all three case-control pairs (in

contrast to ASEs that had too few reads in some samples

or those wherein the sign of DJ varied among case-control

pairs).

Splicing analysis with MISO (mixture of isoforms) (Katz

et al., 2010) was performed independently for each of

the three case-control pair replicates and splicing events

meeting the filtering criteria (Bayes factor R5, DJ >0.2,

number of reads supporting inclusion/exclusion isoform

for case/control samples, or vice versa, R10) for all the

three replicate pairs and with consistent sign of DJ were

considered significant. Using these ad hoc filtering criteria,

only six ASEs were detected (Table 2).

Given the relatively small number of statistically signifi-

cant splicing events from MISO analysis and discrepancies

in the splicing event annotations, only one ASE, skipped

exon of HDAC7 gene (exon 9 of RefSeq NM_015401), was

detected by both rMATS (FDR = 8.82 3 10�22, DJ = 0.29)

and MISO (Bayes factor = 1.00E+12, DJ = 0.21–0.37) (Fig-

ure S3). This ASE was subjected to further experimental

validation with qRT-PCR, which confirmed increased

expression (fold change 1.52–7.03, p = 0.09) of the variant

lacking the exon after silencing of POLR3G in all four bio-

logical replicates examined (data not shown).

Enrichment of Pluripotency Factors in the Proximity

of POLR3G-Dependent Transcripts

We next examined the binding of transcription factors,

important for pluripotency, in the promoters of the

POLR3G-regulated transcripts. For the comparison we

used existing chromatin immunoprecipitation sequencing

(ChIP-seq) data by Lister et al. (2009) on POU5F1, NANOG,

SOX2, and KLF4 binding. Additionally EP300, a histone

acetyltransferase and transcriptional co-activator impor-

tant for stem cell differentiation, was included in the

analysis. The promoter was defined as a region including

1,000 bp upstream from the transcription start site (TSS)

of the transcript and included first exon and intron, if pre-

sent. We found significant enrichment for NANOG, SOX2,



Table 2. Alternative Splicing Events Detected by MISO Statistical Model in Response to Silencing of POLR3G in hESCs

Splicing Event (Genomic Loci) Category Ensembl ID Gene ID Bayes Factor Dc

chr12:48189990:48190081:-

@chr12:48189689:48189799:-

@chr12:48189370:48189550:-

SE ENSG00000061273 HDAC7 R1.00E+12 R0.21

chr17:74087224:74087316:-

@chr17:74086410:74086478:-

@chr17:74085256:74085401:-

SE ENSG00000182473 EXOC7 R76.48 %�0.20

chr19:2226182:2227126:-

@chr19:2227736:2228381:-

@chr19:2229784:2232577:-

SE ENSG00000104885 DOT1L R100E+12 %�0.24

chr15:137356720:137356886:-

@chr15:137354644:137354835:-

@chr15:137353991:137354203:-

SE ENSG00000031003 FAM13B R6.95 %�0.27

chr4:119459016:119459112I 119459163:+

@chr4:119461374:119461544:+

A5SS ENSG00000154608 CEP170P1 R11.89 %�0.3

chr7:23562051-23561740:-

@ chr7:23561459-23561326:-

RI ENSG00000164548 TRA2A R610.64 %�0.24

See also Figure S3.
and KLF4, but not POU5F1, in the promoters of the

POLR3G-regulated polyA+ transcripts in comparison with

similar enrichment in the all the genes expressed in hESCs

(Table 3). Interestingly, enrichment of the subunit of

Pol III complex, POLR3A, was not observed, although

this subunit has been previously reported to co-localize

with the pluripotency factors (Alla and Cairns, 2014). A

total of 311 (30.5%) of all the POLR3G-dependent polyA+

transcripts expressed in hESCs had a binding site for

one or more pluripotency factors in the promoter region

(Figure 3A).

