
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-021-03985-0

1 3

Performance and programmability comparison of the thick 
control flow architecture and current multicore processors

Martti Forsell1   · Sara Nikula1 · Jussi Roivainen1 · Ville Leppänen2 · 
Jesper Larsson Träff3

Accepted: 1 July 2021 
© The Author(s) 2021

Abstract
Commercial multicore central processing units (CPU) integrate a number of pro-
cessor cores on a single chip to support parallel execution of computational tasks. 
Multicore CPUs can possibly improve performance over single cores for independ-
ent parallel tasks nearly linearly as long as sufficient bandwidth is available. Ideal 
speedup is, however, difficult to achieve when dense intercommunication between 
the cores or complex memory access patterns is required. This is caused by expen-
sive synchronization and thread switching, and insufficient latency toleration. These 
facts guide programmers away from straight-forward parallel processing patterns 
toward complex and error-prone programming techniques. To address these prob-
lems, we have introduced the Thick control flow (TCF) Processor Architecture. TCF 
is an abstraction of parallel computation that combines self-similar threads into 
computational entities. In this paper, we compare the performance and programma-
bility of an entry-level TCF processor and two Intel Skylake multicore CPUs on 
commonly used parallel kernels to find out how well our architecture solves these 
issues that greatly reduce the productivity of parallel software development. Code 
examples are given and programming experiences recorded.

Keywords  Parallel computing · Multiprocessors · Thick control flow · Performance 
comparison · Programmability

1  Introduction

Multicore Central Processing Units (CPUs) are the workhorses of modern general 
purpose computing devices, such as workstations, tablets and smartphones. They 
were taken into commercial use almost 20 years ago when it became evident that 
the clock speeds of single core CPUs could not be increased any more due to power 

 *	 Martti Forsell 
	 Martti.Forsell@VTT.Fi

Extended author information available on the last page of the article

http://orcid.org/0000-0003-4865-8058
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-03985-0&domain=pdf


	 M. Forsell et al.

1 3

density issues [1]. The main idea of multicore CPUs was to integrate multiple pro-
cessor cores on a single chip and use those cores for concurrent computation such 
that a P-core chip would execute P times more instructions within the same time 
[2]. At best the original application would run P times faster than in a single core 
processor. A precondition for the linear increase in performance is that the applica-
tion can be expressed as a parallel program that can be compiled to an executable 
controlling the cores participating in computation. Multicore CPUs seemed a prom-
ising way to continue increasing the performance of processors since Moore’s Law, 
predicting doubling of the number of transistors per silicon area unit in a fixed time 
period (18–24 months, e.g.,), was valid at that time [1].

Multicore CPUs have indeed turned out to improve the performance over sin-
gle core processors for independent parallel tasks nearly linearly as long as the pro-
vided memory bandwidth is sufficient. Ideal speedup is, however, not typically pos-
sible even if this precondition is fulfilled since running multiple cores on a single 
chip generates more heat than a single core leading to decreased clock frequency 
to avoid overheating. More serious performance scalability obstacles are caused by 
frequent inter-communication between the cores and non-trivial memory access pat-
terns. Figure 1 shows the source code and execution time of two simple C/Pthreads 
programs—matmul and matsum—in an 18-core Intel Skylake Xeon W CPU as a 
function of the number of threads (and thus processor cores utilized in execution). 
For comparison, we show also ideal scaling behavior curves based on the execution 
time with a single thread. These programs adapt their execution according to paral-
lelism specified by the programmer (NUM_THREADS), so one might expect to see 
execution time scaling consistently with the specified number of threads as long as 
this does not exceed the number of physical cores. In the case of matmul, the perfor-
mance scales relatively well with the number of concurrent threads: A speedup of 
9.23 relative to single core is achieved with 18 threads which is 51.3% of the linear 
speedup. On the contrary, as the number of parallel threads for matsum increases, 

Fig. 1   Left The matsum and matmul Pthreads programs (tid  =  thread identifier, NUM_
THREADS = number of threads, Synchronize = barrier synchronization). Right The execution time of 
the matmul and matsum test programs in a 18-core Intel Skylake Xeon W CPU as a function of the num-
ber of parallel threads. Additional curves illustrating ideal linear speedup behavior are shown



1 3

Performance and programmability comparison of the thick control…

the performance actually decreases giving a slowdown of a factor of 4.72 with 18 
cores. This is an 85.0 times weaker result than that predicted by linear speedup. The 
catastrophically poor performance behavior of matsum is caused by its interleaved 
access pattern that interferes with the on-chip cache distribution and line scheme 
of Xeon W CPU. Namely, the cache memory is distributed to core-wise blocks of 
64-byte cache lines holding consecutive addresses. As a result, eight consecutive 
matrix elements that are processed in different cores should be placed into a single 
cache block and a single line in it. Depending on the size of the data set, this is caus-
ing congestion, intensive inter-block communication and extensive invalidation of 
private Level 2 and shared Level 3 cache line elements. It is noteworthy that the 
same problem does not occur in matmul although it has in principle more complex 
access pattern. It is possible to alleviate this scalability problem in the case of mat-
sum by changing the mapping of data to the threads; but in more complex cases 
slowdowns due to demanding access patterns are hard to avoid. In addition to the 
performance problems, the productivity of software development (or programmabil-
ity) for multicore CPUs is lacking behind. For performance reasons, programmers 
need deal with mapping and partitioning problems as seen in the matsum case. Gen-
erally speaking, programmers often cannot employ natural, straight-forward parallel 
processing patterns; but have to replace them with more complex and error-prone 
structures [3] as will be confirmed by our experiments. This can be seen as extra 
code lines compared to textbook counterparts of matmul and matsum [4, 5] which 
reduce the number of active code lines (4–6 and 5–9, respectively) in both cases to 
a single code line containing just a parallel statement with no for-loops and explicit 
synchronization.

Our analysis indicates that the performance and programmability problems of 
multicore CPUs are caused by inoptimality of current architectures for certain types 
of computing patterns rather than inefficient use of the methodology [6–9]. Particu-
larly, the reasons for these problems include high costs of synchronizing and switch-
ing between threads, weakly scalable latency tolerance mechanisms and lack of sup-
port for key patterns of parallel computation. In order to solve these problems, we 
have introduced the Thick Control Flow (TCF) concept and outlined the Thick Con-
trol Flow Processor Architecture (TPA) for executing programs employing TCFs 
natively [10, 11]. TPA belongs to our REPLICA multiprocessor framework and uti-
lizes efficient shared memory emulation [12]. A TCF is an abstraction of parallel 
computation that merges self-similar threads into a single computational entity that 
is independent of the number of threads. Self-similarity refers here to properties of 
flowing through the same control path and having homogeneous operations. We call 
the component threads of a TCF fibers to distinguish them from ordinary threads 
having their own control. The fibers within a TCF are executed synchronously with 
respect to each other in order to simplify parallel programming.

1.1 � Related work

While there are already a number of performance comparisons between TPA and 
its predecessors showing its potential [11, 13–15], it is not known how well TPA 



	 M. Forsell et al.

1 3

solves the performance and programmability issues of multicore CPUs and more 
specifically, how TPA can perform against current commercial multicore proces-
sors employing industry standard programming models.

The first [11] work outlines our TCF architecture TPA compares its perfor-
mance to dual-mode REPLICA Configurable Emulated Shared Memory (CESM) 
architecture that has quite similar shared memory system but lacks support for 
the TCF model. It shows that the TCF architecture has better performance than 
CESM in all tests included in the study. The investigation [15] summarizes the 
architectural techniques supporting concurrent memory access in TCF architec-
tures. The TPA armed with the proposed techniques is compared to the baseline 
TPA without concurrent memory access support and speedup factors up to log N 
for problems of N elements are detected. An architectural technique support flex-
ible fibering for TCF architectures is introduced in [14]. It is shown that a TPA 
with flexible fibering can be up to twice as fast as the baseline TPA with standard 
threading. Finally, the work [13] discusses techniques for supporting multiopera-
tions in TCF processors. Again, the TPA armed with the proposed techniques is 
compared to the baseline TPA and shown up to log N times faster.

The performance of REPLICA CESM architecture, sharing almost the same 
shared memory emulation support techniques as TPA, was compared with a six-
core Intel Xeon X5660 CPU and 448-core Nvidia Tesla M2050 Graphics Pro-
cessing Unit (GPU) as well as other architectures supporting shared memory 
emulation such as XMT and SB-PRAM [16]. An early programmability compari-
son recording the used code lines between parallel REPLICA CESM, sequential 
DLX and parallel pthreads Intel Core i7 programs performing the same function-
ality is published in [17].

