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Quantification of concurrence via weak measurement

Mikko Tukiainen,1,2,* Hirokazu Kobayashi,3,† and Yutaka Shikano2,4,5,‡
1Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turun Yliopisto, Finland

2Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Sciences,
Okazaki, Aichi 444-8585, Japan

3Department of Electronic and Photonic System Engineering, Kochi University of Technology, Tosayamada-cho, Kochi 782-8502, Japan
4Institute for Quantum Studies, Chapman University, Orange, California 92866, USA

5Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro, Tokyo 153-8904, Japan
(Received 18 November 2016; published 1 May 2017)

Since entanglement is not an observable per se, measuring its value in practice is a difficult task. Here we
propose a protocol for quantifying a particular entanglement measure, namely, concurrence, of an arbitrary
two-qubit pure state via a single fixed measurement setup by exploiting so-called weak measurements and the
associated weak values together with the properties of the Laguerre-Gaussian modes. The virtue of our technique
is that it is generally applicable for all two-qubit systems and does not involve simultaneous copies of the
entangled state. We also propose an explicit optical implementation of the protocol.
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I. INTRODUCTION

In the course of the past decades, the role of entanglement
has evolved into a genuine quantum resource utilized in various
quantum communication and computation protocols [1–5].
This evolution has been supported by the formidable progress
made on the techniques of generating entanglement in practice.
Inevitable and inescapable noise, together with imperfections
present in every real experiment, may, however, degrade the
intended entangled state. Being able to detect and measure the
entanglement content becomes important since any amount
of entanglement can be harnessed in nonclassical tasks [6,7].
Although several theoretical measures have been developed
for this purpose [5,8], realizing them in practice remains
challenging in general. The reason is that typically these
measures of entanglement contain rather involved, even
unphysical, operations or are nonlinear functions of the state.

One of the most widely used measures of entanglement is
the so-called concurrence [9], which in the case of two qubits
in a pure state takes a particularly simple form. Despite the
mathematical simplicity, the task of quantifying the value of
concurrence of an unknown two-qubit pure state using only a
single measurement setup of a fixed normalized projection-
valued measure (PVM) is impossible [10]. Nevertheless,
several different procedures circumventing this impossibility
have been reported that exploit collective measurements done
with simultaneous copies of the state [11–14] or utilize
the curious relation between concurrence and two-particle
interference [15]. Furthermore, measurements of concurrence
that rely on relaxing the aforementioned PVM criterion have
been developed [16–18].

In this study, we propose a local tomographic strategy to
quantify the concurrence of any two-qubit pure state that takes
advantage of so-called weak measurements. We also consider
an experimental implementation on an optical setup that can
be deployed to measure the concurrence of two polarization
entangled photons using the proposed protocol. Our method is,
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however, universal in the sense that it works for all two-qubit
systems.

The key tools of our proposal are weak measurements
and the resulting weak values [19,20]. Weak measurements
are (von Neumann) standard measurements [21] where the
coupling strength λ between the measured system and the
measuring pointer is minuscule. Consequently, the distur-
bance of the weak measurement to any subsequent (strong)
measurement, usually called postselection, is negligible. By
postselecting on a particular pure state, |ϕ〉〈ϕ|, in the vanishing
interaction strength limit λ → 0, one can derive the weak value
of the observable A as

〈ϕ|〈A〉wρ := tr [A ρ |ϕ〉〈ϕ|]
tr [ρ |ϕ〉〈ϕ|] , (1)

where ρ is the preselected (mixed) state of the measured
system [22]. Throughout this paper, we omit the preselection
subindex whenever it is clear from the context. Weak values
are intrinsically complex, which has already proved useful
in characterizing the mathematically observable-independent
probability space [23], several quantum paradoxes [24], the
quantum state [25–31], and unobservable quantities such as the
geometric phase [32–35] and the non-Hermitian operator [36];
see also the review papers [37–40]. We show that one may
also take advantage of the complex feature of the weak
values in assessing the amount of entanglement with a single
measurement setup. This result builds upon the fact first noted
in Ref. [29] that, when a Laguerre-Gaussian beam is used as
the pointer state of the weak measurement, certain weak values
can be interpreted as stereographical projections of the Bloch
sphere onto R2 plane.

