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To date, mass spectrometry (MS)-data remains inherently biased as a result of reasons ranging from sample
handling to differences caused by the instrumentation. Normalization is the process which aims to account
for the bias and make samples more comparable. The selection of a proper normalization method is a
pivotal task for the reliability of the downstream analysis and results.  Many normalization methods
commonly used in proteomics have been adapted from the DNA microarray techniques. Previous studies
comparing normalization methods in proteomics have focused mainly on intragroup variation. In this study,
several popular and widely used normalization methods representing different strategies in normalization
are evaluated using three spike-in and one experimental mouse label-free proteomic data sets. The
normalization methods are evaluated in terms of their ability to reduce variation between technical
replicates, their effect on differential expression analysis, and their effect on the estimation of logarithmic
fold changes. Additionally we examined, whether normalizing the whole data globally or in segments for
the differential expression analysis has an effect on the performance of the normalization methods. We
found that Variance stabilization normalization (Vsn) reduced variation the most between technical
replicates in all examined datasets. Vsn also performed consistently well in the differential expression
analysis. Linear regression normalization and local regression normalization performed also systematically
well. Finally, we discuss the choice of a normalization method and some qualities of a suitable
normalization method in the light of the results of our evaluation.
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Introduction

The development of mass spectrometry (MS)-based proteomics has been rapid. Modern proteomics aims
not only to identify the proteins, but also to quantify them as accurately as possible [1]. Current MS-based
proteomics workflows are able to detect thousands of proteins, their modifications and localizations in a
single run [2]. Despite all the developments of MS-technologies, the data from the MS-analysis are still
susceptible to systematic biases [3]. This bias has been defined as variation caused by non-biological
sources, which is introduced by small variations in the experimental conditions in the course of carrying out
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the MS-analysis [4]. These variations include, for example, differences in sample preparation and handling,
device calibration or changes in temperature, but the exact reason of the bias is usually unknown and
cannot thus be solely accounted for by adjusting the experimental settings [3,4]. The observed bias can be
independent or dependent on the measured protein abundances [4].

The process that aims to take the bias into account is called normalization. Normalization aims to make the
samples of the data more comparable and the following downstream analysis reliable [3].  Many of the
normalization methods used for proteomics data have their roots in the DNA microarray technology [4],
where several evaluations and reviews have already elucidated their performance [5–8]. For instance,
Bolstad et al. compared five normalization methods with DNA microarray data and concluded that most of
them performed rather similarly and reduced non-biological variability across arrays when compared to the
unnormalized data [5]. Choe et al. also found no significant differences between the four normalization
methods they examined with an RNA spike-in experiment at the probe level [6]. In previous comparisons in
proteomics, Callister et al. used three different liquid chromatography-mass spectrometry (LC-MS) datasets
to evaluate four different normalization methods on peptide level and found a linear regression
normalization best suited for their datasets [9]. Kultima et al. compared ten different normalization
methods with three different peptidomics datasets and noticed that the order of the LC-MS experiments
affected the bias in the data; they suggested that their novel RegrRun normalization, which combines linear
regression normalization with analysis order normalization, was the best overall method in reducing
unwanted intragroup and intrasample variation [10].

Different tools for helping in the selection of a normalization method have also been proposed. Webb-
Robertson et al. stated that a single method cannot account for the bias in different datasets; rather it is
crucial for reliable downstream analysis to select the appropriate normalization method for each dataset
[11]. They introduced a tool called SPANS, which combines eight methods for peptide selection to be used
in normalization with five normalization methods [11]. Chawade et al. also introduced a tool for choosing a
proper normalization method called Normalyzer [3]. Their tool includes several popular normalization
methods such as linear regression, local regression, total intensity, average intensity, median intensity,
variance stabilization normalization and quantile normalization, together with several frequently used
evaluation measures used to assess the performance of a normalization method such as the pooled
coefficient of variation (PCV), the pooled median absolute deviation (PMAD) and the pooled estimate of
variance (PEV) [3].