Earlier attempts to realize an idealized shared memory include the NYU 
Ultracomputers [18], Fluent Parallel Machine [19], SB-PRAM [6], Eclipse [20], 
XMT [21] and REPLICA CESM [17]. The Ultracomputers featured strong com-
putational model but the implementation was based on a weakly-scalable network 
and processor architecture was primitive. The Fluent Parallel Machine was backed 
up with a proven theory but had many inefficiencies in its shared memory emu-
lation algorithm and still employed a weakly-scalable network. The SB-PRAM 
solved some of these shared memory emulation inefficiencies but the architecture 
of the processor was again very simple ignoring, e.g., possibilities for exploiting 
low-level parallelism. The ECLIPSE architecture solved both the processor archi-
tecture and low-level parallelism issues as well as the network scalability issues 
but featured only exclusive shared memory access and poor thread utilization in 
low-parallelism cases. The REPLICA CESM solved the utilization and shared 
memory access problems with its dual-mode architecture and concurrent mem-
ory access and multioperation support. However, all these architecture provided a 
fixed threading scheme that forced a programmer to use loops to match the soft-
ware and hardware parallelism. The XMT architecture solved the threading limi-
tations but lost synchronicy between the threads. None of these attempts was able 
to provide flexible threading along along with strictly synchronous operations on 
a top of scalable network like TPA does.



1 3

Performance and programmability comparison of the thick control…

The programming and programmability aspects of these approaches are discussed 
in [4, 6, 22, 23] while the related models of computation are reviewed in [8, 24]. The 
Valiant’s multicore Bulk Synchronous Parallel (BSP) model bridges the BSP model 
to practical multicore processors and hints the possible architectural approach lead-
ing the efficient parallel execution. The extended Parallel Random Access Machine - 
NonUniform Memory Access (PRAM-NUMA) model links together these emulated 
shared memory architectures, vector execution model, Vishkin’s flexible threading 
model and the TCF programming model.

Besides these works, there exists a large base of benchmark studies that compare 
the performance of Intel multicore processors to other multicore processors and dis-
cuss the Intel multicore processors and their details.

1.2 � Contribution

In this paper0 , we compare quantitatively the performance and programmability of 
TPA and Intel Skylake client and server multicore CPUs with a number of kernels 
that are widely used in general purpose computing to find out how well our architec-
ture solves the aforementioned issues that greatly reduce the performance of multi-
core CPUs and productivity of parallel software development in general. In particu-
lar we1:

•	 Introduce the TPA as well as Skylake client and server processors architecture/
hardware with focus on details relevant to performance. This includes explaining 
the key functional blocks and operation of the processors;

•	 Describe the differences in programming approaches. Code examples are given 
and experiences discussing the goodness of the included approaches are listed;

•	 Evaluate the performance and length of key functionality of a number of ker-
nel benchmarks on Skylake CPUs and TPA. The kernels are written in Pthreads, 
OpenMP and a baseline TCF programming language featuring the same level of 
explicit control on computation as Pthreads but including TCF-specific primi-
tives. The performance is compared by executing the benchmarks in computers 
featuring Skylake client and Skylake server processors and recording the execu-
tion time. The performance of TPA is determined by executing the TCF version 
of the benchmark in a clock accurate simulator (modeling the TPA microarchi-
tecture down to details of registers and logic between them) and recording the 
execution time. The comparison is done based on assumption that the processors 
would have the same clock frequency. The programmability comparison is done 
by comparing the number of active code lines in benchmarks written for Skylake 
and TPA;

•	 Study the effect of access patterns, threading, synchronization and latency hiding 
to performance in both TPA and Skylake CPUs. These factors are also compared 

1  This paper is an extended version of the paper [25] with more detailed description of the compared 
processors and programming schemes, additional benchmarks, OpenMP experiments showing the effect 
of access patterns and the fraction of bandwidth achieved, and an extended discussion of the results.



	 M. Forsell et al.

1 3

to those in ideal machines to determine the optimality of resource usage in the 
processors;

•	 Record experiences on programmability and performance aspects of the Skylake 
and TPA systems from a skilled programmer with a lot of experience in parallel 
computing and a person not familiar with neither the theories of parallel comput-
ing nor the used programming methodologies.

•	 Identify methods to avoid performance pitfalls in programming multicore CPUs 
employing the industry standard architecture, such as Skylake.

The rest of this paper consists of Sect. 2 describing the hardware architectures of the 
compared processors, Sect.  3 explaining shortly the programming methodologies 
used for producing the test programs, Sect. 4 performing the actual comparison with 
discussion on results, and Sect. 5 giving our conclusions.

2 � Hardware architectures

Hardware architectures of our interest targeted for general purpose parallel comput-
ing include TCF architectures [11], Emulated Shared Memory (ESM) architectures 
[6, 20, 21, 26], their development versions and current commercial multicore archi-
tectures from Intel, Apple, AMD and IBM. In this paper, we study TPA, Intel Sky-
lake client Core i7 and Skylake server Xeon W and utilize them in the comparison 
of Sect. 4.

2.1 � TPA

The Thick Control Flow Processor Architecture (TPA) is a scalable multiprocessor 
architecture that can be configured at design time for various constellations [11]. 
It belongs to our REPLICA multiprocessor framework that aims at addressing the 
performance and programmability issues of current general purpose multicore archi-
tectures [12]. The framework defines principles how to build efficient ESM proces-
sors; how to make them flexible and expandable with accelerators; how to achieve 
backwards compatibility with existing commercial product lines; includes our pro-
cessor, interconnect and memory system architectures and designs needed for that 
purpose and outlines the methodology to develop program so that our ambitious key 
performance indicators–performance, programmability, productivity, silicon area, 
power consumption and security are met. In ESM, the latency of the memory system 
is hidden via multithreading and sufficient bandwidth, the synchronization cost is 
virtually eliminated using wave synchronization and low-level parallelism exploita-
tion is optionally improved by chaining of Functional Units (FU) assuming there is 
enough parallelism in the functionality at hands [6, 20, 26]. Instead of multithread-
ing, TPA uses a similar technique for fibers, called interleaved multifibering. This 
lets a fiber to execute other fibers while it is making a memory reference. If the 
executed program contains enough fibers the latency of the shared memory system 
can be completely hidden. Sufficient interconnection bandwidth is provided by using 



1 3

Performance and programmability comparison of the thick control…

an M-way network, e.g., multimesh. The synchronization wave is used to separate 
memory references belonging to consecutive steps of execution by issuing all fibers 
followed by a synchronization message. Synchronization messages are routed in the 
network through all possible paths so that when a synchronization message arrives 
to a router, it blocks the message (and related paths) until a synchronization message 
can be found in all inputs. Then the router fetches all the incoming messages and 
sends out a synchronization message via its outputs. Low-level parallelism is sup-
ported in TPA by organizing FUs as a sequential chain rather than in parallel so that 
consecutive instructions can be executed regardless of possible interdependencies 
within a step.

A TPA multiprocessor consists of F Frontend (FE) processing units and B Back-
end (BE) processing units, intercommunication networks and a memory system (see 
Fig. 2). FEs take care of fetching instructions from the memory and executing the 
common parts of TCFs, such as control of the flow and base address computation. 
In turn, BEs handle execution of individual fibers. The memory system consists of 
two parts: Depending on the FE architecture of our choice, FEs are connected to 
either a traditionally organized Symmetric MultiProcessor (SMP) or NonUniform 
Memory Access (NUMA) memory system and BEs are attached to an ESM system 
employing a multimesh interconnect. The latter supports synchronous operations 
and parallel-computing specific access patterns such as concurrent reads and writes, 
reductions and multiprefix computations as well as powerful atomic compute-update 
operations. The FE and BE parts of the memory system are also connected together.

A TPA FE system resembles an ordinary multicore CPU and in fact the REP-
LICA framework allows a processor designer to use a variant of existing com-
mercial CPU core as FE. In this paper, however, we use the REPLICA default, 

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

BE EBM EBM M

BE EBM EBM M

BE EBM EBM M

FE System

Fig. 2   Simplified block diagram of TPA (FE = frontend processing unit system, BE = backend process-
ing unit, M = memory module (or first level cache), s = intercommunication switch). External memory 
system and spreading/return channel networks between FEs and BEs are not shown



	 M. Forsell et al.

1 3

our Minimal Pipeline Architecture (MPA) Very Long Instruction Word (VLIW) 
processor [27] as the FE architecture. MPA features a number of FUs commanded 
by dedicated subinstruction fields in a single (compound) instruction word. 
The original version of MPA features a special minimal pipeline with only two 
stages—fetch and execute with no pipeline delays in the case of control transfer. 
We made some modifications to the pipeline to allow multi-TCF operation but 
were able retain pipeline delay-free operation also for control operations.

A BE is a special processing unit resembling a MultiBunched/Threaded 
Architecture with Chaining (MBTAC) ESM processor core [17] and containing 
logic for operand selection, chain of FUs, latency compensation unit and write 
back logic. However, a TPA BE does not include an instruction fetch unit and 
sequencer. In TPA these belong to the FE system.

Execution of an instruction in TPA happens in three FE phases and three BE 
phases (see Fig. 3). Note that the FEs and BEs are integral parts of TPA and work 
together to execute instructions efficiently.

The architecture and methodology of TPA and REPLICA framework in gen-
eral are reviewed in details in our white paper [12].

