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Abstract: Human health and well-being are intricately linked to environmental quality. Environmental
exposures can have lifelong consequences. In particular, exposures during the vulnerable fetal or
early development period can affect structure, physiology and metabolism, causing potential adverse,
often permanent, health effects at any point in life. External exposures, such as the “chemical
exposome” (exposures to environmental chemicals), affect the host’s metabolism and immune system,
which, in turn, mediate the risk of various diseases. Linking such exposures to adverse outcomes,
via intermediate phenotypes such as the metabolome, is one of the central themes of exposome
research. Much progress has been made in this line of research, including addressing some key
challenges such as analytical coverage of the exposome and metabolome, as well as the integration
of heterogeneous, multi-omics data. There is strong evidence that chemical exposures have a
marked impact on the metabolome, associating with specific disease risks. Herein, we review recent
progress in the field of exposome research as related to human health as well as selected metabolic
and autoimmune diseases, with specific emphasis on the impacts of chemical exposures on the
host metabolome.

Keywords: chemical exposure; disease biomarkers; exposome; human health; lipidomics;
metabolomics; per- and polyfluoroalkyl substances

1. Introduction

It is currently widely recognized that combinations of environmental factors, interacting
further with genetic factors, play crucial roles in human health and disease. Indeed, a majority
of genome-wide-association studies (GWAS) have detected only relatively minor effects of common
genetic variants on the incidence of most non-communicable diseases (NCDs) [1–3].

The exposome concept was first coined by Christopher P. Wild in 2005, when describing “the totality
of human environmental exposures from conception onwards, complementing the genome” [3]. The exposome
concept includes lifetime exposure, combining exogenous chemicals with genetic and other external
factors that generate further molecular products inside the body and thereby may present threats
to human health [1,4–6]. In this context, environmental factors comprise the full suite of general
external, specific external and internal exposures [7,8]. General external exposures include the broader
socioeconomic environment such as social capital, education level, built environment, urban-rural
environment, and climate factors. Specific external exposures include an individual’s external factors
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such as stress, specific contaminants, diet, physical activity, substance habits, allergens and infections.
Internal exposures, on the other hand, include biological factors such as metabolism, the immune
system, and the gut microbiome. It is understandably challenging to quantify these hyper-variable
interdependent environmental and lifestyle factors because exposures are individual, have multiple
sources with high complexity, and are dynamic.

Herein, we review recent progress in the field of exposome research as related to human health and
selected metabolic and autoimmune diseases, with specific emphasis on the impacts of the “chemical
exposome” (exposures to environmental chemicals) on the host metabolome.

2. Exposomics Approach to Study Health and Disease

Current chemical exposure assessments are still limited, with most of the reported studies covering
a small fraction of chemicals to which humans are exposed. Any hypothetical total number of chemicals
in the world is unknown, but over 140,000 and 86,000 chemicals have been registered for use in Europe
and the USA, respectively [9]. This demonstrates the enormous number of chemicals, pollutants, and
contaminants that humans may potentially be exposed to, the majority of which lack substantive
data to perform comprehensive risk assessment. In addition, the assessment of exposure health
risks is primarily based on studies involving individual chemicals or within chemical classes, or the
use of various toxicological indices, which are themselves typically developed from studies using
only single chemicals. This does not give a realistic overview of health risks, because mixtures
of various chemicals may have a highly different impact on health than when taken in isolation.
For instance, there is evidence suggesting that specific endocrine-disrupting chemicals compete with
each other and with endogenous estrogens for access to metabolic enzymes and that this may lead
to increased bioavailability of specific harmful chemicals [10]. Exposure to numerous chemicals
could thus potentially have adverse effects at doses much closer to typical human exposures than
previously assumed. Studies of chemical mixture exposure in humans (and children in particular)
are therefore strongly warranted, when conducting quantitative risk assessments and determining
regulatory exposure limits. While the main routes of human exposure to environmental chemicals for
the general population include food, house dust, and drinking water in infants, occurrence of these
compounds is attributed to placental transfer during fetal development, and breastfeeding. Moreover,
in childhood, exposure via house dust can be an additional major source. In addition, exposure via
airways and skin can be relevant to specific chemicals [11,12].

It should be emphasized that while screening pollutant profiles and their occurrence levels in
humans or biota is important, this is not the most efficient way to characterize the health impacts
of chemical exposures. Furthermore, the presence of a pollutant does not necessarily imply health
impact. Not only does the screening approach require an enormous effort, but it does not account for
individual variation in both the exposure and various critical biological factors. Exposure profiles
are known to be strongly related to race/ethnicity, age, body mass index (BMI), as well as with
several other social, environmental, and individual factors [13]. Furthermore, pollutant profiles in
humans, if considered in isolation, would provide, at best, only incomplete health risk information
compared to an analysis of chemical mixtures. A more efficient approach, therefore, is to employ a
comprehensive analysis that covers both exogenous and endogenous compounds, including their
metabolites. This approach, combined with health outcome data and accompanying metabolomics,
i.e., comprehensive characterization of small molecule metabolic products (metabolites), can provide a
tool for the identification of early biomarkers linked to exposure and, in turn, offer new opportunities
in exposome research [14]. Measuring comprehensive chemical exposure profiles and investigating
their respective associations with determinants of health status will enable an in-depth analysis of the
links between these and result in more reliable conclusions.

The number of studies related to the exposome has markedly increased over the past decade [15–25].
A large number of epidemiological studies have sought to identify the associations between exposure to
environmental chemicals and different chronic diseases, such as diabetes, cancer, and obesity [23,26–32].
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Exposure studies using animal models have identified potential mechanisms, elucidating the impacts
of various exposures on specific biochemical pathways. Chemical exposome studies are also emerging,
integrating the profiling of exogenous and endogenous compounds with their impact on adverse
health outcomes [33,34]. It should be noted, however, that there is a risk for obtaining false positive
exposome-health associations due to the complex correlation structure of the exposome. It is very
challenging (1) to efficiently untangle the exposures that causally impact specific health outcomes from
spuriously associated exposures and (2) to identify synergistic effects between exposures. Therefore,
it is crucial to give a careful consideration to both in the selection of appropriate statistical methods as
well as to the interpretation of the results [35].

3. Analytical Methodologies

Characterization of the exposome requires the application of a diverse range of analytical
techniques [15–17,36,37]. The methodologies required for exposome analysis as related to the study of
chemical exposures include:

1. Analytical techniques for comprehensive chemical profiling (exogeneous and endogenous
compounds);

2. Effect-directed analysis of the drivers of toxicity;
3. Advanced bioinformatics methods, in order to integrate the highly complex data and to identify

effect-based markers of exposure.