II. CONCURRENCE AND WEAK VALUES

Let us assume that two observers, Alice and Bob, are
tasked with determining the amount of entanglement in a
bipartite state ρAB by means of performing local operations.
Furthermore, assume that the source generates only pure
two-qubit states, that is, ρAB = |�AB〉〈�AB | for some

|�AB〉 = a00|00〉 + a01|01〉 + a10|10〉 + a11|11〉, (2)
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where |0〉 and |1〉 are the eigenvectors of Pauli operator σz,
and |ij 〉 := |i〉 ⊗ |j 〉 and aij (i,j = 0,1) are complex numbers
satisfying the normalization

∑1
i,j=0 |aij |2 = 1. One of the most

widely used entanglement measures in two-qubit systems is
the concurrence C. In the case of a pure state |�AB〉, the
concurrence C(�AB) takes the simple form [9]

C(�AB)2 = 4|a00a11 − a01a10|2
= 4 det(ρA) = 4 det(ρB), (3)

where ρA(B) is the reduced density matrix of Alice (Bob), e.g.,

ρA =
( |a00|2 + |a01|2 a∗

00a10 + a∗
01a11

a00a
∗
10 + a01a

∗
11 |a10|2 + |a11|2

)
. (4)

The concurrence has a one-to-one connection to the von
Neumann entropy [9]

E(�AB) = −tr [ρA log2(ρA)] = −tr [ρB log2(ρB)]

= −1 + √
1 − C2

2
log2

(
1 + √

1 − C2

2

)

− 1 − √
1 − C2

2
log2

(
1 − √

1 − C2

2

)
(5)

and via that to a plethora of other entanglement measures [5,8],
which makes it a natural choice of figure of merit for our task.

Our main result is to reveal a mathematical relationship
between the concurrence and the weak values corresponding
to weak measurements of either one of the local observers. For
instance, Alice’s weak values of the observable σA

x := |0〉〈1| +
|1〉〈0|, preselected on her reduced state ρA and postselected on
either |0〉 or |1〉, read

〈0|
〈
σA

x

〉w
:= tr

[
σA

x ρA |0〉〈0|]
tr [ρA |0〉〈0|] = a00a

∗
10 + a01a

∗
11

|a00|2 + |a01|2 ,

〈1|
〈
σA

x

〉w
:= tr

[
σA

x ρA |1〉〈1|]
tr [ρA |1〉〈1|] = a∗

00a10 + a∗
01a11

|a10|2 + |a11|2 (6)

[see Fig. 1(a)]. A weak value may not be well defined if its
denominator vanishes. Physically this corresponds to receiving
no signal on the measuring pointer whatsoever. We notice
that either one of the above weak values being nonvanishing
automatically implies that the other one is also nonzero.
Therefore, whenever 〈0|〈σA

x 〉w �= 0 �= 〈1|〈σA
x 〉w, we may write

(|a00|2 + |a01|2)/(|a10|2 + |a11|2) = |〈0|〈σA
x 〉w|/|〈1|〈σA

x 〉w| and
solve

C(�AB)2 = 4 det(ρA) = 4
(
1 − ∣∣

〈0|
〈
σA

x

〉w∣∣∣∣
〈1|

〈
σA

x

〉w∣∣) ∣∣
〈0|

〈
σA

x

〉w∣∣∣∣
〈1|

〈
σA

x

〉w∣∣(∣∣
〈0|

〈
σA

x

〉w∣∣ + ∣∣
〈1|

〈
σA

x

〉w∣∣)2 , (7)

where we have used the information 〈0|〈σA
x 〉w 〈1|〈σA

x 〉w =
|〈0|〈σA

x 〉w||〈1|〈σA
x 〉w|. Since |a00a

∗
10 + a01a

∗
11| � |a00||a10| +

|a01||a11| � 1/2, we additionally conclude that∣∣
〈0|

〈
σA

x

〉w∣∣∣∣
〈1|

〈
σA

x

〉w∣∣ � 1. (8)

