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Abstract

Assume that G = (V, E) is an undirected and connected graph,
and consider C ⊆ V . For every v ∈ V , let Ir(v) = {u ∈ C : d(u, v) ≤
r}, where d(u, v) denotes the number of edges on any shortest path
between u to v in G. If all the sets Ir(v) for v ∈ V are pairwise dif-
ferent, and none of them is the empty set, C is called an r-identifying
code. In this paper, we consider t-vertex-robust r-identifying codes
of level s, that is, r-identifying codes such that they cover every
vertex at least s times and the code is vertex-robust in the sense
that |Ir(u) △ Ir(v)| ≥ 2t + 1 for any two different vertices u and v.
Vertex-robust identifying codes of different levels are examined, in
particular, of level 3. We give bounds (sometimes exact values) on
the density or cardinality of the codes in binary hypercubes and in
some infinite grids.

Keywords: Identifying code, binary hypercube, infinite grid, vertex
robustness, covering code.

1 Introduction

Assume that G = (V, E) is an undirected and connected graph. We denote
the (graphic) distance by d(u, v) which is the number of edges in any short-
est path between u ∈ V and v ∈ V . Let r ≥ 1 be an integer. For v ∈ V ,
the ball of radius r centered at v is defined by

Br(v) = {u ∈ V | d(u, v) ≤ r}.

If d(x, y) ≤ r, we say that x and y r-cover (or cover) each other.
A code is a nonempty subset of V and its elements are called codewords.

Let C be a code. For x ∈ V , we denote

Ir(x) = Ir(G, C; x) = C ∩ Br(x).
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The set Ir(x) is called the Ir-set of x. In this paper, we concentrate on
r = 1 and write I1(x) = I(x) (and call the set I(x) the I-set of x).

A code C ⊆ V is called r-identifying (in G) if the sets Ir(x) are distinct
and non-empty for all x ∈ V .

Karpovsky, Chakrabarty and Levitin [9] introduced the concept of iden-
tifying codes in 1998. An application (see [9]) of identifying codes to fault
diagnosis of multiprocessor architectures is described next.

Suppose that each vertex of G contains a processor and an edge is a
communication link between two processors. Assume that at most one
processor can be malfunctioning. We wish to locate the malfunctioning
processor, say x ∈ V , or decide that there is none. We choose a code C ⊆ V ,
i.e., a subset of processors, and a codeword is assigned the following task.
Each codeword c ∈ C checks all the processors in Br(c) and sends a single
bit value “1” to the host if it detects any problems and “0” if everything
is fine in the ball. If the code C is r-identifying, the host can determine
the faulty vertex, say x, by knowing Ir(x) which is the set of processors
sending “1”. Of course, we would like to use as few codewords as possible.

Identification has been widely studied in graphs such as binary Ham-
ming spaces (i.e., binary hypercubes), the square, triangular and king grids
and the hexagonal mesh (see, e.g., [1],[2],[5],[7],[8],[9],[13] and the references
therein). In the papers [14],[4],[6] and [11], codes that remain identifying
although Ir-sets can be corrupted are considered.

The symmetric difference (A \ B) ∪ (B \ A) is denoted by A △ B.

Definition 1. [6] Let s and t be non-negative integers. A code C ⊆ V is a
t-vertex-robust r-identifying code of level s if

i) |Ir(v)| ≥ s for all v ∈ V , and
ii) |Ir(u) △ Ir(v)| ≥ 2t + 1 for all distinct vertices u and v of V .

These codes remain identifying even if some codewords can be missing
from an Ir-set or some new ones added to it (together again at most t
changes in one Ir-set). If C satisfies ii), we can be sure that Ir(u) △ A 6=
Ir(v) △ B for any subsets A and B of C with |A| ≤ t and |B| ≤ t. The
requirement i) determines the level of protection against a false alarm.

Let C satisfy ii) and suppose that there exists a vertex x ∈ V such
that |Ir(x)| = s with s ∈ {0, 1, . . . , t}. Then all the other vertices are r-
covered by at least 2t − s + 1 codewords. Indeed, if y ∈ V is such that
|Ir(y)| < 2t− s+1, then |Ir(x) △ Ir(y)| < s+(2t− s+1), a contradiction.
Adding (if the degree of the vertex x in G allows it) 2t− 2s + 1 codewords
to C guarantees that all the vertices are covered by at least 2t − s + 1
codewords (and the condition ii) is, of course, still valid). Adding at most
2t + 1 (when t is a constant) codewords does not increase the density (see
Section 4) in the above mentioned grids. Therefore, the values s ≥ t + 1
are of main interest.

