
562 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 3, MARCH 2014

Large-Scale Memristive Associative Memories
Eero Lehtonen, Jussi H. Poikonen, Mika Laiho, Member, IEEE, and Pentti Kanerva

Abstract— Associative memories, in contrast to conventional
address-based memories, are inherently fault-tolerant and allow
retrieval of data based on partial search information. This paper
considers the possibility of implementing large-scale associative
memories through memristive devices jointly with CMOS cir-
cuitry. An advantage of a memristive associative memory is that
the memory elements are located physically above the CMOS
layer, which yields more die area for the processing elements
realized in CMOS. This allows for high-capacity memories even
while using an older CMOS technology, as the capacity of the
memory depends more on the feature size of the memristive
crossbar than on that of the CMOS components. In this paper, we
propose the memristive implementations, and present simulations
and error analysis of the autoassociative content-addressable
memory, the Willshaw memory, and the sparse distributed
memory. Furthermore, we present a CMOS cell that can be used
to implement the proposed memory architectures.

Index Terms— Associative memory, memristors, mixed analog
digital integrated circuits.

I. INTRODUCTION

THE memristor is a passive programmable resistive com-
ponent that was theoretically discovered and described

in 1971 by Chua [1]. In 2008, scientists from HP Labs
revealed to have found a nanoscale device which can be
classified as a memristive device [2]. Since this announcement,
many physical memristive devices have been reported [3]–[7];
it has been stated that all two-terminal memory devices based
on resistive switching are memristors [8]. Memristors are
particularly well-suited for memory applications; they are
practically nonvolatile, which means that they retain their state
when unpowered, and the feature size of a memory structure
realized using memristive devices is minimal, as each memory
element consists of a single memristive device.

Memristors are naturally fabricated within a nanowire cross-
bar where a memristor is placed at each crossing of two
nanowires [9]. The nanowires are driven by CMOS circuitry,
which is proposed to be located physically below the nanowire
crossbar [10]. This CMOS/molecular hybrid (CMOL) architec-
ture makes memristive nanowire crossbars ideally suited for
facilitating programmable communication and memory within

Manuscript received March 5, 2012; revised December 6, 2012; accepted
February 5, 2013. Date of publication April 30, 2013; date of current version
February 20, 2014. This work was supported by the GETA Graduate School,
by the Fulbright Foundation, and by the Academy of Finland, under Grant
140108 and Grant 253596.

E. Lehtonen and M. Laiho are with the BID Technology, University of
Turku, Turku 20520, Finland (e-mail: elleht@utu.fi; mika.laiho@utu.fi).

J. H. Poikonen is with the Department of Communications and Networking,
Aalto University, Espoo 02150, Finland (e-mail: jussi.poikonen@aalto.fi).

P. Kanerva is with the Redwood Center for Theoretical Neuroscience,
University of California, Berkeley, CA 94720 USA (e-mail: pkanerva@
csli.stanford.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2013.2250319

a CMOS chip. Neuromorphic systems, which are inspired
by the functionality and architecture of the nervous system,
are particularly well-suited to be implemented as CMOL
architectures. In these architectures, neurons are implemented
using CMOS components, whereas the intercellular communi-
cation and synapses are realized through memristive nanowire
crossbars [11].

In this paper, we consider various memristive implementa-
tions of a neuromorphic memory structure called the associa-
tive memory. In contrast to random access memories, where
the information is stored to and retrieved from explicitly given
locations, the information is retrieved through a search in
associative memories; given an input vector one wants to
obtain the stored vector that has been previously associated
with the input. Such a search typically requires computations
of many thresholded inner products between the input vector
and the contents of the memory. In a parallel hardware
implementation of a large-scale associative memory, one thus
needs many such inner product units, which in neuromorphic
terms can be regarded as artificial neurons. In [12], it is shown
that to improve energy efficiency, such neurons should be
implemented in the analog rather than in the digital domain—
we apply this approach in the associative memory circuits
proposed in this paper.

The prospect of high-capacity associative memory archi-
tectures is the prime motivation in this paper. In particular,
in this paper it is assumed that the wordlength L of the
memory input—and output—is very large, in the order of
thousands of bits. Such a memory architecture would be well
suited, for example, for real-time pattern recognition in natural
images, which would be useful in autonomous robotics, to
name one particular field of application. Moreover, there is a
reason to believe that the associative memory in the brain uses
high-dimensional input and output data [13], and thus such a
memory may be needed for implementing a whole-brain model
such as the one discussed in [14].

In the following, we propose CMOL implementations of
three associative memory structures, namely the memris-
tive ACAM described in Section III-C, and the memris-
tive Willshaw and sparse distributed memories presented in
Sections IV-A and IV-C. All of these memory structures are
well suited to be implemented as CMOL architectures, as they
require large synaptic networks to achieve high capacities.

II. DEVICES, ARCHITECTURES, AND DEFINITIONS

A. Memristive Devices

A memristor is a nonvolatile programmable resistor, whose
resistance, or memristance to be precise, can be changed by
applying a voltage across, or current through, the device.
The number of allowed resistive states of a memristor depends

1063-8210 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

LEHTONEN et al.: LARGE-SCALE MEMRISTIVE ASSOCIATIVE MEMORIES 563

on its fabrication. For example, bistable devices called binary
memristors have been reported in [2] and [4], and an analog
memristor with a seemingly continuous range of memristances
is presented in [7]. The associative memory implementations
described in this paper use both binary and analog memris-
tors. Binary memristors are used as programmable switches,
whereas analog memristors are used to implement the counters
needed in the sparse distributed memory (SDM) discussed in
Section IV.

A binary memristor is modeled in this paper as a linear
resistor with two possible resistive states, ROFF and RON.
A binary memristor’s state can be switched by applying a
sufficiently large positive or negative voltage across it. More
precisely, the resistance state R(t) of a binary memristor at
time t satisfies

R(t) =

⎧
⎪⎨

⎪⎩

ROFF, if v(t) < −V T

RON, if v(t) > V T

R(t − 1), otherwise

(1)

where V T is the programming threshold of the memristor and
v(t) is the voltage across it at time t .

For the analog memristor, we apply the qualitative model
presented in [15]. Accordingly, the behavior of a memristor
can be defined by the following two equations:

i = c1w sinh(d1v) (2)
dw

dt
= c2 sinh(d2v) (3)

where i and v are the current through and voltage across
the device, ck and dk , k = 1, 2 are positive constants, and
w ∈ [0, 1] is the state variable of the memristor.

We assume that the analog memristors used in this paper
have an effective programming threshold V T [15], which
means that there exists a range of voltages across the device
that do not cause the conductivity state of the memristor to
change rapidly. In the qualitative model, the programming
threshold corresponds to a large value of the exponent d2 in (3)
relative to the timescale of the programming operation.

We consider two approaches to programming, or changing
the state of conductivity, of memristors. As noted above, binary
memristors are programmed to the low-conductivity state
denoted by 0 by applying a voltage smaller than −V T across
the device. Conversely, programming to the high-conductance
state 1 is performed by applying a voltage larger than +V T

across the memristor. Using a positive voltage below the
threshold voltage makes it possible to read the state of the
memristor without changing it. Analog memristors can be
programmed by pulse-based programming in which square
voltage pulses are set across the memristor to change its state
of conductivity by an amount depending on the number and
the amplitude of the pulses.

B. CMOL Circuits

An example of a CMOL-type CMOS/memristor hybrid
architecture [10], [16] is illustrated in Fig. 1. It consists of
a CMOS layer stacked vertically with a memristive crossbar.
The CMOS layer is used for signal restoration, gain, and

Fig. 1. Example CMOL circuit with 9 CMOS cells connected to a memristive
crossbar containing 9 · 9 = 81 memristors. The CMOS cells are depicted as
square tiles, with circular interfaces to the nanowire crossbar. The nanowire
crossbar is tilted with respect to the array of CMOS cells to allow each CMOS
cell to access a unique pair of nanowires. Each CMOS cell is addressed by
four microwires: Cdri, Rdri, Ccomp, and Rcomp.

processing, and it is interfaced with the memristive cross-
bar, which acts as a memory layer and as a programmable
communication network for the chip, by vertical vias. The
CMOS layer is divided into cells whose designs depend on
the functionality of the system. For example, if a CMOL
architecture is used as a random access memory, the CMOS
cells comprise merely of two pass-transistors, which are used
to select two mutually perpendicular nanowires and thus the
memristor located between them. As illustrated in Fig. 1,
each CMOS cell can drive one horizontal and one vertical
nanowire, and thus two CMOS cells are required to address
a single memristor located at the crossing of a horizontal and
a vertical nanowire. To simultaneously control only these two
CMOS cells, four microwires are needed—thus the CMOL
architecture generally requires double addressing compared,
for example, to an array of CMOS cells. It is also crucial to
note that in a CMOL architecture N CMOS cells can control at
most N2 memristors. This upper limit can be attained in the
ideal case of nonsegmented nanowires that cover the whole
CMOS cell array. This approach is assumed in this paper
where we consider a 100 × 100 CMOS cell array used to
control 108 memristors. Another solution to implement the
CMOL architecture is to vertically stack segmented nanowire
crossbars as explained in [9]. The largest fabricated CMOL-
type random access memories published to date are presented
in [17] and [18]. In [17], a 64-Mb memristor memory is
presented, while [18] describes a 8-Gb phase-change memory,
a technology closely related to memristors. Although these
examples demonstrate the viability of the CMOL architecture,

564 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 3, MARCH 2014

more experimental data is still required to determine the
practical limitations of reliable fabrication of CMOL circuits.
From the perspective of in this paper, the most significant open
question is the maximum length of unsegmented nanowires.
However, large-scale associative memories can be imple-
mented using relatively wide nanowires, which should increase
the reliability of the fabrication process. In the examples
of Sections III and IV, the nanowire width is chosen to
be 125 nm, which is attainable for interconnects in modern
CMOS processes.

