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Abstract: Looking for the exact solutions in the form of optical solitons of nonlinear partial
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solutions are offered.
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1. Introduction

Recently, nonlinear evolution equations (NLEEs) has been developed as specific modules of the
class of partial differential equations (PDEs). It is distinguished that investigating exact solutions for
NLEEs, via many dissimilar methods shows an active part in mathematical physics and has become
exciting and rich zones of research analysis for physicist and mathematicians. Lots of significant
dynamic processes and phenomena in biology, chemistry, mechanics and physics can be expressed by
nonlinear partial differential equations (NLPDEs). In NLEEs, nonlinear wave phenomena of
diffusion, dispersion, reaction, convection and dissipation are very important. It is necessary to define
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exact traveling solutions for these nonlinear equations to analyze various properties of these
equations. Nowadays, NLEEs has become a significant area of research. Mostly, the existence of
soliton solutions for NLEEs is of much important because of their widely applications in various
areas of mathematical biology, chaos, neural physics, optical fibers and solid state physics etc.

Solitons are considered in the fields as optical communication, plasma, medical imaging, super
continuum generation and nonlinear optics etc. They can transmit without changing their amplitude,
velocity and wave form for a long distance. Optical soliton forms the excellent transporter minutes in
the telecommunication engineering. Nowadays, some methods have been established for discovering
exact traveling and solitary wave solutions of NLEEs. Various influential methods for instance,
auxiliary equation method [1, 2], homogeneous balance method [3, 4], the Exp-function method [5, 6],
the tanh-function method [7], Darboux transformation method [8, 9], the modified extended
tanh-function method [10], the first integral method [11, 12], Jacobi elliptic function method [13, 14],
the modified simple equation method [15–17], the exp(-F(x))-expansion method [18], the
(G′/G)-expansion method [19–26], the variational iteration method [27] the homotopy perturbation
method [28–32], the F-expansion method [33–35] and many more [36–41]. Many models are existing
to report this dynamic in the structure of optical fibers. The Schrodinger equation, the important
model in submicroscopic phenomena and developed a fundamental importance to quantum
mechanics. Such model denotes to the form of wave functions that manage the motion of small
particles and classifies how these waves are transformed by external impacts. It has been measured
and considered in several designs.

In optical fibers, most of these models are frequently stated in the time domain, and when fields at
dissimilar frequencies spread through the fiber the common practice is also to transcribe a distance
equation for each field component. The nonlinear transformation of dielectric of the fiber termed as
the Kerr effect is applied to neutralize the dispersion effect, in this state, the optical pulse might lean
to form a steady nonlinear pulse known as an optical soliton. The bit rate of transmission is restricted
by the dispersion of the fiber material. Soliton transmission is an area of huge interest since of the
wide applications in ultrafast signal routing systems, transcontinental and short-light-pulse
telecommunication [42–45]. In this work, we used the generalized Kudryashov method to construct
the exact traveling wave solutions for the Kaup-Newell equation (KNE) and Biswas-Arshad equation
(BAE). The KNE is a significant model with many applications in optical fibers. The dynamics of
solitons in optical tools is observed as an important arena of research in nonlinear optics that has
added much attention in the past few decades [46–49]. The transmission of waves in optical tools
with Kerr dispersion rests important in construction to the so-called time evolution equations [50–52].
The three models that invent from the Nonlinear Schrodinger equation (NLSE) which are termed as
the Derivative Nonlinear Schrodinger Equations (DNLSE) are classified into three classes: I, II, and
III. Connected in this study is the DNLSE-I which is in its place known as the KNE. This class will be
the focal point of the current study and a lot of inquiries have correctly been approved in the literature.
Recently, Biswas and Arshad [53] constructed a model from the NLSE known as Biswas-Arshed
equation (BAE). The BAE is one of the important models in the telecommunications industry. The
extreme remarkable story of this model is that the self-phase modulation is ignored and likewise GVD
is negligibly slight. The plus point of this method is that it offers further novel exact solutions in
optical solitons form.

