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Abstract14

Anthropogenic pollution is known to negatively influence an organism’s physiology,15
behavior and fitness. Epigenetic regulation, such as DNA methylation, has been hypothesized16
as a potential mechanism to mediate such effects, yet studies in wild species are lacking. We17
first investigated the effects of early-life exposure to the heavy metal lead (Pb) on DNA18
methylation levels in a wild population of great tits (Parus major), by experimentally19
exposing nestlings to Pb at environmentally relevant levels. Secondly, we compared nestling20
DNA methylation from a population exposed to long-term heavy metal pollution (close to a21
copper smelter), where birds suffer from pollution-related decrease in food quality, and a22
control population. For both comparisons, the analysis of about one million CpGs covering23
most of the annotated genes revealed that pollution-related changes in DNA methylation24
were not genome wide, but enriched for genes underlying developmental processes.25
However, the results were not consistent when using binomial or beta binomial regression26
highlighting the difficulty of modeling variance in CpGs. Our study indicates that post-natal27
anthropogenic heavy metal exposure can affect methylation levels of development related28
genes in a wild bird population.29
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Introduction37

Epigenetic control of gene expression, such as DNA methylation, is increasingly recognized38

as playing a major role in many different cellular processes. DNA methylation is the addition39

of a methyl (-CH3) group to the 5’ carbon site of cytosines catalyzed by DNA-40

methyltransferases that occurs mainly at CpG sites in animals. Especially in CpG islands41

within promotor regions, DNA methylation is found to be negatively associated with gene42

expression. Epigenetic changes are linked to variation in phenotype and behavior and are43

associated with prevalence for various diseases (Angers et al. 2010, Rosenfeld 2010, Skinner44

et al. 2010).45

Methylation patterns can be affected by various environmental factors such as46

maternal nutrition and maternal care (e.g. Weaver et al. 2004, Heijmans et al. 2008, Faulk47

and Dolinoy 2011, Feil and Fraga 2012), but also by various pollutants and other early-life48

stressors, both pre- and postnatally, as discovered in humans and mouse models (reviewed by49

Cheng et al. 2012, Head et al. 2012, Head 2014, Ray et al. 2014, Ruiz-Hernandez et al.50

2015). The potential effects of environmental factors on epigenetic regulation are highly51

important for ecological and ecotoxicological fields, but research in wild vertebrate52

populations is only emerging (Bossdorf et al. 2008, Head et al. 2012, Liebl et al. 2013,53

Wenzel and Piertney 2014, Riyahi et al. 2015, Rubenstein et al. 2016, Verhoeven et al. 2016,54

Sepers et al. 2019). However, epigenetics can significantly improve our understanding of the55

mechanisms underlying natural phenotypic variation and the responses of organisms to56

environmental change (Verhoeven et al. 2016). Furthermore, potential transgenerational57

epigenetic effects could explain why populations are slow to recover even after pollution58

removal (Head 2014).59

Heavy metals, such as Pb, are global, persistent human-induced pollutants that are60

among the potential contaminants affecting DNA methylation status (reviewed in Bihaqi61

2019). For example in human epidemiological studies, developing fetuses show a decrease in62
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global methylation levels as a result of historical maternal Pb exposure and accumulation63

(Pilsner et al. 2009, Wright et al. 2010). Furthermore, in rat, mouse and monkey models,64

experimental peri- and post-natal Pb exposure decreases DNA methyltransferase activity and65

affects DNA methylation, which are subsequently related to behavioral alternations (Wu et66

al. 2008, Faulk et al. 2013, Faulk et al. 2014, Luo et al. 2014, Sanchez-Martin et al. 2015,67

Singh et al. 2018, Nakayama et al. 2019). In birds, metal exposure has been found to affect68

offspring growth (Burger and Gochfeld 2000) and multiple aspects of physiology, including69

stress hormone and stress protein levels (Eeva et al. 2014), oxidative stress levels (Koivula70

and Eeva 2010) and immune function (reviewed in Boyd 2010). However, the potential71

epigenetic alterations by early-life exposure to metal pollution, potentially underlying such72

effects in birds, have not been studied.73

In addition to the direct effect of metals, large-scale metal pollution can decrease74

resource availability and quality in wild populations (Eeva and Lehikoinen 2004, Eeva et al.75

2005), which could subsequently also influence methylation patterns: Along with toxicants,76

altered nutrition and diet, especially diet poor in methyl donors, are well-known epigenetic77

modifiers in animal models (reviewed in Choi and Friso 2010, Rosenfeld 2010, Konycheva et78

al. 2011). Also protein or lipid-altered diets can cause major changes in the epigenome79

(Burdge et al. 2007, Aagaard-Tillery et al. 2008, Choi and Friso 2010). All in all, we expect80

populations inhabiting polluted environments to have altered DNA methylation patterns,81

either due to direct or indirect pollution effects.82

Here we investigated whether experimental and anthropogenic early-life exposure to83

the heavy metal Pb alters genome-wide DNA methylation status in a wild population of great84

tits (Parus major). First, we experimentally exposed nestlings to dietary Pb at levels found85

close to active pollution sources in Europe and compared to respective controls. The86

exposure covered the whole postnatal pre-fledging period. Second, we compared methylation87
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patterns from nestlings in a population close to an anthropogenic pollution source, copper88

smelter (Eeva et al. 1997) to nestlings from an unpolluted population. Around the smelter,89

nestlings are exposed to multiple metals (in low concentrations) pre-and postnatally and90

experience an altered nutritional quality and quantity compared to controls. In our recent91

work using the same experimental protocol we found that Pb exposure and altered nutrition92

during nestling development lead to changes in e.g. growth, oxidative stress markers, stress93

protein levels and vitamin metabolism, but the mechanisms, potentially epigenetic regulation94

are not understood (Eeva et al. 2014, Rainio et al. 2015b, Ruiz et al. 2016).95

Our objectives are two-fold. First, by comparing nestlings exposed to the96

experimental Pb treatment to the control group we aim to detect methylation changes directly97

induced by Pb during post-natal stage. Second, by comparing nestling methylation patterns98

from an environment with a long history of metal pollution, to an unpolluted population we99

aim to detect long term effects of pollutants on great tit methylation levels, that could be100

mediated via prenatal or postnatal metal exposure or via altered nutrition (latter coined as101

indirect effect of metal pollution). By these two comparisons we expect to find differentially102

methylated regions associated with genes that can potentially explain how wild bird103

populations cope with anthropogenic pollution. Given that there are not yet established104

golden standards for analyzing methylation data in an ecological context, we used and105

compared two frequently used analytical tools to detect differentially methylated sites106

(Wreczycka et al. 2017, Zhang et al. 2018).107

108

Methods109

Study species110

The great tit is a small passerine bird and a model species in ecological and evolutionary111

research, with ample ecological and genetic background information available. It is an112
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insectivorous non-migratory bird that commonly breeds in nest boxes, making it an ideal113

species for experimental manipulations. Importantly, as one of the only non-domesticated114

bird species, both the genome and methylome are available (Derks et al. 2016, Laine et al.115