Fig. 3   Phases of TPA execution



1 3

Performance and programmability comparison of the thick control…

2.2 � Core i7

Intel Core i7 6820HQ is a 64-bit 2.7 GHz (3.2 GHz turbo boost with all cores on) 
4-core, 8-FU/core Skylake client microarchitecture CPU [28] (see Fig. 4). Skylake 
is Intel’s high-performance out-of-order microarchitecture. Intel has used Skylake 
derivate architectures with minor changes from 2015 to 2021 in their 14 nm silicon 
process based processors. The memory system of 6820HQ features a 32 KB Level 1 
(L1) instruction and data cache per core, a 256 KB Level 2 (L2) cache per core and 
a 2 MB shared Level 3 (L3) cache per core. The bandwidth from core to L1 instruc-
tion cache is 16  bytes, i.e., two 64-bit words per clock cycle. The L1 data cache 
is connected to two load and one store unit in the core, each having 32 bytes, i.e., 
four 64-bit words per clock cycle bandwidth. Both instruction and data L1 caches 
have own 64 bytes per clock connection to common L2 cache. The L2 cache is con-
nected to the L3 cache via a 32 bytes per clock cycle connection. The microchip 
includes also a 9th generation Intel HD Graphics 530. The cores, GPU and memory 

Fig. 4   Top left Block diagram of a 4-core Intel Skylake client Core i7 (Cn  =  processor core 
n, L1 I$  =  level 1 instruction cache, L1 D$  =  level 1 data cache, L2$  =  level 2 unified cache, L3$ 
Slice = shared level 3 unified cache slice, GPU=graphics processing unit). Bottom left Block diagram 
of a Skylake processor core (BPU = branch prediction unit, EU = execution unit, Intel’s name of a FU). 
Right Block diagram of a 18-core Intel Skylake server Xeon W



	 M. Forsell et al.

1 3

controllers are connected with a single bi-directional ring bus. 6820HQ has a single 
memory controller and two memory channels with maximum memory bandwidth 
of 31.79  MB/s. The processor was tested on an Apple MacBook Pro (late 2016) 
laptop computer with 16 GB of onboard 2133 MHz Low-Power Double Data Rate 3 
(LPDDR3) Synchronous Dynamic Random-Access Memory (SDRAM).

Compared to TPA, Core i7 provides the programmer with eight asynchronously 
operating hardware threads. The mechanism of tolerating the latency of memory 
accesses is a hierarchy of caches with a coherence mechanism. The memory system 
is chosen to provide enough bandwidth for its 256-bit Advanced Vector eXtension 2 
(AVX2) Single Instruction Multiple Data (SIMD) units access down to L3 caches. 
Core i7 is an out-of-order dynamic superscalar processor that fetches a number of 
instructions from the level 1 instruction cache, decodes them into micro-OPerations 
(uOP) and places them into the reservation station. Each clock cycle, its internal 
scheduler tries to move at most eight microoperations, whose operands are available, 
for execution in the FUs. Branch prediction is used to decrease the control delays 
caused by its long pipeline. This happens by letting the processor execute the branch 
predicted by the Branch Prediction Unit (BPU) and placing the uOPs also in the 
reorder buffer and completing execution of them only after the predictions are veri-
fied to be correct. Mispredictions are solved by flushing all incorrectly speculated 
uOPs from the reorder buffer and re-executing instructions and related uOPs from 
the correct path. Thus, the Skylake core solves the scheduling problem of instruc-
tions (and their uOPS) due to interdependencies between instructions by increasing 
the length of the pipeline with dynamic superscalar execution. Since this happens 
with the cost of substantially longer control transfer delays, Skylake compensates 
that with branch prediction. This is just the opposite way compared to TPA’s MPA, 
which uses static superscalar execution and minimizes the length of the pipeline to 
eliminate all pipeline delays.

2.3 � Xeon W

Intel Xeon W-2191B is a 64-bit 2.3 GHz (3.2 GHz turbo boost with all cores on) 
18-core, 8-FU/core Skylake server microarchitecture CPU [29] (Fig. 4). Its memory 
system features 32 KB level 1 instruction and data caches per core, 1 MB level 2 
cache per core, 1.375 MB level 3 cache per core and 2 memory controllers and 4 
memory channels with maximum memory bandwidth of 79.47 MB/s. The L1 and 
L2 caches and their interconnection in a core are similar in Xeon W as in 6820HQ 
but the on-die interconnect is mesh type. Compared to a single ring that would con-
nect all cores and IO, the mesh provides faster access to data from IO and L3 cache 
slice located far from the core requiring that data. The connections between the core 
and L1 data cache as well as L2 and L3 caches are 512-bit, twice that of Core i7. 
The sheer size of the die makes it impossible to have similar short average latency 
as in 6820HQ for high core count processor like this. The effect of longer latencies 
can be seen in tests where L3 cache lines are shared with multiple cores or data are 
otherwise scattered across the mesh. The processor was tested with an Apple iMac 



1 3

Performance and programmability comparison of the thick control…

Pro (late 2017) workstation with 128 GB of onboard 2666 MHz Error Correction 
Code (EEC) DDR4 SDRAM.

Xeon W works in the same way as Core i7 but there are more processor cores and 
the memory system as well as interconnects are designed for higher server work-
load. The memory system is chosen to provide enough bandwidth for its 512-bit 
AVX-512 SIMD units access down to L3 caches.

3 � Programming methodologies

The main idea of parallel computation is to decompose or divide the computational 
problem at hands into subproblems that can be solved in parallel and to compose 
the solution of the original problem from the results of the subproblems [6, 21, 22, 
30–37]. This may naturally happen hierarchically, recursively and/or in consecutive 
parts. Solving the subproblems in parallel introduces the need for communication 
between the parallel parts, which in turn may create dependencies that require syn-
chronization between the parallel parts. Finally, to get actual results, these parallel 
parts need to be executed in physical processors which raises a need to define the 
relationship of execution units and parts executed in parallel, known as mapping. A 
related concept, partitioning, refers to the way how data are placed in the distributed 
shared memory computer like TPA and Skylake CPUs. A processor can be said to 
have good programmability if the functionalities can be expressed compactly and 
naturally without unnecessary architecture-dependent constructs. An important fac-
tor of programmability is also portability among a group of processors using the 
same paradigm/approach but different hardware implementation parameters.

There are a huge number of parallel programming models/languages taking dif-
ferent approaches [33]. Some of them, such as Message Passing Interface (MPI) 
[38], arrange intercommunication via messages send to/received from other threads, 
while most of them utilize some kind of a shared memory for exchanging data 
between threads [39, 40]. There are differences in how this shared memory is pre-
sented to threads and how exclusive and concurrent data access handles, how syn-
chronizations are organized and how race conditions and deadlocks are avoided [5, 
6, 23, 41]. In this section, we focus on the TCF programming scheme as well as on 
highly popular multicore programming solutions, Pthreads and OpenMP, that will 
be utilized in TPA and Skylake CPUs, respectively.

3.1 � Thick control flows

The Thick Control Flow (TCF) concept is an abstraction of parallel computation that 
merges self-similar threads (called fibers) flowing through the same control path into 
computational entities (called TCFs) independently of the number of threads [10]. 
The number of fibers in a TCF is called the thickness. A programmer can dynami-
cally change the thickness of a TCF during execution. The fibers within a TCF are 
executed synchronously with respect to each other to enable simple parallel pro-
grammability. The concept shares many properties of the idealized Parallel Random 



	 M. Forsell et al.

1 3

Access Machine (PRAM) model of computation [31]. A PRAM consists of a num-
ber of processors running under a single clock connected to a synchronous shared 
memory with idealized latency properties. There exists a well-developed theory of 
parallel algorithms for PRAM that can be useful many ways in understanding the 
intrinsic parallelism and complexity of the computational problem at hands [4, 6].

TCFs have a single control but they can process multiple data elements in paral-
lel. When a TCF with thickness T calls a subroutine, the subroutine is not called sep-
arately by each T fibers, but the TCF calls it only once with thickness T. A call stack 
is not related to each fiber but to each of the TCFs, since fibers do not have program 
counters. This implies that stack variables many times have thickness T reflecting 
the fact that there is a data element for each fiber. Multiple TCFs can be executed 
in parallel in multiple FEs and in overlapped way in a single FE. Figure 5 shows 
an example of a program consisting of 10 TCFs with a relatively complex struc-
ture with interdependencies. The TCF 0003 is in execution and features a change in 
thickness from 16 to 8 after one more step.

In a TCF system, such as our TPA processor, the fibers of the currently executed 
TCF are evenly distributed to the backend execution units. The execution units oper-
ate in parallel and maintain synchronous behavior between consecutive instructions 
so that the TCF concept executes as the programmer expects.

3.2 � POSIX threads

POSIX threads (Pthreads) is a set of C language interfaces (functions, header files) 
for threaded programming [39]. It allows a program to control multiple different 
threads of computational work that overlap in time. Each thread executes its instruc-
tions independently. All threads in a process share the memory space, functions, 

Fig. 5   A program consisting of 10 TCFs while the fifth instruction of TCF 0003 featuring thickness 16 is 
being executed



1 3

Performance and programmability comparison of the thick control…

data and files. In addition, thread-specific data can also be defined. Any thread can 
create new threads and threads can have different kinds of relations with each other, 
such as master-slave or producer-consumer. Synchronization is needed to ensure 
that multiple threads are collaborating correctly, to avoid problems like deadlocks 
and race conditions. Synchronization can be done via mutual exclusion locks, sema-
phores, join functions and barriers, which can be implemented by a set of corre-
sponding provided functions. Threads in different processes can be synchronized 
via synchronization variables in the shared memory [39]. In a typical SMP system, 
such as Apple MacBook Pro and Apple iMac Pro running Apple Mac OS operating 
system utilized in this paper, threads are periodically assigned to processor cores 
with least amount of work. Therefore, a parallel program written in pthreads is often 
actually executed in parallel in SMP systems.