The draft of this paper is organized like this. Section 2, contained the description of the
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generalized Kudryashov method. In section 3, application of GKM for KNE is presented. Section 4
presents the application of GKM for BAE. Section 5 contains results and discussion. Conclusion of
the paper is discussed in section 6.

2. Description of generalized Kudryashov method

The steps of GKM [54] are as follows
Let NLEE in the form

W(q, qx, qt, qxt, qtt, qxx, · · · ) = 0, (2.1)

where q = q(x, t) is a function.
Step 1. Applying the following wave transformation

q(x, t) = g(η), η = (x − vt), (2.2)

into (2.1), so (2.1) converts to nonlinear ODE in the form

H(q, q′, q′′, q′′′, · · · ) = 0, (2.3)

here, q is a function of η and q′ = dq/dη and v is the wave-speed.
Step 2. Let (2.3) has the solution in form

g(η) =

∑N
i=0 aiS i(η)∑M
j=0 b jS j(η)

, (2.4)

where ai, b j are constants and (i ≤ 0 ≤ N), ( j ≤ 0 ≤ M) such that aN , 0, bM , 0.

S (η) =
1

1 + Aeη
, (2.5)

is the solution in the form

dS (η)
dη

= S 2(η) − S (η), (2.6)

where A is constant.
Step 3. Using balancing rule in (2.3) to obtain the values of N and M.
Step 4. Utilizing (2.4) and (2.6) into (2.3), we get an expression in S i, where (i = 0, 1, 2, 3, 4, · · · ).
Then collecting all the coefficients of S i with same power(i) and equating to zero, we get a system of
alebraic equations in all constant terms. This system of algebraic equations can be solved by Maple to
unknown parameters.

3. Kaup-Newell equation

The governing equation [55] is given as:

iqt + aqxx + ib(|q|2q)x = 0. (3.1)
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Here, q(x, t) is a complex valued function, indicates the wave pfofile and rests on variables, space x
and time t. It includes the non-Kerr dispersion, evolution and and GVD terms. Also, a is the coefficient
of GVD and b is the coefficient of self-steepening term.

Suppose (3.1) has the following solution

q(x, t) = g(η)eiφ(x, t), (3.2)

where

η = αx − ct , φ(x, t) = −κx + ωt. (3.3)

Here g(η), κ, c andω are the amplitude, frequency, speed and wave number of the pulse, respectively.
Putting (3.2) into (3.1), and splitting into imaginary and real parts.

The imaginary part has the form

−cg′ − 2aκαg′ + 3bαg2g′ = 0. (3.4)

We can get easily the value of c as under

c = −2ακa,

and the constraint condition as under

3αbg2 = 0.

The real part has the form

aα2g′′ + κbg3 − (aκ2 + ω)g = 0. (3.5)

Now, balancing the g′′ and non-linear term g3 in (3.5), we get N = M + 1. So for M = 1, we get
N = 2.

3.1. Application of GKM

The solution of (3.5) by generalized Kudryashov method as given in (2.4), reduces to the form

g(η) =
a0 + a1S (η) + a2S 2(η)

b0 + b1S (η)
, (3.6)

a0, a1, a2, b0 and b1 are constants. Subtitling the (3.6) into (3.5) and also applying (2.6), we get an
expression in S (η). Collecting the coefficients of same power of S i and equating to zero, the system of
equations is obtained, as follows.

