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Abstract
1.	 In vertebrates, thyroid hormones (THs) play an important role in the regulation 

of growth, development, metabolism, photoperiodic responses and migration. 
Maternally transferred THs are important for normal early phase embryonic de-
velopment when embryos are not able to produce endogenous THs. Previous 
studies have shown that variation in maternal THs within the physiological range 
can influence offspring phenotype.

2.	 Given the essential functions of maternal THs in development and metabolism, 
THs may be a mediator of life-history variation across species.

3.	 We tested the hypothesis that differences in life histories are associated with 
differences in maternal TH transfer across species. Using birds as a model, we 
specifically tested whether maternally transferred yolk THs covary with migra-
tory status, developmental mode and traits related to pace-of-life (e.g. basal 
metabolic rate, maximum life span).

4.	 We collected un-incubated eggs (n = 1–21 eggs per species, median = 7) from 34 
wild and captive bird species across 17 families and six orders to measure yolk THs 
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1  |  INTRODUC TION

Thyroid hormones (THs) regulate many aspects of growth and 
development as well as metabolism in both young and adults 
(Darras, 2019; McNabb & Darras, 2015; Moog et al., 2017; Mullur 
et al.,  2014). Across vertebrates, the thyroid gland predominantly 
produces thyroxine (T4), which can be converted into triiodothy-
ronine (T3). Because T3 has a much higher affinity with recep-
tors than T4, and therefore exerts most of the receptor-mediated 
effects, T3 is usually considered the ‘biologically active form’ of 
THs, whereas T4 is considered a prohormone (Darras et al., 2015). 
Although some independent functions of T4 have been proposed 
(e.g. via non-genomic actions, Davis et al., 2016), the conversion of 
T4 to T3 by deiodinase enzymes in the brain and peripheral tissues 
is a vital mechanism that regulates the intracellular availability of T3 
and hence the local TH function (Darras et al., 2015; Darras & van 
Herck, 2012). For simplicity, in this article, we use ‘THs’ when talking 
about the general functions of thyroid hormones, and T3 or T4 when 
talking about one specific form.

The THs of maternal origin are critical in the regulation of devel-
opment during the very early embryonic stage. In placental mam-
mals, including humans, maternal THs can access the developing 
embryos across the placenta (Morreale de Escobar et al.,  2004; 
Patel et al., 2011). Medical studies have recognized the indispens-
ability of maternally transferred THs (hereafter maternal THs) for 
normal, healthy foetal development during early pregnancy (Moog 
et al., 2017; Morreale de Escobar et al., 2004). In oviparous animals, 
such as birds, maternal THs are transferred and deposited into egg 
yolks during egg formation, from where they can reach the embryos 

and influence developmental process, and eventually offspring 
phenotype (Ruuskanen & Hsu, 2018). Although early embryos are 
not yet able to produce endogenous THs, they already express 
necessary molecules, including TH receptors and deiodinases, to 
respond to maternal THs in less than 4 days of incubation (Flamant 
& Samarut,  1998; van Herck et al.,  2012, 2015; Too et al.,  2017; 
Ruuskanen, Hukkanen, et al., 2021). Experimental manipulation of 
THs during early embryo development (albeit often using supra-
physiological doses) has demonstrated influences on development 
and gene expression in chickens Gallus gallus domesticus (Flamant 
& Samarut, 1998; Darras et al., 2009; Darras, 2019), Japanese quail 
Coturnix japonica (Wilson & McNabb,  1997), frogs Xenopus trop-
icalis (Duarte-Guterman et al.,  2010) and various fishes (reviewed 
in Brown et al., 2014). For example, yolk TH injection reduced the 
expression of the transporter OATP1C1 mRNA but increased the 
expression of another transporter MCT8 in 4-day-old embryonic 
chicken brain (van Herck et al., 2012). With the molecular machinery 
ready to respond to maternally transferred THs during a time win-
dow when endogenously produced THs are not yet available, mater-
nal THs may therefore have organizational effects on offspring and 
represent different facets of significance from the endogenous THs 
in later life.

Variation in maternal TH transfer within the physiological range 
(i.e. no clinical or subclinical TH disorder that would induce mal-
development) can also influence offspring phenotype. In humans, 
correlative studies have found that variation in maternal THs pos-
itively correlates with infant birth weight (Medici et al., 2013) and 
the IQ of children (Korevaar et al., 2016). In birds, a handful of stud-
ies also provide evidence that experimentally elevated yolk THs 

[both triiodothyronine (T3) and thyroxine (T4)], compiled life-history trait data from 
the literature and used Bayesian phylogenetic mixed models to test our hypotheses.