3.3 � OpenMP

Open Multi-Processing (OpenMP) is a portable, shared-memory thread program-
ming interface for programming languages, such as Fortran, C, and C++ [40]. It 
supports both data and task-level parallelism and designed for coarse-grained paral-
lelism. The parallel computing related mechanisms are implemented mainly as pre-
processor pragmas but there are some runtime routines and environment variables 
too. An ambitious goal of OpenMP is to be able to use a sequential program and just 
add directives for parallelism so that if a program is compiled ignoring the pragmas, 
it will behave like a standard sequential program while taking them into account 
would lead to an efficient parallel implementation.

4 � Comparison

In order to compare TPA against Skylake multicore processors, we performed a 
series of quantitative performance and programmability tests, studied the effect of 
access patterns, threading and synchronization to performance and resource-effi-
ciency as well as collected experiences on programmability. In addition, program 
code examples are given.

4.1 � Quantitative measurements

We measured the execution time and counted the number of active code lines for ten 
short program kernels (Table 1) that represent widely used functionalities of paral-
lel computing on three multiprocessor systems representing TPA and Intel Skylake 
CPUs introduced in Sect. 2 (Table 2). Each program, except bprefix and sync, was 
implemented as a single TCF version for TPA and three Pthreads versions for Sky-
lake CPUs—straight-forward, matched parallelism, and blocked versions. The TCF 
versions are written as a single TCF, maximally parallel, synchronous programs uti-
lizing available primitives of parallel computing where relevant. There is no need 
for explicit synchronizations in the tested TCF algorithms. The straight-forward 



	 M. Forsell et al.

1 3

Pthreads versions are written similarly as the TCF versions except that synchroniza-
tions are added to the end to be able to determine when all the threads have com-
pleted their tasks and wherever they are needed to guarantee the correct execution 
order of operations assigned to different cores. The matched parallelism versions 
limit the number of threads to a given maximum, which in our case is the num-
ber of processor cores P. The matching is done by employing loops that process at 
most P elements (and threads) at the time. We expect matched parallel versions to be 
substantially faster than straight-forward ones. This is because matching eliminates 

Table 1   Benchmark programs

block Copies an array of 1024/262,144 64-bit integers to another location in the memory. (Tests 
memory access with a simple pattern)

lprefix Calculates the prefix sum of an array of 1024/65,536 64-bit integers using the logarithmic 
prefix sum algorithm. (Tests demanding memory access pattern, dense intercommunication 
and change in thickness)

bprefix Calculates the prefix sum of an array of 1,048,576 64-bit integers using the blocking prefix 
sum algorithm. (Tests blocking-style prefix computation—includes only one version since 
there is no straight-forward variant of this other than lprefix)

madd Adds an array of 1024/262,144 64-bit integers to another similar array. (Tests simple exclusive 
memory access pattern and basic matrix operation

mcarlo Calculates pi using the Monte Carlo circle algorithm with 1024/262,144 64-bit integers. 
(Tests computation-intensive processing)

mmul Multiplies two arrays of 128 × 128 64-bit integers to a third similar array. (Tests exclusive and 
concurrent memory access and basic matrix operation—includes only one version due to 
built-in LLVM optimizations making head-to-head comparisons difficult)

permute Writes thread or fiber identifier to a random location in an array of 1024/262,144 64-bit inte-
gers, reads data from a second random location and writes data to a third random location. 
(Tests dense exclusive memory access with a complex and randomized access pattern)

spread Spreads the first element to rest of the elements in an array of 1024/262,144 64-bit integers. 
(Tests a simple concurrent memory access pattern)

threshold Applies a threshold filter to an array of 1024/262,144 64-bit integers. (Tests compute-update 
operations)

sync Performs a barrier synchronization of threads. (Tests synchronization cost. Uses internally 
dense intercommunication)

Table 2   Tested multiprocessors (FE frontend, BE backend, MU memory unit, HT Intel’s 2-way simulta-
neous hyperthreading, TCF thick control flow scheme, BW bandwidth)

Core i7 Xeon W TPA

Number of cores 4 18 1 FE/16 BE
Clock (sustained/peak all/peak 1) 2.7/3.2 GHz 2.3/3.2/4.2 GHz 3.2 GHz
Number of FUs (FE/BE) 8 8 4/10
Number of MUs 3 3 1
Threading scheme HT HT TCF
Core-L1/L2/L3 BW (64-bit words) 12/32/16 54/144/144 1 + 16

SIMD-L1/L2/L3 BW (64-bit words) 48/32/16 432/144/144 –



1 3

Performance and programmability comparison of the thick control…

interference between time slots defined by the operating system scheduler and actual 
computation as well as the thread management overhead, especially in the case of 
fine-grained parallel functionality. The blocked versions divide the processed data 
elements to blocks that are executed in the processor cores in parallel. This kind 
of mapping and implied partitioning should also improve the performance over the 
matched parallelism versions due to increased locality and reduced inter-processor 
communication.

The TPA configuration used in the comparison (TPA-16) was selected so that 
it represents a typical entry-level constellation and its resources would not exceed 
those of Intel Skylake client by a large margin. TPA’s integer-only silicon area, esti-
mated to be 19 mm2 at an artificial 11 nm process [13], is clearly smaller than that of 
the Skylake client without its on-chip GPU (50.354 mm2 at Intel’s 14 nm process). 
The memory bandwidth of Core i7, 12 64-bit words from the actual cores and 48 
words from the SIMD units to the L1 caches matches roughly that of a single 64-bit 
word from the FE and 16 words from BEs to the on-chip memory modules. The 
Skylake server chip (485 mm2 at Intel’s 14 nm process) is included for comparison 
purposes to get an idea how Skylake designs scale to high-end versions and how a 
scaled-up version performs with respect to an entry-level TPA. The bandwidth of 
Xeon W, 54 64-bit words from cores and 432 words from the SIMD units to the L1 
caches are roughly 3.4 and 27 times higher than in TPA. The clock frequency of 
TPA was set to 3.2 GHz. This matches the maximum clock frequency of the both 
Skylake CPUs with all cores active.

The multicore CPU computers were running Apple MacOS Mojave 10.14.6. The 
test programs were compiled with the Apple LLVM compiler (cc) with the -O3 opti-
mization, expect for lprefix matched parallelism and blocking versions that were 
compiled with the -O2 optimization. Each run executed the programs repeatedly at 
least 10 seconds up to million times so that slow startup time, effects of Dynamic 
Voltage Frequency Scaling (DVFS) and cooling were minimized in the most cases 
and the frequency was kept close to the frequency of 3.2 GHz (see Fig. 6). In tests 
not employing all Skylake cores, the frequency was higher giving Skylake some 

Fig. 6   Average execution time of matched parallel and blocked Pthreads versions of the block benchmark 
as the function of repetitions in Intel Xeon W multicore CPU. The total test execution times are also 
shown. All tests are also averages of five independent runs. Note that the scale is logarithmic



	 M. Forsell et al.

1 3

advantage because, we assume that TPA would always run at 3.2 GHz. Besides hav-
ing multiple iterations for each run, we repeated each test five times and calculated 
the average time of the runs as the measurement result for the comparison. Since 
our TPA simulations do not utilize the outermost part of the memory system, we 
selected the problem sizes included in the comparison so that the data set fits to the 
shared L3 caches of the Skylake CPUs that roughly corresponds to the TPA on-chip 
shared memory modules. Other selection criteria include that the used MacOS oper-
ating system is able to create the threads for the execution in both Skylake CPUs and 
the simulation time in TPA simulator stays reasonable.

We selected to mostly focus on comparing TPA with Skylake CPUs cores with-
out SIMD units because:

•	 SSE/AVX-style SIMD units are not included in the BEs of TPA-16 but there is 
option to do so. The selection and details of that are, however, beyond the scope 
of this paper.

•	 Performance of Skylake cores only (without SIMD units) is a better-defined 
comparison point than that with different versions AVX2 and AVX-512 with dif-
ferent number of execution units and higher bandwidth than processor cores.

•	 Inclusion of SIMD units defines yet another dimension of optimization tech-
niques and question of applicability to computational problems/algorithms at 
hand potentially increasing the complexity of programming and optimization.

•	 The included Pthreads programs compile without SIMD-instructions even with 
−O3 optimization on.

Since the SIMD units are important parts of Skylake CPUs, we performed, however, 
a few tests where we ensured that AVX instructions are actually utilized.