bκa3
0 + (−aκ2 − ω)a0b2

0 = 0,
3bκa2

0a1 + (−aκ2 − ω)a1b2
0 + aα2a1b2

0 + 2(−aκ2 − ω)a0b0b1 − aα2a0b0b1 = 0,
3bκa0a2

1 + 3bκa2
0a2 − 3aα2a1b2

0 + (−aκ2 − ω)a2b2
0 + 4aα2a2b2

0 + 3aα2a0b0b1

+2(−aκ2 − ω)a1b0b1 − aα2a1b0b1 + (−aκ2 − ω)a0b2
1 + aα2a0b2

1 = 0,
bκa2

1 + 6bκa0a1a2 + 2aα2a1b2
0 − 10aα2a2b2

0 − 2aα2a1b0b1 + aα2a1b0b1

+2(−aκ2 − ω)a2b0b1 + 3aα2a2b0b1 − aα2a0b2
1 + (−aκ2 − ω)a1b2

1 = 0,
3bκa2

1a2 + 3bκa0a2
2 + 6aα2a2b2

0 − 9aα2a2b0b1 + (−aκ2 − ω)a2b2
1 + aα2a2b2

1 = 0,
3bκa1a2

2 + 6aα2a2b0b1 − 3aα2a2b2
1 = 0,

bκa3
2 + 2aα2a2b2

1 = 0.

(3.7)
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By solving the above system, we get various types of solutions. These solutions are deliberated
below.
Case 1.

a0 = 0, a1 = a1, a2 = −a1, b0 = −
1

2 b1
, b1 = b1,

a = a, κ = −
2 a α2 b2

1

a2
1 b

, ω = −
a α2(4 a2 α2 b4

1 − a4
1 b2)

a4
1 b2

.

Case 1 corresponds the following solution for Kaup-Newell equation

q(x, t) =

(− a1
(1+Aeαx−ct) −

a1
(1+Aeαx−ct)2

− 1
2 b1

+ b1
(1+Aeαx−ct)

)
× e

ι

(
2 a α2 b2

1

a2
1 b

x −
a α2(4 a2 α2 b4

1 − a4
1 b2)

a4
1 b2

t
)
. (3.8)

Case 2.
a0 = a0, a1 = −

(b1 + 2b0)a0

b0
, a2 = 0, b0 = b0, b1 = b1.

a = a, κ = −
a α2 b2

0

2 b a2
0

, ω = −
a α2(2b2 a4

0 + b4
0a2α

2)
4 b2 a4

0

.

Case 2 corresponds the following solution for Kaup-Newell equation

q(x, t) =

(a0 −
(b1+2b0)a0

b0(1+Aeαx−ct)

b0 + b1
(1+Aeαx−ct)

)
× e

ι

(
a α2 b2

0

2 b a2
0

x −
a α2(2b2 a4

0 + b4
0a2α

2)
4 b2 a4

0

t
)
. (3.9)

Case 3.
a0 = −

b0a2

2b1
, a1 =

a2(2b0 − b1)
2b1

, a2 = a2, b0 = b0, b1 = b1.

a = a, κ = −
2 a α2 b2

1

b a2
2

, ω = −
aα2(b2a4

2 + 8a2α2b4
1
)

2b2a4
2

.

Case 3 corresponds the following solution for Kaup-Newell equation

q(x, t) =

(−b0a2
2b1

+
a2(2b0−b1)

2b1(1+Aeαx−ct) + a2
(1+Aeαx−ct)2

b0 + b1
(1+Aeαx−ct)

)
× e

ι

(2 a α2 b2
1

b a2
2

x −
aα2(b2a4

2 + 8a2α2b4
1
)

2b2a4
2

t
)
. (3.10)

Case 4.
a0 =

1
2

a2, a1 = −a2, a2 = a2, b0 = −
1
b

b1, b1 = b1.

a = a, κ = −
2aα2b2

1

ba2
2

, ω = −
2aα2(b2a4

2 + 2a2α2b4
1
)

b2a4
2

.