In this paper, the CMOS cells are used to implement artifi-
cial neurons that compute thresholded sums of input currents,
which represent inner products of vectors as described in
Section III-A. Vectors are stored into the memristive crossbar
as the states of the memristors, and the input vector is
communicated to the CMOS cells by address decoders at the
edges of the CMOL architecture.

C. Associative Memory

Let ui and vi , where i = 1, . . . , M , be binary vectors of
length L. An associative memory can store a set of associations
ui → vi between these vectors. Formally, this means that
when the memory is searched by a vector z, it returns the
index i (or vector vi) for which the Hamming distance

dH (z, ui) =
L∑

j

(z(j) − ui (j))2 (4)

is minimized. Here, x(j) is the j th element of x.
A memory satisfying the definition above is called heteroas-

sociative, and besides simply storing key-value pairs, it can
also be used to store sequences of vectors provided that the
key and value vectors have the same length. A sequence is
formed by letting the value of a previous pair to be the key
of the next pair. When ui = vi for all i , the memory is called
autoassociative, and it allows for pattern completion or error
correction.

An early review and system-theoretical formulation of asso-
ciative information structures was given in [19]; notably also
physical realizations of content-addressable and distributed
memory structures are presented in this monograph. Further-
more, a first broad review and analysis of content-addressable
memories (CAMs) and their hardware implementations were
presented in [20]. Further discussions on the theoretical basis
of the memory architectures considered in this paper can be
found for example in [21]–[25].

D. Data Representation

In this paper, the vector length L is assumed to be very
long, in the order of thousands of bits. Furthermore, all stored
vectors are assumed to be either sparse or dense. A sparse
vector contains only a small fraction of ones, for example,
50 ones out of a total of L = 10 000 b, while in dense binary
vectors the numbers of zeros and ones are close to L/2.

Raw data is often inherently dense, as well as compressed
data is dense, as it contains a maximal amount of information.
There is thus use for associative memory architectures storing

dense input patterns. The usefulness of sparse representation
may be understood by considering a data-processing method
called dimensionality reduction. In this scheme, a dense vector,
such as a gray-scale bitmap image, is mapped into a sparse
vector whose nonzero coordinates contain most of the variance
in the original data. Sparse representation is suitable for
pattern recognition and completion, since the nonzero entries
correspond to specific features in the data. In sparse coding of
natural images [26], the basis functions correspond to oriented
local structures.

It is known that the neural activity in parts of the brain
is sparse [27]. In the visual and auditory cortex, this may
serve pattern recognition, but sparse activity of neurons is
also beneficial in terms of metabolic efficiency [27]. This
suggests that sparse representation may be useful in reducing
the power consumption of hardware implementations of asso-
ciative memories. Such reduction is observed in the power con-
sumption of the Willshaw memory discussed in Section IV-A.

E. Unary and Distributed Architectures

Neural associative memory architectures can be divided
into two categories: unary—also known as grandmother cell—
architectures and distributed architectures [28]. In the former,
each stored vector is allocated to a specific neuron which
activates only when a vector close to it is given as input to
the network. It follows from this that the number of neurons,
N , is the upper limit to the number of binary vectors, M ,
the network can store, that is, M ≤ N . Generally, a unary
associative memory can be implemented as a lookup table or
as a CAM as discussed in Section III.

In distributed memory architectures, multiple neurons are
activated for each input. In principle, this enables storing more
input vectors than there are neurons in the network, that is, it
is possible that M > N . The upper limit for the number of
vectors that can be retrieved without errors depends not only
on the memory architecture but also on the data distribution
of the input vectors. When operating with sparse vectors
the storage capacity of the network may be much greater
than N when N is large. Memristive implementations of two
distributed memory architectures are proposed in Section IV.

F. Capacities of Associative Memories

The network capacity C of an associative memory is
defined as the maximum quantity of stored information per
synapse [29]. By definition, C is always non-negative, and for
binary synapses it satisfies C ≤ 1. To calculate the vector
capacity M , which is the number of vectors that can be stored
into the memory, one needs to know C , the total number of
synapses S, and the information content in a single vector I ,
assuming that the input vectors are independent and contain
an equal quantity of information. Then

M = C S/I. (5)

For example, in a square associative memory with N neurons,
the number of synapses equals S = N2. If logarithmically
sparse vectors of length L = N are used, each vector contains

LEHTONEN et al.: LARGE-SCALE MEMRISTIVE ASSOCIATIVE MEMORIES 565

TABLE I

NETWORK CAPACITIES OF ASSOCIATIVE MEMORY ARCHITECTURES

Architecture CD CS

Autoassociative CAM 1 N/A

Willshaw memory N/A 0.69

Sparse distributed memory 0.15 ≥ 0.69

I ≈ log(N)2 bits of information. Then the vector capacity of
the memory equals

M ≈ C N2

log2(N)
. (6)

On the other hand, if dense vectors are stored, then I = N
and

M = C N. (7)

In Table I, we have collected network capacity values of the
associative memories discussed in this paper. These results are
adopted from [23], [29], and [30]. Here CD and CS denote
the capacity for dense and sparse data vectors, respectively.
Notice that for ACAM we do not consider sparse vectors,
but Willshaw memory is assumed to operate only on sparse
vectors.

G. Previous Work

Memristive associative memories were presented in litera-
ture previously in [31]–[34]. Of these, the most relevant to
the current work is [31], which discusses the implementation
of a classic associative memory architecture called the Hop-
field network [22] as a CMOL circuit. This implementation
requires analog synaptic weights, which are proposed to be
realized as small crossbars of binary devices, and it yields a
vector capacity of M = 0.118L [35]. Being a CMOL-based
neuromorphic network, this architecture closely resembles the
ones described in Sections III and IV. The Hopfield network
has several disadvantages when compared with the memory
designs described in this paper. As noted above, the capacity
of the memory is directly proportional to the length of the input
vector. With the memristive ACAM described in Section III
or the SDM discussed in Section IV, this is not the case,
as their capacities depend on the number of rows in the
memory matrices, and can therefore be chosen independently
from the input vector length. Moreover, the Hopfield net-
work is a dynamical system, whose artificial neurons need
to communicate with each other multiple times during an
associative search to find the equilibrium state that corresponds
to the output of the search. In contrast to this, the memory
structures described in this paper yield the output of a search
in a single step. The capacity of a Hopfield network using
dense input vectors equals that of a similarly sized SDM,
whereas on logarithmically sparse vectors, the capacities of
a Hopfield network and the Willshaw memory described in
Section IV are roughly the same [29]. Therefore, we conclude
that the associative memory architectures proposed in this
paper are better suited for a memristive implementation than
the Hopfield network, since they yield the same or higher
capacities with a simpler implementation.

Memristive implementation of a CAM is described in [32].
The CAM is a memory architecture which compares input
search data with a table of stored data, and returns the address
of the matching data [36]. It is not an associative memory
as defined in the context of this paper, as it recognizes an
input only if it exactly matches a stored vector. Therefore,
despite its name, the design of the ACAM in Section III differs
significantly from the one described in [32].

In [33] and [34], the dynamics of analog memristors are
used to create associative responses in small-scale memristive
circuits. For example, [33] presents a three-memristor circuit,
whose dynamics are reminiscent of the famous Pavlov’s exper-
iment. These considerations are not relevant to our work, since
here we consider memristors only as synaptic weights and
do not exploit their dynamics except when the devices are
programmed. Moreover, in our approach it is crucial that the
number of synapses is much larger than the numbers of devices
considered in [33] and [34].