2016, Verhulst et al. 2016).116

(1) Experimental Pb treatment and control population117

The Pb exposure, dosages and sampling are described in detail in (Eeva et al. 2014, Rainio et118

al. 2015b, Ruuskanen et al. 2015). Briefly, breeding was monitored to record hatching dates119

of great tit chicks in a population with low pollution levels in southwestern Finland (Turku,120

60°26’N, 22°10’E). From day 3 after hatching (hatch date = 0) until day 14 (i.e. in total 12121

days) whole broods were subjected to Pb with daily oral dosing with the following122

treatments: HIGH dose (4 µg Pb/g body mass, N = 15 broods) or CONTROL (distilled water,123

N = 15 broods). Based on calculations of fecal Pb levels in passerines at several polluted and124

reference sites across Europe (Nyholm 1994, Belskii et al. 1995b Eeva and Lehikoinen 1996;125

Eeva et al. 2005b; Dauwe et al. 2000; Dauwe et al. 2004, Eeva et al. 2009a, Berglund et al.126

2010) the estimated Pb intake averages 2.2–8.5 µg/g body mass daily in polluted and 0.2–0.5127

µg/g in control areas. Therefore, the dose represented environmentally relevant exposure128

levels occurring in polluted areas in Europe. The exposure period covered most of the post-129

hatching nestling period, i.e. most important developmental period in altricial birds.130

131

(2) Polluted environment: Copper smelter population132

133

The Harjavalta copper smelter (61°20’N, 22°10’E) was built in 1945 and great tits have been134

monitored since 1991 in the vicinity (<2 km) of the pollution source. Thus, this study site is135

suitable for investigating long-term exposure of several metals (e.g., Pb, arsenic, cadmium,136

copper, nickel) as well as lower food availability and quality (Eeva and Lehikoinen 2004).137
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The Mean fecal Pb concentrations have varied between 8-10 µg/g (dry mass, geometric138

mean) (Berglund et al. 2015) in nestlings in SMELTER. Assuming two year generation time139

interval, great tits have been exposed to environmental pollution for about 12 generations140

after the study population was established by placing nest boxes. These nests were monitored141

in the same way as in HIGH and CONTROL and nestlings were dosed with distilled water.142

The sample in the SMELTER consisted of 19 nests. The smelter site is ca 95 km from the143

experimental site. The breeding habitat was similar in both CONTROL and SMELTER,144

representing pine dominated forests with mixed spruce and birch. However, in the145

CONTROL area some oaks were scattered in the forest. The same control group was used for146

HIGH and SMELTER comparisons.147

148

Blood sampling protocol, DNA isolation and RRBS library preparation149

150

Blood samples were collected from 7-day old nestlings for sex-determination (following151

Griffiths et al. 1998) and only females were chosen for CONTROL, HIGH and SMELTER152

groups. Measurements were taken of multiple physiological indices (Eeva et al. 2014, Rainio153

et al. 2015a). Fresh fecal samples were collected for measuring metal concentrations (see154

below). Whole blood samples were collected directly in liquid nitrogen from nestlings at age155

of 14 days (i.e. after 12 days of treatment) for analyses of DNA methylation status and156

physiological indices. Samples were stored at −80°C until analysis. Ten unrelated (one157

nestling/brood) samples from female nestlings in HIGH and CONTROL groups, and eight158

samples from SMELTER group were selected randomly (total N = 28 samples). The159

experiment was conducted under licenses from the Animal Experiment Committee of the160

State Provincial Office of Southern Finland (license number ESAVI/846/ 04.10.03/2011) and161

the Centre for Economic Development, Transport and the Environment, ELY Centre162
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Southwest Finland (license number VARELY/149/07.01/2011). The details of the DNA163

isolation and RRBS library preparation are given in the supplementary material.164

165

Metal analyses166

For detailed analyses, see Eeva et al. (2014). Briefly, two fecal samples (one male and one167

female) from the same brood were combined to assess brood level metal exposure (total N =168

35 broods). The determination of metal concentrations (As, Cd, Cu, Ni, Pb) was conducted169

with ICP-MS with detection limit of 1 ppt (ng/l) and below. The calibration of the instrument170

was done with a commercial multi-standard from Ultra Scientific, IMS–102, ICP-MS171

calibration standard 2 and certified reference materials were used for method validation. Data172

was analyzed with GLMs (SAS 9.4) with Tukey post-hoc tests.173

174

Bisulfite sequencing analysis175

The initial quality check with Fastqc (Andrews 2010) indicated presence of Illumina176

universal adapter contamination and low quality (Q < 20) bases in the 3’ end of the raw177

reads. The adapter sequences were removed with Cutadapt (Martin 2014) and the low quality178

bases were filtered using Condentri (Smeds and Kunstner 2011) with default settings. The179

quality filtered reads were then mapped against the Great tit reference genome (Assembly180

Parus_major1.0.3; NCBI Bioproject PRJNA208335, Laine et al. 2016) using Bismark aligner181

with default parameters (L, 0, -0.2) allowing 2−3 mismatches or a comparable number of182

indels per 100 bp read (Krueger and Andrews 2011). Methylation information was extracted183

from alignment files using the bismark_methylation_extractor tool (Krueger and Andrews184

2011). The resulting methylation levels per base pair were inspected to detect potential185

methylation bias in the beginning and in the end of read 1 and 2 (Hansen et al. 2012). There186
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was lower methylation in the beginning and higher in the end of read 2. Therefore, the first187

four bases and the last base were removed from the read 2 for subsequent analyses188

(supplementary figure 1). On average, we recovered 16.08 million raw reads (range 13.55-189

21.15) from each RRBS library and after quality filtering 11.72 million reads remained190

(range 10.12-15.06). On average 6.36 million (54%) of the quality filtered reads were191

uniquely mapped against the Great tit reference genome. This translates to an average 322.45192

million cytosine bases analyzed, of which 179.95 million cytocines (56%) were methylated.193

We estimated the bisulfite conversion rate by aligning the reads against great tit194

mitochondrial DNA, which is mostly un-methylated (Mechta et al. 2017) and calculated the195

conversion rate as 1- methylation% in CpG context. The bisulfite conversion rate was 97.7-196

99.1%.197

In order to call methylated CpG sites from the Bismark methylation extractor files,198

the function readBismarkCoverage in the R package Methylkit (Akalin et al. 2012) was used.199

Using a minimum coverage threshold of 10, on average 1 309 860 (range 1 062 814-1 545200

820) methylated CpG sites were obtained for the CONTROL-HIGH comparison and201

1344110 (range 1062814-1774992) CpG sites for the CONTROL-SMELTER comparison.202

The CpGs were then filtered by extreme coverage to remove e.g. potential PCR duplicates203

using 99.9% percentile upper threshold as implemented in the function filterByCoverage in R204

package Methylkit. Methylated CpG sites were also median normalized to take into account205

differing library sizes using normalizeCoverage function in R package Methylkit. Finally,206