Early exposome studies relied on the so-called “bottom-up approach”, where the main sources of
exposure (e.g., water, food, air) were screened for pollutants, followed by further analyses. The opposite,
alternative approach is to start the screening in human samples, i.e., using the so-called “top-down
approach”, where chemical profiles are first associated with health status, and only later on the
possible sources of exposures are linked with adverse health outcomes. The use of a “meet in the
middle” (MITM) approach, which combines bottom-up and top-down approaches, has also been
increasing [38]. This approach includes measuring intermediate biomarkers such as metabolites or
other “omics” biomarkers, and retrospectively relating them to measurements of external exposure
as well as prospectively to a specific health outcome. Specifically, the aim is to comprehensively
characterize phenotypes in a human cohort setting, using multi-omics techniques (e.g., metabolomics,
proteomics and transcriptomics) in order to identify specific adverse pathways affected by exposures
and consequently driving disease risk. In the next step, in silico exploitation of (toxicological) databases
and chemical bioactivity from high-throughput screening assays, reporter gene assays and docking
studies can be used for the identification of pathway-associated exogenous and endogenous chemicals.

3.1. Analytical Methods

In order to comprehensively characterize the chemical profiles of the samples, analytical methods
should cover both endogenous compounds (metabolites) as well as exogenous compounds, such as
environmental pollutants. However, because the levels of many key metabolites are substantially higher
than those of the environmental chemicals of concern (Figure 1), it is usually not possible to analyze
all compounds within the same analytical protocols. In both cases, liquid or gas chromatography
(LC, GC), combined with mass spectrometry (MS), is commonly used. Both LC and GC, combined
with high-resolution mass spectrometry (HRMS) analyzers, including Orbitrap, Fourier transform ion
cyclotron resonance (FT-ICR), time-of-flight mass spectrometry (TOF MS), and hybrid MS configurations,
such as quadrupole-TOF (Q-TOF), ion-trap-TOF (IT-TOF), or quadrupole-Orbitrap (Q-Orbitrap) are
used in exposome studies. In LC-based methods, soft ionization techniques such as electrospray or
atmospheric chemical ionization are typically applied, while in GC-based methods, both hard (electron
impact) as well as soft ionization (chemical ionization, atmospheric chemical ionization) are used.
These methods can be applied with different acquisition modes including data-dependent acquisition
(DDA), data independent acquisition (DIA) and all ion fragmentation (MSall). A combination of
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targeted, non-targeted, as well as suspect screening approaches, is typically applied in exposome
analysis. Often, the environmental chemicals are analyzed with either target or suspect screening
modes, while in metabolomics, non-targeted acquisition predominates. Specific metabolites may,
however, require targeted strategies, either due to their low levels or their instability.

Figure 1. Plasma concentration ranges of the most common persistent organic pollutants (POPs)
and metabolites.

There are several, established workflows described for untargeted metabolomics, most of which
use at least two methods to cover both polar and non-polar metabolites. A majority of the methods are
based on high-resolution mass spectrometric methods, combined with either LC or GC after very simple
sample preparation, typically either by simple protein precipitation or by liquid extraction [17,39–43].
For the characterization of environmental pollutants, either in targeted, untargeted or suspect screening
mode, more involved sample preparation methods are often required to remove the interfering
compounds (e.g., abundant lipids). This is necessary in order to obtain sufficient sensitivity for
the analysis. Larger amounts of sample are typically needed for the analysis of environmental
contaminants as compared to metabolites and sample clean-up is required (e.g., liquid extraction,
solid-phase extraction, phospholipid depletion). Most of the traditional methods are targeted analyses,
again, mainly to obtain sufficient sensitivity, and the most common methods are based on GC–MS and
LC–MS/MS. Recently, untargeted analysis and suspect screening approaches have been developed for
the screening of the exogenous pollutants [44–48].

Reliable identification in the suspect screening and in untargeted analysis remains highly
challenging. Large spectral libraries are available for GC-based methods and, in recent years,
a major effort has been undertaken to compile LC-based spectral libraries. Unsupervised and
supervised machine learning approaches can be utilized in the identification of unknown compounds.
For example, using an unsupervised algorithm, MS2Analyzer combines structural information inherent
to product ions and their fragments, neutral losses and isotopic ratios, with literature-derived neutral
loss/substructure pairs to detect the presence of the same or similar substructures [49]. Supervised
machine learning classification methods can be applied for the detection of specific substructures
or structural neighbors according to the presence of predefined substructures and classification of
unknowns accordingly [49–51] or for the determination of spectral features. Direct structure elucidation
methodologies can also be applied using general fragmentation rules using, e.g., the publicly available
MS-FINDER [52] software. However, fragmentation can often be unpredictable, and structurally similar
compounds do not always generate similar fragments. These approaches do generally work, however,
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for specific types of compounds, such as lipids. Several approaches using various indirect structure
elucidation approaches as well as in silico spectral prediction approaches have been developed [53–57].
In untargeted analyses, it is possible to utilize the unique mass spectral features of, e.g., halogenated
compounds, so that it is possible to screen these compounds based on the mass spectrum. Particularly
in GC–MS based methods, it is possible to use compound classification based on mass-spectral
fragmentation patterns. These procedures have been developed for various environmental samples
and for metabolomics [58–60], although they have rarely been applied in exposome analysis to date.

3.2. Data Analysis

Increasing levels of detail and increased understanding of the interconnected nature of various
levels of biological organization form both the basis and a key objective of taking the holistic approach
that is systems medicine. This is of particular relevance in exposome research, because complex
and often subtle effects with subsequent knock-on effects occur up and down the different levels
of organization within organisms, including humans. Appropriate methods are therefore required
to meaningfully tease apart changes of interest across multiple levels of high-throughput data,
bringing together exposure data (being often high-dimensional) with various other strata of data (e.g.,
metabolomic, proteomic, lipidomic, transcriptomic or otherwise).

A first and crucial step in data analysis for exposome and metabolomics research is pre-processing
of the data (e.g., via log transformation, scaling to zero mean and unit variance in the case of
metabolomics data) rendering the measured levels of metabolites/chemical exposure of interest
amenable to correlation, or other associative, analyses to search for relationships.

In exposome analysis, therefore, both appropriate pre-processing and data integration techniques
are crucial, both in the case of (1) integrating exposome data with high-dimensional, multi-omics data,
and (2) when investigating the effects exposure to complex chemical mixtures, in order to identify
biomarkers of said exposure. Further, given that exposure data from the general populace is inherently
heterogenous, this presents a further layer of complexity that also must be dealt with, either at the
level of study design, or with appropriate statistical or machine learning methods.

Regarding exposure data in particular, it is now well-recognized in the field that, when translating
the impacts of chemical exposures to measurable health outcomes, one needs to model such exposures
as mixtures, rather than only as single effects and doses. This poses methodological challenges
that are still being debated in the field [61]. Typically, the impact of exposure to mixtures of agents
on specific outcome variables is modelled with a regression approach. Many statistical/machine
learning methods lend themselves to this purpose, and these are extensively reviewed and assessed by
Agier et al. [61]. Among these, particularly Bayesian kernel machine regression (BKMR) is a popular
choice for estimating the health effects of chemical mixtures [62], but, as is also the case for most other
methods, its use is limited to estimation of an effect on a single outcome variable at a time, rendering it
unsuitable for application to complex phenotypic data (e.g., multi-omics data or where more than one
clinical outcome may be affected by exposure to the mixture).

