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Abstract 10 

 11 

The tritrophic interactions between plants, herbivores and avian predators are complex and 12 

prone to trophic cascades. We conducted a meta-analysis of original articles that have studied 13 

birds as predators of invertebrate herbivores, to compare top-down trophic cascades with 14 

different plant responses from different environments and climatic areas. Our search found 29 15 

suitable articles, with a total of 81 separate experimental study set-ups. The meta-analysis 16 

revealed that plants benefited from the presence of birds. A significant reduction was 17 

observed in the level of leaf damage and plant mortality. The presence of birds also positively 18 

affected the amount of plant biomass, whereas effects on plant growth were negligible. There 19 

were no differences in the effects between agricultural and natural environments. Similarly, 20 

plants performed better in all climatic areas (tropical, temperate and boreal) when birds were 21 

present. Moreover, both mature plants and saplings gained benefits from the presence of 22 

birds. Our results show that birds cause top-down trophic cascades and thus they play an 23 

integral role in ecosystems. 24 

 25 
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Introduction 30 

 31 

Ecosystems are usually seen as being controlled by either top-down (consumer-driven) or 32 

bottom-up (resource-driven) mechanisms (Hunter and Price 1992; Polis et al. 1997). If an 33 

ecosystem is productive enough to facilitate the existence of vertebrate predators, the 34 

“ecosystem exploitation hypothesis” predicts that predators keep the population sizes of the 35 

folivorous prey low, thus, enabling plants to grow and reproduce (Hairston et al. 1960; 36 

Oksanen et al. 1981; Oksanen and Oksanen 2000). Bottom-up controlled ecosystems, in 37 

contrast, are considered to be shaped more by inorganic resources than by predation 38 

(Slobodkin 1960; Polis and Strong 1996). In both top-down and bottom-up controlled 39 

systems there may occur trophic cascades; linear interactions inside ecosystem food webs that 40 

typically include a plant, an herbivore and a predator (Persson 1999; Schmitz et al. 2004). 41 

Information on trophic cascades may help to understand, for example, the effects of top 42 

predator removal on the remaining ecosystem or stability properties of communities that are 43 

disturbed by action of humans (Paine 1980; Pace et al. 1999). It is commonly thought that 44 

ecosystems are more complex, and thus clear evidence of trophic cascades more rare, in 45 

species-rich tropical areas and natural environments than in colder climates and agricultural 46 

monocultures (Strong 1992; Polis and Strong 1996). 47 

 48 

Carnivorous birds are common in ecosystems throughout the world and there have been 49 

numerous studies showing that they can have negative effects on the population sizes of 50 

insects and other small herbivores (e.g. Holmes 1979; Fowler et al. 1991; Williams-Guillén et 51 

al. 2008). At the same time, herbivores can cause notable damage to plants (e.g. Marquis 52 

1984; Bejer 1988; Mattson et al. 1988). To combine these two interactions, an increasing 53 

number of studies have also examined the effect of bird predation on plant herbivores 54 
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cascading down to plants (e.g. Marquis and Whelan 1994; Strong et al. 2000; Van Bael et al. 55 

2003). Multitrophic studies are warranted because studies with two trophic levels (e.g. plant – 56 

herbivore or predator – herbivore) at a time do not necessarily reveal the interactions among 57 

all three (or more) trophic levels. This is because the separate two-trophic level studies are 58 

seldom conducted at the same time or the same place, or with species common to both 59 

interactions. A recent review assessed the importance of birds in reducing plant damage 60 

mainly in forests and agricultural environments in the tropics (Van Bael et al. 2008), and 61 

another one documented the top-down cascading effects of vertebrate insectivores in general 62 

(Mooney et al. 2010), but as yet there has been no analysis whether bird-driven trophic 63 

cascades differ among climatic areas, including temperate and boreal forests. In addition, 64 

plant characteristics which gain benefits from the presence of birds remain to be explored. To 65 

answer these questions, we conducted a meta-analysis of original studies on potential trophic 66 

cascades from birds to plants. A meta-analysis is the best way to combine the results of 67 

independent studies to discover if there is a shared pattern among them (Gurevitch and 68 