In [4], the case s = t + 1 is studied, in particular, 1-vertex-robust 1-
identifying codes of level 2 in the above mentioned graphs. For the case
s = 0, see [14], and for s = 2t + 1 where t ≥ 2, see [10].
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Figure 1: A 1-vertex-robust 1-identifying code of level 3 that attains the
bound (1). Circles denote the vertices and the black ones are codewords.

In this paper, we assume that t ≥ 1. In Section 2, we give bounds
on t-vertex-robust 1-identifying codes of level s ≥ t + 2 in general regular
graphs, and in Section 3, we concentrate on binary hypercubes and consider
mainly 1-vertex-robust 1-identifying codes of level 3. Section 4 is devoted
to the bounds on the density of codes in the infinite square and king grids
and in the infinite hexagonal mesh.

2 A lower bound on regular graphs

Lemma 1. Let t ≥ 1 be an integer and d ≥ t + 2. Assume that G = (V, E)
is a finite d-regular graph and that C is a t-vertex-robust 1-identifying code
of level t + 2. Then

|C| ≥ (t + 2)|V |
d + 1 − t+1

2t+3

. (1)

If C is a t-vertex-robust 1-identifying code of level s ≥ t + 3, then

|C| ≥ s|V |
d + 1

. (2)

Proof. Let C be t-vertex-robust 1-identifying of level t + 2. We denote by
Ci the set of codewords c of C for which |I(c)| = i. We also denote

C≥i =
⋃

j≥i

Cj .

Clearly, Ci = ∅ for all i ∈ {1, 2, . . . , t+1}. Count the number of ordered
pairs (c, c′), where c ∈ Ct+2, c′ ∈ C≥t+3 and there is an edge between c and
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c′. For every c ∈ Ct+2, there are exactly t + 1 choices for c′, because by ii)
of Definition 1 every c′ is in C≥t+3. For each c′ ∈ Ci, i ≥ t + 3, there are
at most i − 1 choices for c. Hence

(t + 1)|Ct+2| ≤
d+1
∑

i=t+3

(i − 1)|Ci|.

Using this inequality (on the second line below) we get

d+1
∑

i=t+2

i|Ci|

= (t + 2)|Ct+2| +
d+1
∑

i=t+3

(i − i − 1

2t + 3
)|Ci| +

1

2t + 3

d+1
∑

i=t+3

(i − 1)|Ci|

≥ (t + 2 +
t + 1

2t + 3
)|Ct+2| +

d+1
∑

i=t+3

(i − i − 1

2t + 3
)|Ci|

≥ (t + 2 +
t + 1

2t + 3
)|C|.

In other words, each codeword in C is in average covered at least t+2+ t+1

2t+3

times. By counting the number of pairs c ∈ C, x ∈ V where d(x, c) ≤ 1,
this leads to the bound

(t + 2)|V | + t + 1

2t + 3
|C| ≤ (d + 1)|C|,

and the claim follows.
The claim for t-vertex-robust 1-identifying codes of level s ≥ t + 3 is

clear because every vertex of G is covered by at least s codewords.

For d = 3, the bound (1) says that the cardinality of 1-vertex-robust
1-identifying code of level 3 is at least 5|V |/6 and this is attained by the
code in the graph of Figure 1 with twelve vertices and ten codewords. The
bound (2) is also attained (infinitely many times) according to Theorem 1.
A bound for the case s = t + 1 can be found in [4].

3 Binary hypercubes

In this section, we consider binary Hamming spaces (i.e., binary hyper-
cubes); the vertex set is denoted by Fn (the n-fold Cartesian product of
the binary field F ) and there exists an edge between two vertices (usually
called words) if and only if the Hamming distance equals one. With a slight
abuse of notation, the obtained graph is also denoted by Fn.