III. MEMRISTIVE AUTOASSOCIATIVE CAM

A. Inner Product as a Sum of Memristor Currents

As mentioned in Section I, the inner product is a basic
operation used in the associative search. In the following, we
describe how to implement a specific type of inner product
with memristors; this method will be an integral part of all
the memory implementations proposed in this paper.

Let a and b be vectors of length L, where the values of a
are nonnegative real numbers, and the values of b are binary,
taken from the set {0, 1}. Consider the inner product

b ◦ a =
L∑

j=1

b(i)a(j) =
∑

b(j)=1

a(j) (8)

where, as before, a(j) is the j th component of a.
The elements of a are represented in the following by the

currents flowing through memristors when a unit voltage Vunit
is set across them. More precisely, let the current I j flowing
through the j th memristor equal

I j = ĉ · a(j) (9)

for all j = 1, . . . , L, when the unit voltage is set across it,
where ĉ is a scaling constant common to all of the memristors.

Let Vj = b(j) · Vunit for all j in the circuit of Fig. 2. By
Kirchoff’s current law, the current flowing through the resistor
Rref is ∑

b(j)=1

ĉ · a(j) (10)

and therefore the voltage Vout equals

Vout = c · b ◦ a (11)

where ◦ denotes the inner product, and the constant c = −ĉ ·
Rref.

For the autoassociative CAM described in this section, the
vector a is binary, and its elements can thus be represented
with binary memristors. Here, we assume that the resistance
ratio ROFF/RON is large enough so that a memristor in the OFF-
state yields a negligible amount of current when compared

566 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 3, MARCH 2014

−

+

Rref

Vout

V1 V2 Vj VL

... Ij
...

Fig. 2. Memristive circuit for computing the inner product b◦a. The elements
of the binary vector b are represented by the voltages Vj , j = 1, . . . , L ,
whereas the elements of the real-valued vector a are represented by the
currents I j . The voltage Vout is directly proportional to the value of the inner
product.

with a memristor in the ON-state. Analog memristors are used
in Section IV for representing counters of the SDM.

B. Autoassociative CAM

An ACAM [28] compares input search data against a table
of stored data, and returns the addresses of the stored data,
which are nearest to the input data in Hamming distance.
As ACAM is a unary architecture, its vector capacity equals
M = N , where N is the number of memory rows, independent
of the distribution of the input data. In this section, we assume
dense representation of data; associative memories operating
on sparse data are considered in Section IV.

Let the contents of the memory be represented by a binary
matrix U , whose rows ui correspond to the stored vectors, and
let z be the input vector for the associative search. Therefore,
the search should yield the indices i for which the Hamming
distance H (z, ui) is minimized. Since

H (z, ui) = ||z||2 − 2z ◦ ui + ||ui ||2 (12)

it follows that the vector ui that minimizes the Hamming
distance is the one which maximizes the inner product z ◦ ui .
Indeed, since the vector length L is large and the vectors were
assumed to be dense, it follows that:

||z||2 ≈ ||ui ||2 ≈ L/2. (13)

For the hardware implementation, it is very convenient that the
inner product is sufficient for measuring the distance between
two vectors, and thus, only ones, and not zeros, need to be
matched in the input vector and the stored vectors. As inner
products can be computed with the method discussed in the
previous subsection, we are now ready to present a memristive
implementation of the ACAM.

C. Implementation of a Memristive ACAM

We consider a CMOL-type implementation of an ACAM
whose memory elements are binary memristors. The contents

VERTICAL NW (NANOWIRE)

Rdri

C
dri

Rcomp

C
com

p

H
O

R
IZ

O
N

T
A

L
N

W

CMOS to VERT. NW VIA

CMOS to HORIZ. NW VIA

MEMRISTOR

VthVgnd

DB

CB

WR

RDY

RDY

RDMRDM SR

Fig. 3. Schematic of a single CMOS cell of the memristive ACAM.

matrix U is represented by the resistance states of the memris-
tors of the nanowire crossbar, as depicted in Fig. 1. The vertical
nanowires are used for communicating the input and output
vectors, and input and stored vectors are compared with the
horizontal nanowires. All of the nanowires are interfaced with
CMOS blocks as depicted in Fig. 3—the vertical nanowires
are interfaced with driver blocks (DB), whereas the horizontal
nanowires are interfaced with comparison blocks (CB).

In general, the length L of an input vector and the number N
of the stored vectors need not be equal. Consider, for example,
the case N > L. This corresponds to N horizontal and L
vertical nanowires, and thus N − L of the CMOS cells consist
only of a CB depicted in Fig. 3. Notice here that we use
the word cell instead of a neuron, since each of the CMOS
cells includes a local memory latch and inputs of multiple
global signals, and therefore contains more functionality than
a generic artificial neuron. This choice of terminology is
maintained in Section IV where the CMOS cell is extended to
function as a part of the SDM. In the following, we describe
in detail the operation of the proposed memristive ACAM.

1) Storing a Vector: When a binary vector u is stored into
the memory, an available row of the ACAM is chosen. The
corresponding horizontal nanowire is driven to a negative volt-
age −VPROG, and the vertical nanowires are driven to voltages
that correspond to the bits of u: the j th vertical nanowire is
driven to a positive voltage VPROG if the corresponding bit
u j = 1, and to ground otherwise. The voltage VPROG is chosen
to satisfy

VPROG < V T < 2VPROG (14)

where V T is the programming threshold of the memristor. This
assignment of voltages programs the bits of the input vector as
the resistances of the memristors on this row of the nanowire
crossbar, assuming that the memristors are initially in the OFF-
state: bit zero is represented as a memristor in the OFF-state,
and bit one is represented as a memristor in the ON-state.
If the row has been used previously, one may first initialize

LEHTONEN et al.: LARGE-SCALE MEMRISTIVE ASSOCIATIVE MEMORIES 567

VERTICAL NW (NANOWIRE)

Rdri

C
d

ri

Rcomp

C
co

m
p

H
O

R
IZ

O
N

T
A

L
 N

W

VthVgnd

DB

CB

(a)

VERTICAL NW (NANOWIRE)

Rdri

C
d

ri

Rcomp

C
co

m
p

H
O

R
IZ

O
N

T
A

L
 N

W

VthVgnd

DB

CB

(b)

RDM=1RDM=1 WR=1

Fig. 4. Memristive ACAM CMOS cell configured for the write-in operations.
(a) Storing the input vector as the states of the memristors on a horizontal
nanowire. The programming of the memristors is performed by driving the
vertical nanowires sequentially by voltages {VPROG, GND} corresponding to
the input bits, and by driving the selected horizontal nanowire at a constant
negative voltage −VPROG. The horizontal nanowires not attending to this
operation can be connected to ground, or they can be left floating. On these
nanowires, the memristors are not programmed, as the voltage across them
does not exceed their programming threshold. (b) For the search operation,
the input vector bits are stored into the latches at the DBs.

it by driving a negative voltage across the corresponding
memristors. The selection of the nanowires is accomplished
with the CMOS microwires denoted by Cdri, Rdri, Ccomp, and
Rcomp, as is depicted in Figs. 1 and 3. In particular, Rdri
controls the switch connecting Cdri to the latch in the DB,
whereas Ccomp controls the switch connecting Rcomp either to
the CMOS circuitry in the CB or directly to the horizontal
nanowire, depending on the selected global configuration of
the memory circuit.

2) Search Operation: When the memristive ACAM is
searched by a binary vector z, the DBs are used to drive
the vertical nanowires to voltages corresponding to z: the
j th vertical nanowire is driven either to a positive voltage
VREAD if z j = 1, or to ground if z j = 0. For this,
the search vector must be stored into the DB latches before
the search as depicted in Fig. 4(b), since the addressing
scheme does not allow providing data to all vertical nanowires
simultaneously. Indeed, there are only of the order of

√
N

address lines for the N DBs. The currents coming in from the
horizontal nanowires to the virtual ground of the comparison
cells are then measured and thresholded with a negative
threshold voltage Vth, which should not be confused with
the memristor programming threshold V T . As described in
Section III-A, the voltage at the input of the comparator
represents the value of an inner product z ◦ ui . Thus the
horizontal nanowires whose currents exceed the threshold
value correspond to the rows of the ACAM, which are within
a desired distance of the search vector. The result can be read
from the output of the comparator, as shown in Fig. 5(a).

In general, multiple stored vectors u may be close enough
to the search vector z to be selected during the search. The
number of selected vectors u depends on the threshold voltage
Vth that can be correspondingly adjusted, for example, in a
logarithmic search, to yield k vectors u closest to z.