Case 4 corresponds the following solution for Kaup-Newell equation

q(x, t) =

( 1
2a2 −

a2
(1+Aeαx−ct) + a2

(1+Aeαx−ct)2

−1
bb1 + b1

(1+Aeαx−ct)

)
× e

ι


2aα2b2

1

ba2
2

x −
2aα2(b2a4

2 + 2a2α2b4
1
)

b2a4
2

t

. (3.11)
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4. Biswas-Arshed equation

The BAE with Kerr Law nonlinearity [56] is

α1qxx + α2qxt + iqt + i(β1qxxx + β2qxxt) = i(λ(|q|2q)x + µ(|q|2)xq + θ|q|2qx). (4.1)

Here q(x, t) representing the wave form. On the left of (4.1) α1 and α2 are the coefficients of GVD
and STD, respectively. β1 and β2 are the coefficients of 3OD and STD, respectively. On the right of
(4.1) µ and θ represents the outcome of nonlinear disperssion and λ represents the outcome of self-
steepening in the nonappearance of SPM.

Let us assumed that the solution of (4.1) is as under

q(x, t) = g(η) eiφ(x, t). (4.2)

where
φ(x, t) = −κx + ωt + θ0, η = x − vt. (4.3)

Here g(η) shows amplitude, φ(x, t) is phase component. Also κ, v, θ0, ω denote the soliton
frequency, speed, phase constant and wave number, respectively.

Substituting (4.2) into (4.3) and splitting it into imaginary and real parts.
The imaginary part has the form

(β2vκ2 − 3β1κ
2 + 2β2ωκ − v + 2α2vκ − 2α1κ + α2ω)g′ + (−β2v + β1)g′′′ − (2µ + θ + 3λ)g2g′ = 0.

We can get easily the value of v as under

v =
β1

β2
,

and the constraints conditions as under{
β2vκ2 + 2β2ωκ − 3β1κ

2 − v − 2α1κ + 2α2vκ + α2ω = 0,
3λ + 2µ + θ = 0.

The real part has the form

(α1 − α2v + 3β1κ − 2β2vκ − ωβ2)g′′ − (ω + α1κ
2 + β1κ

3 − α2ωκ − β2ωκ
2)g − (λ + θ)κg3 = 0. (4.4)

Using balancing principal on (4.4), we attain M + 1 = N. So for M = 1, we obtain N = 2.

4.1. Application of GKM

Hence, solution of (4.4) by GKM as given in (2.4) will be reduced into the following form

g(η) =
a0 + a1S (η) + a2S 2(η)

b0 + b1S (η)
. (4.5)
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a0, a1, a2, b0 and b1 are constants.
Substituting (4.5) into (4.4) and also applying (2.6), we acquire an expression in S (η). Collecting

the coefficients of with same powerS i and equating to zero, the following system equations is got.

−2ωβ2b2
1a2 − 4β2vκb2

1a2 + κθa3
2 + 2α1b2

1a2 + 6β1κb2
1a2 − 2α2vb2

1a2 + κλa3
2 = 0,

3ωβ2b2
1a2 + 3α2vb2

1a2 + 6β2vκb2
1a2 − 9β1κb2

1a2 + 6α1b0a2b1 − 12β2vκb0a2b1 − 3α1b2
1a2

+3κθa1a2
2 + 3κλa1a2

2 + 18β1κb0a2b1 − 6α2vb0a2b1 − 6ωβ2b0a2b1 = 0,
α1b2

1a2 + β2ωκ
2b2

1a2 + 3κλa0a2
2 − α2vb2

1a2 + α2ωκb2
1a2 + 18β1κa2b2

0
+3κλa2

1a2 + 3κθa2
1a2 + 6α1a2b2

0 + 3κθa0a2
2 − β1κ

3b2
1a2 − 6ωβ2a2b2

0 − 27β1κb0a2b1

−2β2vκb2
1a2 − 9α1b0a2b1 + 3β1κb2

1a2 − 6α2va2b2
0 − 12β2vκa2b2

0 + 9α2vb0a2b1−

α1κ
2b2

1a2 − ωβ2b2
1a2 + 18β2vκb0a2b1 − ωb2

1a2 + 9ωβ2b0a2b1 = 0,
−2β2vκb1a1b0 − 6β2vκb0a2b1 + 4β2vκb0b1a0 + 2α2ωκb0b1a2 + 2β2ωκ