The TPA programs were compiled by hand to TPA assembler and executed in 
our in-house TPASim simulation software that provides a clock-accurate model of 
the TPA configuration used in the tests. TPASim models accurately the TPA micro-
architecture down to registers and logic between them. It is actually used as a refer-
ence design against which we compare our on-going FPGA implementation work. 
We do not consider usage of hand-written assembler a big optimization advantage 
for TPA since we have experimented with compilation in the previous version of 
REPLICA processor including the similar chaining technique as in TPA with good 
results [16]. In addition, we checked the code generated by LLVM and gcc compil-
ers for Skylake Pthreads and OpenMP tests to look efficient. There was no need to 
make multiple runs with TPA since by the exclusion of DVFS and outer memory 
system effects, the simulator always gives the same results.

4.1.1 � Overall tests

The straight-forward version results of our measurements are shown as relative per-
formance and relative length of the active program code lines in top rows of Figs. 7 
and  8. The relative performance was determined by dividing the average execu-
tion time of a test program in 3.2 GHz clock cycles in the Core i7 processor, which 
acts as a comparison baseline, by the average execution time of the test program in 



1 3

Performance and programmability comparison of the thick control…

3.2 GHz clock cycles in the target processor. The average speedup was calculated 
by taking the geometric mean of individual speedups. The relative High-Level Lan-
guage (HLL) code length was determined by dividing the number of active code 
lines in the Skylake processors, which acts as a comparison baseline and use the 
same code, by the number of code lines in the target processor. The average code 

Fig. 7   Relative performance of the straight-forward, matched parallelism and blocking test programs in 
TPA-16 and Intel Skylake multicore CPUs (Core i7 = 1.0). Note that the scale is logarithmic for all per-
formance charts



	 M. Forsell et al.

1 3

length improvement was calculated by taking the geometric mean of individual 
relative code length values. From these measurements we can make the following 
observations:

•	 TPA-16 provides vastly higher performance than the Skylake CPUs. In average, 
it executed the straight-forward test programs (block, lprefix, madd, mcarlo, per-

Fig. 8   Relative source code length of the straight-forward, matched parallelism and blocking test pro-
grams for TPA and Intel Skylake multicore CPUs (TPA = 1.0)



1 3

Performance and programmability comparison of the thick control…

mute, threshold and spread) 57.1 million times faster than Core i7. The boost of 
switching Core i7 to Xeon W is 4.54-fold, reducing the average speedup of TPA-
16 over Xeon W to still very high 12.6 million. The extremely slow execution 
speed of Skylake processors is caused mainly by high synchronization and thread 
switching costs. Namely, the operating system scheduler assigns frequently a rel-
atively long standard execution time slice for a large number of waiting threads 
causing unnecessarily long delays. Other slowdown factors include cache misses 
and missing support for low-level parallelism between the threads.

•	 The barrier synchronization program sync in TPA-16 executes 998 times faster 
than in Core i7 and 8154 times faster than in Xeon W. Core i7 executes this faster 
since there are 4.5 times fewer processor cores to synchronize and the intercon-
nect is simpler.

•	 The Skylake test programs are longer than those for TPA. The number of active 
code lines in the test programs in Skylake processors doing actual computation 
(block, lprefix, madd, mcarlo, permute, spread, threshold) is 3.23 times higher 
than that in TPA. The extra lines come from synchronization and thread manage-
ment.

•	 Synchronization does not need any extra effort in TPA due to synchronous nature 
of TCFs, while in Skylake CPUs, one needs to perform synchronizations explic-
itly. As a result, the relative code length of a synchronization is infinitely shorter 
in TPA. Naturally, we did not count that in while determining the average.

It is clear that no programmer wants to write programs this way for Skylake CPUs 
if it can be avoided. Instead, one will select to use either better performing but more 
complex parallel implementation, such as a matched parallel or blocked realization, 
or just a sequential algorithm that performs a way better than the straight-forward 
implementations. Unfortunately, in current CPUs there are no radically faster ways 
to perform a barrier synchronization needed in parallel programs including inter-
thread dependencies.

The matched parallelism version results are shown as relative performance and 
relative length of the active program code lines in middle rows of Figs.  7 and  8. 
Considering the achieved results, we can summarize that:

•	 The average performance of TPA-16 is 21.99 times higher than that of Core i7 
and 67.29 times higher than that in Xeon W in executing matched parallel ver-
sions of the test programs.

•	 Despite its larger number of processor cores, Xeon W performs 3.06 times worse 
than Core i7 in these tests in average due to the higher intercommunication net-
work latency and congestion. TPA-16 does not share this problem although its 
network [42] is almost as large as that in Xeon W in terms of the number of 
nodes.

•	 The mmul and mcarlo test programs perform differently than the other programs 
since the LLVM compiler recognized matrix multiplication and replaced the 
written baseline algorithm with a more optimized one. The mcarlo test applies a 
computation intensive algorithm giving Xeon W advantage over Core i7 despite 
a challenging access pattern.



	 M. Forsell et al.

1 3

•	 With respect to TPA the active code line count overhead in Skylake jumps from 
at least 2 to at least 3. This is caused by addition of looping to match the software 
parallelism with the hardware one in Skylake.

Also the performance of this kind of algorithms is disappointing in Skylake since it 
gives barely any speedup over sequential algorithms. Thus, programmers are temped 
to turn to a sequential solution or they need to invent better parallel algorithm for 
these functionalities. Speedup possibilities can, e.g., be found from the blocking 
technique but again by increasing the complexity of the implementations.

The blocked version measurement results are shown as relative performance and 
relative length of the active program code lines in bottom rows of Figs.  7 and  8. 
Regarding these results, we can make the following observations:

•	 Introduction of blocking decreases the average relative performance advantage 
of TPA-16 versus Core i7 down to 9.70x. The highest speedup is achieved with 
the lprefix and permute test program due to inter-thread dependencies and change 
in thickness as well as demanding access patterns.

•	 Xeon W performs now close to TPA-16 in the block and madd test programs, 
while the average performance advantage of TPA-16 versus Xeon W drops down 
to 2.97x.

•	 The blocked Skylake versions increase the code line count overhead with respect 
to TPA from at least 3 to at least 6. In average, the blocked test programs were 
7.3 times longer in Skylake than in TPA.

These results look much better for Skylake CPUs with the cost of clearly more com-
plex programs. However, they are still left a way behind TPA. A deeper analysis of 
the factors behind the performance and programmability results is given in the next 
subsections.

4.1.2 � OpenMP and sequential notation

Pthreads is sometimes considered as a primitive way to program parallel fuctionali-
ties. For comparison purposes we implemented the block, prefix, madd, mmul and 
threshold functionalities also with OpenMP that has more compact notation than 
Pthreads. Our design principle was to retain the sequential algorithm lookout as 
much as possible and use omp parallel and omp for pragmas to request compiler to 
take care of the parallelization. We used gcc with the −O2 optimization since LLVM 
compiler and gcc −O3 failed to compile without SIMD instructions. The results are 
shown in Fig. 9. We can make the following observations from the results:

•	 The OpenMP versions are in average 11.53 times slower in Core i7 and 20.27 
times slower in Xeon W than TCF programs in TPA.

•	 Xeon W achieves only 56.9% of the performance of Core i7 even though it has 
4.5 times more processor cores. This is due to scalability problems of OpenMP 
programs. It is possible to get better performance for Xeon W but it requires 
expertise in OpenMP and makes programs more complex.



1 3

Performance and programmability comparison of the thick control…

•	 While OpenMP versions of the programs are shorter than those written with 
Pthreads (except in the straight-forward case), they still increase the code line 
count by a factor of 3.65 with respect to TCF programs.

The performance slowdown when moving to a larger machine even when the par-
allel implementation was done by OpenMP compiler is disappointing. This is an 
indication of a more general scalability problem caused by increased latency and 
decreasing relative bandwidth of a memory system per module/bank and even 
bisection of the machine.

In order to determine the effect of compiler optimization and utilization of 
SIMD units, we compiled the programs with −O3 optimization and ensured that 
the resulting code indeed employs SIMD instructions. The results are shown in 
Fig. 10. Our immediate observation is that the speedup over −O2 optimized ver-
sions is only 6.24% in Core i7 and 0.5% in Xeon W. We tested also -mavx2 and 
-mavx512f options but without better success. This problem is apparently caused 

Fig. 9   Left Relative performance of the OpenMP versions in Intel Skylake multicore CPUs and TCF ver-
sions in TPA (Core i7 = 1.0). Right Relative source code length of the the OpenMP programs for Intel 
Skylake multicore CPUs and TCF programs for TPA (TPA = 1.0). Note that the scale is logarithmic for 
the left hand side performance chart

Fig. 10   Left Relative performance of the OpenMP −O3 optimized versions (including SIMD unit 
instructions) in Intel Skylake multicore CPUs and TCF versions in TPA (Core i7  =  1.0). Note that 
the scale is logarithmic. Right Relative source code length of the sequential and TPA test programs 
(TPA = 1.0)



	 M. Forsell et al.

1 3

by inability of gcc to parallelize OpenMP code in a scalable way with a simple set 
of gcc optimization flags.

The TPA test programs implemented for this study are very compact. We com-
pared them to sequential programs solving the same computational problems. It 
turned out that TPA versions are even shorter than their sequential counterparts 
(Fig. 10). This is because loops for going through data elements of arrays are not 
needed if TCFs are used for programming.