POLR3G Binding Sites in Genome

ChIP-seq was carried out to identify the genomic binding

sites of POLR3G and direct targets of transcriptional

regulation. After several failed experiments with hESC

lines, good-quality ChIP-seq data were obtained with one

of the two replicates of pluripotent NT2D1 line. Altogether

836 peaks (p = 1.00 3 10�4) were detected in the POLR3G

ChIP-seq data. First we compared the genomic regions

bound by POLR3G with the data available on POLR3A

binding sites in H1 hESCs by Alla and Cairns (2014). Of

the 330 regions bound by POLR3A, 225 were overlapping

with genomic regions bound by POLR3G. These regions

were chosen for further analysis to ensure identification

of POLR3G-regulated targets with high confidence. The

majority of the POLR3G binding sites were localized as

clearly defined peaks overlapping with 245 different

tRNA genes (Table S5). In addition, 13 peaks were overlap-

ping with non-coding RNAs encoding for components
of the ribonucleoproteins (RMRP, RN7SK, -7SL1, -7SL2,

RNU6-1, -2, -8, -9, -ATAC, RNY1, -3, -4, -5). Two peaks over-

lappedmiRNAs (predicted AC008738.2,MIR3676) and one

vaultRNA (VTRNA1-3).

To identify the direct targets of the POLR3G putatively

important in themaintenance of hESC status, we identified

the overlaps in the genomic binding sites of POLR3G/

POLR3A and changes in the transcription of coding or

non-coding genes in response to POLR3G knockdown.

According to our results, mtDNA polymerase POLG was

the only protein-coding gene, downregulated (�1.5-fold,

FDR = 2.00 3 10�2) in response to POLR3G knockdown

with POLR3G/POLR3A binding site in the proximal pro-

moter. The exact binding site of POLR3G in POLG pro-

moter overlapped with the tRNA-Arg-TCG-1-1 gene, func-

tional genomic element with active or weak promoter

histone marks, and numerous transcription factor binding

sites based on ENCODE data (ENCODE Project Con-

sortium, 2012) (Figure 3B). Consistently, tRNA-Arg-CGA

transcript expression was increased on average 5.0-fold

(p = 4.003 10�2) in smallRNA-seq data across the biological

replicates. In addition, several other tRNAs bound showed

altered expression levels in response to POLR3G knock-

down. These included tRNA-Thr-ACY (fold change = �4.5,

FDR = 3.10 3 10�2), tRNA-Leu-TTA(m) (fold change =

�7.15, FDR = 8.00 3 10�3), tRNA-Ala-GCA (fold change =

3.1, p = 4.90 3 10�2) in the smallRNA-seq data, and

tRNA-Gly-GGA (fold change = �2.2, p = 2.32 3 10�2) and

tRNA-Met (fold change = �2.68, p = 2.10 3 10�2) in the

mRNA-seq data. Comparison of the transcriptome data
Stem Cell Reports j Vol. 8 j 1442–1454 j May 9, 2017 1447



Table 3. Binding and Enrichment of Regulatory Factors in the Promoters of POLR3G-Dependent PolyA+ Genes in Comparison with
All Detected Genes

DNA Binding
Factor

No. of Bound Genes
in the Genome

No. of Bound Genes
in hESCs

No. of Bound
POLR3G-Dependent Genes

Hypergeometric
Test p Value

Adjusted p Value
(Benjamini-Hochberg)

NANOG 25,071 1,668 (12.2%) 166 (16.3%) 3.64 3 10�5 2.19 3 10�4

KLF4 3,793 1,116 (8.2%) 105 (10.3%) 4.55 3 10�4 1.36 3 10�3

SOX2 5,682 467 (3.4%) 49 (4.8%) 6.57 3 10�3 1.31 3 10�2

EP300 3,093 280 (2.1%) 37 (3.6%) 9.08 3 10�3 1.36 3 10�2

POU5F1 3,889 1,524 (11.1%) 123 (12.1%) 1.74 3 10�1 2.09 3 10�1

POLR3A 389 40 (0.3%) 3 (0.3%) 5.81 3 10�1 5.81 3 10�1
and the ChIP-seq data revealed overlaps also in a few other