On the other hand, one of the weak values in Eq. (6) being
zero implies that the other one either also vanishes or is
not well defined. Assume for example that 〈0|〈σA

x 〉w is not
well defined. Then |a00|2 + |a01|2 = 0 implying C(�AB) =
0. Similarly, C(�AB) = 0 if 〈1|〈σA

x 〉w is not well defined.
These observations can also be reproduced from Eq. (7) as
limiting cases 〈i|〈σA

x 〉w → ∞, i = 0,1, since, except for the
point (|〈0|〈σA

x 〉w|,|〈1|〈σA
x 〉w|) = (0,0), concurrence C(�AB) is

a continuous function of |〈0|〈σA
x 〉w| and |〈1|〈σA

x 〉w|.1 Therefore,
the concurrence, plotted in Fig. 1(b), may be determined from
Eq. (7), with the exception of the singularity in the origin
(|〈0|〈σA

x 〉w|,|〈1|〈σA
x 〉w|) = (0,0); this case will be analyzed later

separately. It is noteworthy that the protocol presented works
completely locally.

We note in passing that |〈0|〈σA
x 〉w| = |〈1|〈σA

x 〉w| is the only
line passing through the origin on which C(�AB) attains its
maximum value 1. The reduced states ρA corresponding to this
line are those which are on the equatorial plane of the Bloch

1Actually, in the point (0,0) concurrence is not even a function of
two weak values. Namely, with a proper choice of �AB , C(�AB )
can acquire any value from the interval [0,1], while satisfying
〈0|〈σA

x 〉w = 0 = 〈1|〈σA
x 〉w .

sphere in Fig. 1(a). On this line, Eq. (7) simplifies to

C(�AB) =
√

1 − ∣∣
〈0|

〈
σA

x

〉w∣∣2
. (9)

This observation is useful in order to calibrate C as close to
unity (or any other value from the interval [0,1]) as desired.
Because the process is completely local, the other party (Bob)
can validate the result of this “optimization” for instance via
state tomography.

III. DETERMINATION OF ENTANGLEMENT
WITH A FIXED MEASUREMENT SETUP

Determining C(�AB) of arbitrary |�AB〉 directly via
measurement of only a single set of orthogonal projectors
Pi = |Oi〉〈Oi |,

∑4
i=1 Pi = 1, where 〈Oi |Oj 〉 = δij (Kro-

necker δ), is impossible [10]. In other words, one cannot
quantify concurrence of all bipartite states with a single
fixed measurement setup if the measured observable is a
PVM. This is due to the fact that the measured probabilities
pi = |〈Oi | �AB 〉|2 result in three independent real numbers,
which are not in general sufficient to determine C(�AB), a
nonlinear function of four complex parameters. In fact, even
deciding if a completely unknown (hence possibly mixed)
bipartite state is the entanglement or not requires as many
resources as state tomography [41].

The relationship between Alice’s weak values and the
concurrence introduced in the previous section suggests that
weak measurements allow one to circumvent this impossi-
bility. To extract the real and imaginary parts of the weak
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FIG. 1. (a) Stereographical representation of the weak value of the state ρA. Following Ref. [29], the weak measurement of σx on the state
ρA, followed by postselection on |0〉 or |1〉, may be interpreted as stereographic projections of the qubit state ρA on the two R2 planes that
intersect the north and south pole of the Bloch sphere. For our purposes, the absolute values |〈0|〈σA

x 〉w| and |〈1|〈σA
x 〉w| are particularly important

because they may be used to measure the distance between ρA and the maximally mixed state 1
2 1A, which in turn is related to the amount of

entanglement. (b) Concurrence C(�AB ) in terms of |〈0|〈σA
x 〉w| and |〈1|〈σA

x 〉w|. The concurrence is fully determined by these variables except for
the point (0,0), which corresponds to the black dashed line in panel (a). The white region equals the canceled area |〈0|〈σA

x 〉w||〈1|〈σA
x 〉w| > 1.