CpG sites were united such that the data set contained only CpG sites covered by a minimum207

of seven individuals per group. The subsequent data sets comprised 1023725 and 903449208

CpG sites for CONTROL-HIGH and CONTROL-SMELTER comparisons, respectively.209

879056 CpG sites were shared between these two comparisons .The range of mean and210
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median coverage was 25.94-33.31 and 17-27 in the CONTROL- HIGH comparison. The211

respective statistics were 33.73-41.50 and 27-37 in the CONTROL- SMELTER comparison.212

Statistical analyses213

Two commonly used methods were used for the identification of differentially methylated214

CpG sites. First, a generalized linear model was used as implemented in the R package215

Methylkit. This method assumes that the methylated and un-methylated counts follow a216

binomial distribution and the effect of group/treatment can be estimated with a log-likelihood217

test (Akalin et al. 2012). Second, a generalized linear model assuming beta binomial218

distribution was used taking into account potential overdispersion by estimating a gene-219

specific shrinkage operator as implemented in R package dss (Feng et al. 2014). Currently,220

potential overdispersion has not thoroughly been tested in MethylKit and thus was not221

applied. In both methods, the model was fitted for each CpG site separately and we compared222

the pairwise methylation differences between the CONTROL and HIGH and CONTROL and223

SMELTER groups. For beta binomial regression the original p-values were recalculated224

based on the test statistics as implemented in the R-package fdrtool (Strimmer 2008b). Since225

the binomial regression method implemented in the R package Methylkit does not report test226

statistics and the method is not recommended to be used with U-shaped p-value distributions227

(Strimmer 2008b), the re-estimation of p-values were conducted only for the beta binomial228

regression. The model fits were evaluated by inspecting the resulting p-value histograms.229

Under a proper null model one would expect that the p-value histogram follows230

approximately uniform distribution, but if there is an effect of treatment then a surplus of231

small p-values is expected (Fodor et al. 2007, Barton et al. 2013, Garamszegi and de232

Villemereuil 2017). Deviations from the uniform distribution may provide information about233

the misspecification of the model or problems in the data.234
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The test statistics of goodness-of-fit test (Chi-square) of the p-value histograms and235

visual inspection indicated deviations from the uniform distribution in both methods (Fig 1,236

Table 1). However, the deviation in the beta binomial regression was smaller than the237

deviation in the binomial regression and the test statistics were lower when the p-values were238

re-calculated with fdrtool (Table 2). The deviations from the uniform distribution possibly239

indicate that our data do not fit to model assumptions or problems with the raw data240

(Strimmer 2008a, b). Also, methods for multiple testing assume uniform distribution241

(Strimmer 2008a). Therefore, we further investigated the deviation from uniform distribution242

by filtering the potentially uninformative CpGs. We used independent filtering approach243

where those p-values deviating from the uniform are filtered out based on appropriate filter244

statistics. In gene expression data the mean count for each transcript across all samples has245

been successfully used as a filter statistics (Bourgon et al. 2010). Using similar approach, we246

calculated the mean of methylated counts (i.e. Cs) for each CpG across all individuals. Note247

that the count of C determines relative to the count of T (un-methylated) the methylation248

level of a given CpG. We applied a threshold for the rank of mean methylated C counts and249

filtered out those CpGs that were causing the deviation from the uniform distribution250

(Supplementary figures 6 and 7) by keeping most of the significant CpGs. By removing 30%251

of the lowest C counts we recovered p-value distribution closer to the uniform distribution252

and a surplus for small (p<0.05) p-values (Figure 2, Table 2). The filtering was carried out253

using R package genefilter (Gentleman et al. 2018). The filtering approach also increased the254

number significant CpG sites after controlling for multiple testing (fdr <0.05) in all255

comparisons (Table 2).256

Identification of DMRs257

Differentially methylated regions (DMRs) or clusters of differentially methylated CpG sites258

were identified based on the results of both binomial and beta binomial models. The259
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following criteria were used to identify DMRs: (i) minimum size of a DMR = 50 bp, (ii)260

minimum number of CpGs in the DMR = 3 and (iii) the percentage of CpGs with fdr <0.05 =261

50 % , (v) and more liberally by including the percentage of CpGs with p-value < 0.01 in the262

cluster = 50%. The identification of DMRs was conducted in the R package dss.263

Annotation of differentially methylated regions264

The location and association of the all CpGs with a given genomic feature was determined265

using the Great tit genome assembly and annotation 1.1 (Laine et al. 2016). More266

specifically, each CpG was annotated with respect to location in genes and promoter regions,267

which were defined as 3 kb upstream from the gene start (Viitaniemi et al. 2019). We268

excluded alternative transcripts in defining promoters. Some CpGs annotated to both genes269

and promoters. The annotation was conducted using the IntersectBed option in the BedTools270

package to identify the only the overlapping genomic features (Quinlan and Hall 2010).271

Altogether, CpGs present in the CONTROL-HIGH and CONTROL-SMELTER comparisons272

were annotated to 13364 and 12972 genes, respectively. These data sets cover 72% and 70%273

of the total number of the annotated genes (18550) in the Great tit genome. Of all the274

1023725 CpGs analyzed in the CONTROL-HIGH comparison, 683392 CpGs were found275

within genes (66.8%) and 451843 (44.1%) within promoters. Of the 903449 CpGs in276

CONTROL-SMELTER comparison 602997 (66.7%) were located within genes, and 398381277

(44.1%) CpGs within promoters. The annotation includes also the overlapping parts of gene278

bodies and promoters.279

STRING database (Szklarczyk et al. 2015) was used to identify gene ontology categories280

associated with the DMRs. Annotated genes without generic names i.e. genes with LOC281

identifier were excluded from the analyses. A hierarchical clustering with a user-specified282

cutoff value C (0.5) was used as implemented in REVIGO database for merging of283

semantically similar GO categories corresponding to 1% chance of merging two randomly284
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generated categories (Supek et al. 2011). The lowest fdr corrected p-values of the initial285

enrichment analyses were used to select a representative GO term for each merged category.286

Results287

Metal exposure288

Our dietary Pb treatment (HIGH Pb) significantly increased fecal Pb concentrations289

compared to the CONTROL (Table 1). At the SMELTER site, we found intermediate fecal290

Pb levels, not significantly different from either HIGH or CONTROL (Table 1). In the291

SMELTER area, concentrations of other measured heavy metals (As, Cu, Cd, Ni) were292

higher than in CONTROL or HIGH treatment (Table 1).293

294

DNA methylation295

Descriptive methylation patterns among the treatment groups296

The average methylation percentages across all CpGs were 27.97 and 28.01 in CONTROL-297