In the case of complex, multi-variate or multi-modal outcomes, one data analysis strategy
is to combine regression approaches with network analysis [34]. In such an approach, chemical
exposure data, along with multi-modal phenotypic data (dimensionality reduced, e.g., by model-based
clustering [63], if necessary or applicable) are brought together and analyzed by first applying partial
correlation network analysis. This involves first the crucial step of rejecting likely spurious correlations,
e.g., through the calculation of non-rejection rates as available in openly available packages for the
R statistical programming language, such as the qp-graph package [64]. Based on this analysis,
a network of interacting components between (1) the exposome, (2) intermediary layer(s) of (potentially
also dimensionality-reduced) data (e.g., metabolomics or other -omics), and (3) the various clinical
outcomes of interest can be projected and subsequently both analyzed and meaningfully interpreted
holistically. Further, “connected” outcome variables of interest can then be selected, and regression
analyses performed linking chemical mixtures with outcome variable(s) of interest (e.g., by iterative
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ridge regression modelling using bootstrapping [34]). Such an examination of the network can (1) help
identify key phenotypic variables of interest by removing spurious associations, and (2) provide
predictive and relative contributions of individual chemicals towards the variable(s) of interest.

Further, with the striking rise in the application and development of machine learning methods,
great potential exists for its application to exposome research, enabling robust interrogation of large,
multi-omics datasets to ascertain key factors affecting real-world health outcomes in data from both
purely experimental settings as well as from the harvesting of population data.

With increasing computational power and software available to researchers, the possibility now
exists for thorough mining of exposome data to link complex mixtures of exposures to not only clinical
outcomes, but to assist in the elucidation of key mechanisms occurring at the various biological levels
of organization and information flow between exposure and health effects. Appropriately, methods
such as multi-layer (deep) artificial neural networks (ANNs) are proving to be of striking utility across
a plethora of fields for analyzing high-dimensional, heterogeneous data for purposes of classification
(e.g., health outcome) and regression type analyses (e.g., exposure effect on markers of interest). ANNs
and associated deep learning methods currently suffer from issues of interpretability and are difficult to
apply to the development of simpler clinical tests; other machine learning methods, such as the random
forest, can currently provide clearer answers regarding the importance of the features that they use and
divulge thresholds by which the models make their best-performing classification methods, forming
the basis of direct translation to clinical testing. Machine learning and its application to metabolomics
and multi-omics data are reviewed in detail elsewhere [65,66].

The ability to generate a meaningful, robust and multi-layered overview of biological effects from
exposure to a mixture of agents addresses an unmet need in exposome research. This is a notable
step for the field, clearly showing, for example, networks of interacting factors from heterogeneous,
multi-omics data for downstream analysis, biomarker discovery and toxicity threshold testing of
real-world mixtures of agents, which may behave markedly differently from more simplistic approaches
that take such exposures as single factors.

4. Metabolic Markers of Exposure to Environmental Chemicals

The metabolome in exposome studies can be considered as an intermediate phenotype, linking
exposures with health status [67]. Metabolic changes observed in exposome studies may thus provide
clues about the changes in adverse outcome pathways, potentially linked to specific diseases (Figure 2).
Whilst the number of studies wherein metabolomic profiles are associated with exposures in human
cohorts is increasing, their overall number remains limited, providing information mainly only on
specific chemical groups [24,25]. In addition, many of these studies involve only a small number of
participants, using analytical methods with limited coverage of the metabolome. On the other hand,
the challenge with in vivo and in vitro models is, however, that often the doses used in the experiments
may not accurately reflect the true environmental concentration levels. Below, we review current
knowledge about the impacts of chemical exposures on human metabolome.
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Figure 2. Reported impacts of exposure to environmental chemicals on metabolism.

4.1. Lipid Metabolism in Liver and Adipose Tissue

Several environmental chemicals have been found to impact lipid metabolism, including
metals, polycyclic aromatic hydrocarbons (PAHs), per- and polyfluoroalkyl substances (PFASs)
and polychlorinated biphenyls (PCBs).

At the organ level, the two main organs involved in lipid metabolism are the liver and adipose
tissue (AT). The liver is the largest and most metabolically complex organ in the human body, while
AT is the key regulator of energy balance and nutritional homeostasis [68]. Adipocytes also regulate
body weight, are an important site for the synthesis of estrogen and store steroid hormones in addition
to playing a role in immune responses. AT can store a variety of hydrophobic chemicals, in particular
persistent organic pollutants (POPs), and thus it constitutes a low-grade internal source of stored POPs,
leading to continuous exposure in other tissues [69,70]. Moreover, xenobiotic compounds may alter AT
functions, increase AT inflammation, and/or modulate differentiation of AT precursor cells [70].

Several pollutants have been shown to significantly alter the function (gene expression, hormone
secretion) of white AT, AT mass (adipocyte number and/or volume), or body weight in animal models
after developmental exposure [71–75]. In particular, tributyltin (TBT), phthalates, bisphenol A (BPA),
diethylstilbestrol (DES), polyaromatic hydrocarbons (PAHs) and parabens have been shown to possess
obesogenic properties [76–79]. These compounds can act through several pathways that promote
adipogenesis and lipid accumulation. For most compounds classified as obesogens, prenatal exposure
results in an increased number of adipocytes [80]. The main mechanism involved in adipogenesis acts
through PPARγ function.

PCB153 has been shown to induce substantial alterations in levels of glycerophospholipids and
sphingolipids in vitro [81,82]. Similar results were also observed in human studies [83]. Short-chain
chlorinated paraffin studies have been shown to impact lipid metabolism in vitro through stimulation
of β-oxidation of unsaturated fatty acids and long-chain fatty acids [84].

Metal exposure, such as to cadmium, lead or arsenic, has been suggested to cause increased lipid
peroxidation [18,85–87]. Combined exposure to lead, cadmium and arsenic showed disturbances in
energy metabolism, more precisely, changes in lipid fraction, unsaturated lipids and in the level of amino
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acids suggesting perturbation of lipid metabolism and amino acid metabolism [87]. Exposure to PAHs
has been shown to have a marked impact on urinary metabolic profiles, and the metabolic outcomes
of PAH exposure were generally associated with metabolites related to lipid metabolism, indicative
of an oxidative stress response [88]. Chlorinated compounds such as dioxins, PCBs, organochlorine
insecticides and trichloroethylene (TCE) have been shown to trigger similar metabolic changes as in
PAHs and metals, but generating an even more substantial impact on lipid metabolism, including
cholesterol metabolism, sphingolipid metabolism and bile acid (BA) biosynthesis, confirming their
potential to induce chronic diseases such as atherosclerosis, diabetes or obesity [89–92].