non-coding smallRNAs that had altered expression levels,

although the statistical significance was not high. The pre-

dicted miRNA AC008738.2 was bound by POLR3G and

expression was decreased 1.6- to 9.3-fold (p = 1.00 3

10�2) in response to knockdown. In addition, the small-

RNAs RNY1 (ENSG00000201098.1, fold change = 1.5–5.0,

p = 4.60 3 10�2), RNY4 (ENSG00000252316.1, fold

change = 1.5–5.9, p = 4.00 3 10�2), and RNY5

(ENSG00000252310.1, fold change = 1.4–2.6, p = 3.40 3

10�2), bound by POLR3G, had increased expression

in response to POLR3G knockdown in all of the four

biological replicates. Also, expression of the VaultRNA

(VTRNA1–3), bound by POLR3G, had altered expression

(1.5- to 1.8-fold) in all of the four biological replicates,

although statistical significance was low (p = 2.01 3 10�1).

In conclusion, our data indicate that maintenance of

stem cell status by POLR3G may be mediated through

regulation of POLG gene. The regulation of stem cell status

may also involve activity of AC008738.2, VTRNA1–3, a

subset of specific tRNA genes, and components of ribonu-

cleoproteins RNY1, RNY4, and RNY5.
DISCUSSION

POLR3G is a key factor required for maintenance of hESC

state, as silencing of POLR3G leads to differentiation and

attenuates proliferation of hESCs (Wong et al., 2011; En-

ver et al., 2005; Haurie et al., 2010). However, the mecha-

nisms by which POLR3G sustains undifferentiated status

of hESCs and prevents differentiation have not been

characterized in detail. Our results show that POLR3G

is required for the maintenance of several types of

polyA+ and smallRNA transcripts, including protein-cod-

ing genes, pseudogenes, lincRNAs, antisense transcripts,

and miRNAs in hESCs. Interestingly, the POLR3G-depen-

dent transcriptome is rather specific, as only 5% of the

polyA+ transcripts and 7% of the smallRNA transcripts
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in hESCs were POLR3G dependent. This indicates that a

large proportion of the transcripts in hESCs are also main-

tained through POLR3G-independent mechanisms. How-

ever, the severe phenotypic and proliferation changes

induced in response to POLR3G silencing and accompa-

nied by these transcriptional alterations indicate that

POLR3G-dependent regulation of these specific tran-

scripts is crucial for the maintenance of stem cell state

and proliferation.

We also found that silencing of POLR3G leads to

changes in the expression levels of alternatively spliced

transcript variants. Of these we further validated the

strongest observation, skipping of exon 9 of the HDAC7

RefSeq variant 1. Elucidation of the functional signifi-

cance of this ASE requires further studies. The importance

of HDAC7 in the regulation of early stem cell differentia-

tion and development is supported by a previous study

on a mouse stem cell model, which showed that Hdac7

is required for differentiation of smooth muscle cells

and to undergo alternative splicing during differentiation,

albeit at different sites affecting usage of exon 1 (Margariti

et al., 2009).

The POLR3G-dependent transcripts are functionally

linked to embryonic development and key cellular func-

tions important for cellularmaintenance and proliferation.

The known pluripotency regulators are enriched in the

TSSs of these genes, and the majority of the polyA+ tran-

scripts are regulated during the differentiation of hESCs

to three different germ cell lineages. This regulation of

POLR3G-mediated transcriptsmust be important, enabling

lineage specification and further development of the cells

and tissues, as previous studies have shown that overex-

pression of POLR3G in the cells leads to resistance to differ-

entiation (Wong et al., 2011).

The effects of POLR3G knockdown on smallRNA expres-

sion were stronger than on polyA+ transcriptome, indi-

cating that POLR3G is likely to have an important function

in themaintenance of stem cell state and regulation of plu-

ripotency through specific subsets of smallRNAs.