3) Reading Out: The readout of a vector ui is achieved
by driving the corresponding horizontal nanowire while
measuring the currents at the vertical nanowires. In Fig. 5(b),

VERTICAL NW (NANOWIRE)

Rdri

C
d
ri

Rcomp

C
co

m
p

H
O

R
IZ

O
N

T
A

L
 N

W

VthVgnd

DB

CB

(a)

VERTICAL NW (NANOWIRE)

Rdri

C
d
ri

Rcomp

C
co

m
p

H
O

R
IZ

O
N

T
A

L
 N

W

VthVgnd

DB

CB

(b)
RDM =1 RDY =1 RDM=1 SR=1 WR=1

Fig. 5. Memristive ACAM CMOS cell configured for the read-out operations.
(a) Search operation. The input vector bits are driven to the vertical nanowires
by the DB latches. The horizontal nanowires are connected to virtual ground,
and the incoming current is measured and thresholded. The result of the
threshold comparison can be read from the Rcomp microwire. (b) Readout of
a stored vector. A selected horizontal nanowire is driven with a read voltage,
and the vertical nanowires are connected to the virtual grounds. The incoming
currents from the vertical nanowires are thresholded, and the results are stored
into the latches at the DBs, from where they can be read out.

the read-out operation is depicted. The value corresponding to
a bit in the stored vector is written into the DB’s latch, from
which it can be driven onto the Cdri microwire.

D. Simulation of the ACAM Cell

To demonstrate the operation of the proposed memristive
memory design, we simulated the 9 × 9 example circuit
depicted in Fig. 1 using Cadence Spectre software with the
HCMOS9GP process from ST Microelectronics. The CMOS
cell depicted in Fig. 3 was implemented using two two-stage
operational amplifiers, multiple pass-transistor switches, and
some basic logic gates. We estimated the power consumption
and area of a circuit with 10 000 CMOS cells and 108 mem-
ristors. In these simulations, we applied the binary memristor
model described in Section II with parameters RON = 10 M�,
ROFF = 10 G�, and V T = 1 V. These resistance values
correspond to the physical memristor reported in [37]. The
capacitance between perpendicular nanowires was estimated
as a plate capacitance

Cnw = Nεr ε0W 2
nw

d
(15)

where N = 10 000, ε0 ≈ 8.85419 · 10−12 F/m is the vacuum
permittivity, Wnw = 125 nm is the nanowire width, and d is the
vertical distance between perpendicular nanowires, assumed to
be 10 nm. The nanowire width assumed here is conservative,
as for example in [38] an analog memristor with width 100 nm
was reported. For the relative permittivity εr , we assumed the
values 3.9 and 120, which, respectively, correspond to silicon
dioxide and titanium dioxide two materials that can be used in
the memristor switching layer. Thus, the approximate values
0.6 and 18 pF are obtained for Cnw. The simulations described
in the following are performed using both of these capacitance
values. The parasitic capacitances between parallel nanowires
and between nanowires and the CMOS layer are modeled as
2 pF per nanowire. The voltage waveforms shown in Fig. 6
correspond to the more difficult case of Cnw = 18 pF.

568 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 3, MARCH 2014

1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Time (μs)

V
ol

ta
ge

 (
V

)

Row 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8
Row 9

2 2.2 2.4 2.6 2.8 3
0

0.2

0.4

0.6

0.8

1

Time (μs)
V

ol
ta

ge
 (

V
)

Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8
Bit 9

Fig. 6. Voltage waveforms at the comparator inputs of the CMOS cells in
the 9 × 9 memristive ACAM example. The search operation is performed in
the left subfigure from 1 to 2 μs and the readout of the second row of the
memory matrix is performed in the right subfigure from 2 to 3 μs.

In the following simulations, we consider the search and
read operations of the proposed ACAM circuit, but not mem-
ristor programming, which is analyzed in detail, for example,
in [10] and [15], and also discussed in Section IV-D.

1) Example: 9 × 9 Memristive ACAM: Let the content of
a 9 × 9 ACAM correspond to the matrix

U =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 1 0 1 0 1 0
1 0 0 1 1 0 0 1 0
0 0 1 1 0 0 1 0 1
1 1 1 0 0 0 0 1 0
0 1 0 0 1 0 1 0 1
1 0 0 0 0 1 1 0 1
0 0 1 0 1 1 0 0 1
1 0 0 1 0 1 0 1 0
1 0 1 1 1 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where 0 represents a memristor in OFF-state and 1 represents
a memristor in ON-state, as shown in Fig. 1. Notice that each
row contains exactly four ones, which means that the total
resistance seen by each CB can be approximated by RON/4.
To keep this total resistance equivalent to the circuit con-
taining 108 memristors, we choose here RON = 8 k�, as
8 k�/4 = 10 M�/5000—assuming dense data, each row of a
108–memristor ACAM contains 5000 memristors in ON-state.

We simulated the search operation for the 9 × 9 circuit by
setting the search input as the second row of U . The values
of the inner product are in this case equal to (2, 4, 1, 2, 1, 1,
1, 3, 3), where the i th entry equals the inner product between
the search input and the i th row. Fig. 6 shows the waveforms
obtained from the comparator inputs of each of the CMOS
cells. Not shown in the figure, the input bits are stored into
the latches from 0 s to 1 μs in parallel for each of the CMOS
cell rows. From 1 to 2 μs the circuit performs the search
operation, whose result is read at 1.75 μs. The voltage at
the comparator input corresponding to the second horizontal
nanowire has the smallest value, reflecting the fact that the
inner product between the search input and the second row
of U has the maximum value 4. Voltages at the CMOS cells
corresponding to horizontal nanowires 8 and 9 have the second
smallest voltages at the comparator input, corresponding to
the value 3 of the corresponding inner products. Rows 1 and
4 yield the third smallest voltages corresponding to the inner

product value of 2, while the rest of the voltages correspond
to the inner product value of 1. Notice that the sum node is
maintained by the inverting operational amplifier at the virtual
ground at 0.7 V.

From 2 to 3 μs, the circuit is configured to read the contents
of the second row of the memory matrix U . In this case,
the comparator input voltages in the CMOS cells controlling
vertical nanowires 1, 4, 5, and 8 are low, corresponding to
ones in the stored vector.

Note that in the simulated CMOS cell the feedback resis-
tor of the inverting operational amplifier is implemented as
a PMOS transistor. This explains the nonlinearity in the
amplification of input currents visible in Fig. 6. Furthermore,
the operational amplifiers were designed with very low bias
currents so that in practice they only pull excess current
from the virtual ground. This is possible since, as noted in
Section III-B, only ones in the input and stored vectors are
matched in the search operation. This helps to reduce the
power consumption of the operational amplifiers.

E. Performance Analysis of a 108—Memristor ACAM

Using the 9 × 9 simulation, and a separate simulation
of a single CMOS cell together with memristances RON =
10 M�, ROFF = 10 G�, we have estimated the speed, power
consumption, and area requirements of a memristive ACAM
containing 104 CMOS cells and 108 memristors. The speed of
the search and readout operations can be seen from Fig. 6, as
the memristances and nanowire capacitances were selected in
the 9×9 example to yield equivalent performance to a large-
scale ACAM circuit. We conclude that the search and readout
operations can each be performed within 1 μs. For the search
operation, this means that the effective number of bit com-
parisons per second performed by the proposed memristive
ACAM with 108 memristors equals 106 · 108 = 1014.

To estimate the power consumption of an N-cell ACAM
circuit analytically, let us denote the idle power consumption
(zero input current, not driving a wire) of the considered
CMOS cell as Pidle. Our simulations indicate that for the
chosen CMOS process and design, Pidle ≈ 5.9 μW. Assuming
dense data, N/2 of the cells are driving an input one, and each
of the driver cells are connected to N/2 memristors in ON-
state and N/2 memristors in OFF-state. Denoting the driving
voltage corresponding to the input one by Vmem, one obtains
the following approximation of the power consumed by the
entire ACAM circuit during the search operation:

PA
search ≈ N Pidle + VDDVmem (1/RON + 1/ROFF) (N/2)2 .

(16)
In these simulations, N = 10 000, VDD = 1.2 V, and
Vmem ≈ 0.35 V. In the read-out operation, only one horizontal
nanowire is driven, and therefore its power consumption can
be approximated as

PA
readout ≈ N Pidle + VDDVmem (1/RON + 1/ROFF) (N/2) .