A recent animal model study showed that dichlorodiphenyldichloroethylene (DDE) exposure
leads to down-regulation of phosphatidylcholines (PCs), phosphatidylethanolamines (PEs),
phosphatidylserines (PSs), and up-regulation of diacylglycerols (DGs), while triacylglycerols (TGs)
were found both increased and decreased as a result of exposure, depending on the specific molecular
species in question [93]. The study also indicated a potential role for gut microbiota–lipid interactions, as
17 bacterial species associate with lipids with notable correlations (Bacteroidetes, Firmicutes, Proteobacteria
and Tenericutes, and DG, PC, PE and TG).

In a Swedish cohort of elderly subjects, circulating levels of p,p′-DDE and hexachlorobenzene
(HCB) levels were linked to a set of lipid-related metabolites involved in key metabolic processes such
as cell signaling, energy regulation, and membrane composition (e.g., fatty acids and different classes
of glycerophospholipids) [25]. The study also suggested that there may be differences in the lipid
pathways impacted by the two organochlorine pesticides. Another study showed similar associations
between the levels of DDE, β-HCH, HCB, PCBs and lipids, particularly in specific sphingolipids and
glycerophospholipids [83]. The limitations of both of these studies was that the metabolomics analyses
did not cover TGs and the most polar metabolites.

PFASs were also found to have an impact on lipid metabolism and energy metabolism [94,95].
In a recent study of 1000 elderly people in Sweden, 15 metabolites, predominantly from lipid pathways,
were associated with levels of PFASs, following adjustment for sex, smoking, exercise habits, education,
energy, and alcohol intake [24]. Perfluorononanoic acid (PFNA) and perfluoroundecanoic acid
(PFUnDA) were strongly associated with multiple glycerophosphocholines and fatty acids, including
docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) [24]. However, as dietary data were
not available, some of the associations may be related to dietary factors, such as the intake of fish
products, given that one of the main sources of PFAS in the Nordic population is fish intake, which has
a somewhat similar impact on human levels of polyunsaturated fatty acid (PUFA)-containing lipids.
These results indicate that the different PFASs evaluated were associated with distinctive metabolic
profiles, suggesting potentially different biochemical pathways in humans. Perfluorooctanoic acid
(PFOA), a widely used PFAS, was also found to be significantly associated with elevated uric acid
in several studies [24,96]. Uric acid is an important metabolite in purine metabolism, and several
epidemiologic studies, supported by studies in animal models, indicate that elevated uric acid is a risk
factor for hypertension and possibly an independent risk factor for stroke, diabetes, and metabolic
syndrome [97,98].

4.2. Bile Acids

BAs are metabolites that facilitate the digestion and absorption of lipids in the small intestine
and they are also important metabolic regulators involved in the maintenance of lipid and glucose
homeostasis [99,100]. BA metabolism is also closely linked with gut microbiota, which plays an essential
role in the deconjugation of primary BAs and secondary BA synthesis. Exposure to POPs, such as PFAS
and PCBs, has been shown to result in changes in the composition of the gut microbiota [101,102]. Several
pollutants have shown to modulate BA metabolism, including PFAS, dioxins, and PCBs [95,102–105].

PFAS can have an impact on BA metabolism at several levels (Figure 3). For example, PFAS can
inhibit 7-alpha-hydroxylase (CYP7A1), which catalyzes the first and rate-limiting step in the formation
of BAs from cholesterol [30,106]. This may lead to increased re-uptake of BAs, which would generate
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negative feedback loops via the farnesyl-X-receptor (FXR) and subsequently reduce their de novo
synthesis. PFOA also inhibits the function of hepatocyte nuclear factor 4α [107], which plays a central
role in the regulation of BA metabolism in the liver and is linked to both the synthesis and conjugation of
primary BAs. The liver clears most BAs via sodium taurocholate co-transporting polypeptide (NTCP),
and several PFAS are also substrates for human NTCP [95]. PFAS exposure also alters the composition
of the gut microbiota [101–103,108–110], which, in turn, can cause alteration in the pool of secondary
BAs. Associations observed between PFAS and BAs are potentially important for our understanding
of cardiometabolic diseases, given that BA metabolism is known to play a role in the pathogenesis of
type 2 diabetes (T2D), atherosclerosis and non-alcoholic fatty liver disease (NAFLD) [111].

PCB exposure has been shown to modify the gut microbiota composition also and modulate BA
homeostasis in conjunction with host BA processing genes in a dose- and bio-compartment-specific
manner [103]. Current studies also indicate that PCBs modulate signaling within both neurons and
epithelial cells, supporting the hypothesis that exposures may detrimentally impact the gut–brain
axis [110].

Figure 3. Bile acid biosynthesis and enterohepatic circulation, and the impact of polyfluoroalkyl
substances (PFASs) on bile acid (BA) metabolism. (1) In the liver, the classic BA synthesis pathway is
initiated by cholesterol 7α-hydroxylase (CYP7A1) which is downregulated by PFAS. The alternative
BA synthesis pathway is initiated by CYP27A1 to synthesize primary bile acids, CA and CDCA, in
hepatocytes. CDCA can be further converted to HCA and MCA in the liver. CYP7A1 is downregulated
by PFAS. Bile acids are conjugated to the amino acids taurine or glycine before being released into the
intestine. HNF4α, which plays a central role in bile acid conjugation by direct regulation of VLACSR
and BAAT, can be suppressed by PFAS. (2) BAs are recovered into portal blood through a combination of
passive absorption in the proximal small intestine, active transport via apical bile salt transporter (ASBT)
in the distal ileum, and passive absorption in the colon and via organic solute transporter α/β (OSTα/β).
Perfluorooctanesulfonic acid (PFOS) can also be transported by ASBT and OSTα/β. Furthermore, PFAS
can increase the permeability of the gut, thus impacting the passive transport pathway of BAs. In the
colon, BAs are also deconjugated by bacterial bile salt hydrolase and are 7α-dehydroxylated by bacterial
7α-dehydroxylase to form secondary BAs. PFAS can modify gut microbial composition and thus impact
microbial BA formation. (3) BAs are eventually recycled from portal blood back to hepatocytes via
Na-taurocholate co-transport peptide (NTCP) and the sodium-independent organic anion transporting
polypeptide (OATP). PFASs also utilize the NTCP and OATP transporter. The majority (90–95%) of
BAs secreted into the small intestine are actively reabsorbed in the terminal ileum and circulate back to
the liver while ca. 5% are excreted via feces.
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4.3. Amino Acid Metabolism

Metals, plasticizers and other organic pollutants have been associated with altered amino acid
metabolism. Exposure to cadmium, lead and arsenic has been suggested to cause various oxidative
stress-related effects, including the depletion of antioxidants, accelerated muscle proteolysis, elevated
activity of UDP-glucosyltransferases (UGTs) [18,85–87]. Specifically, cadmium exposure has been
associated with metabolites related to amino acid metabolism, galactose metabolism, purine metabolism,
the creatinine pathway as well as with steroid hormone biosynthesis [85]. Combined exposure to lead,
cadmium and arsenic showed perturbation of the metabolism of amino acids [87]. Short-chain paraffins
have been shown to disturb glycolysis and amino acid metabolism, leading to the up-regulation of
glutamate metabolism and the urea cycle [84].