Figure 3. Overlap of the Genomic Binding Sites of Known Pluripotency Regulators and POLR3G with the POLR3G-Regulated
Transcriptome
(A) Enrichments of POU5F1, NANOG, SOX2, and KLF4 in the promoter region of POLR3G-dependent transcripts in the genome were
examined by comparing the binding of the factors to the proximity (�1,000 from TSS + first exon and intron, if present) of POLR3G-
regulated polyA+ genes in comparison with all the polyA+ genes expressed by hESCs before or after POLR3G knockdown. The overlap of the
binding sites of different factors is illustrated in the figure.
(B) Binding of POLR3G into the genome of embryonal carcinoma-derived pluripotent stem cells (NT2D1) was studied with ChIP-seq.
Binding sites were compared with the transcriptional changes observed in response to POLR3G knockdown and in correlation to ENCODE
data available on chromatin status of pluripotent stem cells. The figure shows a snapshot from integrative analysis at the transcriptional
start site of POLG gene showing genomic binding and transcriptional regulation of the locus by POLR3G.
Interestingly, although based on transcriptome analysis,

POLR3G is required to maintain expression of multiple

types of transcripts in hESCs, only few are direct targets
of POLR3G. We found mtDNA polymerase POLG to

be the only protein-coding gene directly regulated by

POLR3G. Therefore, POLG is a strong candidate for
Stem Cell Reports j Vol. 8 j 1442–1454 j May 9, 2017 1449



mediating POLR3G-dependent maintenance of stem cell

status. POLG encodes the catalytic subunit of the mtDNA

polymerase, and is thus required for the proper function

and genomic integrity of mitochondria and is essential

for early embryonic development. Mitochondrial function

has been shown to be crucial for the pluripotency and dif-

ferentiation of embryonic stem cells (Hance et al., 2005;

Facucho-Oliveira et al., 2007; Xu et al., 2013). Silencing

of POLG in mouse embryonic stem cells leads to loss of

POU5F1 and induction of Brachyury protein expression

(Hance et al., 2005; Facucho-Oliveira et al., 2007; Xu

et al., 2013), demonstrating the importance of the gene

in maintenance of pluripotency.

In addition, binding and POLR3G-dependent expression

was detected for a subset of tRNA genes, predicted miRNA

AC008738.2, VTRNA1–3, and ribonucleoproteins RNY1,

RNY4, and RNY5, with currently unclear function in the

regulation of pluripotency. Strong binding of POLR3G

to numerous tRNAs without transcriptional changes in

response to knockdown hints at a potential function other

than direct regulation of transcription. Further studies are

needed to clarify, for example, whether POLR3G has a

function in controlling accessibility of chromatin to regula-

tory factors or mediates regulation of gene transcription

through long-range interactions of the chromatin.

In summary, our results provide insights into the molec-

ular mechanisms by which the stem cell-specific subunit of

Pol III complex, POLR3G, regulates self-renewal and plurip-

otency. Furthermore, since Pol III is responsible for tran-

scribingmany of the core RNA components of the cytosolic

translation machinery, our findings suggest a previously

unreported mechanism for coordinated regulation of pro-

tein synthesis and mitochondrial biogenesis.
EXPERIMENTAL PROCEDURES

Full experimental procedures are provided in the Supplemental

Information.

Cell Culture and Differentiation Assays
Human ESC lines were maintained on human foreskin fibroblast

feeders or in feeder-free culture conditions on Matrigel (BD Biosci-

ences) inmTeSR1medium (STEMCELLTechnologies) as previously

described (Narva et al., 2012; Konki et al., 2016). In feeder-free cul-

ture conditions the cells were maintained on Matrigel (BD Biosci-

ences) in mTeSR1 medium (STEMCELL). Differentiation of hESCs

was performed as described by Narva et al. (2012). In brief, for

spontaneous embryonic body differentiation the cells were plated

without feeders and were grown in suspension in standard hESC

medium without fibroblast growth factor 2. For retinoic acid-

induced differentiation, cells were plated in feeder-free condi-

tions and medium was supplemented with 13.7 mM retinoic acid

(Sigma). The karyotypes of the lines were routinely monitored

with G-banding and/or KaryoLite BoBs assay (Lund et al., 2012).
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RNA Interference and Transfections of hESC Lines
hESC cultures from two different cell lines (H9p38, HS360p62,