HIGH Pb comparison, and 26.82 and 26.67 in CONTROL-SMELTER comparison. The298

mean difference in methylation in CONTROL-HIGH and CONTROL-SMELTER299

comparisons were −0.0013% and 0.0015%, respectively. There were no marked differences300

in the methylation percentage using 2% cutoff between the major chromosomes in either301

comparison (Supplementary figure 2). Also, there were no clear patterns in sample clustering302

in either of the comparisons based on hierarchical clustering or principal components analysis303

(Supplementary figure 3, Supplementary figure 4).304

Differentially methylated CpG sites and DMRs in CONTROL HIGH comparison305
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We identified 96 377 (9.4%) differentially methylated CpGs in the CONTROL-HIGH306

comparison using binomial GLM (Table 2) at p-level 0.05, and after fdr correction (<0.05)307

9555 CpGs remained. Almost equal proportion of the significant CpGs showed308

hypomethylation (45.9%) in CONTROL and hypermethylation (54.1%) in HIGH309

(supplementary figure 5). Beta binomial GLM identified 16852 (1.6%) differentially310

methylated CpGs in CONTROL-HIGH comparison at p-level 0.05 (Table 2) and seven CpGs311

after fdr correction. Altogether, 336 DMRs were detected in binomial regression and 72312

DMRs in beta binomial regression in CONTROL-HIGH comparison.313

Differentially methylated CpG sites and DMRs in CONTROL SMELTER comparison314

We identified 129 830 (14.4%) CpGs in CONTROL-SMELTER comparison using binomial315

GLM at p-level 0.05 and 25222 CpGs remained after fdr correction. 52.5% of the significant316

CpGs were hypomethylated and 47.5% were hypermethylated (supplementary figure 5). Beta317

binomial GLM identified 22669 (2.5%) CpGs in CONTROL-SMELTER comparison at p-318

level <0.05 and 33 remained after fdr correction. Altogether, 781 DMRs were detected in319

binomial regression and 159 DMRs in beta binomial regression in CONTROL-SMELTER320

comparison.321

The overlap between differentially methylated CpG sites and DMRs between the two322

comparisons323

2789 (2.9%) of the significant CpGs showing hypomethylation, and 3022 (3.1%) showing324

hypermethylation were shared between CONTROL-HIGH and CONTROL-SMELTER,325

respectively (supplementary figure 5). 946 (1.5%) of the significant CpGs showing326

hypomethylation, and 947 (1.5%) showing hypermethylation were shared between327

CONTROL-HIGH and CONTROL-SMELTER comparisons (Supplementary figure 5).328

Using binomial regression, 30 DMRs that had exactly the same starting position were shared329
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between CONTROL-HIGH and CONTROL-SMELTER comparisons. Using beta binomial330

regression, three DMRs were shared between these two comparisons. Of the DMRs identified331

in binomial regression, 54% and 40% of were hypomethylated in CONTROL compared to332

HIGH and SMELTER, respectively. In beta binomial regression 48% and 38% of the DMRs333

were hypomethylated in CONTROL compared to HIGH and SMELTER, respectively. This334

suggests that there was no clear pattern of hypo- or hypermethylation in respect to pollution.335

Annotation of the DMRs336

The mean methylation in DMRs (identified by binomial regression) was higher for gene337

bodies than promoters in CONTROL (50.4% vs. 25.7%) in HIGH (49.7% vs. 24.9%). Similar338

pattern was found in DMRs between CONTROL (48.4% vs. 30.1%) and SMELTER (46.7%339

vs. 26.6%). These differences were also statistically significant (permutation test, 1000340

replicates, p = 0.001). The DMRs identified in binomial regression in CONTROL-HIGH341

were annotated to 123 unique genes and 53 promoter regions excluding predicted genes.342

CONTROL-SMELTER DMRs were annotated to 281 genes, and 115 promoter regions. The343

DMRs from the beta binomial regression were annotated to 33 unique genes and, 8 promoter344

regions in. CONTROL-HIGH and to 66 genes and 34 promoter regions in CONTROL-345

SMELTER. In CONTROL HIGH comparison, the number of DMRs showing hyper or hypo346

methylation in gene bodies and promoters were similar. In SMELTER site, gene bodies and347

promoters shows tendency for hypermethylation (57% of the DMRs in gene bodies and 67%348

in promoters, respectively).349

Gene enrichment analyses indicated 15 statistically significant (fdr < 0.05) gene350

ontologies in CONTROL-HIGH comparison and 62 gene ontologies in CONTROL-351

SMELTER comparison, when using DMRs from the binomial regression. No statistically352

significant gene ontologies were found in either comparison among the DMRs identified in353

beta binomial regression. After merging semantically similar gene ontologies using REVIGO354
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database, 5 and 11 enrichments remained in CONTROL-HIGH and CONTROL-SMELTER355

comparisons, respectively (Figure 3, Figure 4). Most of the gene ontologies were associated356

with developmental processes and were described under GO terms such as “system357

development” or “nervous system development” (Figure 3, Figure 4). Other categories358

involved cell-cell signaling or categories involving in transmitting information between cell359

and its surroundings (Figures 3, 4). Finally, we also report 10 DMRs with the largest360

differences in methylation levels (Supplementary Table 1). These included 12 genes (POMC,361

ITGA11, LEKR1, USH2A, ZPR1, JMJD1C, ADAMTS3, PDE1C, TBP, PAPD4, GCC1 and362

UTRN) that may serve as potential candidates for further studies on the effects of pollution on363

organisms via DNA methylation.364

365

Discussion366

We studied whether early-life exposure to pollution affects DNA methylation patterns in wild367

great tit populations. We found evidence that both direct Pb exposure during post-hatching368

stage and long-term anthropogenic pollution affect methylation levels of a small number369

(0.25-2.1%) genes from which we were able collect data. The number of CpGs and DMRs370

varied between binomial and beta binomial regression to a large extent such that binomial371

regression was more liberal than beta binomial regression. We found that genes associated372

with early developmental traits were enriched among the DMRs in binomial regression373

potentially linking methylation differences to biologically meaningful traits in birds living in374

polluted environments. However, this result was not consistent between the two statistical375

methods highlighting the difficulty of modeling the variance in the CpGs. Nevertheless, our376

results suggest that post-hatching, not only prenatal, environment modifies DNA methylation377

patterns in wild vertebrates.378
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Causal and direct effects of Pb pollution on DNA methylation: CONTROL-HIGH comparison379

Our data on fecal metal levels presented here, as well as data on bone Pb levels (Pb380

accumulates in bone) from the same broods (Eeva et al. 2014, Ruuskanen et al. 2015) shows381

that the HIGH group was indeed exposed to higher levels of Pb than CONTROL during the382

post-hatching period. The measurements correspond to observed Pb levels in polluted383

environments across Europe (Belskii et al. 1995a, Belskii et al. 1995b, Eeva and Lehikoinen384