Hedges 2001). 69 

 70 

Our analyses serve several purposes. First, we measure the overall effect size of the presence 71 

of birds cascading down to plants, and thereafter we resolve with subgroup analyses whether 72 

the strength of the effect varies according to the climatic area (tropical, temperate or boreal), 73 

or the type of environment (agricultural or natural). Thus, these analyses test ideas that 74 

predators would be more effective in creating top-down cascades in agricultural 75 

monocultures and in colder climates (Polis and Strong 1996). Second, we identify with 76 

subgroup analyses whether there are differences in plant responses between the different 77 

types of measures the researchers have studied (leaf damage, biomass, growth or mortality) 78 

or between the age of the plants studied (mature or sapling). These analyses help to evaluate 79 
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how long-lasting the effect is and to focus future research on the appropriate measures of 80 

plant performance. Third, there is interest in measuring the ecosystem services provided by 81 

birds, and the removal of herbivores from harvested plants is certainly a potential service 82 

with economic value (Sekercioglu 2006a, 2006b; Whelan et al. 2008). 83 

 84 

Knowing the importance of birds to plants is also a key element in understanding co-85 

evolution in the trophic interactions among birds, herbivores and plants. For example, recent 86 

studies have shown that birds can find an insect-rich tree on the basis of cues from the host 87 

plant, without seeing either the herbivores or the damaged leaves (Mäntylä et al. 2004, 2008a, 88 

2008b). This suggests that to reduce the amount of herbivory, plants may have evolved 89 

induced responses that attract birds. Alternatively, these signals may be unspecific to birds 90 

(Mäntylä et al. 2008a). This kind of co-evolution between plants and birds may change the 91 

way we think about other trophic interactions. The plant-bird interactions include the 92 

relationships between herbivorous insects and their host plants, already known to be complex 93 

(e.g. Agrawal 1999; Engelberth et al. 2004; Vehviläinen et al. 2006), between insects that try 94 

to hide from birds (e.g. Heinrich and Collins 1983) and birds that vary in their preference for 95 

different prey (e.g. Kaspari and Joern 1993; Lindström et al. 1999). Thus, to get a broader 96 

view on how co-evolution may work within these multitrophic systems, we need to know 97 

whether plants benefit from the presence of birds that remove herbivores from plants. 98 

 99 

 100 

Methods 101 

 102 

To obtain a comprehensive set of studies for our meta-analysis, we searched online databases: 103 

ISI Web of Science, Biological Abstracts and BIOSIS Previews; with different combinations 104 
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of the following keywords: bird*, avia*, herbivor*, predat*, interacti*, insect*, indirect* and 105 

trophic*. The last online search was conducted in June 2010. We also checked the references 106 

of papers already retrieved and previous review articles about tritrophic interactions that 107 

included birds. 108 

  109 

The articles included in the meta-analysis had to fulfil the following requirements: 1) At least 110 

one of the predators in the studied system had to be a bird species; 2) The experiment needed 111 

to contrast two groups, one of which contained a substantially lower level of bird predation 112 

than the other (usually stated as experimental and control groups); 3) There had to be at least 113 

one measured response from the plants, e.g. the extent of leaf damage, or changes in biomass, 114 

growth or mortality; 4) Sample sizes and means, with their deviation terms, had to be 115 

indicated, for both experimental and control groups. 116 

  117 

In the articles accepted to our meta-analysis, the researchers had in some cases measured a 118 

certain response several times either within single or successive growing seasons (in 11 of the 119 

29 articles). To avoid bias, we chose only one occasion from these experiments (in total 30 120 

experiments or study set-ups, which included 2–4 measurement occasions each). Several 121 

methods have been used to do the choice: e.g. the last measurement of the original studies 122 

(e.g. Gurevitch et al. 2000), the mean of all measurements (e.g. Rustad et al. 2001), or the 123 

value with the largest effect size (i.e. the difference among experimental and control group 124 

means) (e.g. Koricheva et al. 1998).  The use of last measurement seemed biologically 125 

inappropriate here since it was always the researchers’ decision when to end the experiment. 126 

The correlation between the mean and maximum effect sizes in our data was so strong (r = 127 

0.98, N = 30 experiments) that the results of the meta-analysis were essentially the same 128 
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using either one of these two measures. From these two we present the results with the largest 129 

effect size, because high instantaneous damage can be more critical to plants than the long-130 

term average level of encountered herbivory (Doak 1992; Leimu and Lehtilä 2006).   131 