5.	 Our models indicated that both concentrations and total amounts of the two main 
forms of THs (T3 and T4) were higher in the eggs of migratory species compared 
to resident species, and total amounts were higher in the eggs of precocial species, 
which have longer prenatal developmental periods, than in those of altricial spe-
cies. However, maternal yolk THs did not show clear associations with pace-of-life-
related traits, such as fecundity, basal metabolic rate or maximum life span.

6.	 We quantified interspecific variation in maternal yolk THs in birds, and our find-
ings suggest higher maternal TH transfer is associated with the precocial mode 
of development and migratory status. Whether maternal THs represent a part 
of the mechanism underlying the evolution of precocial development and migra-
tion or a consequence of such life histories is currently unclear. We therefore 
encourage further studies to explore the physiological mechanisms and evolu-
tionary processes underlying these patterns.

K E Y W O R D S
Aves, developmental mode, life-history variation, maternal hormone transfer, migration, pace 
of life, phylogenetic comparative analysis, yolk hormones
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that mimic higher maternal transfer influence offspring growth and 
physiology, and therefore may have fitness consequences, although 
mixed effects have been reported (Hsu et al., 2017; Hsu, Doligez, 
et al., 2019; Ruuskanen, Darras, Visser, & Groothuis, 2016; Sarraude 
et al., 2020a). Together, these studies suggest that variation in ma-
ternal TH transfer may have ecological and evolutionary conse-
quences in vertebrates. Nevertheless, maternal THs in wild animals 
have received little attention (Ruuskanen & Hsu, 2018), particularly 
in mammals and reptiles, and all previous studies (see above) were 
conducted at the within-species level. Here, using birds as a model, 
we aim to explore, for the first time, interspecific variation in mater-
nal TH transfer across species and its associations with life-history 
variation by a phylogenetic comparative approach.

Given the diverse and far-reaching effects of THs on metabolic 
rate regulation (Mullur et al., 2014), thermogenesis and thermoreg-
ulation (Mullur et al.,  2014; Price & Dzialowski,  2018; Ruuskanen, 
Hsu, & Nord, 2021), tissue differentiation, growth and maturation 
(McNabb & Darras,  2015; Wilson & McNabb,  1997), species with 
different life histories may show associated differences in their TH 
physiology. For example, Jetz et al. (2008) found that migratory birds 
generally have higher basal metabolic rates (BMRs) than resident 
species. Although the high BMRs in migratory birds may be driven 
by their generally colder breeding areas in the high latitudes, high 
BMR itself may be associated with higher levels of circulating THs 
(e.g. Chastel et al., 2003; Elliott et al., 2013; Welcker et al., 2013) and 
may result in higher transfer of maternal THs to egg yolks. Previous 
studies have also suggested the roles of THs on migration in birds 
(e.g. Pant & Chandola-Saklani, 1993; Pérez et al., 2016) and fish (e.g. 
Kitano et al.,  2010). Moreover, THs interact with other endocrine 
axes. Specifically, accumulating evidence suggests that THs are in-
volved in gonadal differentiation and maturation across vertebrates 
(birds: Flood et al.,  2013; Sechman,  2013; amphibians: Duarte-
Guterman et al., 2014; and fish: Rodrigues et al.,  2021). It is well-
established that in both mammals and birds, THs play a central role 
in regulating seasonal breeding (Dardente et al.,  2014; Nishiwaki-
Ohkawa & Yoshimura, 2016; Shinomiya et al., 2014). THs and glu-
cocorticoids (stress hormones) also have synergistic effects during 
major life stage transition across vertebrates, such as the smoul-
tification in salmonid fish, metamorphosis in amphibians and fish, 
hatching in birds and birth in mammals (reviewed in Wada,  2008; 
Watanabe et al., 2016; Rousseau et al., 2021). Therefore, THs could 
also play a mediating role in reproductive investment and shape 
the trade-offs between survival and reproduction and between 
current and future reproduction, as has been found for glucocorti-
coids (Bókony et al., 2009; Casagrande et al., 2018; Hau et al., 2010; 
Vitousek et al., 2019).