So far comparisons of normalization methods in proteomics have typically focused on their ability to
decrease intragroup variation between technical and/or biological replicates of the test data. Measures for
the intragroup variation such as PEV [3,9,10], PCV [3], PMAD [3], the median coefficient of variation (CV) [9]
and the median standard deviation (SD) [10] have been used to rank the normalization methods compared.
While reducing intragroup variation is certainly a central goal of normalization, a more thorough
comparison of the normalization methods and their performance in proteomics is still lacking. Although
interesting questions such as differences in the correct detection of truly differentially expressed proteins
in the data normalized by different normalization methods has been investigated before [3,12,13], a
thorough systematic analysis using multiple datasets and two-group comparisons has not been available in
proteomics.  Also, the effect of the normalization method on the estimation of the logarithmic fold change
or the effect of how the normalization is performed when comparing only two sample groups from a larger
dataset, has not been systematically investigated before.
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To address this need, we conducted an extensive comparison of 11 popular normalization methods or their
variants. Other normalization approaches not covered in this study exist, such as the MaxLFQ integrated
into the MaxQuant software [13] and the normalization integrated into the DeMix-Q software [14]. These
normalizations, however, are integral parts of proteomics software workflows as opposed to the stand-
alone normalization methods examined in this comparison, with the exception of Progenesis normalization.
All the normalization methods examined are commonly used methods in proteomics and have different
approaches and assumptions regarding the bias occurring in the data. Three spike-in label-free proteomics
datasets were used for benchmarking the normalization methods. The spike-in datasets are very suitable
for this kind of method testing, since the differences between sample groups are known and methods can
be evaluated in their ability to find the true differences and to level out other biologically nonexisting
differences. Additionally, a dataset from a mouse study was also used to compare the performance of the
normalization methods in a non spike-in dataset, representing a typical real research setting. Offline
fractionation, which adds another layer of complexity to normalization, was not used in any of the tested
datasets. In such cases, the total peptide ion signals of each fraction are spread over several runs, which
should be normalized before summing up the values [12].

Materials and methods

Description of the datasets

The UPS1-dataset

Benchmarking data of Pursiheimo et al. [15] includes Universal Proteomics Standard Set (UPS1)-proteins
spiked into a yeast proteome digest to create concentrations of 2, 4, 10, 25, and 50 fmol/μL. Three
technical replicates of each concentration were analyzed using LTQ Orbitrap Velos mass spectrometer. The
spike-in data is available from the PRIDE Archive with the identifier PXD002099
(http://www.ebi.ac.uk/pride/archive/projects/PXD002099).

The CPTAC-dataset

The CPTAC (study 6) dataset [16] contains UPS1-proteins spiked into a yeast proteome digest with
concentrations of 0.25, 0.74, 2.2, 6.7, and 20 fmol/μL. Three technical replicates of each concentration
were analyzed using LTQ Orbitrap mass spectrometer (at test site 86). The LTQ Orbitrap@86 spike-in data is
available from the CPTAC-portal (http://cptac-data-portal.georgetown.edu/cptac/dataPublic/list/LTQ-
Orbitrap%4086?currentPath=%2FPhase_I_Data%2FStudy6). Sample Group E was left out from our analysis
as it had only two technical replicates due to the Progenesis software being unable to align one of the
technical replicates automatically.

The SGSD-dataset

The profiling standard of Bruderer et al. [17] contains 12 non-human proteins spiked into a constant human
background (HEK-293). It contains eight different sample groups with known concentrations of the spike-in
proteins. Each of the samples contains three replicates which have been analyzed both in data-dependent
acquisition (DDA) and data-independent acquisition (DIA) modes. We used the DDA shotgun proteomics
data (referred to here as shotgun standard set, SGSD) for our comparisons. The profiling standard is
available from PeptideAtlas: No. PASS00589 (username PASS00589, password WF6554orn).

Mouse Data



4

The mouse dataset contains liver samples of seven wild type male mice and five transgenic male mice
overexpressing cytochrome P450 aromatase [18]. The samples were analyzed with an MS/MS LTQ Orbitrap
Velos Pro mass spectrometer coupled to an EASY-nLC liquid chromatography system [18]. The mouse
dataset is available from the ProteomeXchange with the identifier PXD002025
(http://www.ebi.ac.uk/pride/archive/projects/PXD002025). Further details of the dataset are available in
the original study [18].

Common data preprocessing

The raw mass spectrometry files were processed using the Progenesis QI software with the default peak-
picking settings. 'Relative quantitation using non-conflicting peptides' setting was used, which calculates
protein abundance in a run as the sum of all the unique peptide ion abundances corresponding to that
protein. Peptide identifications were performed using Mascot search engine via Proteome Discoverer. For
the database searches, cysteine carbamidomethylation was set as a fixed modification and methionine
oxidation as a dynamic modification. Mascot score corresponding to false discovery rate (FDR) of 0.01 was
set as a threshold for peptide identifications.

The Progenesis software does not produce missing values per se, but produces some zeroes, which can be
interpreted as abundance below detection capacity or protein not existing in the sample. The number of
zeros in the datasets was small: 0.06 % - 0.6 % of the total of all values. Since the EigenMS normalization
method does not accept zero values, they were transformed into NAs. The same preprocessing was used
with all the methods for comparability.