1996, Belskii et al. 2005, Berglund and Nyholm 2011), thus validating the effectiveness and385

environmental relevance of the Pb exposure treatment.386

The HIGH-CONTROL comparison represents direct effects of Pb exposure post-387

hatching. There were no differences in the general methylation levels (hypo- or388

hypermethylation) between the two groups in either at the CpG or DMRs, in contrast for389

example to previous epidemiological studies in humans (Pilsner et al. 2009, Wright et al.390

2010). The identified GO terms that were found to be enriched using the binomial regression391

analysis suggest that high Pb exposure may affect methylation of genes associated with392

biological processes such as system development and developmental processes. In previous393

studies, similar developmental pathways have been identified in rodents, but also sex-specific394

differences reported (Singh et al. 2018). These results makes sense in the light of what is395

known from previous studies in the same study system. For example, in the HIGH Pb396

treatment, vitamin A, retinol and stress protein levels were higher than in the CONTROL397

(Eeva et al. 2014, Ruiz et al. 2016). However, we acknowledge that the patterns that we398

found in blood tissue can be different in other tissues, but that the majority of the findings are399

likely to be similar for other tissues, as found previously in the study species (Derks et al.400

2016, Lindner et al. 2021 Verhulst et al. 2016, Husby 2020). Also, relative little is known401

about the temporal stability of CpG methylation in great tits or other birds (Sepers et al.402

2019). Viitaniemi et al. (2019) found that the majority of the CpGs showed stabile403
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methylation during the breeding season of an experimental great tit population. We cannot404

however, rule out the possibility that these changes are transient, and different methylation405

patterns may emerge in another life stage than 14 day-old offspring. Furthermore, If the406

observed methylation differences Pb to altered gene expression at the target genes, our results407

imply that the effects of pollution on such a variable set of genes may alter various408

developmental and cellular processes and ultimately health and phenotype.409

Effects of long-term environmental pollution on DNA methylation: CONTROL-SMELTER410

comparison411

At the SMELTER site, a population residing in an environment with long-term pollution412

exposure, birds were exposed to various pollutants, such as copper, nickel, cadmium and413

arsenic, originating from the nearby copper smelter (Eeva et al. 2014), with levels higher414

compared to CONTROL population. However, importantly, food quality and availability415

likely differed between CONTROL and SMELTER, as pollution reduces some important416

food sources such as caterpillars, and other insects in the area (Eeva and Lehikoinen 1996,417

Eeva et al. 2003). Detailed studies on invertebrate abundance at polluted and control sites418

have shown that especially the amount of nutritious (e.g. rich in carotenoids) caterpillar419

larvae of moths have decreased in the polluted area (Eeva and Lehikoinen 1997; Sillanpää et420

al. 2009). This difference in abundance can be seen in the diet of great tit nestlings: the diet421

of great tit nestlings contained ca. 20 % less (based on biomass) moths and caterpillars as422

compared to the control area (Eeva et al. 2005). Decreased caterpillar availability manifest423

in inferior growth and less yellow plumage of great tit nestlings (Eeva et al. 2009). The metal424

concentrations observed at the SMELTER area are generally below the critical levels425

associated with sub-clinical effects (Berglund et al. 2012), suggesting that indirect pollution426

effects via lower quality food is more likely (Eeva et al. 2005). The CONTROL and427

SMELTER population are not likely to differ genetically (given the low genetic428
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differentiation in this species even at European scale, e.g. Lemoine et al. 2016) and the429

habitats are relatively similar. However, at the SMELTER site, individuals are be exposed to430

pollutants already pre-hatching (e.g. Ruuskanen et al. 2015) contrary to experimental birds,431

but the importance of timing of the exposure is not well understood.432

Contrary to predictions we did not find general differences in hypo/hypermethylation433

in CpGs or DMRs. Only when the DMRs annotated to genes were inspected, a tendency for434

hypermethylation was detected especially in the promoters of 155 genes (binomial) and 34435

genes (beta-binomial) was detected. We detected a signal on differential methylation for436

genes related to nervous system in CONTROL-SMELTER comparison, which could437

potentially point to cognitive or behavioral changes. Parallel to our results, both prenatal Pb438

and malnutrition have recently been found to influence methylation of genes in pathways439

associated with neuronal proliferation and differentiation in mice and embryonic cell models440

(Senut et al. 2012, Senut et al. 2014, Weng et al. 2014, Sanchez-Martin et al. 2015, Singh et441

al. 2018, Dou et al. 2019). In humans, captive animal models and wildlife, both early442

nutrition and metal exposure, particularly Pb, have well-documented detrimental effects on443

cognitive abilities and behavior that persist into adulthood (e.g., impaired learning, memory,444

increased aggression, hyperactivity Brown et al. 1971, Morgan et al. 2000, Burger and445

Gochfeld 2005, Carere et al. 2005, Arnold et al. 2007, Chen et al. 2012, Ruuskanen et al.446

2015). Until now, the role of epigenetic mechanisms underlying such effects has not been447

thoroughly characterized. Our results can thus stimulate further research on the potential448

epigenetic mechanisms explaining the long-lasting influences of early-life adverse449

environment on behavioral and cognitive traits. If the observed methylation differences Pb to450

altered gene expression at the target genes (see below), they could contribute to the potential451

developmental problems associated with poor nutrition. For example, we found that452

SMELTER group showed lower growth rates, higher antioxidant enzyme and stress hormone453
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levels, lower hematocrit and survival probability than CONTROL (Eeva et al. 2014, Rainio et454

al. 2015b, Ruiz et al. 2016).455

456

Overlaps between the two comparisons457

458

We found very little overlap (~1-3%) in methylation of individual CpG sites between the459

CONTROL-HIGH and CONTROL-SMELTER comparisons. However, on the DMR level460

and their annotations showed some overlap indicating that the exposure to the Pb treatment461

and metal-polluted at the smelter site can induce similar methylation changes. This suggests462

some direct effects of metals also at the smelter site. The gene ontology enrichments also463

mainly pointed that developmental processes were similar in these two comparisons464

suggesting that the overall effect of pollution is in the same direction. However, the majority465

of methylation differences in CONTROL and SMELTER are thus likely to be explained by466

(i) other elements than Pb, (ii) and/or indirect effect of food, (iii) or their combination, or by467

(iv) SMELTER site birds exposed to metals prenatally, compared to only postnatal exposure468

in the HIGH group. Currently, we cannot distinguish between these alternatives. In general,469

the number of DMRs between CONTROL and SMELTER were considerably higher than in470

CONTROL-HIGH comparison probably reflecting exposure to a more stressful environment,471

both nutritional stress and direct exposure to pollutants of various types pre and post-natally.472