 132 

For the article by Atlegrim (1989), we conducted a separate meta-analysis to combine the 133 

five relatively similar forest areas that had been reported separately and used the attained 134 

effect size value and variation for our analyses. If researchers had used several plant or bird 135 

species in the same experiment, they were all included separately in the analyses. Similarly, 136 

we also treated all experiments within a single study as independent studies if they had been 137 

conducted in different types of environments (e.g. moist and dry forest), or if they had studied 138 

mature plants and saplings separately. For the overall result of all studies (“one response per 139 

study set-up” group), we used only one measured plant response (with the largest absolute 140 

value of effect size) of each species, environment and/or plant age. 141 

 142 

In total we found 29 original articles that met the criteria as indicated above (Table 1). A 143 

further four possible studies (Loyn et al. 1983; Ritchie 2000; Gruner 2004; Mooney and 144 

Linhart 2006) were also found relevant in their ecological context but these lacked the 145 

necessary data to conduct meta-analytic calculations. Our four criteria excluded large 146 

numbers of articles, where cascading effects on the plant level were not considered, even 147 

though they reported significant effects of the birds on their arthopod prey communities (e.g. 148 

Holmes 1979; Joern 1986; Fowler et al. 1991; Floyd 1996; Borkhataria et al. 2006). The 29 149 

articles included in the meta-analysis had a total of 81 different experiments or study set-ups, 150 

which were used as independent studies in the analysis. The “one response per study set-up” 151 

group had 44 study set-ups. This group was used for the analysis of the overall effect. The 152 

study habitats ranged from Neotropical forests to intertidal shores and from Hawaiian forests 153 
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to apple orchards, consisting of a wide range of study species. However, apart from four 154 

studies (Bock et al. 1992; Wootton 1992, 1995; Hooks et al. 2003), the plant species under 155 

study were low-growing woody shrubs, trees or forest stands. The most common trees were 156 

species of oak (Quercus spp.; Table 1). In several studies there were no efforts to specify the 157 

herbivores or birds and they were merely labelled as “leaf-chewing insects”, “arthropods” or 158 

“insectivorous birds”. Although the majority of studies had excluded birds from certain areas 159 

or plants with nets or cages (Table 1), there were two exceptions. Sanz (2001) instead used 160 

the addition of birds, and Murakami and Nakano (2000) used bird enclosures and bird 161 

exclosures to test their hypotheses. Although these two studies did not contain only 162 

exclosures, we hereafter, for the sake of simplicity, use terms “bird exclusion” and “bird 163 

exclosures” to indicate the “non-bird group” of each study. Exclosure sizes (mentioned only 164 

in 15 original articles) ranged from 0.1 to over 450 m
2
, and this did not correlate with the 165 

effect size of the plant response (r = 0.13, N = 15 experiments). The most common plant 166 

response surveyed was some measure of leaf damage, while some studies also measured 167 

biomass, growth or mortality. We also noted whether the study plants were mature or 168 

saplings (including seedlings). Two studies by Wootton (1992, 1995) were omitted from this 169 

category as he used aquatic study plants (algae), which cannot be categorised similarly as 170 

terrestrial plants examined in all other studies. In many cases, the researchers were also 171 

interested in other factors together with bird exclusion, e.g. fertilization, insecticides or 172 

invertebrate predators. However, because these factors were not of interest in this review, we 173 

used values of treatments that included only avian predators. 174 

 175 

Studies not included in the meta-analysis 176 

Loyn et al. (1983) and Ritchie (2000) were not included in the meta-analysis because they did 177 

not give the required deviation terms. Loyn et al. (1983) found that other bird species than 178 
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bell miners (Manorina melanophrys) were useful to eucalyptuses, while the bell miners were 179 

not. Ritchie (2000) showed that bird exclosures had a small effect on grasses eaten by 180 

grasshoppers. Additionally, we were unable to use the studies of Gruner (2004) and Mooney 181 

and Linhart (2006), because they had reported their results as effect sizes, which were 182 

impossible to transform to correspond to our effect sizes. Gruner (2004) reported that the 183 

effects of bird exclusion on the dominant tree species in Hawaiian forests varied during the 184 

study but the difference between exclosure and control plots was never significant. Mooney 185 

and Linhart (2006) found that avian exclosures reduced pine wood growth as birds were 186 

connected to pine by a linear food chain via aphids, whereas effects on mistletoe were 187 

negligible due to more reticulate food web and birds as intraguild predators. 188 