BPA exposure, as summarized in a recent review [112], is associated with alteration of branched
chain amino acid metabolism, aromatic amino acids metabolism and sulfur-containing amino acid
metabolism. Particularly, alterations to phenylalanine metabolism, tryptophan metabolism, tyrosine
metabolism, lysine degradation, and arginine biosynthesis has been observed in female infants while
male infants were less affected [113].

Exposure to PAHs has been associated with metabolites related to amino acid and purine
metabolism, indicative of an oxidative stress response [88]. Altered amino acid metabolism has also
been associated with PFAS exposure, particularly with regards to tyrosine metabolism [114]. Another
study identified a positive association between PFAS exposure and phosphoethanolamine, tyrosine,
phenylalanine, aspartate and creatine, and inverse association with betaine [115].

Altered amino acid metabolism is linked with several diseases, including diabetes, obesity and
NAFLD. Increased levels of aromatic amino acids, such as tyrosine and phenylalanine, have been
consistently found to be closely associated with hyperglycemia, insulin resistance and risk of type 2
diabetes [116–119].

4.4. Energy Metabolism and Oxidative Stress

Exposure to environmental chemicals, particularly to PAHs and metals, has shown to increase
reactive oxygen species (ROS)—mediated oxidative stress in several studies [120,121]. Similarly,
environmental chemical exposure has been shown to cause disruption of the tricarboxylic acid (TCA)
cycle, thus impairing mitochondrial function and energy production [122].

Exposure to airborne pollution, including black carbon, carbon monoxide, nitrogen oxides and fine
particulate matter, which most likely contains a large number of different organic contaminants, was
linked with aggravation of inflammatory and oxidative stress-related pathways, including leukotriene
and vitamin E metabolism [123].

Metabolic changes induced by phthalates affect both anti-oxidant mechanisms (mitochondrial
beta-oxidation, amino acid metabolism) and disrupt prostaglandin-regulated pathways [124–126].
A recent study further showed that exposure to mono-n-butyl phthalate (MnBP) was associated with
being overweight/obesity in children and elevated MnBP concentrations in urine correlated with
global urine metabolic abnormalities as characterized by disrupted arginine and proline metabolism,
increased oxidative stress and fatty acid re-esterification [126].

4.5. Impact of Environmental Exposure on Metabolome via Gut Microbiota

In addition to direct impacts of exposures on host metabolism, the exposures may also alter host
metabolism indirectly, e.g., via gut or even skin microbiota. Exposure to environmental pollutants may
cause adverse changes in the composition of the gut microbiota, resulting in gut dysbiosis. Moreover,
such exposure can even alter the metabolic capacity of the gut microbiota, affecting the production
of bacterial metabolites, which, in turn, may lead to adverse health effects in the host. However,
many alterations of the gut microbiome composition can be secondary consequences of toxic effects
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acting on other organs and organ systems, and as such these effects should not be considered as only a
direct effect on the gut microbiota.

A recent review by Jin et al. summarized the impact of different pollutants on the gut
microbiota [127], showing that exposure can lead to various alterations in the gut microbiota favoring
the growth of pathogenic bacteria whilst proving deleterious to beneficial bacteria. For example,
a recent murine study showed that DDE induces gut dysbiosis as indicated by way of an increased
Firmicutes-to-Bacteroidetes ratio, which may impact energy harvest efficiency [93]. A study in humans,
on breast-fed infants, showed that POP exposure again impacted the gut microbiota, specifically,
both PBDE-28 and the surfactant perfluorooctanesulfonic acid (PFOS), another widely used PFAS,
were associated with reduced microbiome diversity [108]. Moreover, toxicants in breast milk affected
microbiome functionality, explaining over 30% of variance in the levels of two short-chain fatty acids
(acetic and propionic acids). Alterations in bacterial metabolism due to exposure have also been shown
to cause bile acid dysmetabolism [128,129]. Chemical exposure may also negatively affect epithelial
cells and so give rise to increased gut permeability and infiltration of the lamina propria by bacterial
metabolites, pollutants, and pathogenic bacteria [130]. Consequently, this dysbiosis, in conjunction
with the resulting modulation of the gut immune response and systemic inflammation, could result
in the development of several diseases, including T2D, obesity, inflammatory bowel disease, and
neurobehavioral dysfunction due to disruption of the gut–brain axis [67].

5. Health Impacts of Environmental Exposure

There are several studies linking environmental exposure to various diseases, including
pre-eclampsia, congenital heart defects, fetal growth restriction, chronic fatigue syndrome, cancer,
colonic polyps, respiratory disease, obesity, and diabetes [4,5,26,31,126,131–151] (Figure 4). However,
it should be emphasized that in most exposome studies, only targeted analyses of specific chemicals
have been carried out, and the role of combined exposures as a mixture of multiple chemicals and
the metabolome has not yet been systematically studied. Although there are several studies linking
metabolic changes with exposure, most of these studies have not characterized the metabolome
comprehensively, but instead used clinical metabolic values, such as glucose, insulin, and clinical
lipid markers. On the other hand, several metabolic biomarkers have been identified for different
chronic diseases. These biomarker profiles could also be used as adverse health outcome markers,
when the actual health outcomes are not known. This is particularly important in the cases where
disease development is still in its early, prodromal stages, e.g., in prediabetic subjects. Furthermore,
understanding the early molecular events along the exposure–disease continuum will provide valuable
information that may be used to develop intervention and prevention strategies. As already discussed
above, it is also crucial to critically examine if the found exposome-health associations reflect potential
causal relationships, or spurious associations.

Below, we review the studies linking chemical exposures, metabolic markers, and selected
health outcomes, including as related to early development, metabolic and autoimmune diseases
(type 1 diabetes).
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Figure 4. Reported associations between exposure (blue circles), specific diseases (violet circles) and
metabolic pathways (orange circles).

5.1. Exposures during Early Development

Metabolomics can be utilized to characterize internal exposures or health status during pregnancy.
Phthalates, bisphenols and PFAS have been reported to have an influence on childhood growth.
Specific lipids, including fatty acid metabolites, amino acids and a steroid have been identified as
potential biomarkers of “small for gestational age” during pregnancy, indicating potential dysregulation
of lipid pathways in the placenta. However, any association with maternal health status remains
unclear [152]. Maternal urinary levels of branched-chain amino acids and steroid hormone by-products
were found to be strongly predictive of birth weight [153], while several circulating metabolites have
also been associated with birth weight, including lysophospholipids [154,155]. Maternal smoking
during pregnancy is known to have several adverse health effects on the offspring, including lower birth
weight and other health impacts later in life. Maternal smoking has been associated with alterations
of the fetal metabolome, particularly phospholipid profiles [156]. In experimental models, prenatal
exposure to BPA caused significant changes in metabolites associated with lipid, BA, amino acid, and
glucose metabolism [112,157–159].