473

Functional consequences of varying DNA methylation levels?474

Importantly, when interpreting the potential functional consequences of the observed475

methylation differences, one needs to note that not all these genes with DMRs have been476

characterized in birds (and annotation has been done using mainly chicken and zebra finch477
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gene models). Thus, the function of these genes is not well understood. Secondly, the link478

between DNA methylation and gene expression is not always straightforward depending on479

the genomic feature where the methylation changes occur (Jones 2012). Promoter480

methylation has been found to be inversely correlated with gene expression (Lou et al. 2014),481

but gene body methylation can have similar effects (Dixon et al. 2018). However, we482

hypothesize that differential methylation at the observed sites affects gene activity and483

ultimately multiple cellular, developmental and physiological processes. Indirect evidence for484

a functional interpretation is provided by a recent great tit study using whole-genome485

bisulfite and RNA-seq data. This study showed that across all genes, higher CG methylation486

at transcription start sites and within gene bodies was associated with lower gene expression487

(Laine et al. 2016). Finally, without detailed knowledge on gene function or differences in488

expression, it is difficult to judge whether the observed changes in methylation cause489

differences in phenotype and physiology we previously observed between HIGH Pb exposure490

and CONTROL groups (Eeva et al. 2014, Rainio et al. 2015b, Ruiz et al. 2016). Therefore,491

follow-up studies are needed to investigate how the observed parameters are affected by492

differential methylation in one or more of the regions.493

The performance of the binomial and beta-binomial models494

We employed two commonly used methods to detect CpGs and evaluated their performance495

using p-value histograms. Either one of these methods did not recover uniform p-value496

histograms in our data when applied to overall coverage threshold of 10x, pointing out that497

the p-values are not reliable as such. When we applied a filtering approach, developed for498

gene expression count data, we were able to recover uniform distribution for both methods.499

Thus, it appears that uninformative counts i.e. low counts for methylated state can induce a500

clear deviation from the uniform distribution. In other words, the small methylation501

differences between treatment groups are potentially difficult to model using the two502
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statistical approaches. While we applied an overall coverage threshold of 10x to our data, it503

seems that another filtering step is needed for C counts to recover uniform p-value504

distribution at least in our data set.505

Overall, the performance of the binomial and beta binomial regression reflects the506

outcome of previous studies on simulated and empirical data sets: binomial regression has507

been found to be more liberal in finding CpGs as compared to beta binomial regression508

(Dolzhenko and Smith 2014, Park and Wu 2016, Wreczycka et al. 2017), and we also found509

considerably more CpGs and DMRs in both comparisons using binomial than beta binomial510

regression. The likelihood of false negatives is higher when stringency of accounting for the511

number of tests is lower. Also, this is more apparent in the individual CpG site analysis then512

in the DMR analysis. Yet, in this novel and explorative study, identifying a set of potentially513

affected CpGs and DMRs, very strict correction for the number of tests would lead to a large514

type II error and thus failure to recognize differentially methylated sites or regions as515

significant. Overall, the comparison between the two methods is challenging in empirical516

data sets but both methods seem to recover uniform p-value distribution when uninformative517

CpGs are filtered out. We view our analysis as a starting point for further functional518

validation of our findings.519

Conclusions520

In this study, we explored the environmental causes of epigenetic variation in an ecological521

model organism, which is a novel and emerging research field. We found evidence that522

differentially methylated regions contain genes enriched for biologically meaningful523

processes and suggest potential targets for future research. Although we used a method that524

does not cover the whole genome, we were able to analyze methylation patterns covering525

most of the annotated genes in great tit genome. However, the results were not consistent526

between binomial and beta binomial regression, which warrants caution when selecting527
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analysis methods and interpreting results using different methods. Finally, the functional528

consequences of variable methylation patterns found in this study are yet to be discovered529

and a more comprehensive approach combining other molecular levels as well functional530

studies is needed.531
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Tables884

Table 1. Metal concentrations (µg/g, dry weight) in feces of seven day old Parus major885

nestlings in the three treatment groups. The values are geometric means with 95% CIs. GLM886

and Tukey’s test: means with the same letter are not significantly different. N indicates887

number of broods.888

Metal HIGH
n = 12

SMELTER
n = 11

CONTROL
n = 12 Fndf, ddf p

Pb 8.0 (4.8-13.3) a 4.4 (2.6-7.6) ab 2.2 (1.3-3.6) b 3.702,32 0.03

As 0.40 (0.25-0.62) a 4.3 (2.7-6.9) b 0.60 (0.38-0.95) a 24.42,32 <0.0001

Cd 0.73 (0.51-1.04) a 1.93 (1.34-2.78) b 0.54 (0.38-0.76) a 10.22,32 0.0004

Cu 34.6 (27.1-44.1) a 111 (86-144) b 29.6 (23.2-29.6) a 12.92,32 <0.0001

Ni 2.24 (1.6-3.1) a 20.6 (14.5-29.2) b 1.99 (1.4-2.8) a 34.52,32 <0.0001

889

890

Table 2. The number and percentage (in parentheses) of p-values for CpG sites less than 0.05891

in different comparisons. Fdr refers to multiple testing correction using Benjamini &892

Hochberg (1995) method. The test statistics of goodness-of-fit test (χ2) of the p-value893

histograms indicated deviations uniform p-value distribution in unfiltered data, which894

improved (i.e. higher χ2 values)with filtering (‘filter’).895

Comparison p-value < 0.05 fdr < 0.05 χ2 -statistics
Binomial CONTROL HIGH 96377 (9.4) 9555 793200
Binomial CONTROL SMELTER 129830 (14.4) 25222 851790
Beta-binomial CONTROL HIGH 16852 (1.6) 7 358240
Beta-binomial CONTROL SMELTER 22669 (2.5) 33 236840
fdrtool CONTROL HIGH (beta-binomial) 62789 (6.1) 520 192880
fdrtool CONTROL SMELTER (beta-
binomial)

67418 (7.5) 1811 149650

Binomial CONTROL HIGH - filter 89486 (12.5) 11334 122810
Binomial CONTROL SMELTER -filter 122463 (19.4) 30782 420650
Beta-binomial CONTROL HIGH - filter 61867 (8.6) 759 31295
Beta-binomial CONTROL SMELTER - filter 66714 (10.5) 2492 67606

896
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898

Figures899

900

Figure 1901

P-value histograms of the binomial (methylkit, A, B) and beta-binomial regression (dss, C,902

D) in CONTROL-HIGH and CONTROL-SMELTER comparisons. The p-values of the beta903

binomial regression were re-calculated based on the test statistics as implemented in the904

fdrtool R-package (E, F).905

906

907
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908

Figure 2. The p-value histograms after low coverage filtering in binomial regression909

(methylkit) and in beta binomial regression (dss). The p-values in beta binomial regression910

are based on the re-calculated p-values in fdrtool.911

912
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913

914

Figure 3. Results of the gene enrichment test for DMRs identified in the binomial regression915

in the CONTROL-HIGH comparison after merging semantically similar gene ontology916

categories. Circle size indicates the frequency of the GO term in the underlying GO database917