value two complementary pointer observables are usually
used [19,42–44], that is, two separate measurements have
to be set up. Remarkably however, it is also possible to
quantify both of these components simultaneously by using
so-called Laguerre-Gaussian (LG) modes [29,45,46] as the
initial pointer state due to the initial correlations [47] related
to these states.

As alluded to in the previous section, the determina-
tion of entanglement fails only in problematic cases where
〈0|〈σA

x 〉w = 0 = 〈1|〈σA
x 〉w. The vanishing weak values imply

that Alice’s state is simplified to

ρA =
(

|a00|2 + |a01|2 0

0 |a10|2 + |a11|2
)

. (10)

These cases correspond to the states on a line connecting
the opposite poles |0〉 and |1〉 of the Bloch sphere [see
Fig. 1(a)]. In our protocol the set of these states has only
minor relevance since mathematically it has null measure (in
the relevant measurable space). Accordingly, the impossibility
of determining the concurrence of states with a single PVM
strategy persists even if these problematic states are excluded.
Nevertheless, in such instances a local measurement of the
postselection probabilities can be used to reveal the amount
of entanglement in the state |�AB〉. To this end, Alice can
measure the relative intensities of the postselected states to
solve the diagonal elements of ρA in Eq. (10). Since this
measurement may be done jointly with the weak measurement
protocol described above, the whole procedure of determining
the entanglement content in |�AB〉 can be achieved with a
single fixed measurement device. Moreover, the protocol uses
only a single fixed PVM as the postselected measurement; as
discussed above, without the preceding weak interaction such
an entanglement-measuring strategy would be impossible.

The weak values 〈0|〈σA
x 〉w and 〈1|〈σA

x 〉w, in addition to the
intensity measurements described above, give sufficient in-
formation to determine the reduced state ρA [see Fig. 1(a)].
In this regard, the protocol we presented essentially relies
on local tomography of the reduced state of Alice (or Bob):
in the absence of classical communication between the two
parties, as is the case in our protocol, this is the optimal
local strategy to determine the entanglement of the two-
qubit state [10]. As a consequence, we have generalized the
one-qubit pure state tomography described in Ref. [29] for
mixed states, thus expanding the scope of applications of
the previously introduced technique. This underpins that the
weak measurement setup exploiting Laguerre-Gaussian modes
(an optical proposal of which is given in the next section)
could be considered as a basic tool in quantum experiments
involving tomography of qubits, such as the above-introduced
entanglement quantification.

Being able to reconstruct the reduced state ρA will also en-
able one to connect the weak values to entanglement measures
other than concurrence; see, for example, Eq. (5). In fact,
the von Neumann entropy E(�AB) = −tr [ρA(B) log2(ρA(B))]
in Eq. (5) is an entanglement measure of not only two qubits
but also general bipartite pure states �AB and is independent
of which one of the subsystems A or B it is calculated
with respect to. Hence, our protocol can be immediately
generalized to assess the amount of entanglement in scenarios
where one of the two parties possesses a one-qubit system.
Additionally, our method is not fully confined to pure states
but can also be utilized in estimating the entanglement of the
mixed bipartite states; we have left the details and proof of
this fact to the Appendix. This is a highly important upside
from the experimentalists’ viewpoint, since the preparation of
a perfectly pure bipartite state is not a realistic assumption in
practice.