The exported non-normalized data from Progenesis was transformed into log2-scale before all other
normalizations except for Vsn. The Vsn normalization performs a transformation similar to the log-
transformation and requires the input data to be untransformed [19].

Data analysis environment

All the data analyses were done using the R-statistical programming language version 3.2.4 [20].

Summary of the normalization methods

Linear regression normalization (Rlr, RlrMA, RlrMACyc). The linear regression normalization assumes that
the bias in the data is linearly dependent on the magnitude of the measured protein intensity [9]. As the
measured protein intensity increases, the bias also increases. We explored three variants of the linear
regression called Rlr, RlrMA and RlrMA cyclic. The Rlr uses the median values over all the samples as its
reference sample to which all the other samples in the data are normalized to. The RlrMA is similar, with
the exception that the data is MA-transformed prior to normalization, where A refers to the median sample
and M is calculated for each sample as the difference of that sample to A. In the RlrMACyc, there is no
reference, but instead the MA-transformation and the normalization of the samples is done pairwise
between two samples, A being the average of the two samples and M the difference. The process is
iterated through all sample pairs similar to the LinRegMA of [10]. The cycle is repeated three times, which
has been observed to be enough to reach convergence between iteration cycles for the algorithm [5,10].
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All the variants of the linear regression normalizations were implemented using the robust linear regression
of the R-package MASS [21]. The robust linear regression is more robust against outliers in the data than
linear regression using least squares estimation. The Rlr normalization was implemented as the RLR-
normalization of Normalyzer [3].

Local regression normalization (LoessF, LoessCyc). The local regression normalization assumes a non-linear
relationship between the bias in the data and the magnitude of protein intensity [9].  We explored two
common variants of local regression normalization: LoessF and LoessCyc. The data is MA-transformed prior
to normalization as with the RlrMA method. LoessF uses the mean intensities over all the samples as its
reference A sample. LoessCyc is a cyclic normalization method in which two samples of the data are MA-
transformed and normalized at a time and all pairs of samples are iterated through. The cycle is repeated
three times similarly to the RlrMACyc method. Both of the Loess normalizations were implemented using
the normalizeCyclicLoess-function from R/Bioconductor-package limma [22].

Variance stabilization normalization (Vsn). The variance stabilization normalization is a statistical method
aiming at making the sample variances non-dependent from their mean intensities and bringing the
samples onto a same scale with a set of parametric transformations and maximum likelihood estimation
[19]. The Vsn method was implemented with the justvsn-function from the R/Bioconductor-package vsn
[19].

Quantile normalization (Quantile). The quantile normalization forces the distributions of the samples to be
the same on the basis of the quantiles of the samples by replacing each point of a sample with the mean of
the corresponding quantile [5]. The quantile normalization was performed using the normalize.quantiles-
function from the R/Bioconductor-package preprocessCore [23].

Median normalization (Median). The median normalization is based on the assumption that the samples of
a dataset are separated by a constant. It scales the samples so that they have the same median. The
median normalization was implemented using the median intensity normalization of Normalyzer [3].

Progenesis normalization (Progenesis). The Progenesis normalization is the normalization method provided
by the Progenesis data analysis software. The Progenesis normalization calculates a global scaling factor
between the samples by using a selected reference sample to which the other samples are normalized to.
The Progenesis normalization was performed simultaneously with the preprocessing of the data.

EigenMS normalization (EigenMS). The EigenMS normalization fits an ANOVA-model to the data to evaluate
the treatment group effect and then uses singular value decomposition on the model residual matrix to
identify and remove the bias [24]. The EigenMS aims at preserving the original differences between
treatment groups while removing the bias from the data [25]. The EigenMS normalization was
implemented using the R-codes of EigenMS [24] available for download in the Sourceforge-repositories
(http://sourceforge.net/projects/eigenms/).

Evaluation of the normalization methods

We evaluated the normalization methods 1) in their ability to decrease variation between technical
replicates, 2) in producing data from which the truly differentially expressed proteins can be accurately
found, and 3) in how well the logarithmic fold changes calculated from the normalized data corresponded
to what was expected based on theoretical logarithmic fold changes. We also evaluated whether
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normalizing the data globally or pairwise (i.e. based only on the sample groups under comparison) affected
the performance of the methods in the differential expression analysis.

Intragroup variation and similarity. The effect of normalization was evaluated quantitatively using
intragroup variability measures that measure the variation between technical replicates. Low intragroup
variation means high similarity between technical replicates indicating high reproducibility of the analysis.
The intragroup variation was measured with the pooled median absolute deviation (PMAD), pooled
coefficient of variation (PCV) and the pooled estimate of variance (PEV). Additionally, similarity of the
technical replicates in sample groups was measured with the Pearson correlation coefficient.