2b0b1a2

+ωβ2b2
1a0 − 2ωβ2b2

0a1 − 2ωb0b1a2 − α1κ
2b2

1a1 − β1κ
3b2

1a1 + α1b1a1b0 + 3α1b0a2b1

−2α1b0b1a0 + 10α2va2b2
0 + α2vb2

1a0 − 2α2vb2
0a1 − 30β1κa2b2

0 − 3β1κb2
1a0 + 6β1κb2

0a1

+10ωβ2a2b2
0 − 10α1a2b2

0 − ωb2
1a1 + κθa3

1 + κλa3
1 + 2α1b2

0a1 − α1b2
1a0 − 2α1κ

2b0b1a2

−2β1κ
3b0b1a2 + α2ωκb2

1a1 + β2ωκ
2b2

1a1 − α2vb1a1b0 − 3α2vb0a2b1 + 2α2vb0b1a0

+3β1κb1a1b0 + 9β1κb0a2b1 − 6β1κb0b1a0 + 20β2vκa2b2
0 + 2β2vκb2

1a0 − 4β2vκb2
0a1

−ωβ2b1a1b0 − 3ωβ2b0a2b1 + 2ωβ2b0b1a0 + 6κλa0a1a2 + 6κθa0a1a2 = 0,
2β2vκb1a1b0 − 6β2vκb0b1a0 + 2α2ωκb0b1a1 + 2β2ωκ

2b0b1a1 − ωβ2b2
1a0 + 3ωβ2b2

0a1

+3κλa2
0a2 + 3κλa0a2

1 + 3κθa2
0a2 + 3κθa0a2

1 − 2ωb0b1a1 − α1κ
2b2

0a2 − α1κ
2b2

1a0

−β1κ
3b2

0a2 − β1κ
3b2

1a0 − α1b1a1b0 + 3α1b0b1a0 − 4α2va2b2
0 − α2vb2

1a0 + 3α2vb2
0a1

+12β1κa2b2
0 + 3β1κb2

1a0 − 9β1κb2
0a1 − 4ωβ2a2b2

0 + 4α1a2b2
0 − ωb2

1a0 − ωb2
0a2 − 3α1b2

0a1

+α1b2
1a0 − 2β1κ

3b0b1a1 + α2ωκb2
0a2 + α2ωκb2

1a0 + β2ωκ
2b2

0a2 + β2ωκ
2b2

1a0 + α2vb1a1b0

−3α2vb0b1a0 − 3β1κb1a1b0 + 9β1κb0b1a0 − 8β2vκa2b2
0 − 2β2vκb2

1a0 + 6β2vκb2
0a1

+ωβ2b1a1b0 − 3ωβ2b0b1a0 − 2α1κ
2b0b1a1 = 0,

−ωb2
0a1 − α1b0b1a0 − ωβ2b2

0a1 − α2vb2
0a1 + ωβ2b0b1a0 + α2ωκb2

0a1 − β1κ
3b2

0a1

−2β2vκb2
0a1 − 2β2vκb2

0a1 − 2α1κ
2b0b1a0 + α2vb0b1a0 + 3β1κb2

0a1 − 2β1κ
3b0b1a0

−2ωb0b1a0 + α1b2
0a1 − α1κ

2b2
0a1 + 3κθa2

0a1 − 3β1κb0b1a0 + 2β2vκb0b1a0

+2α2ωκb0b1a0 + β2ωκ
2b2

0a1 + 2β2ωκ
2b0b1a0 + 3κλa2

0a1 = 0,
α2ωκb2

0a0 + β2ωκ
2b2

0a0 + κθa3
0 − α1κ

2b2
0a0 − β1κ

3b2
0a0 + κλa3

0 − ωb2
0a0 = 0.

(4.6)

On solving above system, get various types of solutions. These solutions are deliberated below.
Case 1.