Let µ be a positive integer. A code C ⊆ Fn is called a µ-fold r-covering
if for every word x ∈ Fn we have |Ir(F

n, C; x)| ≥ µ. For coverings, consult,
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for instance, [3, Chapter 14]. The requirement i) from Definition 1 says, for
Fn, that a t-vertex-robust r-identifying code of level s must be an s-fold
r-covering. The following theorem shows that for s ≥ t + 3 and r = 1 the
converse is also true in the binary hypercubes.

Theorem 1. Let s ≥ t+3. An s-fold 1-covering of Fn is a t-vertex-robust
1-identifying code of level s. In particular, for all integers i ≥ 0 and µ0 > 0
such that µ0 divides s and s ≤ 2iµ0, the smallest possible cardinality of a
t-vertex-robust 1-identifying code of level s in Fn with n = µ02

i − 1 equals

s
2n

n + 1
.

Proof. Let C be an s-fold 1-covering with s ≥ t + 3. Since in the binary
hypercube the intersection of two balls of radius 1 consists of at most two
points, we get

|I(u) △ I(v)| = |I(u)| + |I(v)| − 2|I(u) ∩ I(v)|
≥ 2s − 2 · 2
≥ 2t + 1.

Therefore, C is t-vertex-robust 1-identifying of level s. The cardinality now
follows by combining (2) with [3, Theorem 14.2.4] which says that for all
integers i ≥ 0 and µ0 > 0 such that µ0 divides µ and µ ≤ 2iµ0, there
exists a µ-fold 1-covering in Fn with n = µ02

i − 1 with the cardinality
µ2n/(n + 1).

Let us now consider the level 3 and t = r = 1. We have often found
(see, e.g., [13]) the construction below useful in building good identifying
codes in Fn. In what follows, the notation (a, u, w) with a ∈ F , u ∈ Fn

and w ∈ Fn means a vector in F 2n+1, and π(u) with u = (u1u2 . . . un) ∈
Fn stands for the parity check bit, that is, π(u) =

∑n

i=1
ui mod 2. The

following construction gives us, from 1-vertex-robust 1-identifying codes of
level 3 in Fn, codes with the same properties in F 2n+1, see Theorem 2 (and
continuing we get infinite families of codes with the desired properties).

Construction 1. ([13],[3, p.67,381]) Let C ⊆ Fn be a code. Denote

D(C) = {(π(u), u, u + v) | u ∈ Fn, v ∈ C} ⊆ F 2n+1.

Let us examine the I-set of an arbitrary word w ∈ F 2n+1. The word can
be written as w = (aw, uw, uw + vw) where aw ∈ F , uw ∈ Fn and vw ∈ Fn.
Noticing that the first bit of a codeword is the parity check bit of the
following n bits and that the radius equals one, we can verify the following.

(i) If π(uw) = aw, then

I(F 2n+1,D(C); w) = {(π(uw), uw, uw + c) | c ∈ C, d(c, vw) ≤ 1 in Fn}.
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(ii) If π(uw) 6= aw then

I(F 2n+1,D(C); w) =

{(aw, u′, uw + vw) | c ∈ C, d(c, vw) = 1 in Fn, u′ + c = uw + vw}
∪ ({(π(uw), uw, uw + vw)} ∩ D(C)).

The set {(π(uw), uw, uw + vw)} ∩D(C) is non-empty if and only if vw ∈ C.
It is easy to see that in both cases — here (ai, ui, si) with ai ∈ F ,

ui ∈ Fn and si ∈ Fn stands for any codeword in the I-set of w and k is
the number of codeword in the I-set — we have

I(F 2n+1,D(C); w) = {(ai, ui, si) | 1 ≤ i ≤ k} (3)

⇒ I(Fn, C; vw) = {ui + si | 1 ≤ i ≤ k}.

According to the next example, this construction does not work for
1-vertex-robust 1-identifying codes of level 2. However, the construction
works for level 3 by Theorem 2 — and we get also good code constructions
for level 2.

Example 1. Denote by 0 the all-zero word. The code C5 = (F 5 \B1(0))∪
{0, 10000} is 1-vertex-robust 1-identifying of level 2 in F 5 (it is straightfor-
ward to verify this using the definition), but D(C5) is not in F 11 because

I(F 11,D(C5);0) = {0, 00000010000}
and

I(F 11,D(C5); 01000010000) = {11000010000, 00000010000}
giving |I(F 11,D(C5);0) △ I(F 11,D(C5); 01000010000)| = 2 < 3.