All in all, known TH functions imply a potential role in mediat-
ing life-history variation. Interspecific differences in life history-
associated TH physiology may have downstream effects on maternal 
TH transfer, reflecting the differences in blood circulating TH levels. 
Alternatively, because of the essential function of maternal THs in 
early embryonic development, differences in yolk THs could also 
arise as a result of adaptive evolution. We therefore generated three 

specific and testable hypotheses about how life-history variation 
may be associated with interspecific variation in maternally trans-
ferred THs, using birds as a model system:

First, studies in wild birds have reported positive correla-
tions between circulating T3 and BMR or RMR (resting metabolic 
rate; Chastel et al., 2003; Elliott et al., 2013; Welcker et al., 2013). 
Since migratory birds have higher BMRs than resident birds (Jetz 
et al.,  2008), they may have been selected for higher circulating 
THs and consequently higher maternal TH transfer. Moreover, THs 
have been suggested to regulate migration (e.g. Pant & Chandola-
Saklani,  1993; Pérez et al.,  2016). We therefore hypothesize that 
migratory species deposit higher TH levels (higher concentrations 
and/or larger total amounts) in egg yolks than resident species 
(Hypothesis 1).

Second, birds exhibit a continuous spectrum from altricial to pre-
cocial development (Starck & Ricklefs, 1998). Across the spectrum, 
altricial and precocial birds show distinct ontogenetic trajectories 
(e.g. McNichols & McNabb, 1988, reviewed inde Groef et al., 2013; 
McNabb, 2006): At hatching, precocial birds have a more advanced 
development in visual and locomotory abilities and thermoregula-
tion compared to altricial species (Price & Dzialowski, 2018; Starck 
& Ricklefs, 1998). Also, in precocial birds, thyroid function already 
starts in the middle of incubation and the TH levels in thyroid 
gland and blood circulation both peak around hatching (de Groef 
et al., 2013; McNabb, 2006). By contrast, thyroid function of altricial 
species starts days after hatching, and their circulating blood THs 
gradually increase towards the adult level (McNabb, 2006; de Groef 
et al., 2013). The lengths of developmental periods are also longer in 
precocial compared to altricial species (Starck & Ricklefs, 1998, see 
also Supplementary materials). Based on the distinct differences in 
ontogeny and assuming maternal THs are related to the more ad-
vanced prenatal development, we hypothesize that precocial species 
deposit higher TH levels (higher concentrations and/or larger total 
amounts) in egg yolks than altricial species, even after controlling for 
body size (Hypothesis 2). Alternatively, because altricial species are 
not able to produce endogenous THs until after hatching, one might 
instead postulate that altricial species would deposit higher TH lev-
els in the egg yolks to support embryonic development. The lengths 
of developmental periods are also expected to correspondingly cor-
relate with the level of maternal yolk THs.

Third, because of resource trade-off and allocation, life-history 
variation usually exhibits a fast–slow pace-of-life continuum, which 
may be mediated by metabolic rates (Brown et al., 2004; Dammhahn 
et al., 2018; Healy et al., 2019). Based on THs' positive correlation 
with metabolic rates, we hypothesize that the species living a faster 
pace-of-life deposit higher concentrations and/or larger amounts of 
yolk THs (Hypothesis 3). Specifically, we predicted a positive cor-
relation between yolk THs and a species' fecundity (clutch size and 
number of clutches per year), BMR and growth rate, but a negative 
correlation with a species' maximum life span and age at sexual 
maturity.

To test these three hypotheses, we collected and measured THs 
in eggs before incubation (to ensure no TH metabolism by embryos) 
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from 34 wild and captive bird species varying in body masses, mi-
gratory status, developmental modes and pace-of-life-related traits 
and used a Bayesian phylogenetic mixed-effects models to test our 
hypotheses.