052301-3



TUKIAINEN, KOBAYASHI, AND SHIKANO PHYSICAL REVIEW A 95, 052301 (2017)

FIG. 2. Weak measurement setup for determining concurrence
in the two-photon polarization state |�AB〉. The initial pointer
state is prepared as the Laguerre-Gaussian (LG) mode using a
mode converter. The weak interaction between eigenvectors of σx ,
|±〉 = (|0〉 ± |1〉)/√2, can be implemented using a polarization
Sagnac interferometer (PBS, polarization beam splitter, HWP, half
waveplate).

IV. PROPOSAL FOR OPTICAL EXPERIMENT

In this section we describe a possible optical setup for
determining the concurrence of the polarization entangled state
|�AB〉 of photon pairs via a weak measurement. Our proposed
experimental setup is illustrated in Fig. 2. The reduced density
matrix ρA weakly interacts with the pointer state via the
interaction

Uλ = e−iλσx⊗Px = �+ ⊗ e−iλPx + �− ⊗ eiλPx , (11)

where Px is the momentum operator along the x direction
on the cross-sectional plane of the optical beam, λ is a small
interaction strength, and �± = 1

2 (1 ± σx) are the eigenpro-
jectors of the Pauli operator σx . The interaction (11) can be
implemented using a polarization Sagnac interferometer and
the interaction strength λ can be changed by tilting the angle
of a mirror inside the interferometer (see the inset in Fig. 2).

As the initial pointer state, we choose the optical prop-
agation mode with the two-dimensional normalized ampli-
tude distribution φi(x,y), which satisfies the paraxial wave
equation [48]. After weak interaction and postselection onto
|ϕ〉 (= |0〉 or |1〉), the intensity distribution If(x,y) of the final
pointer state becomes

I
ϕ

f (x,y) =
∑

j,k=±1

〈ϕ|�jρA�k|ϕ〉φi(x − jλ,y)

×φ∗
i (x − kλ,y). (12)

Assuming the “weakness” condition, λ−1 
 max
(1,|〈ϕ|〈σx〉w|), the interaction in Eq. (11) induces a translational
shift of the pointer state with an amount proportional to the
weak value 〈ϕ|〈σx〉w along the x direction [42]. Namely, under
the weakness condition, Eq. (12) can be approximated as

I
ϕ

f (x,y) = I
ϕ
tot|φi(x − λ 〈ϕ|〈σx〉w,y)|2, (13)

where I
ϕ
tot ≡ ∫

dx dy I
ϕ

f (x,y) = 〈ϕ|ρA|ϕ〉 corresponds to the
total intensity of the postselected beams.

If the fundamental Gaussian beam is used for the pointer
state, we can extract only the real part of the weak value
from the shift in the beam average position and an alternative
measurement setup with additional optical components is
required to obtain the imaginary part of the weak value from the
shift in the beam average momentum. A more suitable choice
for the pointer state for our purpose is the (first-order) LG beam
φi(x,y) ∝ (x + iy) exp[−(x2 + y2)], which is a cylindrically
symmetric solution of the paraxial wave equation [48,49]. The
LG beam can be generated from a Gaussian one by using
a mode converter, such as a q-plate [50] or a spatial light
modulator [51]. From Eq. (13), the averaged values of the
position operators Qx and Qy on the cross-sectional plane of
the final intensity distribution are calculated as

〈Qx〉f = λ Re[ 〈ϕ|〈σx〉w], 〈Qy〉f = λ Im[ 〈ϕ|〈σx〉w]. (14)

Using a two-dimensional image sensor as a detector the LG
pointer state therefore allows us to simultaneously visualize
both the real and the imaginary part of the weak values 〈0|〈σx〉w
and 〈1|〈σx〉w without additional optical components [29].

In the case of vanishing weak values, where Eq. (7)
cannot be used, we cannot obtain any information about the
entanglement from the averaged shifts of the pointer state.
However, due to the aforementioned reasons these cases
are physically insignificant. For the sake of completeness
we nevertheless point out that measuring the total inten-
sities I

ϕ
tot = 〈ϕ|ρA|ϕ〉 of the two postselected beams with

|ϕ〉 = |0〉,|1〉 enables one to determine the diagonal elements
of the state in Eq. (10). Because this can be performed jointly
with measurements of the Qx and Qy position operators, one
can determine the concurrence of the quantum state |�AB〉
with a single measurement setup.