As mentioned earlier, all 1-vertex-robust 1-identifying codes of level 3
in Fn are 3-fold 1-coverings and in the next lemma we show which 3-fold
1-coverings are suitable for us.

Lemma 2. A 3-fold 1-covering is 1-vertex-robust 1-identifying of level
3 if and only if there does not exist a pair x and α in Fn such that
|I(Fn, C; x)| = |I(Fn, C; α)| = 3 and |I(Fn, C; x) ∩ I(Fn, C; α)| = 2.

Proof. Let C ⊆ Fn be a 3-fold 1-covering. Suppose that

|I(Fn, C; x) △ I(Fn, C; α)| ≤ 2

for some x ∈ Fn and α ∈ Fn. If x or α is covered by at least four codewords
then immediately |I(Fn, C; x) △ I(Fn, C; α)| ≤ 2 is not possible. There-
fore, it suffices to assume that |I(Fn, C; x)| = |I(Fn, C; α)| = 3. Moreover,
if |I(Fn, C; x)∩ I(Fn, C, α)| ≤ 1, then again |I(Fn, C; x) △ I(Fn, C; α)| ≥
3. Because |B1(a)∩B1(b)| ≤ 2 for any distinct a and b in Fn, we conclude
that x and α form a forbidden pair.

The other direction of the claim is trivial.
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Example 2. Using the previous lemma it is easy to deduce that the code
C3 = F 3 \ {0} is 1-vertex-robust 1-identifying of level 3. Moreover, there
does not exist such a code with six or less codewords. This can be seen
as follows. We can assume without loss of generality that one of the non-
codewords equals 0. Because the code is a 3-fold 1-covering, there can be
another non-codeword only at 111. But if 111 is a non-codeword, then
|I(100) △ I(111)| < 3 and ii) of Definition 1 does not hold.

Theorem 2. Let C ⊆ Fn be 1-vertex-robust 1-identifying of level 3. Then
D(C) is 1-vertex-robust 1-identifying of level 3 in F 2n+1.

Proof. Since C is a 3-fold 1-covering, the code D(C) is also by (3). We apply
Lemma 2. Suppose to the contrary that we have a pair x = (ax, ux, ux+vx)
and α = (aα, uα, uα + vα) in F 2n+1 such that they both are covered by
exactly three codewords and

|I(F 2n+1,D(C); x) ∩ I(F 2n+1,D(C); α)| = 2. (4)

Let w ∈ F 2n+1. If aw = π(uw) then the first (n + 1)-bits in all of the
codewords in I(F 2n+1,D(C); w) are equal. If aw 6= π(uw), then the last
n-bits in all of the codewords in I(F 2n+1,D(C); w) are the same.

Consequently, if ax = π(ux), then, by (4), also aα = π(uα) and ux = uα.
On the other hand, if ax 6= π(ux), then also aα 6= π(uα) and ux + vx =
uα + vα. Because x 6= α, this implies in both cases that vx 6= vα.

By virtue of (3), we get |I(Fn, C; vx) ∩ I(Fn, C; vα)| = 2 and

|I(Fn, C; vx)| = |I(Fn, C; vα)| = 3.

But then vx and vα constitute a pair in Fn which is forbidden by Lemma 2.
This is a contradiction and the claim follows.

Denote by L(n) the smallest possible cardinality of a 1-vertex-robust
1-identifying code of level 3 in Fn.

Corollary 1. Let C be a 1-vertex-robust 1-identifying code of level 3 in Fn

and let k be the real number defined by k = |C|(n + 1)/2n. Then any such
code C gives rise to an infinite family of 1-vertex-robust 1-identifying codes
of level 3 for the lengths N for which there exists a non-negative integer q
such that N equals 2qn + 2q − 1. Moreover, for these lengths, we have

15 · 2N

5N + 3
≤ L(N) ≤ k · 2N

N + 1
. (5)

Proof. We get the lower bound from (1). For the upper bound, apply the
above construction repeatedly to the code C.