There are several reports on the impact of PFAS exposure during fetal development and early life
on the health outcome of children, with PFAS exposure being associated with cardiometabolic risk
factors including reduced birth weight, reduced birth length, and increased adiposity. However, the
results of such studies have been inconsistent [139,142,160,161]. Whilst many of these risk factors have
been associated with alterations in the metabolome, it is still not clear whether the effects of PFAS on
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health endpoints are mediated by metabolic disturbances. As reviewed recently [162], most studies
report association between reduced birth weight and PFAS exposure [163–167], although there are
also studies reporting no significant association [168]. It has been suggested that the reduced birth
weight could be attributed to maternal lipid changes following on from exposure, as PFOS levels
were associated with reduced levels of polyunsaturated fatty acids in pregnant women, and the
changes were further associated with reduced birth weight in female infants [169]. Several studies
also identified associations of PFAS with increased body weight later in life [135,166,170], as well as
with higher insulin levels [171], although contradictory results have also been reported [172]. PFOA
levels in childhood were found associated with lower pancreatic β-cell function in adolescence [135].
PFAS exposure in childhood has also been associated with dysregulation of several lipid and amino
acid pathways, as well as longitudinal alterations in glucose homeostasis in overweight and obese
children [114].

5.2. Type 2 Diabetes, NAFLD, Obesity, and Metabolic Syndrome

Several studies in human cohorts have shown association between chemical exposure and
T2D [173].

A negative association has been observed between serum concentrations of PCB-118, β-HCH and
specific PFAS with lobular inflammation in the liver [29,174].

PFAS exposure was found associated with metabolic diseases such as diabetes, being
overweight/obese and heart diseases, with the strongest association reported across different studies
being dyslipidemia. According to a recent review, there is relatively consistent evidence of modest
positive associations between PFAS exposure and lipid profiles, such as total cholesterol and
triglycerides, although the magnitude of the cholesterol effect is inconsistent across different exposure
levels [175]. A study of Danish children studied the association of PFOS and PFOA with clinical
metabolic markers (blood glucose, insulin, triglycerides, adiponectin and leptin), and found that, in
overweight children, high PFAS levels were associated with elevated insulin levels, β-cell activity,
insulin resistance, and TGs. There was no such association in normal-weight children [148]. Another
study, with 74 children with NAFLD and a control group (age 7–19 years) showed that higher PFAS
exposure was associated with more severe disease in children with NAFLD, indicating that PFAS may
be an important toxicant contributing to NAFLD progression [115].

A study of elderly Swedes found that perfluorononanoic acid (PFNA) was related to prevalent
diabetes in a non-monotonic fashion, suggesting an influence on glucose metabolism in humans
at the level of exposure seen in the general elderly population. In the same study, PFOA was also
associated with insulin secretion, although none of the measured PFASs were associated with insulin
resistance [23]. Another study investigated the associations of four PFASs (PFOA, PFNA, PFOS, and
perfluorohexane sulfonic acid—PFHxS) with cholesterol, body size, and insulin resistance, identifying
positive associations between both PFOS and PFOA with cholesterol, but not insulin resistance or body
size [143].

PFAS exposure was found associated with various measures of blood glucose and cholesterol in
several studies [23,176]. Using cross-sectional data from 7904 adults (age ≥ 20 years) in the National
Health and Nutrition Examination Survey (NHANES), a strong positive association between serum
PFOA and diabetes prevalence in men was identified, and the highest PFOA levels were linked with
serum total cholesterol in both males and females [176]. In a recent prospective, a nested case–control
study in the USA, clinical metabolic markers (cholesterol, triglycerides, adiponectin, HbA1c and
insulin) were studied together along with the levels of five PFASs (PFOS, PFOA, PFHxS, PFNA,
PFDA) [26]. The results showed that high plasma concentrations of PFOS and PFOA were associated
with an elevated risk of T2D. Another study found that PFOS and PFOA were associated with insulin
resistance, β-cell function, and HbA1c. After 4.6 years of follow-up, however, these chemicals did not
appear to affect the incidence of diabetes or changes in these markers [177].
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5.3. Type 1 Diabetes

The incidence of several (auto)immune diseases has been increasing in many industrialized
countries since 1950s [178]. Among them, the highest increase in incidence of type 1 diabetes (T1D)
was observed among children under five years of age [179]. While several non-exclusive hypotheses
have been proposed, aiming to explain these incidence trends, their underlying causes are still poorly
understood. T1D is an autoimmune disease caused by destruction of insulin-secreting pancreatic
β-cells [180]. The strongest genetic risk factors for T1D are found within the human leukocyte antigen
(HLA) gene complex, yet only 3–10% of individuals carrying HLA-conferred disease susceptibility
develop T1D [162]. The important role of environmental factors, including gene–environment
interactions, is thus obvious [181]. For unknown reasons, T1D incidence has stabilized in the last
decade, particularly in the Nordic countries [182].

Environmental triggers and specific co-morbidities are often implicated in T1D, e.g., enterovirus
infection, diet, and obesity [181]. However, obesity has not shown a concomitant decrease since
2005 [183], and severe enterovirus infections in Finland during the period 2006–2010 increased, in fact,
by 10-fold [182]. However, the time trend of human exposure levels to PFOS and PFOA does follow
T1D incidence. The use of PFOS and PFOA has increased substantially since production started in the
1950s, until the main, global manufacturer ceased production of PFOS, PFOS-related substances and
PFOA between 2000 and 2002. In the EU, all uses of PFOS were banned in 2008.

PFASs are potentially immunotoxic, thus capable of either suppressing the immune system or
promoting the development of autoimmune diseases [184]. Recently, the National Toxicology Program
reported that, “PFOA is presumed to be an immune hazard to humans based on a high level of evidence that
PFOA suppressed the antibody response from animal studies and a moderate level of evidence from studies in
humans” [185]. Currently, the information on the environmental chemicals as possible triggers of T1D is
limited. However, it is plausible that they can contribute to T1D development via impaired pancreatic
β-cell and immune-cell function and immunomodulation [133]. It has, for example, been shown that
PFOA and PFOS disrupt the generation of human pancreatic progenitor cells [186]. Studies in human
cells, i.e., those showing perturbation of the generation of pancreatic precursors caused by PFOA and
PFOS, suggest that these compounds might compromise the formation of the mature pancreas, which
would result in increased risk for T1D. Moreover, epidemiologic studies have identified a link between
exposure to PFOA and PFOS and the occurrence of diabetes, dysfunctions in sugar metabolism, and
insulin secretion [135,187]. Epidemiological studies also report immunosuppressive effects of PFAS,
increased risk of infection in early childhood and association with immunotoxic effects [139,145].
Recently, elevated levels of PFOS in T1D patients compared to controls was reported [145]. There
is a general consensus that exposure to PFOA and PFOS alters the immune system in experimental
models, with documented effects including alteration of antibody and cytokine production [188].
Despite this, there remain contradictory studies related to PFAS exposure and T1D and beta-cell
autoimmunity, both in epidemiological studies as well as animal models. While most studies have
found positive associations between exposure to PFAS and diabetes, autoimmune responses and
glucose homeostasis [132,133,135,145], there are also a few studies that show no associations of
β-cell autoimmunity and exposure [189], or even a negative association between diabetes and PFAS
levels [187]. These contradictory results may be explained by several factors, potentially including
differing coverage of PFAS substances, differences in the levels and length of time of exposure in the
studies. In vitro and animal models have shown a non-monotonic dose–response of PFAS [132], and
this, in combination with differences in, e.g., genetic risk factors, may explain some of the observed
differences. Of the other PFASs, PFNA has, in animal studies, been shown to have toxic effects
on lymphoid organs, T-cell and innate immune-cell homeostasis, suggesting that these effects may
result from the activation of PPARα, PPARγ, and the hypothalamic–pituitary–adrenal axis [190]. In a
non-obese diabetic (NOD) mouse model, prenatal and early life exposure to perfluoroundecanoic
acid (PFUnDA) was shown to increase pancreatic insulitis (inflammation development, a prerequisite
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of diabetes development). There was a demonstrable increase in the number of apoptotic cells in
pancreatic islets prior to insulitis and decreased phagocytosis in peritoneal macrophages [132,133].