κ = κ, λ = −θ,

ω = −α2v − ωβ2 + β2ωκ
2 − 2β2vκ − β1κ

3 + α2ωκ + 3β1κ + α1 − α1κ
2,

a0 = 0 , a1 = a1, a2 = 0, b0 = −b1, b1 = b1.

Above these values correspond to the following solution for Biswas-Arshed equation.

q(x, t) = −
a1

b1

[
1

Ae(x − vt)

]
× ei {−κx + ωt + θ0}. (4.7)

Case 2.

κ = κ, λ =
1
2
×
−2κθa2

0 − α1b2
0 − 3β1κb2

0 + ωβ2b2
0 + α2vb2

0 + 2β2vκb2
0

κa2
0

,
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ω = −
1
2
α1 −

3
2
β1κ +

1
2
ωβ2 − α1κ

2 +
1
2
α2v − β1κ

3 + β2ωκ
2 + β2vκ + α2ωκ,

a0 = a0, a1 =
−a0(b1 + 2b0)

b0
, a2 = 0, b0 = b0, b1 = b1.

Above these values correspond to the following solution for Biswas-Arshed equation

q(x, t) =
a0

b0

b0Ae(x − vt) − (b0 + b1)

b0Ae(x − vt) + (b0 + b1)

 × ei {−κx + ωt + θ0}. (4.8)

Case 3.

κ = κ, λ =
−2α1b2

1 − κθa
2
2 − 6β1κb2

1 + 2ωβ2b2
1 + 2α2vb2

1 + 4β2vκb2
1

κa2
2

,

ω = α2ωκ + β2ωκ
2 − α1κ

2 − β1κ
3 − 2α1 − 6β1κ + 2ωβ2 + 2α2v + 4β2vκ,

a0 =
1
2

a2, a1 = −a2, a2 = a2, b0 = −
1
2

b1, b1 = b1.

Above these values correspond to the following solution for Biswas-Arshed equation

q(x, t) =
a2

b1

1 + A2e2(x − vt)

1 − A2e2(x − vt)

 × ei {−κx + ωt + θ0}. (4.9)

Case 4.
κ = 0, λ = λ, ω = α1 − ωβ2 − α2v,

a0 = −a1, a1 = a1, a2 = 0, b0 = 0, b1 = b1.

Above these values correspond to the following solution for Biswas-Arshed equation

q(x, t) = −
a1

b1

[
Ae(x − vt)

]
× ei {ωt + θ0}. (4.10)

Case 5.
κ = −

−α1 + ωβ2 + α2v
−3β1 + 2β2v

, λ = −θ,

ω = −
1

(−3β1 + 2β2v)3 ×

[
− 4α2

1α2v2β2 + 2α1α
2
2v3β2 − 9α2ωα1β

2
1 +

9α2ω
2β2β

2
1 + 9α2

2ωvβ2
1 + 2α2

2ωv3β2
2 + 6ωβ2α

2
1β1 − 6ωβ2

2α
2
1v − 6ω2β2

2α1β1

+ 6ω2β3
2α1v + 3β1α

2
1α2v + 2ω3β3

2β1 − 2ω3β4
2v − β1α

3
2v3 + 2α3

1β2v + 4α2ωα1β
2
2v2

− 9α2ω
2β2

2β1v − 12α2
2ωv2β1β2 − 2β1α

3
1 + 6α2α1β1β2v

]
,

a0 = 0, a1 = a1, a2 = a2, b0 = b0, b1 = b1.