HS360p63, HS360p66) were used in POLR3G siRNA experiments

as indicated. HS360 was derived in and obtained from the Karolin-

ska Institutet. The cells were first expanded onMatrigel in mTeSR1

for two to three passages to remove feeder cells. Silencing experi-

ments were performed with two different siRNA oligonucleotides

(Sigma) and a pool of siRNAs (Santa Cruz Biotechnology) and

with non-targeting siRNA control, which were transfected into

the cells with Lipofectamine RNAi Max or Lipofectamine 2000

(Invitrogen) according to manufacturer’s protocols. The sequence

information for the siRNAs can be found in Supplemental Experi-

mental Procedures. Double transfections of siRNAs were per-

formed at 24 and 48 hr after plating of cells on feeder-free condi-

tions. The samples were harvested on day 3 or day 4 after the

first transfection for the experiments and analysis. The Cedex XS

(Innovatis) system was used to calculate the amount of viable

and dead cells in the cultures based on trypan blue staining and

cell morphology. From the collected samples total RNA, including

smallRNAs, DNA and proteins were extracted simultaneously with

a Qiagen Allprep kit.

Silencing of POU5F1, L1TD1, SOX2, andNANOGwas carried out

as previously described (Narva et al., 2012). In brief, Lipofect-

amine2000 (Invitrogen) reagent was used for double transfections

after 2 or 3 days of plating, and cells were collected for experiments

1–5 days after the second transfection.

RT-PCR
Taqman real-time qRT-PCR was run as previously described (Lund

et al., 2013). RNA was treated with DNase I (Qiagen) during

column purification, and a second round of DNase treatment

was carried out for 500 ng of total RNAwith DNase I Amplification

Grade (Invitrogen). To verify that no genomic DNA was present,

we performed a negative RT-PCR control measurement with

housekeeping gene EF1a from total RNA. cDNA was synthesized

using a Superscript II kit (Gibco). The levels of the indicated genes

of interest were measured with the 7900HT Fast Real-Time PCR

System (Applied Biosystems). The cycles of threshold values (Ct)

were compared with those of housekeeping gene to obtain

normalized log2 expression levels for the transcripts (DCt). The

primers and probes were designed using a Universal Probe Library

Assay Design Center (Roche). Analysis of HDAC7 variants was car-

ried out with RT2 SYBR Green qPCR Mastermix (Qiagen). Primer

and probe sequences are listed in Supplemental Experimental

Procedures.

Western Blotting
Protein level analysis was performed as previously described

(Narva et al., 2012). In brief, the cells were lysed in buffer with

50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 0.5% Triton X-100, 5%

glycerol, 1% SDS, 1 mM Na3VO4, 10 mM NaF, and 1 mM PMSF.

After sonication, protein concentrations were measured with DC

Protein Assay (Bio-Rad), after which 63 SDS buffer (0.5 M Tris-

HCl [pH 6.8], 28% glycerol, 9% SDS, 5% 2-mercaptoethanol,

0.01% bromophenol blue) was added. After boiling for 5 min,

lysates were run in electrophoresis using 10% SDS-PAGE gel and

transferred into a nitrocellulose membrane. Membranes were



used in western blot analysis with antibodies listed in Supple-

mental Experimental Procedures.