4.1.3 � The effect of access patterns

The used memory access pattern have effect on the achieved performance in a dis-
tributed memory system including both multicore CPUs and TCF processors. Since 
the principles of the memory systems are different in Skylake and TPA we measured 
the execution time of programs employing six read-write access patterns (Table 3). 
The results as relative performance are shown in Fig. 11. We observe that TPA pro-
vides a much higher performance in these tests except for the blocked-ap access 

Table 3   Access patterns

blocked-ap Reads elements from an array of 262,144 64-bit integers and writes them to another 
location in the memory using the blocked algorithm

interleaved-ap Reads elements from an array of 262,144 64-bit integers and writes them to another 
location in the memory using the matched parallel algorithm

random-ap Reads elements from an array of 262,144 64-bit integers and writes them to another 
location in the memory using the permute algorithm, where read and write happen 
from/to random address within the array

mmul-row-ap Reads elements from two arrays of 262,144 64-bit integers and writes them to similar 
arrays in the memory using the mmul style row-parallel pattern

mmul-col-ap Reads elements from two arrays of 262,144 64-bit integers and writes them to similar 
arrays in the memory using the mmul style column-parallel pattern

crcw-ap Replicates a 64-bit integer to 262,144 instances and sums the values into a single 
location

Fig. 11   Relative performance of blocked-ap, interleaved-ap, random-ap, mmul-row-ap, mmul-col-ap and 
crcw-ap read-write access patterns in Intel Skylake multicore CPUs and TPA (Core i7 = 1.0)



1 3

Performance and programmability comparison of the thick control…

pattern. The fractions of utilized memory bandwidths from the maximum bandwidth 
are shown in Fig.  12 with respect to situation in which only one memory opera-
tion per core would define the maximum bandwidth of memory access in Skylake 
processors. If we take into account that Skylake cores actually have three memory 
units per processor core, Core i7 and Xeon W fractions should be displayed as three 
times lower. The main observation from these measurements is that TPA utilizes the 
available bandwidth very close to maximum, while in Skylake side, good utilization 
is achieved only for the blocked-ap access pattern (utilized in the blocked Pthreads 
tests block, bprefix, madd and threshold of Sect. 4.1.1) in a single memory unit per-
spective per core only. This behavior is much more intensive in Xeon W where the 
number of cores is higher and the interconnect is more complex. This indicates seri-
ous scalability challenges in Skylake interconnect/memory architecture as predicted 
by our studies on architectural approaches and utilized interconnect networks for 
general purpose computing [7, 43].

The poor Skylake CPU results in straight-forward parallel tests even though 
block, madd, threshold use the blocked access pattern are caused by inefficient 
threading and synchronization that will be discussed in the next subsection.

4.1.4 � Resource efficiency, threading and synchronization

The above favorable results for TCF processors are mostly because they can use the 
available resources efficiently and Skylake processors fail in that in certain demand-
ing cases. TPA gains additional boost due to special techniques, such as support for 
concurrent memory access, multioperations and compute-update operations. There 
are also techniques/resources that favor Skylake processors. They, e.g., have three 
times more memory units than TPA and SIMD units that can process four times 
more data words per cycle in Core i7 and eight times more in Xeon W. We let the 
compiler determine whether multiple Memory Unit (MU) or SIMD instructions can 
be used but did not explicitly add them. According to our test with OpenMP, the 
SIMD units did not provide fourfold and eightfold speedups, accordingly.

Fig. 12   Fraction of the utilized bandwidth from the maximum for blocked-ap, interleaved-ap, random-
ap, mmul-row-ap, mmul-col-ap and crcw-ap read-write access patterns in Intel Skylake multicore CPUs 
and TPA



	 M. Forsell et al.

1 3

In order to understand how well TPA utilizes the available memory system 
hardware resources, we compare the number of transferred data words evenly dis-
tributed among BEs to actual execution time. The results for TPA benchmarks 
are shown in Fig.  13. We observe that the average overhead of TPA execution 
is 11.56% corresponding the the utilization of HW is 89.64%. The benchmarks 
showing noticeably higher execution time than predicted by the memory traffic 
are lprefix and mcarlo. The former slowed down by quantification effects and the 
latter is computation-intensive algorithm that could be made fully utilized by 
adding a few functional units per BE.

As demonstrated with the straight-forward benchmarks above, the threading 
scheme used in multicore CPUs has a big effect on the performance. To study 
the further impact of the number of threads in them, we measured the execution 
time of matched parallel and blocked Pthreads versions of the block benchmark 
as a function of number of threads in Skylake processors (Fig. 14). We observe 
that lowest execution time is achieved when there is one thread per processor core 
or all the physical threads supported by Intel’s 2-way multithreading are used. 
Increasing the number of threads beyond that decreases the performance radi-
cally. This is because thread switching time is 100 times higher than a typical 

Fig. 13   Measured TPA execution time and the lower bound of execution time estimate based on obliga-
tory memory references and available memory resources (MIN)

Fig. 14   Execution time of matched parallel and blocked Pthreads versions of the block benchmark as a 
function of the number of threads in Intel Skylake multicore CPUs. Note that the scale is logarithmic



1 3

Performance and programmability comparison of the thick control…

instruction execution latency and each thread does not utilize many instructions 
per an operating system time slot. The Skylake architecture’s asynchronous nature 
plays a big role in this since unlike in TPA, the synchronization cost increases 
superlinearly as the number of threads increases (Fig. 15). Another observation is 
that with matched parallelism versions, there are no real speedup compared to the 
single thread case.

4.1.5 � Factors of efficient programming

Based on the lessons learnt from the above overall tests and deeper analysis/meas-
urements of memory access pattern, threading and synchronization, we can outline 
a multi-step guideline for avoiding the hurdles of multicore programming. Starting 
from the straight-forward parallel implementation, a programmer need to do the fol-
lowing five consecutive transformations: 

(i)	 Primitive operations Implementation of parallel primitives, such as concurrent 
memory access, multioperations and compute-update instructions, with available 
instructions

(ii)	 Synchronization Identification of points where synchronization is needed to 
ensure the correctness of the parallel implementation

(iii)	 Synchronization minimization Minimization of the number of synchronizations 
to avoid slowdown due to cost of synchronization

(iv)	 Threading Matching the hardware and software parallelism to avoid inefficiency 
and scheduling problems observed in the straight-forward tests

(v)	 Locality maximization Maximization of the locality of memory accesses to move 
the program away from straight-forward and matched parallelism parallel hurdles 
employing interleaved access and latency/contention effects.

Note that all these transformations (i)–(v) were applied to blocking test programs, 
while the straight-forward tests did only transformations (i)–(iii) and matched par-
allelism programs did transformations (i)–(iv). The cost of this is unfortunately 

Fig. 15   Execution time of a barrier synchronization (sync benchmark) as a function of the number of 
threads in Intel Skylake multicore CPUs. Note that the scale is logarithmic



	 M. Forsell et al.

1 3

increasingly complex parallel programs as indicated by the active code line meas-
urements. Actually, we see a clear trade−Off situation between performance and 
programmability in Skylake CPUs.

TCF processors do not need these transformations but the version designed for 
the idealized model are directly executable in them. Instead, a programmer can 
select straight-forward threading, convenient mapping of the functionality and suit-
able placement/partitioning of data.

4.2 � Program examples

In order to illustrate the practical programming differences between TPA and Sky-
lake CPUs, let us have a look at the lprefix test program that computes the prefix 
sum of an array A of N integers using the logarithmic algorithm. It is the most com-
plex test program utilizing constantly altering inter-core communication pattern and 
reducing thickness during the execution. Figure 16 shows the TPA version of lprefix 
written in C-style parallel TCF language as well as straight-forward, matched paral-
lelism and blocked Skylake versions in C/pthreads. These are the same program ver-
sions as used in the tests of Sect. 4.1.

Fig. 16   The high-level language versions of the lprefix test program for TPA and Skylake. (# =  thick-
ness of the TCF, $ = fiber identifier, tid = thread identifier, NUM_THREADS = number of threads in 
pthreads system, thi  =  thread private number of threads, Sync_Thickness  =  thread count information 
needed by barrier synchronization, SIZE = N = problem size). Note that for simplicity, the matched par-
allelism and blocked versions are not using exactly the same algorithm as the TCF and straight-forward 
versions



1 3

Performance and programmability comparison of the thick control…

The TPA version consists just of two active code lines and corresponds to a typi-
cal parallel computing textbook version of the algorithm [4, 6]. The functionality 
is implemented with a single TCF that executes the for loop while its thickness 
decreases iteratively by exponentially increasing steps starting from one.

The straight-forward Skylake version does the same thing as the TPA versions, 
but needs explicit synchronizations due to asynchronous execution of threads in 
Skylake. For the same reason, a temporary variable tmp is needed since the actual 
data array A changes its content along with the execution introducing risk of read-
ing old data. Explicit pthreads_exit() functions are needed to adjust the number of 
threads along the execution. As a result, the number of active code lines is 11 times 
higher than in TPA.