Differential expression analysis. Differential expression of proteins was examined in each two-group
comparison using the reproducibility-optimized test statistic (ROTS) [26] or the t-test after application of
the different normalization methods in each dataset. The results of the differential expression analyses
were evaluated with receiver operating characteristic (ROC)-curve analysis, where the spike-in proteins
were considered as true positives and the background proteins as true negatives. The normalization
methods were ranked based on their performance in the differential expression analysis using the area
under the ROC-curve (AUC) as a ranking criterion. Better ranks were assigned to normalization methods
with higher AUC-values. In case of ties, the normalization methods received equal ranks. A mean ranking
with associated standard error was calculated for each normalization method in each dataset. Also, a
pooled mean ranking over all the spike-in datasets was calculated for each normalization method. The
Satterthwaite approximation was used to calculate the associated standard error for the pooled mean
ranking. The normalization methods were ranked independently with each test statistic (ROTS, t-test).

The Log fold changes of the spike-in and background proteins. The aim of normalization is to remove the
unwanted (non-biological) variation from the data. In case of the spike-in datasets used in this study, the
levels of spike-in proteins should change, while the levels of the background proteins should remain
unchanged. We examined the distributions of the logarithmic fold changes of the spike-in and background
proteins in data normalized with the different methods.

Evaluation of the normalization types. To explore if there is a difference in the performance of the
normalization methods depending on the way in which the normalization is done, the data were
normalized in two ways: globally and pairwise. In global normalization, the whole data containing all the
sample groups of a dataset was normalized at once. In pairwise normalization, the sample groups being
compared in the differential expression analysis were first extracted from the unnormalized data and then
normalized separately. Due to the similarity of the results of the normalization types, only results of the
global normalization are presented in the Results section unless where it is explicitly stated otherwise.

Results

We examined the performance of the 11 normalization methods in three independent spike-in datasets as
well as in a mouse dataset from a study on changes in mouse liver lipid metabolism [18]. In the spike-in
datasets, the total intensities between samples and sample groups should be almost equal. However, mass
spectrometry data generally shows some variation in the total intensities of samples and this was also the
case in the datasets used in this study (Supplementary Figures 1-3A). This is especially true for the UPS1-
dataset (Supplementary Figure 1A). After normalization, the situation is changed and the total intensity
levels of the samples are nearly equal (Supplementary Figures 1-3). The EigenMS-normalization however,
does not level the total intensities of different samples like the other normalization methods do, rather the
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distribution of total intensities in different samples of the EigenMS-normalized data is identical to that of
the log2-transformed data.

Effect of normalization on intragroup variation

Normalization decreased intragroup variation measured as PMAD between technical replicates in all
datasets when compared to the unnormalized log2-transformed data (Figure 1A-C). Vsn decreased PMAD
significantly more than the other normalization methods in all datasets (Wilcoxon signed rank test p<0.029
between Vsn and the other normalization methods except EigenMS in the CPTAC-dataset p=0.057).
Analogous patterns were observed also for the other intragroup variability measures (PCV and PEV)
(Supplementary Figure 4A-F). Similarly, intragroup similarity between technical replicates measured with
the Pearson correlation coefficient was highest in the Vsn-normalized data in all spike-in datasets (Figure
1D-F) (Wilcoxon test <0.03 with all other methods except EigenMS in the SGSD-dataset p=0.059 and LoessF,
LoessCyc, Progenesis, Quantile and EigenMS in the CPTAC-data p=0.052-0.266).

Figure 1. The effect of normalization method on intragroup variation between technical replicates. The
Pooled Median Absolute Deviations (PMAD) of (A) UPS1-data, (B) CPTAC-data, and (C) SGSD-data. The
Pearson correlation coefficients of (D) UPS1-data, (E) CPTAC-data, and (F) SGSD-data.

Effect of normalization on differential expression

When detecting differential expression, ROTS has been shown to perform better in proteomics data than
the standard t-test [15] and this was the case also in the datasets used in this study (Supplementary Figure
8, Supplementary Tables 1-2). Normalizing the data improved the AUCs of the differential expression
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analysis in general (Figure 2A-C, Table1). However, there was considerable variation in the performance of
the different normalization methods in the different datasets tested.

The benefits of normalization were most prominent in the UPS1-dataset (Figure 2A, Table 1), in which all
the other normalization methods were ranked higher than the simple log2-transformation except for the
EigenMS and the Quantile normalization. The Vsn-normalized data had the highest AUC in every two-group
comparison in the UPS1-dataset when using ROTS (Delong’s test p<0.04 with all the other methods).