(17)
The power consumption of the proposed CMOS cell was

also simulated by assuming different correlations of the input
vector and the stored vector corresponding to that cell, and

LEHTONEN et al.: LARGE-SCALE MEMRISTIVE ASSOCIATIVE MEMORIES 569

TABLE II

CIRCUIT PERFORMANCE SIMULATED USING CADENCE SPECTRE WITH

0.13 μm CMOS TECHNOLOGY. EACH OF THE SIMULATED OPERATIONS

WAS ALLOCATED 1 μs, AS DEMONSTRATED IN FIG. 6

Psearch Preadout Area

Simulated CMOS cell 0.11 mW 7.2 μW < 40 × 40 μm

Estimated 108-bit ACAM 1.1 W 72 mW < 4 × 4 mm

Analytical estimate 1.1 W 60 mW –

by separately simulating the two cases of the cell driving an
input one or an input zero. The results of the simulations
are summarized in Table II. An estimate for the power
consumption of the search operation of a 108 memristor
ACAM is 1.1 W; because the effective number of bit com-
parisons per second equals 1014, it follows that the energy
per bit comparison for the search operation is approximately
1.1 × 10−14 J. To further verify our results, we note that
in the 9 × 9 example, the mean power consumption of a
single CMOS cell in the search operation was approximately
0.10 mW, which is reasonably close to the simulated and
analytical values in the 108—memristor case.

To estimate the area of the proposed ACAM CMOS cell
on the 0.13-μm process, we used a layout tool to place all
transistors within one CMOS cell to an area approximately
21 × 21 μm. The transistors were placed next to each other
without overlap in the drain or source areas. Therefore, we
consider it safe to assume that the total layout area of the cell,
including wiring, should not exceed 40 × 40 μm—thus an
ACAM circuit containing 10 000 of the proposed CMOS cells
should fit to a chip of size 4 × 4 mm. Additionally in each of
the cells the inverting operational amplifier requires a 200 fF
capacitor which in this process is implemented on a separate
metal-insulator-metal (MIM) layer that does not increase the
size of the CMOS cell. The capacitor fits into the available cell
area, as it requires an area of 10 × 10 μm on the MIM layer.
We also note that the required 108 memristors fit within the
total circuit area with the assumed nanowire width of 125 nm
and a nanowire spacing of 275 nm.

1) Comparison With Pure CMOS Implementations: In pure
CMOS implementations of associative memories, such as
those presented in [12] and [39]–[41], the artificial neurons
must share die area with the memory elements, which can
be, for example, SRAM cells or floating-gate memories. In
contrast to this, in a CMOL implementation the memory
elements, memristors, are located above the CMOS, which
frees up CMOS die area and enables more artificial neurons
to be fabricated. Memristive associative memories should be
relatively cost efficient as the memristive crossbars can be
post-processed on top of a CMOS layer fabricated with an
older, less dense process.

Recently a pure CMOS implementation of the ACAM was
proposed in [41]. The energy per bit comparison of this circuit
is approximately 1.46 × 10−14 J, which is comparable to the
simulated energy per bit comparison value of 1.1×10−14 J of
the memristive ACAM. Furthermore, a single memory cell in
the ACAM of [41] occupies an area of 6.6×23.4 μm2, whereas

the memristive ACAM proposed in this paper uses memristors
whose nanowire width is 125 nm and nanowire spacing is
275 nm, yielding thus a memristor footprint 400 × 400 nm2.
It should, however, be noted that this density comparison
is only tentative, because no physical implementation of the
memristive ACAM has so far been fabricated.

IV. DISTRIBUTED ARCHITECTURES

As demonstrated by the network capacities given in Table I,
the associative memory architecture used in any given appli-
cation should depend on the distribution of the stored data.
If dense data is used, ACAM as described in the previous
section is recommended. For operation with sparse data, sparse
distributed memories are preferred. These are artificial neural-
net associative memories that can be seen as associative
generalizations of the conventional random-access memory
(RAM). In contrast to RAM, where each address refers to
its own memory location, addresses to sparse distributed
memories activate multiple memory locations. This yields a
distributed representation of the input address, which is used
in the subsequent read and write operations in the memory;
the data vector that is associated with an address is stored
in multiple locations. In the following, we present memristive
implementations of two distributed memory architectures: the
Willshaw memory and the SDM. SDM can be seen as a
generalization of the Willshaw memory with analog weights
and an auxiliary memristive ACAM-type read-only memory
which is used to make the size of the memory—and therefore
also its capacity—independent of the input vector length.

A. Memristive Willshaw Memory

The Willshaw memory [25] is a neuromorphic heteroasso-
ciative memory, which uses binary synapses and stores sparse
data vectors. As the ACAM, its contents can be represented
by a binary matrix, which is denoted by W . A key-value pair
u → v of two sparse column vectors of lengths L and N ,
respectively, is stored into the memory by updating the matrix
W according to the outer-product rule

W := OR(W, vuT) (18)

where the Boolean OR-operation is performed elementwise. As
noted in Section II-C, autoassociation is achieved by setting
u = v. If the stored vectors are sparse and have K ones, the
vector capacity of the Willshaw memory equals

M ≈ 0.69(N/K)2. (19)

As the number of ones in the matrix W never decreases
when storing a new vector into the memory, one should use
sparse representation of data in order to limit the amount
of overwriting of previously stored data. In the information
theoretical sense, the maximum capacity of this memory is
obtained when K = log2(N), as is shown in [29].

The search of a Willshaw memory is performed as L
thresholded inner products between the rows of W and the
search vector z

v(j) = H (w j ◦ z − �) (20)

570 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 3, MARCH 2014

where � is a threshold value and H is the Heaviside function

H (a) =
{

1, a ≥ 0

0, a < 0.
(21)

The optimal choice of the threshold depends on the types of
bit errors present in the address z. In the original Willshaw
model [25], the threshold � = ∑

zi was specified; this thresh-
old is optimal in the case where z contains only miss-type
errors, that is, only values zi = 0 are potentially erroneous.
For simplicity, we choose this threshold for the memristive
implementation of a Willshaw memory.

The only difference between the search operation of the
Willshaw memory and that of the ACAM is the distribution of
the input data. Indeed, with the Willshaw memory the search
vector is sparse, and thus the threshold should be smaller
than with the ACAM. Storing vectors is also performed very
similarly to the ACAM, the only difference being that in
the Willshaw memory the input is stored on multiple rows.
Therefore, the memristive ACAM architecture described in
Section III and shown in Fig. 3 implements the Willshaw
memory as well. As a conclusion, this memory architecture
should be configured as an ACAM when dense vectors are
used, and as a Willshaw memory when sparse vectors are used.

The advantage of using sparse data is evident when con-
sidering the power consumption of the search operation of
the proposed memory circuit. The power consumption of the
search operation with the Willshaw memory can be attained
from (16) by substituting the number of driven input ones by
K , resulting in

PW
search ≈ N Pidle + VDDK Vmem (1/RON + 1/ROFF) (N/2) .

(22)

As with sparse data K/N 	 1, it follows that PW
search 	

PA
search. It is important to notice that the Willshaw memory

does not have a separate readout operation, as the search
operation yields the output vector directly.

B. Structure and Operation of a SDM

The SDM is an artificial-neural-net associative memory
whose circuit resembles that of the cerebellar cortex [24].
It also resembles the conventional RAM architecture more
than the Willshaw memory does, as it uses an explicit address
vector along with a word-in vector. A high-level view of the
SDM architecture is depicted in Fig. 7. It consists of two
parts: a memristive ACAM-type read-only address matrix A,
and a Willshaw-type content matrix C, whose elements are
integer counters of small absolute value. The binary address
matrix is used to produce a sparse activation vector y, which
indicates rows of the content matrix used in the store and
retrieve operations.