The lower bound in (5) shows that the coefficient k = 3 cannot be
reached. Taking the code C3 from Example 2 as our initial code, we get
L(N) ≤ k · 2N−r for the lengths N = 2r − 1 where r ≥ 2 and k = 3.5.
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Let A ⊆ Fn. We define a code CA as follows, where a + b is the
componentwise sum modulo 2:

CA = A + (B2(0) \ {0}) = {c ∈ Fn | c = a + b, a ∈ A, b ∈ B2(0) \ {0}}.

This code is a simple modification of [4, Theorem 12] where we now use the
punctured ball B2(0) \ {0} instead of B2(0). Assume that A23 ⊂ F 23 is
the binary Golay code [3, p. 286] with 212 codewords and covering radius
3 (recall that the covering radius of a code C ⊆ Fn is the smallest integer
R such that every x ∈ Fn is R-covered by at least one codeword of C).

It is easy to see, by Lemma 2, that the code CA23
is 1-vertex-robust

1-identifying of level 3. From CA23
we get an infinite sequence of codes for

which k = 207

64
(≈ 3.23).

We can immediately generalize this as follows.

Theorem 3. If A ⊆ Fn, n ≥ 4, has covering radius at most 3, then CA is
a 1-vertex-robust 1-identifying code of level 3.

Let M(n) be the minimum cardinality of a 1-vertex-robust 1-identifying
code of level 2 in Fn and K(n, R) be the minimum cardinality of a binary
code in Fn with covering radius R. Theorem 13 in [4] says that

M(n) = 3
2n

n
(1 + g(n)) (6)

where g(n) → 0 when n → ∞, provided that

lim
n→∞

K(n, 3)

2n/
∑3

i=0

(

n
i

) = 1.

Theorem 3 shows us that we can replace M(n) by L(n) in the asymptotic
result (6) — notice that M(n) is for codes of level 2 and L(n) for codes of
level 3.

4 Two grids and a mesh

The vertex set of the square and the king grids is ZZ
2. Two vertices are ad-

jacent in the square grid, if their Euclidean distance equals 1 (see Figure 3);
two vertices are adjacent in the king grid, if their Euclidean distance equals
1 or

√
2 (see Figure 2).

Denote by Rn the set of vertices (i, j) ∈ ZZ
2 with |i| ≤ n and |j| ≤ n.

The density of a code C in the square or the king grid is defined to be

D = lim sup
n→∞

|C ∩ Rn|/|Rn|.

Notice that the levels s greater than the size of the ball of radius 1 are
not possible for any 1-vertex-robust 1-identifying codes.
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Figure 2: A code of density 3

5
in the king grid.

Theorem 4. Denote the smallest possible density of a 1-vertex-robust 1-
identifying code of level s in the king grid by DK

s . Then DK
s = 1

2
for

0 ≤ s ≤ 4 and 7

12
≤ DK

5 ≤ 3

5
and DK

s = s
9

for 6 ≤ s ≤ 9.

Proof. The code C = {(x, y) ∈ ZZ
2 | x+y = 0 mod 2} is 1-vertex-robust 1-

identifying of level up to 4 and its density is equal to 1

2
. For any (x, y) ∈ ZZ

2

we know that B1((x, y)) △ B1((x + 1, y)) consists of six vertices. By ii)
of Definition 1, there must be at least three codewords among those six.
Because this is true for arbitrary (x, y) the density must be at least 1

2
.

Hence, DK
s = 1

2
for all 0 ≤ s ≤ 4 (the values for s = 2 and s = 3 are from

[4] and [12], respectively).
Figure 2 gives a 1-vertex-robust 1-identifying code of level 5 with density

3

5
. Consider the set R = B1(a, b)∪B1(a+1, b) of twelve vertices. Either the

set {(a−1, b−1), (a−1, b), (a−1, b+1)} or {(a+2, b−1), (a+2, b), (a+2, b+1)}
contains at least two codewords by ii) of Definition 1. If the first one does
(resp., the second one), then |I(a + 1, b)| ≥ 5 (resp., |I(a, b)| ≥ 5) shows
that there are at least seven codewords in R. This gives the lower bound
DK

5 ≥ 7

12
.