In the CPTAC- and SGSD-datasets the differences between the normalization methods were smaller on
average, but some differences were found. In the CPTAC-dataset, all the normalization methods, except for
the Median normalization, ranked on average higher than the log2-transformation when the differential
expression was analyzed with ROTS (Figure 2B, Table 1). In most of the two-group comparisons in the
CPTAC-data, no significant differences in the AUCs produced by the best ranking normalization method and
the other methods were observed (Delong’s test p>0.05), with few exceptions. In the 0.74 fmol vs. 2.2 fmol
comparison, the Progenesis normalization ranked first and gave a significantly higher AUC than 8 out of 10
methods (Delong’s test p<0.049). In the 2.2 fmol vs. 6.7 fmol comparison, the Vsn normalization ranked
first and gave a significantly higher AUC than 6 out of 10 methods (Delong’s test p<0.028). In the 0.25 vs.
0.74 comparison, the RlrMACyc normalization method ranked best and gave an AUC significantly higher
than half of the other methods (Delong’s test p<0.044 for 5 out of 10 methods).

In the SGSD-dataset, differences between the different normalization methods and the log2-transformation
were generally very small. Only five normalization methods, the Vsn, RlrMA, Rlr, RlrMACyc and LoessF
ranked on average higher than the log2-transformation in the SGSD-dataset (Table 1). In most of the two-
group comparisons there was no significant difference between the AUC of the best ranking method and
the AUCs of the other methods (Delong’s test p>0.05), with few exceptions. In the 5vs7, 5vs8, 6vs7, 6vs8
and 7vs8 comparisons the Vsn normalization consistently ranked first and gave a higher AUC than most of
the other methods tested (Delong’s test p<0.046 for 6-8 out of 10 methods) (Figure 2C).
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Figure 2. The effect of normalization method on differential expression results. Areas under the ROC-
curves (AUC) of differential expression analysis in (A) UPS1-data, (B) CPTAC-data and (C) SGSD-data globally
normalized with the different methods. The x-axes denote the two-group comparisons of the sample
groups.

Normalization method Statistical test UPS1 CPTAC SGSD Pooled mean

Log2 ROTS 8 ± 1,02 8,5 ± 0,76 4,6 ± 0,78 5,9 ± 1,49
t-test 7,1 ± 1,35 8 ± 1,29 4,5 ± 0,74 5,6 ± 1,87

Loess_fast ROTS 3,5 ± 0,34 4,7 ± 1,09 4,3 ± 0,51 4,2 ± 1,25
t-test 1,9 ± 0,55 4,7 ± 0,84 5,4 ± 0,5 4,5 ± 1,06

Loess_cyclic ROTS 6,9 ± 1,17 2,8 ± 0,75 5,1 ± 0,64 5,2 ± 1,53
t-test 7,9 ± 0,89 4,3 ± 0,95 7 ± 0,58 6,8 ± 1,43

Rlr_scatter ROTS 6,4 ± 0,5 3,5 ± 0,43 4,1 ± 0,48 4,5 ± 0,82
t-test 6,5 ± 0,78 4,3 ± 1,02 4,2 ± 0,46 4,7 ± 1,37

Rlr_ma ROTS 6,3 ± 0,7 3,8 ± 0,48 3,9 ± 0,5 4,4 ± 0,98
t-test 5,7 ± 0,68 4,3 ± 0,99 3,9 ± 0,42 4,4 ± 1,3

Rlr_ma_cyclic ROTS 7,3 ± 0,54 6,5 ± 1,57 4,3 ± 0,58 5,3 ± 1,75
t-test 6,3 ± 0,67 4,2 ± 1,45 4,6 ± 0,5 4,9 ± 1,68

Vsn ROTS 1 ± 0 4,3 ± 1,41 2,7 ± 0,46 2,5 ± 1,48
t-test 3,9 ± 0,31 3,8 ± 0,87 3,5 ± 0,34 3,6 ± 0,98
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Quantile ROTS 8,2 ± 0,61 7,7 ± 0,56 7 ± 0,74 7,4 ± 1,11
t-test 8,8 ± 0,39 8,3 ± 0,67 9,6 ± 0,46 9,2 ± 0,99

Median ROTS 5,9 ± 0,75 9,5 ± 0,72 5 ± 0,68 5,8 ± 1,24
t-test 6,2 ± 0,98 10 ± 0,54 5,3 ± 0,65 6,2 ± 1,16

Progenesis ROTS 3,3 ± 0,67 6,7 ± 1,41 6,1 ± 0,75 5,5 ± 1,73
t-test 3 ± 0,54 5,3 ± 1,17 7,1 ± 0,59 5,9 ± 1,41

EigenMS ROTS 9,2 ± 0,76 8 ± 1,32 5,5 ± 0,85 6,7 ± 1,74
t-test 8,6 ± 0,92 8,5 ± 1,18 5,3 ± 0,8 6,5 ± 1,51

Table 1. Rankings of the normalization methods based on areas under the ROC-curves (AUC) of the
differential expression analysis using global normalization. Best mean ranking in each dataset and best
pooled mean ranking with each test statistic is emphasized. The methods were ranked independently when
using different test statistics.