The straight-forward Skylake versions have catastrophically poor performance 
due to very slow switching and synchronization of threads (Fig.  15). Switching a 
thread in Skylake processors takes more than 100 clock cycles. A longer delay is 
caused by the operating system scheduler that typically allocates a much longer time 
slot for a thread than that needed for simple computation, such as lprefix iteration 
or synchronization variable checking repeatedly executed in the barrier synchro-
nization. The programmer may therefore want to limit the number of threads. The 
matched parallelism Skylake version drops the number of parallel threads from N 
down to 4 in Core i7 and 18 in Xeon W. This happens by turning the parallel state-
ments into loops that process just 4 or 18 elements in parallel. We dropped the alter-
ing thickness scheme of the algorithm since it would have been quite complex to 
decrease the number of threads with the loops so that the resulting behavior matches 
exactly to the straight-forward version. As a result, the number of active code lines 
drops to 9 but the algorithm is not exactly the same any more. If the altering thick-
ness scheme would have been included the number of code lines would have been 
higher than in the straight-forward version.

The matched parallelism versions have also unnecessary low performance, espe-
cially for Xeon W. This problem can be partially be solved by minimizing the inter-
core communication. The blocked Skylake test programs partition the data to blocks 
of N/P elements, where P is the number of cores, to maximize the locality of ref-
erences and to avoid inter-core traffic as much as possible. The blocking increases 
the number of active program lines to 12 but again without the altering thickness 
scheme.

4.3 � Programming experiences

The relative source code length tests of Sect. 4.1 indicate that TPA takes much 
fewer active code lines to express a kernel program functionality than Skylake, 
especially if the goal is to have good performance for the latter. The existing lit-
erature does not discuss how programmers experience this simplified coding in 
practise and whether the software development productivity is improved accord-
ingly. Therefore, to give the first idea, we collected our experiences on (perfor-
mance) programming from an expert programmer (a lot of experience) and an 
inexperienced programmer (not familiar with the theories of parallel computing 



	 M. Forsell et al.

1 3

nor either of the used programming methodologies) points of view knowing that 
these are not statistically meaningful nor objective opinions. The set of programs 
the expert and inexperienced programmer created included the programs used in 
our comparison. The beginner’s experiences related to programming include:

•	 “Trying out TPA assembler (for hand compiling) in parallel program imple-
mentation seemed quite impossible at the first glance but turned out easier 
than expected. There was no need to try out X86 assembler for Skylake but 
getting a parallel program working that way would have been difficult due to 
low-level complexity of Pthreads.”

•	 “Pthreads feels like an understandable way to describe parallel implementa-
tion. It allows a beginner to briefly sketch how the parallel program works, and 
first after that make decisions regarding block sizes and number of threads, 
which makes it easier for a beginner to start with. In the case of unexpected 
results, that happen often with Pthreads, the reason behind the problems is 
hard to discover and solve. With TPA, thickness and memory addresses must 
be thought about from the beginning. This makes it harder to get started with 
but can help to avoid some primitive mistakes when dividing data between 
threads.”

•	 “While programming (lprefix or any other program) with Pthreads, it was trou-
blesome to decide how many threads should be utilized. After a brief introduc-
tion to parallel programming, it seemed like adding more threads always would 
increase the performance, but it turned out to be more complicated than this. 
With TPA, thickness must also be noticed, but its effects on the performance are 
easier to predict. Therefore, programming TPA feels in principle simpler than 
that for Skylake, but to be successful TPA definitely needs better tools than cur-
rent academic quality ones.”

•	 “Sometimes synchronizing threads in Skylake programs felt more troublesome 
than writing the program itself. For a beginner it was challenging to decide when 
synchronization clauses are needed, and it felt tempting to use more of them than 
was needed, just to make sure that the program was working correctly. With TPA 
version, there was no need for synchronization clauses, which was a relief.”

•	 “OpenMP was useful tool while writing simple programs, which were straight-
forward to parallelize. However, in case of complex programs, OpenMP often 
did not behave exactly as expected. Sometimes it was difficult to find out if the 
unexpected results were due to a programming error or parallelization made by 
OpenMP.”

The expert experiences include notes on higher-level concepts behind the actual 
tools for programming and the resulting performance:

•	 “Getting decent performance out of parallel functionality targeted for Skylake 
multicore CPUs is much more difficult than that for TPA. The main issues with 
the Skylake are asynchronous nature of thread execution, high cost of synchroni-
zations, threading model that is in practice bounded above to the number of HW 
threads if the granularity of interthread communication is not coarse.”



1 3

Performance and programmability comparison of the thick control…

•	 “The factors that make parallel programming easy for TPA are the simplicity 
of allocating the right amount of parallelism with the TCF model, synchrony of 
execution that makes scheduling the operations to smoothly advancing consecu-
tive steps easy, and insensitivity to partitioning and mapping choices that makes 
code portable.”

•	 “Even though TPA uses a VLIW instruction set with chaining of FUs, writing 
programs in assembler makes some sense for critical inner loop compilation.”

•	 “Performance portability and scalability are quite hard to achieve with Skylake 
CPUs while with TPA it is easy since TPA’s programming concept directs a pro-
grammer automatically to simple and adaptive code.”

•	 “While the idea of being able to retain the sequential algorithms in OpenMP pro-
gramming may sound a good idea, there are a number of problems related to it. 
It prevents a programmer from applying proper explicit control leaving it many 
times unclear how the parallel version is actually implemented. It is also clear 
that in many cases the optimal parallel algorithm cannot be generated from a 
sequential algorithm by the compiler, leading to unoptimal results.”

•	 “For an experienced parallel programmer it was actually easier to achieve good 
performance and scalability with Pthreads rather than OpenMP. But if the archi-
tecture supports TCF execution, parallel computing becomes a lot simpler than 
with either of them.”

These experiences are not in contradiction with measurements that programmabil-
ity of TPA for parallel functionalities is in a way better shape than that of Skylake 
multicore CPUs even though the latter have very strong collection of available tools 
as well as wide support of a large processor manufacturer, the software community 
and schools teaching programming and parallelism. One remarkable indicator of the 
scale of issues in the current approach is that the paradigm of software engineering 
is still mostly sequential although multicore CPUs have been exclusively used for 
almost 20 years.

5 � Conclusions

We have made a performance and programmability comparison between TCF pro-
cessors and current multicore CPUs. We focused on an entry-level TCF architecture 
TPA-16 against Intel Skylake client and server multicore CPUs Core i7 and Xeon W. 
The comparison was implemented by writing similar parallel programs for all pro-
cessors with popular programming solutions (Pthreads, OpemMP and baseline TCF 
language), measuring the execution time with a clock accurate simulator (TPA) and 
actual computers (Skylake CPUs) and counting the active code lines of programs. 
According to our measurements, TPA-16 can perform significantly better than Intel 
Skylake Core i7 in the both categories: The included TCF programs execute 57.1 
million times faster in TPA than their straight-forward parallel Pthreads counterparts 
in Core i7, while the latter needs twice the active code lines. If the parallelism of 
programs is matched to that of Core i7 hardware, the TPA-16 performance advan-
tage still remains almost 22, while the Skylake code line count overhead increases 



	 M. Forsell et al.

1 3

to three. By maximizing the locality using partitioning of data and functionality to 
blocks, the Core i7 is able to shrink the TPA-16 speedup down to 9.70 but the cost 
of this is at least six times longer programs. We compared TPA-16 also to high-end 
Intel Skylake Xeon W processor with more cores but over ten times the estimated 
silicon area and 3.4/27 times the memory bandwidth of TPA-16. The correspond-
ing TPA-16 speedup factors are 12,6 million, 67.3 and 3.0, respectively. We stud-
ied also the reasons causing these slowdowns and scalability issues in Skylake and 
found substantial inefficiencies in support for different access patterns, synchroniza-
tion cost and resource efficiency. Switching Pthreads to OpenMP can save a bit in 
code length while the performance and, especially scalability turned out to be quite 
weak. The recorded notes from a beginner and experienced programmer are not in 
contradiction with the measurements that TPA-16 is simpler to program than a Sky-
lake CPU although TPA programming tools were primitive. Likewise, getting the 
performance predicted by the theory of parallel algorithms is easier with TPA-16. 
All in all, TPA-16 is able to achieve execution times that are very close to the theo-
retical minima with compact straight-forward parallel code, whereas current multi-
core CPUs, such as Intel Skylake processors do not succeed so well at least with the 
included test programs and programming tools.

Our future work plans include comparing the performance and programmabil-
ity of multicore CPUs thoroughly to different TPA configurations including SIMD-
specific optimizations. For that, additional benchmarks, programming languages and 
other processors are considered. We are also looking possibility to implement TPA 
on silicon to be able to run real-life benchmarks and to extend comparisons also to 
energy efficiency.

Funding  Open access funding provided by Technical Research Centre of Finland (VTT).