 189 

Statistical methods 190 

We used MetaWin v. 2.1 (Rosenberg et al. 2000) to calculate standardized effect sizes as a 191 

log response ratio [lnR = ln(control mean) – ln(experimental mean)]. The use of lnR (instead 192 

of Hedges’ d or other measures of effect size) has recently become more common in 193 

biological studies because it assumes that effects can be multiplicative and is less sensitive to 194 

errors (Morris et al. 2007). We used random effect models and ran resampling tests with 4999 195 

iterations to get 95% bias-corrected bootstrap confidence intervals. Here, effect size values 196 

below zero indicated that the control group (birds present) was more beneficial to plants than 197 

the experimental group (birds absent). All studies were modified with a reversal marker 198 

column of MetaWin (‘+’ sign for measurements of growth or biomass, and ‘-‘ sign for 199 

measurements of leaf damage, mortality or infestation level), so that if plants benefited from 200 

birds then the effect size value was below zero. For the subgroup summary analyses, we 201 

calculated the heterogeneity statistic Q, in MetaWin. As with variance in ANOVA, the total 202 

heterogeneity QT can be partitioned into QM, the variation explained by the model and 203 
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reported in the results, and QE, the residual error variance (Rosenberg et al. 2000). A 204 

statistically significant variance among the effect sizes means that the variance is greater than 205 

expected by sampling error alone (Cooper 1998). 206 

 207 

We used three methods, which are simple to interpret and often used in meta-analytical 208 

studies (Gurevitch et al. 1992; Kaplan and Denno 2007; Salo et al. 2007), to estimate if the 209 

available data suffer from publication bias. Publication bias can be studied by the funnel plot 210 

method, where the observed effect size is plotted against sample size (Palmer 1999). If there 211 

is no publication bias more variation should occur in effect sizes of smaller studies than in 212 

larger studies causing a funnel-shaped plot (Gates 2002). Additionally, Rosenthal’s fail-safe 213 

number method can be used to test for selective reporting by calculating how many studies 214 

with a zero effect size would be needed to make the result of the meta-analysis non-215 

significant (Rosenthal 1979). Finally, one more method involves visual estimation of the 216 

normal quantile plot where standardised effect size values are plotted against normal quantile 217 

values. If the points remain close to the line x = y there should not be publication bias. 218 

 219 

  220 

 221 

Results 222 

 223 

The plants generally benefited from bird presence (i.e. control plants were in better condition 224 

than plants inside bird exclosures) as the overall effect size and its confidence interval (CI) 225 

were clearly less than zero (lnR = -0.367, 95% CI = -0.500 to -0.237). The variation in effect 226 

sizes (total heterogeneity) was statistically significant (QT = 61.59, df = 43, p = 0.033), 227 

indicating greater total heterogeneity than can be expected by sampling error alone. This 228 
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could be expected in our meta-analysis because we compiled studies conducted in different 229 

places with different methods, species and response variables. 230 

 231 

There were no significant differences in plant responses between natural and agricultural 232 

environments (QM = 0.64, df = 1, p = 0.45) (Fig. 1a) or among different climatic areas (QM = 233 

0.34, df = 2, p = 0.87) (Fig. 1b). Similarly, the effects of bird exclusion did not differ between 234 

mature plants and saplings (QM = 1.99, df = 1, p = 0.18) (Fig. 1c). There were, however, 235 

significant differences among different plant responses (QM = 12.95, df = 3, p = 0.014) (Fig. 236 

1d). Plants inside bird exclosures had significantly more leaf damage and mortality, and they 237 

lost more biomass than those outside the exclosures where birds were allowed to prey on 238 

herbivores (Fig. 1d). In contrast, there was no clear effect of bird exclusion on the growth of 239 

plants (Fig. 1d). 240 

 241 

Publication bias 242 

As the data points of the 44 studies used in the overall effect meta-analysis stayed inside the 243 

95 % confidence limits, our data were normally distributed and thus did not show deviation 244 

that could be interpreted as evidence of publication bias (Electronic Supplemental Material 245 

1). The Rosenthal’s fail-safe number method to test for selective reporting (i.e. publication 246 

bias) gave a result of 2125.3, which is very high, considering that our data consisted of only 247 

81 experiments and of those, only 44 were used in the combined overall analysis. According 248 

to the funnel plot method, there was slightly more variation in effect sizes among 249 

experiments with small sample sizes than among those with larger sample sizes (Electronic 250 