Library Preparation and Next-Generation Sequencing
Samples were collected from H9p38 (non-targeted siRNA, siRNA2,

and siRNA3), HS360p62 (non-targeted siRNA, siRNA1, and

siRNA2), or HS360p66 (non-targeted siRNA and siRNA1) for

identification of target genes of POLR3G with next-genera-

tion sequencing (NGS) as indicated. The libraries for mRNA-seq

with HiSeq2000 platform (Illumina) were prepared from 1 mg

(HS360p62 or H9p38) or 0.3 mg (HS360p66) of total RNA. The sam-

ple preparation was performed with TrueSeq RNA Sample Prepara-

tion Kit v3 (Illumina) according to the kit manual. The smallRNA

library preparation for the HS360p66 sample was unsuccessful,

most likely due to the decreased presence of smallRNAs in the total

RNA pool. The libraries for smallRNA-seq were prepared from 1 mg

of total RNA, containing the smallRNA fraction, with Illumina

TruSeq smallRNA Sample Preparation kit according to the manual.

The libraries were size selected to enrich the smallRNAs with size

less than 250 bp. The cluster generation was performed auto-

matically with a c-Bot instrument (Illumina). The mRNA-seq

libraries were sequenced with 2 3 50 bp and smallRNA-seq with

1 3 50 bp chemistry and HiSeq2000 platform (Illumina).

Data Analysis of the mRNA-Seq Data
The sequence data were aligned against hg19 reference genome as-

sembly and annotated with the gencode (v19) gene annotations

(concatenated with tRNA annotations from the UCSC genome

browser) using TopHat2 (Trapnell et al., 2009). RPKM values were

computed using the total exon length and, with genes that have

multiple transcripts, the total exon length corresponding to the

transcript with longest total exon length was used. Genes were

filtered using a minimum of 0.1 RPKM value in at least two repli-

cates in at least one condition to exclude genes with expression

levels that are too low to differentiate from noise (Ramskold

et al., 2009). An additional filter was applied to extract transcripts

with a minimum RPKM value of 0.5 in all of the biological repli-

cates in one of the conditions. EdgeR (McCarthy et al., 2012), a

tool that handles multifactor experimental designs, was used to

determine differential expression to account for the paired design

of the input data. Adjusted p values were computed with the Ben-

jamini-Hochbergmethod and an FDRof 0.05was used as a primary

threshold for significance unless otherwise stated. Minimum fold

change cutoff of 1.5 was applied to extract the genes showing

consistent differences between the sample groups.

Data Analysis of the SmallRNA-Seq Data
SmallRNA-seq data were trimmed and mapped to the miRBase

database (build hg19) with Bowtie2 and to the hg19 human

reference genome (with gencode v19 and tRNA annotations)

with TopHat2. To minimize background noise, we filtered small-

RNA transcripts by requiring a minimum RPM of 0.5 in all of

the biological replicates in one of the conditions. EdgeR was

used to identify the differentially expressed smallRNAs and a

minimum expression change of 1.5-fold was used. In addition,

an adjusted p value cutoff (0.05) was applied to extract the statis-

tically significant differences.
Functional Enrichment Analysis
Ingenuity Pathway Analysis Tool (Qiagen, www.ingenuity.com)

was used to examine functional enrichments of the POLR3G-

dependent transcripts. This tool calculates the likelihood for

enrichment of the examined molecules in each functional cate-

gory with right-tailed Fisher exact test as indicated in the results.

Comparison with Publicly Available Datasets
POLR3G levels in pluripotent stem cells and other cell types