While no single method gave the highest AUC in every two-group comparison, the Vsn normalization
performed consistently well, giving high AUCs throughout all datasets. This resulted in the highest pooled
mean rank across all datasets and high mean ranks regardless of the test statistic used (Table 1). The linear
regression methods relying on an artificial reference (RlrMA and Rlr) and the local regression method using
an artificial reference (LoessF) also performed systematically well throughout all the comparisons in all
datasets (Figure 2, Table 1). Some of the visuals are overlapping in Figure 2. In particular, LoessF is covered
largely by the lines of the other normalization methods; Progenesis normalization in Figure 2A and other
methods in Figures 2B and 2C.

Effect of normalization type

In general, whether the data was normalized globally or pairwise between the two groups compared, did
not have a major effect on the AUCs of the differential expression analysis (Figure 2A-C vs. Supplementary
Figure 5A-C). The only exceptions were the cyclic normalization methods, LoessCyc and RlrMACyc, which
benefitted from normalizing the data pairwise in the UPS1-dataset (Figure 2A vs. Supplementary Figure 5A).
This could also be seen in the MA-plots of the UPS1-data, in which the data was centered well in the line
M=0 in the pairwise normalized data of the cyclic methods but not in the globally normalized data of the
same methods (Supplementary File 1).

Effect of normalization on logarithmic fold change

When looking at the distribution of the logarithmic fold change (LogFC) of the background proteins in all
datasets, we can see that it is centered around zero for all the other normalization methods except for the
EigenMS normalization (Figure 3A), for which the distribution was identical to that of the log2-
transformation. The distribution of the LogFCs in the Vsn-normalized data was more concentrated around
zero than in datasets normalized with the other methods, which can be seen as a narrower and higher
density distribution for the Vsn-normalized data.

Based on the known concentrations of the spike-in proteins, the LogFCs of the spike-in proteins were
typically underestimated both in the normalized data as well as in the log2-transformed data (Figure 3B-C,
Supplementary File 2). The EigenMS-normalized data gave similar estimates as the log2-transformed data;
the Vsn normalization gave generally more conservative estimates than the other normalization methods.
All the other normalization methods gave consistently very similar estimates for the LogFC of the spike-in
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proteins.  In the UPS1-data, the LogFC of the spike-in proteins of the normalized data were closer to the
theoretical known LogFC in general than in the log2-transformed data (Supplementary File2).

 Figure 3. The logarithmic fold change (LogFC) of the background proteins and representative examples of
the LogFC of the spike-in proteins. (A) The density distributions of the LogFC of the background proteins
over all two-group comparisons in all datasets. The vertical dashed line corresponds to LogFC of zero. The
LogFC of the spike-in proteins (coloured boxes) and the background proteins (black boxes) in the (B) 10
fmol vs 25 fmol comparison of the UPS1-data and (C) in the 0.74 fmol vs 2.2 fmol comparison of the CPTAC
data. The horizontal solid black lines correspond to LogFC of zero while the horizontal dashed lines
correspond to the theoretical expected LogFC of the spike-in proteins.