(bubbles of more general terms are larger; http://revigo.irb.hr/) and color scale shows the fdr918

(log10 scale) of the representative GO term for each merged category.919
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920

Figure 4. Results of the gene enrichment test for DMRs identified in the binomial regression921

in the CONTROL-SMELTER comparison after merging semantically similar gene ontology922

categories. Circle size indicates the frequency of the GO term in the underlying GO database923

(bubbles of more general terms are larger; http://revigo.irb.hr/) and color scale shows the fdr924

(log10 scale) of the representative GO term for each merged category.925

926

927

http://revigo.irb.hr/
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928

Supplementary material929

930

Supplementary figure 1931

Methylation bias (M-bias) plots for read 1 (a) and for read 2 before (b) and after (c) cutting932

the bases showing lower or higher methylation than the other bases in the read. Four bases933

were cut from the beginning of the read 2 and one from the end of the read 2. The grey lines934

show the methylation percentage in all libraries along the position in the reads and the black935

line shows the mean methylation level across all libraries. On the x-axis is the position in the936

read and on the y-axis the methylation percentage.937

938
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939

Supplementary figure 2940

The percentage of hypo (black) and hypermethylated (grey) CpGs in Great tit major941

chromosomes. In (a) CONTROL and HIGH and in (b) CONTROL SMELTER comparisons.942

943

944

Supplementary figure 3945
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Hierarchical clustering of all individuals in (a) CONTROL HIGH and (b) CONTROL946

SMELTER comparisons.947

948

949

Supplementary figure 4950

Principal component analysis of all individuals and CpGs in CONTROL HIGH (a) and in951

CONTROL SMELTER (b) comparisons. The x-axis shows the variance explained by PC1952

and y-axis variance explained by PC2.953
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954

Supplementary figure 5.955

Venn diagrams showing the overlap of the significant CpGs between CONTROL-HIGH (left956

side of each diagram) and CONTROL-SMELTER (right side of each diagram) comparisons.957

In the upper panel is the overlap in binomial regression and in the lower panel the overlap in958

beta-binomial regression. Numbers at the lower right in each box show total number of sites.959
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960

Supplementary figure 6. The principle of filtering uninformative CpGs. On the x-axis is the961

rank of filter statistics i.e. the mean coverage of Cs in each analyzed CpG. On the y-axis is962

the -log10 p-value obtained either from binomial regression (methylkit) or from beta963

binomial regression (dss). The red filled circles are CpGs not passing the filtering threshold964

(30%) while the filled black circles are CpGs passing the filtering threshold.965

966
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Supplementary figure 7. The filtering approach shown as p-value histogram. The yellow968

color shows the effect of removing low coverage CpG sites along the p-value distribution.969

The blue colour shows the p-values remaining after the low coverage filtering.970

971

DNA isolation972

DNA isolation was performed at the Center of Evolutionary Applications (University of973

Turku, Finland). We used whole blood samples, which can be acquired without sacrificing974

the individuals. In birds erythrocytes have nuclei and therefore >95% of the gained DNA is975

from erythrocytes. DNA was extracted from c. 10 − 20 l whole blood using the salt976

extraction method modified from Aljnabi & Martinez (1997). Extracted DNA was treated977

with RNase-I according to the manufacturer's protocol. DNA concentrations were measured978

fluorometrically with a Qubit High Sensitivity kit (ThermoFisher Scientific) and we assessed979

DNA integrity by running each DNA sample on an agarose gel.980

981

RRBS library preparation982

We used a reduced representation bisulfite sequencing (RRBS) approach, which enriches the983

regions of the genome that have a high CpG content (Meissner et al. 2005). It was previously984

shown in the study species that the vast majority of the methylated cytocines (97%) were985

derived from CpG context in blood (Derks et al. 2016). Sequencing was conducted at the986

Finnish Microarray and Sequencing Center in Turku, Finland. The library preparation was987

started from 200 ng of genomic DNA and was carried out according to a protocol adapted988

from Boyle et al. (2012). The first step in the workflow involved the fragmentation of989

genomic DNA with MspI where the cutting pattern of the enzyme (C^CGG) was used to990

systematically digest DNA to enrich for CpG dinucleotides. After a fragmentation step, a991

https://en.wikipedia.org/wiki/CpG_site
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single reaction was carried out to end repair and A-tail (required for the adapter ligation) the992

MspI digested fragments using Klenow fragment (3’ => 5’ exo), following the purification of993

A-tailed DNA with bead SPRI clean-up method (AMPure magnetic beads). A unique994

Illumina TruSeq indexing adapter was then ligated to each sample during adapter ligation995

step to be able to identify pooled samples of one flow cell lane. To reduce the occurrence of996

adapter dimers, a lower concentration of adapters (1:10 dilution) was used than recommended997

by the manufacturer. These ligated DNA fragments were purified with the bead SPRI clean-998

up method before putting samples through bisulfite conversion to achieve C-to-U conversion999

of unmethylated cytosines, whereas methylated cytosines remain intact. Bisulfite conversion1000

and sample purification were done according to the Invitrogen MethylCode Bisulfite1001

Conversion Kit. Aliquots of converted DNA were amplified by PCR (16 cycles) with1002

Taq/Pfu Turbo Cx Polymerase, a proofreading PCR enzyme that does not stall when it1003

encounters uracil, the product of the bisulfite reaction, in the template. PCR-amplified RRBS1004

libraries were purified using two subsequent rounds of SPRI bead clean-ups to minimize1005

primer dimers in the final libraries. The high quality of the libraries was confirmed with1006

Advanced Analytical Fragment Analyzer and the concentrations of the libraries were1007

quantified with Qubit® Fluorometric Quantitation, Life Technologies. We selected fragment1008

sizes ranging between 150 − 1000 bp (average sizes were 250-350 bp) for sequencing.1009

1010

Sequencing1011

The samples were normalized and pooled for the automated cluster preparation, which was1012

carried out with an Illumina cBot station. The 28 libraries were randomly combined in three1013

pools, 10 or 8 samples in each pool and sequenced in 3 lanes. The samples were sequenced1014

with an Illumina HiSeq 2500 instrument using TruSeq v3 sequencing chemistry. Paired-end1015

sequencing with 2 x 100 bp read length was used with 6 bp index run.1016

1017
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Supplementary Table 1. Top 10 DMRs for CONTROL-HIGH and CONTROL-SMELTER comparisons, separately for binomial and1018
betabinomial models.Mean Met% = average methylation percentage. Met% difference = difference, in percentages, in methylation between two1019
groups. CO = control, HI = HIGH, SME = SMELTER1020