were extracted and visualized from the data available from

ESTOOLS data@hand database (Kong et al., 2013). The regulation

of the POLR3G-dependent genes during differentiation was exam-

ined in the data available from Gifford et al. (2013). The publicly

available ChIP-seq data were utilized to examine the binding of

known pluripotency factors and POLR3A to the proximity of

POLR3G-dependent genes (Lister et al., 2009; Alla and Cairns,

2014). To extract the binding sites that overlap with promoter re-

gions of polyA+ transcripts expressed in hESCs or regulated in

POLR3G manner, we first converted the genomic coordinates of

the binding sites from the hg18 assembly to hg19 using liftOver

(http://genome.ucsc.edu/). A promoter region was defined as

1,000 bp upstream of the TSS up to the end of the first exon or

the first intron (if present). In cases of multiple transcript IDs for

one gene ID, one transcript ID whose gene type is the same as its

transcript type was randomly selected. The number of POLR3G-

dependent genes whose promoter overlapped at least one binding

site was counted and the statistical significance of this overlap was

obtained using the hypergeometric test (wherein the population

size was the total number of expressed genes in hESCs, the sample

sizewas the number of POLR3G-dependent genes, and thenumber

of successes in the population was the number of expressed genes

overlapping with a binding sites). The filtering criteria used for ex-

tracting the POLR3G dependent genes for the enrichment analysis

were absolute average fold change R1.5 (consistent in direction

of fold change across paired samples) and FDR (Benjamini-Hoch-

berg) %0.05. Because of their multiple genomic locations (based

on the annotations used in this analysis), tRNAs were excluded

from this analysis.

Splicing Analysis
Splicing analysis was performed using rMATS (Shen et al., 2014),

which uses a hierarchical model to estimate the proportion of

ASEs based on the binomial distribution to model read counts

and the bivariate normal distribution to model variance between

replicates and to account for the covariance between paired case

and control samples. The following analysis parameters were

used: anchor length R8 (default) and the absolute difference in

proportion of splice variants DJ >0.2. The transcript annotations

were from gencode v19. Significant ASEs (FDR < 0.05) using junc-

tion counts and counts fromboth junction andnon-junction reads

were combined.MISO (Katz et al., 2010), a Bayesianmethod for de-

tecting differential splicing, was used, requiring number of reads

mapping to splicing event R20. ASEs were identified separately

for the three pair replicates and filtered with the following parame-

ters: Bayes factorR5, DJ >0.2, and number of reads supporting in-

clusion/exclusion isoform in case/control samples R10. Ensembl

splicing event annotations were used (Aken et al., 2016).
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POLR3G ChIP-Seq
The detailed protocol is available in Supplemental Experimental

Procedures. In brief, NT2D1 cells (passages 34 and 35) were fixed

with 1% formaldehyde (#28906, Thermo Fisher Scientific) for

10 min and the chromatin was isolated. The chromatin was frag-

mented by sonication for 5 min with Bioruptor Pico (Diagenode).

ChIP was carried out with antibody raised against human POLR3G

(Renaud et al., 2014) (SZ3070, a gift from Pascal Cousin and Profes-

sor Nouria Hernandez, University of Lausanne), and H3K4me3

(C15410003, Diagenode)was used as a positive control. The quality

and quantity of the ChIP-DNA was determined with Fragment

Analyzer (Kem-en-tec) and Qubit (Thermo Fisher Scientific). The

libraries were prepared with Microplex Library Preparation kit v2

(Diagenode) and NGS was carried out with Illumina HiSeq3000

with 1 3 50 bp chemistry. The data were analyzed in the Galaxy

(usegalaxy.org) (Afgan et al., 2016). The quality of the sequencing

data was analyzed with FastQC (Andrews, 2016). A total of

14,843,348–27,632,141 raw reads per sample were obtained. The

duplicate rates were 13%–27%. The reads were filtered with Trim-

momatic 0.32 (Bolgeret al., 2014) to remove low-quality reads; reads

with average quality below 20 were removed and reads with length

20–50 bp were retained. The reads were mapped to hg19 genome

with Bowtie2 2.2.6 (Langmead et al., 2009; Langmead and Salzberg,

2012) andnon-unique readswere discarded. The number of unique

aligned reads was 10,424,601–20,684,726 per sample. The ChIP

peaks were called withMACS 1.0.1 (Zhang et al., 2008) with default

parameters, except an arbitrary shift size of 100 bpwas used instead

of shifting model, and p value cut off was 1.00 3 10�4. The peaks

werevisualized in IGV2.3.72 (Robinsonetal., 2011;Thorvaldsdottir

et al., 2013). The overlapping peaks in the datasets were identified

with BEDTools (Quinlan and Hall, 2010).

ACCESSION NUMBERS

The NGS data are available at the NCBI GEO database with series

accession number GEO: GSE94696 (Edgar et al., 2002).
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