Although the LG mode pointer states allow us to determine
the concurrence using a single fixed PVM for postselection,
there are some technical difficulties. The first problem is the
mode conversion from the fundamental Gaussian mode to the
LG mode. The conversion efficiency is limited by the mode
converter and also by the mode coupling coefficient between
the incident mode of the photon pairs and the LG mode. To
increase the mode-coupling coefficient, a single-mode optical
fiber is typically used for spatial mode cleaning of the photon
pair beam. In this case, however, fiber coupling loss becomes
a serious problem for photon-pair detection. One practical
solution is photon-pair generation via four-wave mixing in the
single-mode fiber [52]. Another problem is the low detection
efficiency of the typical image sensor and, concurrently, the
demand for a large ensemble of states needed to extract the
weak values. To obtain the high-contrast two-dimensional
intensity distribution, we have to generate photon pairs with
high intensity using pulsed light or a high-gain imaging sensor,
such as a cascade of single-photon detectors.

V. SUMMARY

We have shown how weak measurements and weak values
can be used to quantify the concurrence of any two-qubit
pure state. We demonstrated that the proposed protocol can
be performed with a single measurement setup using a local
weak interaction and a Laguerre-Gaussian mode as the pointer
state. Notably, the protocol uses a single fixed PVM as for the
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postselection. In contrast, without the preceding weak interac-
tion, such a measurement of concurrence is impossible [10].
We also considered a potential experimental realization for
quantifying the concurrence of the polarization entangled state
of photon pairs. Although the proposed implementation has
some technical difficulties, such as the detection efficiency,
we believe that our protocol could be practically implemented
and demonstrated in the future.
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APPENDIX: ROBUSTNESS OF CONCURRENCE

Our protocol relies on the fact that for a pure
state |�AB〉 ∈ C2 ⊗ C2 the concurrence is related to
the reduced state ρA := trB[|�AB〉〈�AB |] via C(�AB)2 =
4 det(ρA) [see Eq. (7)]. The concurrence of a mixed two-
qubit state ρAB can then be obtained from the con-
vex roof extension C(ρAB) = inf{pi ,ψi }

∑
i piC(ψi), where

pi � 0 satisfies ρAB = ∑
i pi |ψi〉〈ψi | for some unit vectors

|ψi〉 ∈ C2 ⊗ C2 [5]. In general C(ρAB)2 �= 4 det(ζA), where
ζA = trB[ρAB]. Nevertheless, in this appendix we show that
C(ρAB)2 ≈ 4 det(ζA) is a good estimate, whenever ρAB ≈
|�AB〉〈�AB | for some unit vector |�AB〉 ∈ C2 ⊗ C2. More
precisely, we prove that for any ε > 0 one can find δ > 0
such that |C(ρAB)2 − 4 det(ζA) | < ε whenever M(ρAB) :=
inf�AB

D(|�AB〉〈�AB |,ρAB) < δ. Here D denotes the trace
distance defined for arbitrary states ρ1 and ρ2 via D(ρ1,ρ2) =
1
2 tr [|ρ1 − ρ2|].

The quantity M(ρAB) is clearly a measure of “mixedness”
of the state ρAB . To further enforce this terminology, it holds
that

0 � 1
4

(
1 − tr

[
ρ2

AB

])
= 1

4 | tr [(|�AB〉〈�AB | − ρAB)(|�AB〉〈�AB | + ρAB)]|
� 1

2 tr [| |�AB〉〈�AB | − ρAB |]
= D(|�AB〉〈�AB |,ρAB), (A1)

for any |�AB〉. Hence 1
4 (1 − tr[ρ2

AB]) � M(ρAB), where
tr[ρ2

AB] is known as the purity of the state ρAB .
We begin by showing that concurrence is continuous with

respect to the trace distance: in proving this, we closely follow

the technique used in Ref. [53]. Let us extend C into the trace
class of C2 ⊗ C2 by defining