Children progressing to T1D-associated islet autoantibody positivity, or to overt T1D later in life,
show a distinct serum lipidomic profile characterized by decreased blood phospholipid levels, including
sphingomyelins (SMs), within the first months of life, preceding the onset of islet autoimmunity [191].
These findings, first reported in 2008, have since been confirmed in multiple studies [192], including,
most recently, the multinational The Environmental Determinants of Diabetes in the Young (TEDDY)
cohort [193]. Notably, these pre-autoimmune lipid disturbances are primarily observed in children
who progressed to T1D early, within the first years of life, and such changes can be observed as early
as at birth [194,195]. The causes of lipid disturbances in, and their relevance to, T1D pathogenesis
have remained elusive. This may have changed recently, given results from a study carried out on a
mother–child cohort, where McGlinchey et al. found that high prenatal exposure to PFAS decreases the
levels of the same lipids in newborn babies as those previously found to be associated with progression
to T1D [34]. The same study also reported the association of PFAS exposure with the onset of islet
autoimmunity in children. These findings were confirmed in the DIABIMMUNE cohort, a prospective
birth cohort [34]. In the same study, McGlinchey et al. show that high HLA-conferred risk of T1D
in infants exacerbated the impact of prenatal exposure to PFAS on postnatal T1D-associated lipid
levels [34], suggesting a potentially important and specific role of gene–environment interaction in
the development of T1D. Within the same investigation, the causal role of PFAS on postnatal lipid
profiles, as well as (previously reported [132,133]) accelerated insulitis, was confirmed in two studies
in NOD mice. This study, linking prenatal exposures to PFAS with the postnatal risk of T1D, combined
with the aforementioned recent ban on certain PFAS compounds use, may explain the changing
trend in the incidence of T1D in certain western countries, thereby also highlighting the need for
similar investigations regarding other immune-mediated diseases showing similar incidence trends
since the 1950s [178]. The study also exemplifies the MITM approach in exposome research, where
chemical exposures are linked to specific adverse health outcomes via intermediate phenotypes such
as the metabolome.

5.4. Allergy and Obstructive Lung Disease

There is an extensive body of literature on the relationship between environmental exposures
and allergic sensitization as well as the causal role in the onset of obstructive lung disease [196–200].
It is not feasible to adequately review this information in the current paper, which is primarily
focused on metabolic diseases and diabetes. Instead, we provide a brief summary of the field in
relation to the exposome concept [5,201,202]. The lungs are a major route of exposure to the external
environment. The average minute ventilation is 6 L per minute under rest and increases as high as 30
L per minute during exercise. This volume of air is a significant potential exposure source. Exposure
to air pollutants has been linked with the inception, development, and exacerbations of allergic and
pulmonary diseases (in addition to indoor and outdoor aeroallergens) [201]. In particular, traffic-related
air pollutants (TRAPs) including nitrogen dioxide (NO2), ozone (O3), volatile organic compounds,
and particulate matter (PM), as well as environmental tobacco smoke (ETS), have been linked with
allergic sensitization and asthma [5,203–205] as has household air pollution [206]. There are numerous
reports on the relationship between exposure to TRAP and ETS with the onset of respiratory diseases
and interested readers are referred to recent reviews [207]. However, it should be emphasized in the
context of lung diseases that the exposome constitutes more than the collection of air pollutants that
are recognized triggers for lung injury. Airborne PM contains diverse populations of bacteria, viruses
and fungi that affect respiratory health through infections and modulation of the immune system [208].
A consensus document from the American Academy of Allergy, Asthma, and Immunology (AAAAI)
and the European Academy of Allergy and Clinical Immunology (EAACI) reported that the exposomic
approach is particularly applicable to allergic diseases and asthma because it provides a risk profile
instead of single predictors [209]. The power of an exposomics approach becomes clearer in the context
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of mixtures-based exposures—for example, simultaneous allergen and diesel exhaust [210] or allergen
and phthalates [211–213].

While air pollutants are a known risk factor for asthma and chronic obstructive pulmonary
disease (COPD) [214], their role in allergic diseases in general is not well established [203]. Moreover,
the composition of PM has typically not been investigated in this context. PM is composed of a complex
mixture of both inorganic (e.g., trace elements) and organic compounds (e.g., PAHs, alkanes), and the
composition can be variable, depending on the source. Thus, linking only the amount of PM with
specific health outcomes may not give a realistic picture of the possible associations. Currently, there
are relatively few clinical cohort studies reported on the relationship between exposome–metabolome
allergy. A recent European Human Early-Life Exposome cohort study found no association between
any of the broad spectrum of childhood environmental studies and allergy-related health outcomes,
while prenatal exposure to mono-4-methyl-7-oxooctyl phthalate was associated with an increased risk
of rhinitis, whereas PM absorbance was associated with a decreased risk [215]. Exposure to phthalates
has been associated with decreased risk of eczema in some studies [216], but not others [217]. It should
be noted here that phthalates have a short half-life and the concentrations will therefore be variable,
plausibly explaining the inconsistent findings reported in the literature. The European Food Safety
Authority (EFSA) reported that PFAS exposure has showed no or inconsistent associations with asthma
and allergies for both prenatal and postnatal exposures as well as in children and adults [218]; however,
a recent study with the (National Health and Nutrition Examination Survey) NHANES cohort reported
a weak association between serum PFAS levels and asthma prevalence in children [219]. A recent
metareview reported that perfluorononanoic acid was associated with eczema, perfluorooctanesulfonic
acid with atopic dermatitis and perfluorooctanoic acid with allergic rhinitis, while no significant
associations were found for wheeze and asthma [220].

A number of specific compounds have been linked with increased risk of food allergy [221].
For example, the antibacterial agent triclosan has been positively associated with food and aeroallergen
sensitization in male children in the NHANES cohort [222]; however, neither a Norwegian study
nor a study from the USA observed an association between triclosan exposure and food allergen
sensitization [223,224]. A few studies have examined the impact of phthalate exposure and have
found that it is associated with an increased risk for food sensitization in children [225,226]. Given the
increasing incidence of food allergies [227,228], this will be an important area of future study.