CHROMOSOME POSITION (bp) ANNOTATION DMR length
No.
CpGs

Mean met%
CO

Mean met%
HI/SME

Met%
difference

A) CO-HIGH binomial
chr10 19104012 19104107 ITGA11 96 4 80.08 49.96 30.12
chr9 24013175 24013233 LEKR1 59 7 45.12 69.51 -24.38
chr13 12002300 12002394 . 95 8 31.02 54.51 -23.49
chr28 1285543 1285681 . 139 4 60.02 83.44 -23.42
chr3 20274597 20274654 USH2A 58 6 51.39 73.61 -22.22
chr24 788116 788169 ZPR1 54 4 40.76 61.20 -20.44
chr22 703067 703161 . 95 8 37.47 18.45 19.02
chr4 1948465 1948599 ADAMTS3 135 11 33.67 52.10 -18.43
chr2 81838048 81838308 . 261 18 36.30 18.74 17.56
chrZ 65661754 65661805 . 52 4 40.04 22.79 17.25
B) CO-SMELTER binomial
chrZ 19688875 19689005 . 131 14 63.56 23.61 39.95
chr2 53829014 53829116 PDE1C 103 6 94.64 61.62 33.02
Scaffold1294 1027 1153 . 127 6 42.69 67.69 -24.99
chrZ 21902415 21902582 PAPD4 168 13 8.46 32.57 -24.11
chr7 9525141 9525265 . 125 7 66.83 44.56 22.26
chr3 48718277 48718390 UTRN 114 8 74.32 52.12 22.20
chr28 1285543 1285688 . 146 5 67.49 89.66 -22.17
chr3 41373464 41375606 TBP 2143 10 38.19 16.11 22.08
chr6 1317263 1317448 LOC107207020 186 5 85.72 63.69 22.03
chr15 13816009 13816974 POMC 966 40 52.83 31.41 21.42
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CHROMOSOME POSITION (bp) ANNOTATION DMR lenght
No.
CpGs

Mean met%
CO

Mean met%
HI/SME

Met%
difference

C) CO-HIGH betabinomial
chr10 19104012 19104107 ITGA11 96 4 80.08 49.96 30.12
chr9 24013175 24013233 LEKR1 59 7 45.12 69.51 -24.38
chr13 12002300 12002394 . 95 8 31.02 54.51 -23.49
chr3 20274597 20274654 USH2A 58 6 51.39 73.61 -22.22
chr24 788116 788169 ZPR1 54 4 40.76 61.20 -20.44
chr15 13816420 13816728 POMC 309 25 51.26 30.95 20.31
Scaffold306 178895 179055 . 161 16 45.08 65.33 -20.25
chr6 4145270 4145351 JMJD1C 82 5 71.25 51.89 19.36
chr22 703067 703161 . 95 8 37.47 18.45 19.02
chr4 1948465 1948599 ADAMTS3 135 11 33.67 52.10 -18.43
D) CO-SMELTER betabinomial
chrZ 19688875 19689005 . 131 14 63.56 23.61 39.95
chr2 53829014 53829116 PDE1C 103 6 94.64 61.62 33.02
chr3 41373476 41375606 TBP 2131 8 32.04 5.65 26.39
chr6 1317265 1317448 LOC107207020 184 4 83.96 59.20 24.76
chrZ 21902415 21902570 PAPD4 156 10 6.63 31.20 -24.56
chr15 13816009 13816877 POMC 869 36 51.97 29.03 22.94
Scaffold525 2758 2857 GCC1 100 28 53.35 30.49 22.86
chr3 161130 161201 . 72 10 61.32 83.76 -22.44
chr7 9525141 9525265 . 125 7 66.83 44.56 22.26
chr3 48718277 48718390 UTRN 114 8 74.32 52.12 22.20
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Genes at differentially methylated regions1022

Among the set of 10 most differentially methylated regions across the treatment groups, we1023

identified 12 genes (POMC, ITGA11, LEKR1, USH2A, ZPR1, JMJD1C, ADAMTS3, PDE1C,1024

TBP, PAPD4, GCC1 and UTRN). Of these 12, POMC, showed lower methylation (ca. 20%,1025

thus theoretically higher expression) in methylation both in SMELTER and HIGH treatments1026

compared to CONTROL. POMC (pro-opiomelanocortin) is a neuronal hormone, which is1027

cleaved to multiple key by-products, including (i) corticotropin (ACHT), controlling the1028

stress response, (ii) appetite control and (iii) b-endorphin (Marco et al. 2016). Methylation of1029

POMC has been associated with nutritional state (in rats, Ramamoorthy et al. 2018), maternal1030

under nutrition (in ovine Stevens et al. 2010) and offspring early-life stress (in mice, Wu et1031

al. 2014). Here, we report for the first time that POMC methylation may mediate early-life1032

stress (nutritional and/or metal exposure) also in a wild vertebrate population. Furthermore,1033

methylation of another stress related gene, PDEC1 (phosphodiesterase 1C) was also1034

decreased in SMELTER compared to control. Expression of PDEC1 gene has been found to1035

be associated with aldosterone stress hormone in chicken (e.g. Fallahsharoudi et al. 2017).1036

The other differentially methylated genes in relation to metal exposure were related to1037

(i) DNA damage: JMJD1C is a candidate histone demethylase and also plays a role in the1038

pathway DNA-damage response (e.g. Watanabe et al. 2013). Our data suggests that its1039

methylation was decreased (theoretical expression increased) in high Pb exposure compared1040

to control, which is logical given that Pb exposure is likely to cause more oxidative stress and1041

DNA damage (e.g. Wu et al. 2008, Rainio et al. 2015a). Other studies on Pb exposure also1042

found differences in methylation in detoxification pathways (Sen et al. 2015); (ii) growth and1043

development: LEKR1 (Freathy et al. 2010), ADAMTS3 (Janssen et al. 2016), UTNR (in1044

mammals, e.g. Schofield et al. 1993). Furthermore, Pb has specifically been found to impair1045
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neurodevelopment (e.g. Morgan et al. 2000, Burger and Gochfeld 2005). Our data shows that1046

methylation of ZPR1 (zinc finger protein gene), an important protein in neural development1047

(e.g. Doran et al. 2006) was increased by ca. 20% (theoretical expression decreased) in Pb1048

exposure compared to controls, which may warrant further studies on ZPR1, Pb exposure and1049

neurodevelopment. Previous studies have reported alternation in methylation of other genes1050

related to neurodevelopment, such as another zinc finger protein gene, Zfp974 and Zfp787,1051

ARTN, C5aR1 (Dou et al. 2019), Syt2, Prkg1, Pcdhb20, Slc2a3, Klhl1 and Snap29 (Singh et1052

al. 2018) and PAX1 and MSI1 (Senut et al. 2014) (iii) transcription and intracellular1053

processes: TBP is universal transcription factor required for all of the eukaryotic RNA1054

polymerases (Shimada et al. 2003), PAPD4 is a poly(A) RNA polymerase (Burroughs et al.1055

2010), while GCC1 is associated with Golgi apparatus structure (Gosavi et al. 2018). Thus,1056

these genes may serve as potential candidates for further studies on the effects of pollution on1057

organisms via DNA methylation.1058

1059