Visual quality inspection

The MA-plot is a common tool for exploring the bias in the data of two samples [5,9]. Normalization aims to
remove the bias from the data and center the data scatter of the sample pair examined around the x-axis
(M=0) in the MA-plot. In this study MA-plots were drawn and observed with each normalization method in
each two-group comparison of each dataset. Based on visual inspection of these plots, the Vsn-
normalization seems to concentrate the data more tightly both around the x-axis and to a narrower scale of
transformed intensities than the logarithm-transformation and the other normalization methods in general
(Figure 4, Supplementary File 1). In the CPTAC- and the SGSD-datasets the data in the two-group
comparisons was well centered already after the logarithm transformation. In the UPS1-data, the data after
the cyclic normalizations (RlrMACyc and LoessCyc) was much more centered after pairwise normalization
than after global normalization (Supplementary File 1). In many two-group comparisons, the Quantile
normalization seemed to introduce extra patterns into the data on high intensities not seen in the
unnormalized log2-transfomed data (Supplementary File 1).
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Figure 4. Representative MA-plots of the two-group comparisons after normalization with the most
successful normalization method and log2-transformation in each dataset. MA-plots of the (A) 2 fmol vs.
10 fmol comparison of the UPS1-data, (B) 0.25 fmol vs. 2.2 fmol comparison of the CPTAC data, and (C)
sample 1 vs. sample 4 comparison of the SGSD data normalized with the Vsn normalization. MA-plots of the
(D) 2 fmol vs. 10 fmol comparison of the UPS1-data, (E) 0.25 fmol vs. 2.2 fmol comparison of the CPTAC
data, and (F) sample 1 vs. sample 4 comparison of the SGSD data after the log2-transformation. The red
points in the plots correspond to the spike-in proteins and the black points to the background proteins. The
red line corresponds to a loess smoothing function.

Testing on mouse data

In addition to the three spike-in datasets, we also compared the performance of the normalization
methods in a mouse study dataset, which represents a typical real study setting [18]. When looking at the
levels of total intensities of the samples in the log2-transformed mouse data we can see that they are very
unequal (Supplementary Figure 6A). When applying normalization, most of the methods equalize the levels
of total intensities of different samples, except for the EigenMS (Suplementary Figure 6B-K).

In the mouse dataset, we investigated biological replicates of the same treatment group instead of
technical replicates.  Similar patterns for intragroup variation for data normalized with the different
methods were observed as with the spike-in datasets (Figure 5). All normalization methods decreased
intragroup variation when measured with the PMAD compared to the unnormalized data. PMAD was
smallest in the Vsn- and EigenMS-normalized data, but the differences to the other methods were not
significant (Wilcoxon signed rank test >0.33) (Figure 5A). Similar patterns were observed with the other
intragroup measures PCV and PEV (Supplementary Figure 7). Intragroup similarity measured with the
Pearson correlation coefficient was highest among the EigenMS-normalized data, but the differences to the
other methods were small (Wilcoxon p>0.18) (Figure 5B). The mouse data did not contain any spike-in
proteins and thus we did not have prior knowledge about expected protein changes. Therefore differential
expression analysis was not directly applicable to assess the performance of the normalization methods.
The same was true for the logarithmic fold change.
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Figure 5. Intragroup variation between biological replicates in the mouse data normalized with the
different methods. (A) The Pooled Median Absolute Deviations (PMAD), and (B) the Pearson correlation
coefficients.

Discussion

In the spike-in datasets examined in this study, the Vsn normalization consistently reduced intragroup
variation the most, increased intragroup similarity the most, and gave consistently high AUCs in the
differential expression analysis, resulting in the highest pooled mean ranking among the normalization
methods tested. The EigenMS normalization also consistently reduced intragroup variation more than the
other methods examined, but it did not perform well the in the differential expression analysis. Also other
normalization methods decreased intragroup variation when compared to the unnormalized log2-
transformed data, but no major differences between them were observed. In previous comparisons of
normalization methods in proteomics/peptidomics focusing on intragroup variation measures, the Vsn
normalization has been ranked average [10] or as among the most suitable methods [3]. Previous studies
have suggested the linear regression normalization or its variants or local regression normalization to
reduce intragroup variation the most [3,9,10]. We observed the linear regression normalization variants
and the local regression normalization variants performing on par with the other normalization methods in
reducing intragroup variation, with no major differences. However, even though we did not observe the
linear and local regression to reduce intragroup variation more than the other normalization methods, we
noticed that the local regression method using a mean reference sample, LoessF, consistently produced
high AUCs in the differential expression analysis. The same was true for the linear regression methods using
a median reference sample, Rlr and RlrMA. The local regression normalization fared better in the UPS1-
dataset while the linear regression normalization performed better in the CPTAC and SGSD datasets,
perhaps indicating a different kind of bias in the datasets. Typically, the variants using a reference sample
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performed better than their cyclic counterparts with the exception of the cyclic loess normalization
LoessCyc in the CPTAC-data.