C̃(T ) :=
{

tr [|T |]C( |T |
tr [|T |]

)
, T �= 0,

0, T = 0.
(A2)

For all T the function C̃(T ) can then be equivalently expressed
as C̃(T ) = inf{ti ,|ψi 〉}

∑
i tiC(ψi), where ti � 0 satisfies

|T | = ∑
i ti |ψi〉〈ψi | and ||ψi || = 1 for all i. Assuming that

|T1| � |T2| it is then straightforward to see that

C̃(T1) � C̃(T2). (A3)

Let ρ1 and ρ2 be quantum states in C2 ⊗ C2 and define
τ = ρ1 − ρ2, so that ρ1 = |τ + ρ2| � |τ | + ρ2 = | |τ | + ρ2|.
For any ε > 0, one can find ensembles {ti ,|ψi〉} and {pj ,|ϕj 〉}
such that |τ | = ∑

i ti |ψi〉〈ψi | and ρ2 = ∑
j pj |ϕj 〉〈ϕj |

and satisfying C̃(|τ |) �
∑

i tiC(ψi) − ε/2 and C̃(ρ2) �∑
j pjC(ϕj ) − ε/2. Since

∑
i

∑
j (ti + pj ) = tr[|τ | + ρ2|],

we have

C(ρ1) = C(τ + ρ2) � C̃(|τ | + ρ2)

�
∑

i

ti |ψi〉〈ψi | +
∑

j

pj |ϕj 〉〈ϕj ||

� C̃(|τ |) + C(ρ2) + ε. (A4)

Because the relation holds for arbitrary ε > 0, we can conclude
that

|C(ρ1) − C(ρ2)| � C̃(|ρ1 − ρ2|)

= tr [|ρ1 − ρ2|]C
( |ρ1 − ρ2|

tr [|ρ1 − ρ2|]
)

� 2D(ρ1,ρ2). (A5)

On the other hand, whenever ρ1 and ρ2 are states in
C2 ⊗ C2, the reduced one-qubit states ζi = trB[ρi], i = 1,2,

satisfy

|det(ζ1) − det(ζ2)| = 1
2

∣∣tr [
ζ 2

1

] − tr
[
ζ 2

2

]∣∣
= 1

2 |tr [(ζ1 − ζ2)(ζ1 + ζ2)]|
� 2D(ζ1,ζ2) � 2D(ρ1,ρ2), (A6)

where we have used the property 2 det(ζ ) = 1 − tr[ζ 2] that
holds for all one-qubit states ζ and the data-processing
inequality of trace distance D(ρ1,ρ2) � D[E(ρ1),E(ρ2)] that
holds for all completely positive trace-preserving linear maps
E (such as the partial trace).

Using the above relations, we can easily prove our claim.
Let ε > 0 and a unit vector |�AB〉 ∈ C2 ⊗ C2 be arbitrary and
denote ρA = trB[|�AB〉〈�AB |]. We have

|C(ρAB)2 − 4 det(ζA)|
� |C(ρAB)2 − C(�AB)2| + |4 det(ρA) − 4 det(ζA)|
� 2 |C(ρAB) − C(�AB)| + 4|det(ρA) − det(ζA)|
� 12 D(|�AB〉〈�AB |,ρAB), (A7)

and consequently |C(ρAB)2 − 4 det(ζA)| � 12 M(ρAB) for all
ρAB . Choosing δ = ε

12 proves the claim. As a by-product we
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get the bounds

4C− � C(ρAB)2 � 4C+, (A8)

where C± := det(ζA) ± 3M(ρAB).

In summary, we can conclude that M(ρAB) ≈ 0 implies
that ρAB is both approximately pure (tr[ρ2

AB] ≈ 1) and that
C(ρAB)2 ≈ 4 det(ζA).
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