Supplemental Material 2) 251 

 252 

 253 
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Discussion 254 

 255 

The results of our meta-analysis show that the effects of birds eating herbivorous insects and 256 

other small prey cascade down to the plant level. Although it has generally been thought that 257 

trophic cascades are stronger in simple ecosystems (agricultural environments and colder 258 

climatic areas) than in more complex ones (natural environments and warmer climatic areas) 259 

(Strong 1992; Polis and Strong 1996), our results do not support this hypothesis. Among the 260 

original research articles used in our study, the authors found evidence of trophic cascades in 261 

several natural systems: boreal (Atlegrim 1989; Sipura 1999; Strengbom et al. 2005; Mooney 262 

2007), temperate (Wootton 1992, 1995; Marquis and Whelan 1994; Forkner and Hunter 263 

2000; Murakami and Nakano 2000; Strong et al. 2000; Lichtenberg and Lichtenberg 2002; 264 

Mazía et al. 2004, 2009; Barber and Marquis 2009; Bridgeland et al. 2010; Garibaldi et al. 265 

2010), Mediterranean (Sanz 2001), and tropical (Van Bael et al. 2003; Van Bael and Brawn 266 

2005; Boege and Marquis 2006; Dunham 2008; Kalka et al. 2008). Similar evidence was 267 

found in agricultural systems in temperate (Mols and Visser 2002), as well as in tropical areas 268 

(Greenberg et al. 2000; Hooks et al. 2003; Van Bael et al. 2007; Kellermann et al. 2008; Koh 269 

2008). Thus, birds were beneficial to plants in multiple habitats, and the agricultural 270 

monocultures or species-rich tropics did not differ from natural regions or boreal forests, 271 

indicating that trophic cascades can also exist in more complex ecosystems. 272 

 273 

When all predators of herbivores (avian, mammalian, invertebrate) are taken into 274 

consideration, meta-analyses of terrestrial tritrophic cascades have shown that predator-275 

exclusion benefits herbivorous arthropods more than harms plants (Halaj and Wise 2001; 276 

Mooney et al. 2010), but that vertebrate carnivores usually have a stronger impact than 277 

invertebrate predators (Schmitz et al. 2000). Moreover, previous reviews of terrestrial trophic 278 
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cascades have often used a large variety of predators where the specific effects of one 279 

predator group (e.g. birds) are often confounded among the diversity of study set-ups (e.g. 280 

Shurin et al. 2002). Thus, our main result concerning the trophic cascade from birds to plants 281 

corroborates the importance of vertebrate predators in such cascades (see also e.g. Kalka et 282 

al. 2008). It must be noted that none of the experiments had extremely high densities of 283 

herbivores. Since carnivorous birds are usually considered generalist predators showing 284 

relatively slow numerical response to an increase in prey density, it is unlikely that birds 285 

could consume a considerable amount of herbivores in a high density situation, e.g., during 286 

outbreaks of forest lepidopterans (Hogstad 2005). However, Fayt et al. (2005) found out that 287 

at least three-toed woodpeckers can regulate bark beetles of spruces and Loyn et al. (1983) 288 

showed that some bird species can eradicate psyllids from eucalypt forest patches. 289 

 290 

Plants outside bird exclosures had less leaf damage and mortality, and higher biomass than 291 

those inside the exclosures (Fig. 1d). By contrast, plant growth did not seem to be affected by 292 

avian exclosure (Fig. 1d), which may be due to the relatively short duration of most of the 293 

research projects reviewed (from 23 days to 36 months, median 12 months), combined with 294 

the plants’ ability to compensate for losses due to herbivory (Schmitz et al. 2000). When 295 

researchers had measured several plant responses, leaf damage was usually the measure most 296 

affected (e.g. Marquis and Whelan 1994; Strong et al. 2000; Boege and Marquis 2006; 297 

Dunham 2008; Van Bael et al. 2007). This is not surprising given that leaf damage is the first 298 

sign of herbivory. However, measuring only the amount of damaged leaves/removed leaf area 299 

does not always explain how damaging herbivory is to the fitness of a plant over time. The 300 

study by Mols and Visser (2002) is a notable exception because they recorded the amount of 301 

fruits that apple trees (Malus domestica) produced, while in another agricultural study, Hooks 302 

et al. (2003) measured the biomass of broccoli heads (Brassica oleracea). Both studies found 303 
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that the presence of birds increased the crop of these plants. Additional studies with measures 304 

of plant fitness, particularly in natural environments, would offer more knowledge about the 305 

long-lasting effects of the bird-driven trophic cascades in multitrophic systems. 306 