A vector z is stored into SDM by incrementing the j th
counters of all activated rows if z j = 1, and by decrementing
them otherwise. The retrieve operation is performed by the
columnwise summing of contents of activated rows of the
content matrix and by thresholding the result, thus yielding
w = H (y
C), where H is the Heaviside step function (21).
In other words, the read operation works as with the Willshaw

ADDRESS REG

x 1 0 1 ... 0 0 1

N
 r

ow
s

A

ADDRESS MATRIX

DECODER

N addresses

0
0

0 0

0 0

0
0 0
0 0

0

0 0

0 1 1
1 1
1 1

1 1
1 1 1

1

1
1 1 1

1

1 1
1

1
Distance
measure

d

Activations

y
0
0

0

0

1

1

L columns

N
 r

ow
s

C

CONTENTS MATRIX

0 2 −2 4 2 −2
1−1 3 1 5−3
0 2 −4 2 4 4

4 2 4 6 −4 0
0 2 −2 0 0 2
1 3 1 −1 0 1

WORD−OUT REG

z

0 1 0 1 1 1

WORD−IN REG
0 1 0 1 1 1

w

STORAGE

d(a,x) (d)ϕ

Fig. 7. High-level view of the SDM. The address vector x is compared with
the rows of the address matrix A, for example, with respect to their Hamming
distance, resulting in the distance measure vector d. Thresholding d gives the
activation vector y, which is used to activate the corresponding rows in the
content matrix C . In the search operation, these rows are summed element-
wise, and the result is thresholded yielding the output vector w. When the
input vector z is stored into the memory, the corresponding activated counters
on the content matrix rows are incremented or decremented as explained in
the text.

memory, whereas the write operation differs in that the value
of the counter is not binary and it is also allowed to decrease. It
has been shown that five-bit counters with values in [−16, 15]
are sufficient for practical operation of the SDM [24]. Reduc-
ing the range of the counter reduces the capacity of the
memory—SDM works even with one-bit counters but then
only the most recently stored data can be retrieved reliably. As
we propose implementing the counters by analog memristors,
it follows that the capacity of the memristive SDM depends
on the multilevel programming capability of the memristors.
In particular, the programming rate of the state variable should
be approximately constant at a fixed programming voltage
pulse, and the number of allowed state variable values should
be large. The generic analog memristor model described in
Section II satisfies these requirements, as does the physical
memristor reported in [38].

If the address register and the word-in register coincide then
the SDM functions as an autoassociative memory. This gives
rise to improved error-correction, as the word-out vector can be
seen as a corrected version of the original input, and can be fed
back as the input vector for an iterated search [24]. When the
address register and the word-in register do not coincide but
have the same length L, the feedback loop from the word-out
register to the address register establishes a heteroassociative
memory structure capable of storing sequences, as described
in Section II-C. Also in this case, there is iterative error-
correction; an erroneously begun sequence converges to the
stored one [24].

In the rest of this section, we propose an implementation
of the SDM using analog memristors, and consider in detail
its autoassociative operation, for which the lengths of the
address and word-in register both equal L. A major difference
between the SDM and Willshaw memory architectures is that
the capacity of the SDM is not limited by the input vector
length L, because the address matrix yields a sparse activation

LEHTONEN et al.: LARGE-SCALE MEMRISTIVE ASSOCIATIVE MEMORIES 571

VERTICAL LAYER 1 NW

Rdri

C
dri

R
co

m
p

C
com

p

H
O

R
IZ

O
N

T
A

L
LA

Y
E

R
 1

 N
W

DB

VthVgnd

CB RDZ

RDZ

RDY

RDY

VERTICAL LAYER 2 NW

H
O

R
IZ

O
N

T
A

L
LA

Y
E

R
 2

 N
W

RDY

WRZ

WRY

Y

CMOS to VERT. NW LAYER1 VIA

CMOS to HORIZ. NW LAYER1 VIA

CMOS to VERT. NW LAYER2 VIA

CMOS to HORIZ. NW LAYER2 VIA

LAYER 1 MEMRISTOR

LAYER 2 MEMRISTOR

WRZ

0VP

WRZ

WRZ

WRM

Fig. 8. CMOS cell of the memristive SDM. This layout extends the CMOS
cell of Fig. 3(b) by an interface to a second nanowire layer and some required
CMOS logic for the operation of the memory architecture. The iterative search
of SDM is obtained by closing the switch WRM and copying the result of
the search from the latch Y to the input latch in the DB. Then a new search
can be conducted with the updated search vector.

vector whose length N is independent of L, and this activation
vector is used as the locations to store the word-in vector in
the Willshaw-type content matrix. Thus one can design an
SDM for which N � L, and since the vector capacity M
of the SDM is a function of N , it is possible that M � L.
However, M depends heavily on the distribution of the word-
in data. When it is dense, the capacity of the SDM is of the
order M = 0.15N [30]. On the other hand, when the word-in
data and the activation pattern are logarithmically sparse, the
capacity is much higher, at least of the order of a Willshaw
memory of that size

M ≈ 0.69L N

log(L) log(N)
(23)

the exact number depending among other things on the range
of the counters in the content matrix and the required fidelity
of the retrieval operation.

C. Implementation of a Memristive SDM

Fig. 8 shows the schematic of our proposed memristive
SDM cell. CMOS circuitry is used to implement the address
register, the distance vector d, the activation vector y, the
word-out register, and the word-in register. The address and
content matrices are mapped to two vertically stacked memris-
tive crossbars, as this layout allows a more efficient utilization
of silicon area. The address matrix is mapped to a crossbar
array of binary memristors as in the ACAM, and the content
matrix is mapped to a crossbar array of analog memristors.
Compared with the ACAM implementation shown in Fig. 3,
the CMOS cell has been appended with a latch for bitwise

R
co

m
p

Ccomp

VthVgnd
CB

Y

DB

R
co

m
p

Ccomp

VthVgnd
CB

Y

DB

(a) (b)

X

R
dr

i

Cdri

DB

X

Fig. 9. SDM cell configured as an ACAM for the address matrix search.
(a) Storing the input vector as the states of the memristors on a horizontal
nanowire. Using this configuration, the input vector bits can also be stored
into the latch at the DB. (b) Search operation. In contrast to the configuration
depicted in Fig. 4(b), the result of the search is stored to the latch Y .

R
co

m
p

Ccomp

VthVgnd
CB

Y

DB

R
co

m
p

Ccomp

VthCBR
d

ri

Cdri

Vgnd

Y

0VP
Z

DB

(a) (b)

Fig. 10. SDM CMOS cell configured for reading and programming the
content matrix. (a) Retrieval operation. The result of the address matrix
search is driven from the Y latch to the second-layer horizontal nanowire,
while the second-layer vertical nanowire is connected to virtual ground. The
currents coming in from the second-layer vertical nanowires are measured
and thresholded, and the result of the retrieval operation can be read from
the Rcomp microwire. (b) Incrementing and decrementing the counters in
the content matrix. The rows selected for this operation are determined by
the result of the address matrix search stored into latch Y . The direction of
programming is determined by the bit values Z stored into the latch at the
DB. Global square wave voltage signal VP is used for the programming.

storing of the activation pattern y, and with multiple switches
for selecting between the use of the address matrix and the
content matrix, and furthermore between the write and read
phases of the content matrix.

The search of the address matrix is shown in Fig. 9. During
this phase, the SDM cell is configured as an ACAM cell, and
the search operation is conducted as explained in Section III.
In contrast to Fig. 3, the thresholded result that identifies
the active rows in the SDM Decoder is stored into the latch
Y instead of a direct readout. This result is used to read
and write the content matrix. The retrieval of data from the
content matrix is depicted in Fig. 10(a). The latched result Y
is used to drive the second-layer horizontal nanowire, while
the second-layer vertical nanowire is connected to the virtual
ground at the input of the operational amplifier. As noted in the
previous subsection, the retrieval is achieved by a thresholded
matrix product between the activation vector y and the content
matrix C, which in the memristive implementation consists
of nonnegative analog values. Thus the inner product method
described in Section III-A can be applied here. Notice that the
threshold voltage Vth should be proportional to the number of

572 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 3, MARCH 2014

rows selected by the address matrix search, and to count the
number of selected rows, additional analog CMOS circuitry
needs to be used. For example, each activated CMOS cell
can drive a constant current on a global microwire, and by
measuring the sum current one obtains the number of activated
rows. However, for simplicity we have omitted this part of the
CMOS cell circuitry from the schematic of Fig. 8.

Content matrix is written by applying a voltage pulse on
those second-layer horizontal nanowires, which are selected by
the address matrix search explained above. The direction of the
programming is determined by the word-in vector which must
be written bitwise to the latches at the DBs in advance. The
configuration of the memristive SDM cell during the writing
of the content matrix is shown in Fig. 10(b).

D. Simulations and Error Analysis

The main difference in the operation of the proposed imple-
mentations of the SDM and the ACAM is the programming
of the analog weights representing the SDM counters. The
fidelity of the retrieve operation depends on the accuracy
of the programming of the analog memristors—the retrieve
operation itself is simply implemented by the inner product
method described in Section III-A. Simulations of the ACAM
cell presented in Section III-D apply here for the search and
retrieve operations; the exact power consumption of the cell
depends on the resistances of the analog memristors. However,
here it should be noted that the activation pattern of the SDM
decoder is sparse, which reduces the power consumption as
noted for the Willshaw memory in (22). The total area of
the transistors in the SDM cell implemented using a 0.13-μm
CMOS process is approximately 25 × 25 μm, from which
we estimate that the total area of one cell should not exceed
50 × 50 μm. In the following, we present a simulation of
programming the analog memristor located at the crosspoint of
the second-level horizontal and vertical nanowires contacted to
the simulated cell. Furthermore, we have simulated the effect
of mismatched programming rates of analog memristors on
the capacity of the SDM.