Above these values correspond to the following solution for Biswas-Arshed equation

q(x, t) =

 a1Ae(x − vt) + (a1 + a2)

A2e2(x − vt) + (2b0 + b1)Ae(x − vt) + (b0 + b1)

 × ei {−κx + ωt + θ0}. (4.11)
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5. Results and discussions

In this study, we effectively construct novel exact solutions in form of optical solitons for
Kaup-Newell equation and Biswas-Arshed equation using the generalized Kudryashov method. This
method is considered as most recent scheme in this arena and that is not utilized to this equation
earlier. For physical analysis, 3-dim, 2-dim and contour plots of some of these solutions are included
with appropriate parameters. These acquired solutions discover their application in communication to
convey information because solitons have the capability to spread over long distances without
reduction and without changing their forms. Acquired results are novel and distinct from that reported
results. In this paper, we only added particular figures to avoid overfilling the document. For
graphical representation for KNE and BAE, the physical behavior of (3.8) using the proper values of
parameters α = 0.3, a1 = 0.65, b1 = 0.85, p = 0.98, q = 0.95, k = 2, A = 3, b = 2, c = 4. and
t = 1 are shown in Figure 1, the physical behavior of (3.9) using the appropriate values of parameters
α = 0.75, a0 = 1.5, b0 = 1.7, b1 = 0.98, A = 3, b = 1.6, a0 = 2, c = 2.5. and t = 1 are shown in
Figure 2, the physical behavior of (3.11) using the proper values of parameters
α = 0.75, a0 = 1.5, b0 = 1.7, b1 = 0.98, A = 3, b = 1.6, a0 = 2, c = 2.5. and t = 1 are shown in
Figure 3, the absolute behavior of (4.9) using the proper values of parameters
α = 0.75, a0 = 1.5, b0 = 1.7, A = 2.3, b = 1.6, c = 2.5, v = 2.5, θ0 = 4. and t = 1 are shown in
Figure 4.
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Figure 1. (A): 3D graph of (3.8) with α = 0.3, a1 = 0.65, b1 = 0.85, p = 0.98, q =

0.95, k = 2, A = 3, b = 2, c = 4. (A-1): 2D plot of (3.8) with t = 1. (A-2): Contour graph
of (3.8).
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Figure 2. (B): 3D graph of (3.9) with α = 0.75, a0 = 1.5, b0 = 1.7, b1 = 0.98, A = 3, b =

1.6, a0 = 2, c = 2.5. (B-1): 2D plot of (3.9) with t = 1. (B-2): Contour graph of (3.9).
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Figure 3. (C): 3D graph of (3.11) with α = 0.75, a0 = 1.5, b0 = 1.7, b1 = 0.98, A = 3, b =

1.6, a0 = 2, c = 2.5. (C-1): 2D plot of (3.11) with t = 1. (C-2): Contour graph of (3.11).
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Figure 4. (D): 3D graph of (4.9) with α = 0.75, a0 = 1.5, b0 = 1.7, A = 2.3, b = 1.6, c =

2.5, v = 2.5, θ0 = 4. (D-1): 2D plot of (4.9) with t = 1. (D-2): Contour graph of (4.9).

6. Conclusions

The study of the exact solutions of nonlinear models plays an indispensable role in the analysis of
nonlinear phenomena. In this work, we have constructed and analyzed the optical solitons solutions of
the Kaup-Newell equation and Biswas-Arshad equation by using Kudryashove method. The
transmission of ultrashort optical solitons in optical fiber is modeled by these equations. We have
achieved more general and novel exact solutions in the form of dark, singular and bright solitons. The
obtained solutions of this article are very helpful in governing solitons dynamics. The constructed
solitons solutions approve the effectiveness, easiness and influence of the under study techniques. we
plotted some selected solutions by giving appropriate values to the involved parameters. The
motivation and purpose of this study is to offer analytical techniques to discover solitons solutions
which helps mathematicians, physicians and engineers to recognize the physical phenomena of these
models. This powerful technique can be employed for several other nonlinear complex PDEs that are
arising in mathematical physics. Next, the DNLSE classes II and III will be scrutinized via the similar
methods to more evaluate them, this definitely will offer a huge understanding of the methods along
with the classes of DNLSE. These solutions may be suitable for understanding the procedure of the
nonlinear physical phenomena in wave propagation.
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