We get the lower bound s
9

from i) of Definition 1 for any s. Let s = 6. Set

N6 = {(x, y) ∈ ZZ
2 | x+y ≡ 0 mod 3}. The code C6 = ZZ

2 \N6 is 1-vertex-
robust 1-identifying of level 6 with density 2

3
. Indeed, every vertex is covered

by six codewords and because every set L1 = {(a, b), (a, b + 1), (a, b + 2)}
as well as every set L2 = {(a, b), (a + 1, b), (a + 2, b)} contains at most one
non-codeword, we know that |I(x) △ I(y)| ≥ 3, since the set I(x) △ I(y)
contains at least two disjoint sets of the type L1 or L2.

Set N7 = {(x, y) | x + y ≡ 0 mod 3 and y ≡ 0, 1 mod 3} and N8 =
{(x, y) | x+y ≡ 0 mod 3 and y ≡ 0 mod 3}. By noticing that N8 ⊆ N7 ⊆
N6, it is easy to check that C7 = ZZ

2 \ N7 is 1-vertex-robust 1-identifying
of level 7 and C8 = ZZ

2 \ N8 is of level 8. Trivially, C = ZZ
2 gives the value
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Figure 3: A code of density 2

3
in the square grid.

DK
9 = 1.

By this theorem, we can see that the condition i) of Definition 1 becomes
“dominant” after the level 5 (notice that 7/12 > 5/9) and for small levels
it is the condition ii) which is more demanding.

Theorem 5. Denote the smallest possible density of a 1-vertex-robust 1-
identifying code of level s in the square grid by DS

s . Then DS
s ≤ 5

8
for

s ∈ {0, 1, 2}, DS
3 = 2

3
, DS

4 = 4

5
and DS

5 = 1.

Proof. The values for s ≤ 2 follow from [4] and the value for s = 3 is from
[12] (see Figure 3). The lower bound 4

5
(by i) of Definition 1) combined

with the code ZZ
2 \ {(x, y) | 2x + y ≡ 0 mod 5} gives DS

4 = 4

5
. The case

s = 5 is trivial.

Let us now consider the hexagonal mesh (see Figure 4).

Theorem 6. Denote the smallest possible density of a 1-vertex-robust 1-
identifying code of level s in the hexagonal mesh by DH

s . Then DH
s ≤ 41

50

for s ∈ {0, 1, 2} and DH
3 = 5

6
and DH

4 = 1.

Proof. The values for s ∈ {0, 1, 2} follow from [4, Theorem 17] and Sec-
tion 1. The case s = 4 is trivial, so assume the level is 3. A code C is
1-vertex-robust 1-identifying of level 3 in the hexagonal mesh if and only if
the distance between any two non-codewords is at least four. This is shown
as follows (for an analogous proof for the level 2, see [4, Theorem 17]).

Let first C be a 1-vertex-robust 1-identifying code of level 3. If any two
non-codewords are at distance one or two apart, there exists a vertex which
is within distance one from both of them and its I-set contains at most two
codewords — this contradicts the level 3. Let then any two non-codewords
be at distance three from each other and P be any path of length three
between them. The path P contains two vertices, say u and v, besides the
non-codewords. Now |I(u) △ I(v)| < 3, which contradicts ii) of Definition
1.
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Figure 4: A code of density 5

6
in the hexagonal mesh

Assume then that non-codewords are at least at distance four apart.
We show that the code C is then 1-vertex-robust 1-identifying of level 3.
Clearly, the condition i) of Definition 1 is fulfilled. Take then two vertices
u and v. If d(u, v) ≥ 2, we obtain |I(u) △ I(v)| = |I(u)| + I(v)| − 2|I(u) ∩
I(v)| ≥ 4, because |I(u)∩I(v)| ≤ 1. If d(u, v) = 1 and |I(u)∩I(v)| ≤ 1, then
the same argument works, so assume that d(u, v) = 1 and |I(u)∩ I(v)| = 2
(the intersection cannot be larger than two). Since the distance between
two non-codewords is at least four, there can be at most one non-codeword
among the four neighbours of u and v. This yields |I(u) △ I(v)| ≥ 3.

Now we know that a code C is 1-vertex-robust 1-identifying of level 3
if and only if the distance between any two non-codewords is at least four.
Consequently, any hexagon in the graph consists of six vertices and at least
five of them are in the code. Therefore, the density is at least 5

6
.

On the other hand, the code given in Figure 4 satisfies the requirement
that any two non-codewords are at distance at least four apart. In addition,
the density equals 5

6
.

Acknowledgment: We would like to thank the referee for many valu-
able comments.
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