In Fig. 11, voltage waveforms during the write operation
are shown. Here, Z denotes the voltage at the DB latch and
corresponds to the value of a single bit of the word-in vector,
Y is the voltage at the CB latch corresponding to a single bit
of the activation vector, and VP is a square wave voltage signal
used to program the analog memristors. The voltage signal VP

is propagated onto the second-layer horizontal nanowire only if
Y = 1, that is, if the corresponding SDM row is selected at the
SDM Decoder. If Y = 0, the second-layer horizontal nanowire
is tied to ground. Moreover, due to an appropriate choice of
the memristor’s programming threshold, it is programmed only
when the polarity of VP is different from the polarity of Z .
Thus the direction of the programming depends on the value of
Z , that is, on the value of the corresponding bit of the word-in
vector. The amount of change in the state of a memristor when
programmed is determined by the amplitude and wavelength
of VP .

The accuracy of the counters depends on the characteris-
tics of the analog memristors. The proposed write operation

0 1 2 3 4 5 6 7 8

0

0.5

1

Time (μs)

V
ol

ta
ge

 (
V

)

0 1 2 3 4 5 6 7 8

−1.5

0

1.5

Time (μs)

V
ol

ta
ge

 (
V

)

0 1 2 3 4 5 6 7 8
0

0.5

1

Time (μs)

S
ta

te
 v

ar
ia

bl
e

w

mem

V
mem

Y
Z

Fig. 11. SPICE simulation of the programming of an analog memristor in
the content matrix. Top inset: different combinations of the latch voltages Y
and Z . Middle inset: voltage across a simulated analog memristor within the
content matrix. Bottom inset: state variable w ∈ [0, 1] of the memristor during
the programming. Programming takes place when the memristor is selected
by the activation signal Y , and the direction of the programming depends
on the value of the word-in bit Z . Square wave voltage signal VP used in
this simulation had dc value of 0.5 V, amplitude of 1.0 V and frequency of
5 MHz. The generic analog memristor model described in Section II-A is used
with parameters c1 = 1 × 10−3, d1 = 1 × 10−2, c2 = 0.27, and d2 = 10,
corresponding to a programming threshold of approximately V T = 1.1 V at
the timescale of 1 μs.

does not guarantee an integer change in the counter value,
as the magnitude of the programming step is affected by
several nonidealities, including device-to-device mismatch in
the programming thresholds among the analog memristors.
On the other hand, as the write operation is distributed over
multiple second-layer horizontal nanowires corresponding to
rows in the content matrix, the individual variations may
average out. The advantage of the proposed design is that
programming can be performed in parallel for each memristor
on a given row, and simultaneously for all rows. If the accuracy
of this pulse-based programming is not enough, we propose
using cyclic programming discussed in [15] and [42]. How-
ever, this programming method requires considerably more
complex CMOS circuitry than that presented above. It also
requires multiple programming cycles per device, and cannot
be easily applied to all memristors in the content matrix
simultaneously.

Fig. 12 shows simulation results for the effect of inaccurate
programming on the capacity of an SDM. In the simulations,
a varying number of dense binary input vectors are stored in
the content matrix with L = N = 211 using logarithmically
sparse activation patterns, corresponding to the theoretical
vector storage capacity M = 0.15N . This capacity is defined
as the number of vectors storable in the memory with a bit
error probability PE = 0.005. Pulse-based programming of
the memristors is assumed with 32 nominal states. Errors in
the programming phase are approximated by assuming that
the magnitude of state change in programming a memristor is
drawn from the normal distribution N (1, σ 2

P). These magni-
tudes are assumed to be different for each memristor in the
content matrix, but fixed for a given memristor. The state value
of each memristor is limited to [−16, 15]; note that due to the
random variation in the programming, not all devices have
exactly 32 distinct states within this programming interval.
This simulation indicates that the SDM is not very sensitive

LEHTONEN et al.: LARGE-SCALE MEMRISTIVE ASSOCIATIVE MEMORIES 573

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

σ
P

P
E

0.1M
0.2M
0.3M
0.4M
0.5M
0.6M
0.7M
0.8M
0.9M
M

Fig. 12. Probability of bit error PE versus standard deviation σP of the
programming error in the SDM content matrix, simulated for L = N = 211,
nominal memristances integer-valued in [−16, 15], and number of stored
vectors from 0.1M to M, where M = 0.15N ≈ 307.

to error in programming the counter values; a 10% standard
deviation of the programming magnitude has negligible effect
on the bit error probability in the content matrix, and a
standard deviation of over 80% is required to reduce the vector
capacity by a factor of 0.5.

V. CONCUSION

We proposed memristive implementations of three
associative memory architectures: the autoassociative content
addressable memory, the Willshaw memory, and the SDM.
Our work was motivated by the prospect of low-power
memristive CMOL-circuits that allow scaling up the capacity
and input word length of these memory architectures compared
with software and pure CMOS implementations. We conclude
that the proposed memristive SDM implementation provides
an area-efficient associative memory circuit whose memory
capacity can be dynamically maximized by configuring the
memory to operate as an associative CAM with dense stored
data, and as an SDM when the data is sparse. However, a
full proof of the benefits of the proposed designs will be
possible only when more empirical data on the characteristics
of CMOL circuits becomes available.

ACKNOWLEDGMENT

The authors would like to thank Prof. B. A. Olshausen,
Prof. F. T. Sommer, and Dr. J. K. Poikonen for useful
discussions.

REFERENCES

[1] L. O. Chua, “Memristor-the missing circuit element,” IEEE Trans.
Circuit Theory, vol. 18, no. 5, pp. 507–519, Sep. 1971.

[2] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” Nature, vol. 453, pp. 80–83, May 2008.

[3] S. H. Jo and W. Lu, “CMOS compatible nanoscale nonvolatile resistance
switching memory,” Nano Lett., vol. 8, no. 2, pp. 392–397, Jan. 2008.

[4] M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y.-B. Kim,
C.-J. Kim, D. H. Seo, S. Seo, U.-I. Chung, I.-K. Yoo, and K. Kim,
“A fast, high-endurance and scalable non-volatile memory device made
from asymmetric Ta2O5−x /TaO2−x bilayer structures,” Nature Mater.,
vol. 10, pp. 625–630, Jul. 2011.

[5] J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, and
R. S. Williams, “Memristive switching mechanism for metal/oxide/metal
nanodevices,” Nature Nanotechnol., vol. 3, pp. 429–433, Jun. 2008.

[6] S. H. Jo, K.-H. Kim, T. Chang, S. Gaba, and W. Lu, “Si memristive
devices applied to memory and neuromorphic circuits,” in Proc. IEEE
Int. Symp. Circuits Syst., Jun. 2010, pp. 13–16.

[7] S. H. Jo, K. H. Kim, and W. Lu, “Programmable resistance switching in
nanoscale two-terminal devices,” Nano Lett., vol. 9, no. 1, pp. 496–500,
2009.

[8] L. O. Chua, “Resistance switching memories are memristors,” Appl.
Phys. A, vol. 102, no. 4, pp. 765–783, Mar. 2011.

[9] D. B. Strukov and R. S. Williams, “Four-dimensional address topology
for circuits with stacked multilayer crossbar arrays,” Proc. Nat. Acad.
Sci. United States Amer., vol. 106, no. 48, pp. 20155–20158, Dec. 2009.

[10] K. K. Likharev and D. B. Strukov, “CMOL: Devices, circuits, and
architectures,” in Introducing Molecular Electronics, G. Cuniberti,
G. Fagas, and K. Richter, Eds. New York, USA: Springer-Verlag, 2005,
pp. 447–478.

[11] G. S. Snider, “Self-organized computation with unreliable, memristive
nanodevices,” Nanotechnology, vol. 18, no. 36, p. 365202, Aug. 2007.

[12] S. George and P. Hasler, “HMM classifier using biophysically based
CMOS dendrites for wordspotting,” in Proc. IEEE Biomed. Circuits Syst.
Conf., Nov. 2011, pp. 281–284.

[13] P. Kanerva, “Hyperdimensional computing: An introduction to comput-
ing in distributed representation with high-dimensional random vectors,”
Cognit. Comput., vol. 1, no. 2, pp. 139–159, 2009.

[14] G. Snider, R. Amerson, D. Carter, H. Abdalla, M. S. Qureshi, J. Léveillé,
M. Versace, H. Ames, S. Patrick, B. Chandler, A. Gorchetchnikov, and
E. Mingolla, “From synapses to circuitry: Using memristive memory
to explore the electronic brain,” Computer, vol. 44, no. 2, pp. 21–28,
Feb. 2011.