 307 

Mature plants and saplings showed a similar response to bird presence (Fig. 1c), although, 308 

young saplings tend to be dominated more by bottom-up than top-down effects (Hunter and 309 

Price 1992). While most of the studies used insects or other arthropods as herbivores and 310 

trees as plants, there were some exceptions. Two studies were made on an intertidal shore 311 

with algivorous limpets and sea urchins (Wootton 1992, 1995), with very pronounced effects 312 

due to bird exclusion. In addition to these, only two other studies were conducted on plants 313 

other than low-growing woody shrubs, trees or forest stands (Bock et al. 1992; Hooks et al. 314 

2003). Thus, our results mostly apply to how woody plants react to bird exclusion. It is 315 

however noteworthy that of the four studies with non-woody plants, only Bock et al. (1992) 316 

found no effect of avian exclusion, while the other three showed that birds reduced herbivore-317 

damage. Other studies that found no evidence for plants deriving benefit from birds had, for 318 

example, examined plants that have strong chemical defences (Salix myrsinifolia; Sipura 319 

1999) and are thus avoided by herbivorous insects (Kolehmainen et al. 1995). The choice of 320 

bird species could also affect the results, as in Murakami and Nakano (2000) where 321 

nuthatches (Sitta europaea) preferred to search for insects from tree trunks rather than from 322 

leaves. More large-scale and/or long-term experiments with a larger assortment of birds, 323 

herbivores and plants would nevertheless be needed for a more comprehensive view of the 324 

generality of the mutualistic relationship between birds and plants. 325 

 326 

As yet totally unexplored potential trophic cascades include for example the ones caused by 327 

birds of prey that eat small herbivorous mammals (such as voles). Many predator reduction 328 
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experiments have already been undertaken with voles or lemmings and their predators 329 

(reviewed in Sundell 2006). However, the plant responses are often not reported at all. If they 330 

are reported, they cannot be separated between the different predator groups (mammalian, 331 

avian or reptilian), because all predators are usually excluded (see e.g. Norrdahl et al. 2002; 332 

Aunapuu et al. 2008). Incorporating measures of plant responses to these studies would 333 

widen our understanding of the effects of birds in trophic cascades among different 334 

ecosystems. 335 

 336 

Our test for publication bias with the funnel and normal quantile plots (Electronic 337 

Supplemental Material 1, 2) did not produce results of strong bias, and the Rosenthal’s fail-338 

safe number method showed that over two thousand studies with an effect size of zero would 339 

be needed to make our result non-significant. No review however can cover studies if they 340 

are unpublished, and thus, our results of the meta-analysis may be a small overestimate of the 341 

actual effect of birds helping plants (Kotiaho and Tomkins 2002). In any case, our meta-342 

analytic data set provides strong support that birds are commonly beneficial to plants.  343 

 344 

In conclusion, our meta-analysis supported the finding that plants benefit from birds that 345 

remove their herbivores and that globally there are no differences in this phenomenon 346 

throughout a variety of environments and climatic areas. This work and some other recent 347 

studies (Sekercioglu 2006a, b; Van Bael et al. 2008; Whelan et al. 2008) have thus shown 348 

that birds are beneficial to plants and form an integral part of ecosystems. In this light it is 349 

worrying that many bird populations are in heavy decline (e.g. Sekercioglu 2004; BirdLife 350 

International 2008). The ecosystem services provided by birds are important not only for the 351 

functioning of natural ecosystems but also for pest control in agriculture and forestry 352 

(Sekercioglu 2006a). If bird populations decline, these services are not easily replaced by any 353 
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other taxa, especially in the tropics where specialisation is high (Sherry 1984; Sigel et al. 354 

2010). This emphasises the societal value of birds and the need for conserving bird 355 

populations. 356 

 357 
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Table 1. A summary of the studies used in the meta-analysis. Abbreviations are as follows: LD = leaf damage, GR = growth, BM = biomass, 

MO = mortality, DB = damaged berries and # exp. = the number of experiments included within the study. Experiments within a particular study 

were defined based on different plant / bird species, measurements of the same plant species, forest types, or plants of different age. 
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Author Treatment Measured Plant age Environment Climate Study region # exp. Plant 

Atlegrim 1989 exclosures LD mature natural boreal Sweden 1 Vaccinium myrtillus 

Barber & Marquis 2009 exclosures LD GR mature natural temperate MO, USA 2 Quercus alba 

Bock et al. 1992 exclosures LD mature natural temperate AZ, USA 2 perennial grassland 

Boege & Marquis 2006 exclosures LD GR BM mature, sapling natural tropical Mexico 8 Casearia nitida 

Bridgeland et al. 2010 exclosures GR mature natural temperate UT, USA 4 Populus spp. 