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 International Technology Roadmap for Semiconductors, Semiconductor Industry Association, year 
2003 edition. http://​www.​itrs.​net/

	 2.	 Research at Intel From a Few Cores to Many (2006): A Tera-scale Computing Research Overview, 
White Paper, Intel,

	 3.	 Patterson D (2010) The trouble with multicore. IEEE Spectr 47(7):28–32
	 4.	 Jaja J (1992) Introduction to parallel algorithms. Addison-Wesley, Reading

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.itrs.net/


1 3

Performance and programmability comparison of the thick control…

	 5.	 Mäkelä J-M, Forsell M, Leppänen V (2017) Towards a language framework for thick control flows. 
In: Proc. of the High Level Programming Models and Supporting Environments (HIPS’17), May 29, 
2017, Orlando, FL, USA

	 6.	 Keller J, Kessler C, Träff JL (2001) Practical PRAM programming. Wiley, New York
	 7.	 Forsell M (2002) Architectural differences of efficient sequential and parallel computers. J Syst 

Architect 47(13):1017–1041
	 8.	 Forsell M, Leppänen V (2013) An extended PRAM-NUMA model of computation for TCF pro-

gramming. Int J Netw Comput 3(1):98–115
	 9.	 Forsell M (2018) Accelerating general purpose parallel computing with the TPA architecture. In: 

ScalPerf 2018, September 23–28, 2018, Bertinoro, Italy
	10.	 Leppanen V, Forsell M, Makela J-M (2011), Thick control flows: introduction and prospects. In: 

Proc. PDPTA 2011, July 18–21, Las Vegas, USA, pp 540–546
	11.	 Forsell M, Roivainen J, Leppanen V (2016) Outline of a thick control flow architecture. In: Proc. 

MPP 2016, SBAC-PAD 2016, October 26–28, 2016. Marina del Rey Marriott, Los Angeles, USA
	12.	 REPLICA Multiprocessor Framework, White Paper, VTT (2020)
	13.	 Forsell M, Roivainen J, Leppänen V, Träff JL (2018) Implementation of multioperations in thick 

control flow processors. In: Proc. APDCM’18, May 21–25, 2018, Vancouver, Canada
	14.	 Forsell M (2018) Flexible fibering scheme for thick control flow processors. In: Proc. PDPTA’18, 

July 30–August 2, 2018, Las Vegas, USA, pp 16-20
	15.	 Forsell M, Roivainen J, Leppänen V, Träff JL (2018) Supporting concurrent memory access in TCF 

processor architectures. Microprocess Microsyst 63:226–236
	16.	 Hansson E, Alnervik E, Kessler C, Forsell M (2014) A quantitative comparison of PRAM based 

emulated shared memory architectures to current multicore CPUs and GPUs. In: Proceedings of the 
11th Workshop on Parallel Systems and Algorithms (PASA’14) in Conjunction with the 27th Inter-
national Conference on Architecture of Computing Systems (ARCS’14), February 25–26, Luebeck, 
Germany, pp 1-7

	17.	 Forsell M, Roivainen J, Leppänen V (2018) REPLICA MBTAC—multithreaded dual mode proces-
sor. J Supercomput 74(5):1911–1933

	18.	 Schwartz J (1980) Ultracomputers. ACM Trans Program Lang Syst 2(4):484–521
	19.	 Ranade A, Bhatt S, Johnsson S (1988) The fluent abstract machine. In: Proc. Fifth MIT Conference 

on Advanced Research in VLSI, March 1988, pp 71–94; TR-573. Department of Computer Science, 
Yale University

	20.	 Forsell M (2002) A scalable high-performance computing solution for network on chips. IEEE 
Micro 22(5):46–55

	21.	 Vishkin U (2011) Using simple abstraction to reinvent computing for parallelism. Commun ACM 
54(1):75–85

	22.	 Vishkin U (2014) Is multicore hardware for general-purpose parallel processing broken? Commun 
ACM 57(4):35-39

	23.	 Ghanim F, Vishkin U, Barua R (2018) Easy PRAM-Based high-performance parallel programming 
with ICE. IEEE Trans Parallel Distrib Syst 29(2):377–390

	24.	 Valiant L (2011) A bridging model for multi-core computing. J Comput Syst Sci 77(1):154–166
	25.	 Forsell M, Nikula S, Roivainen J (2021) Preliminary performance and programmability compari-

son of the thick control flow architecture and current multicore CPUs. In: Arabnia H, Deligiannidis 
L, Grimaila M, Hodson D, Joe K, Sekijima M, Tinetti F (eds) Advances in Parallel & Distributed 
Processing, and Applications: Proceedings from PDPTA’20, CSC’20, MSV’20, and GCC’20 (July 
27–30, 2020, Las Vegas, Nevada, USA). Springer

	26.	 Ranade A (1991) How to emulate shared memory. J Comput Syst Sci 42:307–326
	27.	 Forsell M (1996) Minimal pipeline architecture—an alternative to superscalar architecture. Micro-

process Microsyst 20(5):277–284
	28.	 Skylake (client)—Microarchitectures—Intel, Wiki Chip www document at address: https://​en.​wikic​

hip.​org/​wiki/​intel/​micro​archi​tectu​res/​skyla​ke_​(client). Accessed March 14, 2021
	29.	 Skylake (server)—Microarchitectures—Intel, Wiki Chip www document available at http://​en.​wikic​

hip.​org/​wiki/​intel/​micro​archi​tectu​res/​skyla​ke_​(server). Accessed March 14, 2021
	30.	 Flynn M (1972) Some computer organizations and their effectiveness. IEEE Trans Comput 

21(9):948–960
	31.	 Fortune S, Wyllie J (1978) Parallelism in random access machines. In: Proceedings of 10th ACM 

STOC, Association for Computing Machinery, New York, pp 114–118
	32.	 Almasi G, Gottlieb A (1994) Highly parallel computing. Benjamin/Cummings, Redwood City

https://en.wikichip.org/wiki/intel/microarchitectures/skylake_%28client)
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_%28client)
http://en.wikichip.org/wiki/intel/microarchitectures/skylake_%28server)
http://en.wikichip.org/wiki/intel/microarchitectures/skylake_%28server)


	 M. Forsell et al.

1 3

	33.	 Skillicorn D, Talia D (1998) Models and languages for parallel computation. ACM Comput Surv 
30(2):123–169

	34.	 Culler D, Singh J (1999) Parallel computer architecture—a hardware/ software approach. Morgan 
Kaufmann Publishers Inc., San Fransisco

	35.	 Rajasekaran S, Reif J (eds) (2008) Chapman Handbook of parallel computing—models algorithms 
and applications. Hall/CRC​

	36.	 Kirk D, Hwu W-M (2010) Programming massively parallel processors—a hands-on approach. Mor-
gan Kaufmann

	37.	 Pacheco P (2011) An introduction to parallel programming. Morgan Kaufmann
	38.	 The MPI Forum, CORPORATE (November 15–19, 1993), MPI: a message passing interface. In: 

Proc. 1993 ACM/IEEE Conference on Supercomputing
	39.	 Lewis B, Berg D (1996) PThreads primer: a guide to multithreaded programming. Sunsoft Press
	40.	 Chandra R, Menon R, Dagum L, Kohr D, Maydan D, McDonald J (2001) Parallel programming in 

OpenMP. 1st edn. Morgan Kaufmann Publishers
	41.	 Carlson W, Draper J, Culler D, Yelick K, Brooks E, Warren K, Livermore L (1999) Introduction to 

UPC and language specification. In: CCS-TR-99-157, IDA Center for Computing Sciences
	42.	 Forsell M, Roivainen J, Leppänen V (2016) The REPLICA on-chip network. In: NORCAS 2016, 

November 1–2, 2016, Copenhagen, Denmark
	43.	 Forsell M, Leppänen V, Penttonen M (2015) Cost of bandwidth-optimized sparse mesh layouts. In: 

Proceedings of 13th International Conference on Parallel Computing Technologies (PaCT’15), Lec-
ture Notes in Computer Science (LNCS), vol 9251, August 31–September 4, 2015, Petrozavodsk, 
Russia, pp 375–389

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

Authors and Affiliations

Martti Forsell1   · Sara Nikula1 · Jussi Roivainen1 · Ville Leppänen2 · 
Jesper Larsson Träff3

	 Sara Nikula 
	 Sara.Nikula@VTT.Fi

	 Jussi Roivainen 
	 Jussi.Roivainen@VTT.Fi

	 Ville Leppänen 
	 Ville.Leppanen@utu.fi

	 Jesper Larsson Träff 
	 traff@par.tuwien.ac.at

1	 VTT, Box 1100, FI‑90571 Oulu, Finland
2	 Department of Computing, University of Turku, FI‑20014 Turku, Finland
3	 Faculty of Informatics, Vienna University of Technology, Vienna, Austria

http://orcid.org/0000-0003-4865-8058

	Performance and programmability comparison of the thick control flow architecture and current multicore processors
	Abstract
	1 Introduction
	1.1 Related work
	1.2 Contribution

	2 Hardware architectures
	2.1 TPA
	2.2 Core i7
	2.3 Xeon W

	3 Programming methodologies
	3.1 Thick control flows
	3.2 POSIX threads
	3.3 OpenMP

	4 Comparison
	4.1 Quantitative measurements
	4.1.1 Overall tests
	4.1.2 OpenMP and sequential notation
	4.1.3 The effect of access patterns
	4.1.4 Resource efficiency, threading and synchronization
	4.1.5 Factors of efficient programming

	4.2 Program examples
	4.3 Programming experiences

	5 Conclusions
	References