[15] E. Lehtonen, J. Poikonen, M. Laiho, and W. Lu, “Time-dependency of
the threshold voltage in memristive devices,” in Proc. IEEE Int. Symp.
Circuits Syst., May 2011, pp. 2245–2248.

[16] G. S. Snider and R. S. Williams, “Nano/CMOS architec-
tures using a field-programmable nanowire interconnect,”
Nanotechnology, vol. 18, no. 3, p. 035204, 2007.

[17] C. J. Chevallier, C. H. Siau, S. F. Lim, S. R. Namala, M. Matsuoka,
B. L. Bateman, and D. Rinerson, “A 0.13 μm 64 Mb multi-layered
conductive metal-oxide memory,” in IEEE Int. Solid-State Circuits Conf.
Dig. Tech. Papers, Feb. 2010, pp. 260–261.

[18] Y. Choi, I. Song, M.-H. Park, H. Chung, S. Chang, B. Cho, J. Kim,
Y. Oh, D. Kwon, J. Sunwoo, J. Shin, Y. Rho, C. Lee, M. G. Kang,
J. Lee, Y. Kwon, S. Kim, J. Kim, Y.-J. Lee, Q. Wang, S. Cha, S. Ahn,
H. Horii, J. Lee, K. Kim, H. Joo, K. Lee, Y.-T. Lee, J. Yoo, and G. Jeong,
“A 20 nm 1.8 V 8 Gb PRAM with 40 MB/s program bandwidth,”
in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2012,
pp. 46–48.

[19] T. Kohonen, Associative Memory. New York, USA: Springer-Verlag,
1977.

[20] T. Kohonen, Content-Addressable Memories. New York, USA: Springer-
Verlag, 1980.

[21] M. A. Kramer, “Autoassociative neural networks,” Comput. Chem. Eng.,
vol. 16, no. 4, pp. 313–328, Apr. 1992.

[22] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proc. Nat. Acad. Sci., vol. 79, no. 8,
pp. 2554–2558, Apr. 1982.

[23] J. D. Keeler, “Comparison between Kanerva’s SDM and hopfield-type
neural networks,” Cognit. Sci., vol. 12, no. 3, pp. 299–329, Mar. 1988.

[24] P. Kanerva, Sparse Distributed Memory. Cambridge, MA, USA: MIT
Press, 1988.

[25] D. J. Willshaw, O. P. Buneman, and H. C. Longuet-Higgins, “Non-
holographic associative memory,” Nature, vol. 222, pp. 960–962,
Jun. 1969.

[26] B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive
field properties by learning a sparse code for natural images,” Nature,
vol. 381, pp. 607–609, Jun. 1996.

[27] R. Baddeley, “An efficient code in V1?” Nature, vol. 381, pp. 560–561,
Jun. 1996.

[28] E. B. Baum, J. Moody, and F. Wilczek, “Internal representa-
tions for associative memory,” Biol. Cybern., vol. 59, nos. 4–5,
pp. 217–228, 1988.

[29] A. Knoblauch, G. Palm, and F. T. Sommer, “Memory capacities for
synaptic and structural plasticity,” Neural Comput., vol. 22, no. 2,
pp. 289–341, Feb. 2010.

574 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 3, MARCH 2014

[30] P. Kanerva, “Sparse distributed memory and related models,” in Associa-
tive Neural Memories, Theory Implement, M. H. Hassoun, Ed. London,
U.K.: Oxford Univ. Press, 1993, pp. 50–76.

[31] O. Turel, I. Muckra, and K. Likharev, “Possible nanoelectronic imple-
mentation of neuromorphic networks,” in Proc. Int. Joint Conf. Neural
Netw., 2003, pp. 365–370.

[32] K. Eshraghian, K.-R. Cho, O. Kavehei, S.-K. Kang, D. Abbott, and S.-
M. S. Kang, “Memristor MOS content addressable memory (MCAM):
Hybrid architecture for future high performance search engines,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 8,
pp. 1407–1417, May 2011.

[33] Y. V. Pershin and M. D. Ventra, “Experimental demonstration of
associative memory with memristive neural networks,” Neural Netw.,
vol. 23, no. 7, pp. 881–886, Jul. 2010.

[34] A. Sinha, M. S. Kulkarni, and C. Teuscher, “Evolving nanoscale
associative memories with memristors,” in Proc. 11th IEEE Int. Conf.
Nanotechnol., Aug. 2011, pp. 860–864.

[35] O. Türel, “Devices and circuits for nanoelectronic implementation of
artificial neural networks,” Ph.D. dissertation, Dept. Phys. Astron., Stony
Brook Univ., Stony Brook, NY, USA, 2007.

[36] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory
(CAM) circuits and architectures: A tutorial and survey,” IEEE J. Solid-
State Circuits, vol. 41, no. 3, pp. 712–727, Mar. 2006.

[37] K.-H. Kim, S. H. Jo, S. Gaba, and W. Lu, “Nanoscale resistive memory
with intrinsic diode characteristics and long endurance,” Appl. Phys.
Lett., vol. 96, no. 5, pp. 053106-1–053106-3, Feb. 2010.

[38] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu,
“Nanoscale memristor device as synapse in neuromorphic systems,”
Nano Lett., vol. 10, no. 4, pp. 1297–1301, Mar. 2010.

[39] H. J. Mattausch, W. Imafuku, A. Kawabata, T. Ansari, M. Yasuda, and
T. Koida, “Associative memory for nearest-hamming-distance search
based on frequency mapping,” IEEE J. Solid-State Circuits, vol. 47,
no. 6, pp. 1448–1459, Jun. 2012.

[40] H. J. Mattausch, T. Gyohten, Y. Soda, and T. Koide, “Compact
associative-memory architecture with fully-parallel search capability for
the minimum hamming distance,” IEEE J. Solid-State Circuits, vol. 37,
no. 2, pp. 218–227, Feb. 2002.

[41] S. Nakahara and T. Kawata, “A design for a minimum hamming-
distance search using aynchronous digital techniques,” IEEE J. Solid-
State Circuits, vol. 40, no. 1, pp. 276–285, Jan. 2005.

[42] M. Laiho, E. Lehtonen, and W. Lu, “Memristive analog arithmetic within
cellular arrays,” in Proc. IEEE Int. Symp. Circuits Syst., May 2012,
pp. 2665–2668.

Eero Lehtonen received the M.Sc. degree in mathe-
matics and the D.Sc. degree in electrical engineering
from the University of Turku, Turku, Finland, in
2006 and 2013, respectively. His doctoral thesis
focuses on the use of memristors for computing.

Currently, his research is focused on the applica-
tion of memristive computing in massively parallel
mixed-mode processing architectures.

Jussi H. Poikonen received the M.Sc. and D.Sc.
degrees in telecommunications from the University
of Turku, Turku, Finland, in 2005 and 2009, respec-
tively.

He was a Special Researcher and a Lecturer
with the University of Turku from 2009 to 2011.
Since 2011 he has been working as a Post-Doctoral
Researcher with the Department of Communications
and Networking, Aalto University, Espoo, Finland.
His current research interests include simulation
and analysis of wireless communication systems,

cognitive radio systems, and applications of memristive circuits in signal
processing.

Mika Laiho (M’04) received the M.Sc., Lic.Sc.,
and D.Sc. degrees in electrical engineering from the
Helsinki University of Technology, Espoo, Finland,
in 1999, 2001, and 2003, respectively.

He started his post-doctoral career with the
University of Turku, Turku, Finland, in November
2003. Since 2008, he has been an Adjunct Professor
with the University of Turku, where he is currently
an Academy of Finland Research Fellow. He has
published more than 100 papers in the areas of
analog/mixed-mode processor arrays and massively

parallel sensing/computing. His current research interests include harnessing
emerging memory technologies to computing, especially using locally con-
nected architectures, and associative memory for cognitive tasks.

Pentti Kanerva received the M.Sc. degree in
forestry from the University of Helsinki, Espoo,
Finland, in 1964, and the Ph.D. degree in philosophy
from Stanford University, Palo Alto, CA, USA, in
1984.

He was the Principal Investigator of neural com-
puting projects with the NASA Ames Research
Center from 1985 to 1992 and the Swedish Institute
of Computer Science, Kista, Sweden, from 1993 to
2002, a Senior Fellow with the Redwood Neuro-
science Institute, Berkeley, CA, from 2003 to 2005,

and is a Visiting Scholar with UC Berkeley’s Redwood Center for Theoretical
Neuroscience, Berkeley. His research is aimed at understanding how brains
compute, it draws on the mathematical properties of hyperdimensional spaces,
and is published in a book and 30 papers.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