Given that obstructive lung disease and allergy have low genetic determination [229], there is a
vital role for application of the exposome concept to increase our understanding of disease etiology. It is
expected that exposome investigations will provide insight into the role that complex environmental
mixtures exert in the onset and pathophysiology of allergic sensitization and pulmonary disease.
However, as with other exposome-based studies, it will be important to ensure proper study design
and to examine, in particular, the role of pre-natal exposures.

6. Conclusions

The applications of metabolomics to exposome research, aiming to link external exposures with
adverse outcome pathways and health outcomes, are an increasingly active area of research [67].
Although already being addressed in current research, two main challenges in exposome research
still remain:

1. Analytical coverage. Given the enormous complexity of the chemical exposome, and the vast
number of chemicals to consider, at concentration ranges covering several orders of magnitude,
analysis of these chemicals alongside the metabolome is challenging at the very least. One limitation,
particularly in human cohort studies, is also the amount (physical volume) of sample available for
the analysis, which limits the number of different analytical methods that can be applied to the same
sample. This favors analytical methods with broad analytical coverage, yet this often leads to inevitable
tradeoffs in terms of accuracy of quantification as well as sensitivity.



Metabolites 2020, 10, 454 17 of 31

2. Data integration and establishing causal relationships between exposures and adverse health outcomes.
As also shown in this review, a large number of studies have established associations between specific
chemical exposures and metabolic outcomes (i.e., clinical metabolic markers or metabolomics) or
specific adverse health outcomes. However, in most cases, the question remains if these are true causal
relationships or associations confounded by other factors such as diet. This challenge is likely to become
even greater with increasing analytical coverage of the chemical exposome and metabolome, and with
the inclusion of other data such as from the gut microbiome. Establishing causality is crucial if one is to
consider the safety of specific chemicals or specific prevention measures. The elimination of spurious
associations (e.g., by a rejection-rate-filtered partial correlation network approach), the identification
of key toxic drivers (e.g., by regression of selected chemicals with selected outcomes of interest), and
follow-up with targeted exposure studies in relevant experimental models [34], are likely to be key
research strategies suitable for tackling the challenge of data integration and proving causality in
exposome research.

Given the active research in the exposome field, it is likely that the future will bring many
innovative solutions to address the above challenges. Such advances will have the potential to open
new areas of investigation related to the study of the impact of real-world chemical exposures on
human health and for more accurate chemical safety assessment, as well as challenge our current views
about the origin and pathogenesis of many common diseases.
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Abbreviations

12-oxo-LCA 12-Oxolithocholic acid
7-oxo-DCA 7-Oxodeoxycholic acid
7-oxo-HCA 7-Oxohyocholic acid
ANN Artificial neural networks
AT Adipose tissue
BA Bile acids
BAAT Bile acid CoA: amino acid N-acetyltransferase
BACS Bile acid-coenzyme A synthase
BADGE Bisphenol A diglycidyl ether
BPA Bisphenol A
BSE Bile salt export pump
CA Cholic acid
CDCA Chenodeoxycholic acid
CE Cholesteryl ester
Cer Ceramide
CYP7A1 Cytochrome P450 family 7 subfamily A member 1
DCA Deoxycholic acid
DDA Data-dependent acquisition
DDE Dichlorodiphenyldichloroethylene
DES Diethylstilbestrol
DG Diradylglycerol
DHCA 3α,7α-Dihydroxycholestanoic acid
DIA Data independent acquisition
EFSA European Food Safety Authority
FT-ICR Fourier transform ion cyclotron resonance
FXR Farnesyl-X-receptor
FXR Farnesoid X factor
GC Gas chromatography
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GCA Glycocholic acid
GCDCA Glycochenodeoxycholic acid
GDCA Glycodeoxycholic acid
GDHCA Glycodehydrocholic acid
GHCA Glycohyocholic acid
GHDCA Glycohyodeoxycholic acid
GLCA Glycolithocholic acid
GUDCA Glycoursodeoxycholic acid
HCA Hyocholic acid
HCB Hexachlorobenzene
HDCA Hyodeoxycholic acid
HLA Human leukocyte antigen
HNF4a Hepatocyte nuclear factor 4 alpha
HRMS High-resolution mass spectrometry
IT–TOFMS Ion trap–time-of-flight mass spectrometry
LCA Lithocholic acid
LPC Lysophosphatidylcholine
L-PFOS Linear-perfluorooctane sulfonate
MITM Meet-in-the-middle
MnBP Mono-n-butyl phthalate
NAFLD Non-alcoholic fatty liver disease
NO2 Nitrogen dioxide
NTCP Sodium taurocholate co-transporting polypeptide
O3 Ozone
OSTα/β Organic solute transporter α/β

PAH Polyaromatic hydrocarbons
PAH Polycyclic aromatic hydrocarbons
PBDE Polybrominated diphenyl ether
PC Phosphatidylcholine
PC ethers Phosphatidylcholine ether
PCB Polychlorinated biphenyls
PE Phospatidylethanolamine
PFAS Per- and polyfluoroalkyl substances
PFBA Perfluorobutanoic acid
PFBS Perfluorobutane sulfonate
PFDA Perfluorodecanoic acid
PFDS Perfluorodecane sulfonate
PFECHS Potassium perfluoro-4-ethylcyclohexanesulfonate
PFHpA Perfluoroheptanoic acid
PFHpS Perfluoroheptane sulfonate
PFHxS Perfluorohexane sulfonate
PFNA Perfluorononanoic acid
PFNS Perfluorononane sulfonate
PFOA Perfluorooctanoic acid
PFOSA Perfluorooctane sulfonamide
PFPeA Perfluoropentanoic acid
PFPeS Perfluoro pentane sulfonate
PFTDA Perfluorotetradecanoic acid
PFTrDA Perfluorotridecanoic acid
PFUnDA Perfluoroundecanoic acid
PI Phosphatidylinositol
PM Particulate matter
POP Persistent organic pollutants
ROS Reactive oxygen species
SM Sphingomyelin
T1D Type 1 diabetes



Metabolites 2020, 10, 454 19 of 31

T2D Type 2 diabetes
TBT Tributyltin
TCA Taurocholic acid
TCA Tricarboxylic acid cycle
TCDCA Taurochenodeoxycholic acid
TDCA Taurodeoxycholic acid
TDHCA Taurohyodeoxycholic acid
TG Triradylglycerol
THCA Taurodeoxycholic acid
THDCA Taurohyodeoxycholic acid
TLCA Taurolithocholic acid
TRAP Traffic-related air pollutants
TUDCA Tauroursodeoxycholic acid
TαβMCA α,β-Tauromuricholic acid
TωMCA ω-Tauromuricholic acid
UDCA Ursodeoxycholic acid
UGT UDP-glucosyltransferases
UHPLC Ultra-performance liquid chromatography
β-HCH β-hexachlorocyclohexane
βMCA β-Muricholic acid
ωαMCA ω-Tauromuricholic acid
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