Dunham 2008 exclosures LD MO sapling natural tropical Ivory Coast 2 rainforest understory 

Forkner & Hunter 2000 exclosures LD sapling natural temperate GA, USA 2 Quercus prinus, Q. rubra 

Garibaldi et al. 2010 exclosures LD GR sapling natural temperate Argentina 8 Nothofagus pumilio 

Greenberg et al. 2000 exclosures LD mature agricultural tropical Guatemala 2 Coffea arabica 

Hooks et al. 2003 exclosures BM mature agricultural tropical HI, USA 2 Brassica oleracea 

Kalka et al. 2008 exclosures LD sapling natural tropical Panama 1 understory trees 

Kellermann et al. 2008 exclosures DB mature agricultural tropical Jamaica 1 Coffea arabica var. tipica 

Koh 2008 exclosures LD sapling agricultural tropical Malaysia 1 Elaeis guineensis 

Lichtenberg &  

Lichtenberg 2002 
exclosures GR BM sapling natural temperate AR, USA 3 Quercus alba 

Marquis & Whelan 1994 exclosures LD BM sapling natural temperate MO, USA 2 Quercus alba 

Mazía et al. 2004 exclosures LD mature natural temperate Argentina 2 Nothofagus pumilio 

Mazía et al. 2009 exclosures LD GR sapling natural temperate Argentina 12 Nothofagus pumilio 

Mols  & Visser 2002 exclosures BM mature agricultural temperate Netherlands 1 Malus domestica 

Mooney 2007 exclosures LD GR mature natural boreal CO, USA 3 Pinus ponderosa 

Murakami & Nakano 

2000 
exclosures, cages LD mature natural temperate Japan 3 Quercus crispula 

Sanz 2001 nest-box addition LD mature natural Mediterranean Spain 2 Quercus pyrenaica 

Sipura 1999 exclosures LD GR MO mature natural boreal Finland 8 Salix phylicifolia, S.myrsinifolia 

Strengbom et al. 2005 exclosures LD mature natural boreal Sweden 1 Vaccinium myrtillus 

Strong et al. 2000 exclosures LD BM sapling natural temperate NH, USA 2 Acer saccharum 

Van Bael et al. 2003 exclosures LD mature, sapling natural tropical Panama 2 tropical trees 

Van Bael & Brawn 2005 exclosures LD mature natural tropical Panama 4 tropical trees 

Van Bael et al. 2007 exclosures LD GR MO mature agricultural tropical Panama 4 Theobroma cacao 

Wootton 1992 exclosures BM - natural temperate WA, USA 1 algae 

Wootton 1995 exclosures BM - natural temperate WA, USA 1 algae 
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Figure captions 

 

Figure 1 Effect sizes of meta-analyses (lnR) with 95 % confidence interval. a Environments: natural (N = 70) and agricultural (N = 11); b 

Climatic areas*: tropical (N = 27), temperate (N = 39) and boreal (N = 13); c Plant age**: sapling (N = 32) and mature (N = 47); d Measured 

plant responses***: mortality (N = 4), biomass (N = 10), growth (N = 25) and leaf damage (N = 41). 

* The Mediterranean climatic area comprised only one study (Sanz 2001) and was omitted from this analysis. 

** Studies by Wootton (1992, 1995) were omitted from this analysis since the age of the aquatic study plants (algae) cannot be categorised in the same way as with terrestrial 

plants in other studies. 

*** Kellermann et al. (2008) was the only study to measure damage to the berries and therefore it was left out of this analysis. 
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Electronic Supplemental Material 1 A normal quantile plot with 95 % confidence interval lines 

for examining publication bias of the studies used in the overall effect meta-analysis (N = 44). 

 

 



 

Electronic Supplemental Material 2 A funnel plot showing the relationship between the effect 

size (lnR) and sample size of the original studies (N = 44). N is the combined sample size of 

treatment and control plots. The two outliers are the two studies of algae as plants (Wootton 1992, 

1995). 