It became clear that the spike-in datasets in this analysis differed from each other. The sample groups of
the UPS1-dataset had much larger variation in the total intensities than the other two datasets, especially
the SGSD-dataset, which had many sample groups with roughly similar levels of total intensities. This could
be due to a number of reasons, such as different instrumentation or protocols/methods used, but is
interesting from the point of normalization. The total intensities between the samples may vary from data
to data also in the case of real experimental study settings and we would like to find a normalization
method that can perform as consistently as possible no matter the characteristics of the data. Notably,
normalization clearly improved the AUCs also in the CPTAC-dataset when compared to the unnormalized
log2-transformed data (Table 1), regardless of the fact, that it had rather equal total intensity levels prior to
normalization. This emphasizes the importance of a consistent normalization method; even if we have a
high quality dataset with rather equal unnormalized sample levels, we cannot necessarily deduce if a simple
logarithmic transformation would suffice in delivering the truly differentially expressed proteins reliably.
Also, the nature of the bias might be different in different datasets. Therefore the used normalization
should not make too rigid assumptions about the nature of the bias, unless we know or can estimate the
bias and purposefully want to use a method targeting specifically that kind of bias. The Vsn, Quantile and
the EigenMS normalizations do not make strict assumptions about the nature of the bias and are general
methods in that sense.

The Median and Quantile normalizations were on par with most of the normalization methods in reducing
intragroup variation but they did not rank well in terms of differential expression analysis. It is notable
however, that even though not having a high ranking, both methods performed consistently in the
differential expression analysis by not producing very low AUCs in any of the two-group comparisons like
the log2-transformation did in the UPS1-dataset (Figure 2A). More worrying is the tendency of the Quantile
normalization to introduce extra patterns into the data on high intensities seen on many two-group
comparisons (Supplementary File 1). The Progenesis normalization had the second highest ranking in the
differential expression analysis in the UPS1-data, but ranked worse in the two other datasets examined
(Table 1). The EigenMS behaved differently from the other normalization methods examined in this study.
While it was effective in reducing intragroup variation, it did not perform so well in the differential
expression analysis. Instead, it performed similarly as the simple log2-transformation.

An arbitrary but commonly used cutoff value to determine differentially expressed genes and proteins is a
LogFC of one [27–29], which corresponds to a 2-fold change in expression. As we noticed from the LogFC-
plots of the data normalized with the different methods (Figure 3B-C, Supplementary File 2), the estimates
for the known differentially expressed proteins frequently remained under this limit even if the
differentially expressed proteins were detected with great accuracy. This was especially true for the Vsn-
normalized data which gave conservative estimates for the LogFC of the spike-in proteins but from which
the spike-in proteins were detected with great accuracy. This warrants caution for the use of any such
generic cutoff values for filtering the differentially expressed proteins based on their LogFC.

Although Vsn  performed generally well in our comparisons, the fact that it consistently underestimated
the LogFC:s of the spike-in proteins can be seen as a potential drawback of the method if the researcher
would be interested particularly in examining the logarithmic fold changes of proteins. For this particular
task, some of the other well performing normalization methods (LoessF, Rlr, RlrMA) would be perhaps
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more suitable. Also, all of the normalization methods studied here, excluding EigenMS, assume that only a
small portion of the proteins are differentially expressed between samples and force the total intensity
levels of the samples to be on the same level (Supplementary Figure 1). This might be problematic if in fact
a large number of proteins are differentially expressed between samples.  In such cases methods like the
EigenMS might be more suitable for normalizing the data. We encourage the researcher to reflect on what
is known beforehand about the task at hand and select the appropriate normalization method accordingly.

All of the normalizations in this study were performed on protein level data. Normalization can be
performed also at the peptide-level. The next step would be to perform a similar exhaustive comparison of
the normalization methods on peptide level and explore if the same methods fare well with peptide data.
Also, the choice of peptides to be used for the normalization has been demonstrated to have an effect [11]
and exploring this idea in conjunction with the normalizations used in this study would be an interesting
further topic.

Based on the comparisons made in this study, normalization decreased intragroup variation in general and
resulted in better AUCs in the differential expression analysis than the simple log2-transformation in case
of most of the normalization methods examined. The Vsn normalization performed consistently well in
reducing intragroup variation and in the differential expression analysis in all tested datasets. The local
regression and linear regression normalizations using a reference also reduced intragroup variation
compared to the unnormalized data and consistently delivered good AUCs in the differential expression
analysis.
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Key points:

· Data generated by the MS-analysis are prone to biases which can be accounted for with
normalization resulting in more reliable downstream analysis

· 11 normalization methods were systematically evaluated in this study using three spike-in and a
mouse label free proteomics datasets

· Variance stabilization normalization (Vsn) reduced variation the most between the technical
replicates in all studied datasets and consistently performed well in the differential expression
analysis. The Local regression normalization using an artificial reference sample (LoessF) and Linear
regression normalization using artificial reference samples (Rlr and RlrMA) also performed
systematically well in the differential expression analysis.

· The nature and extent of the bias in the data is not generally known beforehand; the application of
a consistent normalization method is crucial for reliable results
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