2  |  MATERIAL S AND METHODS

2.1  |  Sample collection

We collected un-incubated eggs from 34 species of birds across 
17 families and six orders (n = 1–21 eggs per species, median = 7, 
Table S1). Eggs from wild species (n = 28) were collected by exten-
sive nest searches in the known breeding habitats or from nest-box 
populations, while eggs from six species came from captive animals. 
We aimed at collecting eggs before clutch completion (i.e. when 
found, the eggs were cold and clutch was not complete). In order 
to avoid pseudo-replication (i.e. within-clutch non-independence 
in yolk THs) and ensure minimal impact on individual reproduc-
tive success, we only collected one, randomly sampled egg per 
clutch for each species. All eggs were frozen and stored at −20°C 
on the day of collection until further analysis. Eggs of wild species 
were collected under licences from the environmental authorities 
in each country: Finland, VARELY/665/2016, POPELY/61/2016, 
VARELY/63/2016, VARELY/412/2016, VARELY/6085/2016 and 
Finnish Wildlife Agency 84/2016; Chile, Agricultural Ministry 
404/2017; and Sweden, National Board for Laboratory Animals. 
Captive species were housed and eggs were collected follow-
ing all national and international guidelines respectively. Eggs of 
homing pigeons Columba livia domesticus, domestic chicken Gallus 
gallus domesticus, grey partridges Perdix perdix and pheasants 
Phasianus colchicus were acquired from local breeders in Finland 
and no licence was needed. The eggs of Japanese quail Coturnix 
japonica, rock pigeons C. l. livia and red junglefowl G. g. bankiva 
were collected from the maintained colonies at the University 
of Turku, Finland (ESAVI/1018/04.10.07/2016 for quail) and the 
University of Groningen, the Netherlands (DEC No. 5635E, 5635G 
for rock pigeons; and 6710B-001 for red junglefowl). The zebra 
finch Taeniopygia guttata eggs were unfertilized eggs that were not 
under any experimental procedure at the University of Glasgow, 
UK, and therefore no licence was required. Most of the eggs (both 
wild and captive species) were collected during 2016–2017, ex-
cept those of the collared flycatcher (Ficedula albicollis, collected 
in 2011), rock pigeons (collected in 2014) and red junglefowl (col-
lected in 2015).

2.2  |  Yolk TH analysis

We extracted THs from the egg yolks following a previously de-
scribed protocol (Ruuskanen, Darras, de Vries, et al., 2016). In brief, 
we weighed egg yolks and homogenized them in MQ water and 
a subsample of the yolk-MQ mixture (c. 300 mg) was used for TH 

extraction by methanol and chloroform. Before extraction, samples 
were spiked with a known amount of 13C12-T4 to track recovery. 
Samples then went through chloride-form anion exchange resin (Bio-
Rad) for purification. The final products were re-dissolved in 0.01% 
NH3 buffer and yolk T3 and T4 were simultaneously measured using 
a validated nano-flow liquid chromatography-mass spectrometry 
(LC–MS) protocol (Ruuskanen et al., 2018). Our protocols extracted 
and measured the total T3 and T4 (i.e. both free, unbound hormones 
and bound hormones). The LC–MS/MS method has previously been 
validated for several Galliform and Passeriform species (Ruuskanen 
et al., 2018). Because this method does not rely on antibody speci-
ficity, and we saw no signs of any potential problems during the 
measurements (e.g. wrong retention time), we are confident that the 
method works for all our species. Across all samples, the average 
recovery varied from 30.90% to 52.01%, and there was no pattern 
of systematic bias across species (Figure S1). The measurements 
were normalized against an internal standard, calibrated by a stand-
ard line (R2 ≥ 0.99) and corrected for recovery. More details for TH 
extraction and the LC–MS methods are provided in Supplementary 
methods. All TH concentrations were expressed as pg/mg yolk. The 
total amounts of THs per yolk were calculated by multiplying the 
concentration with the total yolk mass and expressed as ng/yolk. 
Although yolk THs might degrade over time under storage, our as-
sessment suggested that the storage effects appeared to have lim-
ited influence in our samples and unlikely to bias our results (see 
Supplementary Methods)

2.3  |  Life-history traits

We collected life-history trait values for the species from which we 
measured yolk TH levels from the literature. All literature sources, 
along with the trait values used in our analyses, are presented in the 
Supplementary Data.

Species' body mass was collected from the amniote life-history 
database compiled by Myhrvold et al.  (2015). To test whether a 
species' developmental mode explains yolk TH variation, we cate-
gorized our species as either precocial or altricial species based on 
Cramp  (1977-1994) and Starck and Ricklefs  (1998). The four semi-
precocial species, which all belong to the family Laridae (gulls and 
terns), were pooled with precocial species and the one semi-altricial 
species (the kestrel, Falco tinnunculus) was pooled with altricial spe-
cies. In addition to further explore whether the variation in yolk THs 
may be at least partly attributed to differences in developmental 
duration between precocial and altricial species, we collected data 
on incubation duration and the age at fledging (i.e. number of days 
from hatching to fledging) from Myhrvold et al. (2015) for each spe-
cies to represent the length of the prenatal and postnatal develop-
mental period respectively. When such data were not available in 
Myhrvold et al.  (2015), we consulted other literature (documented 
in Supplementary Data).

To test whether a species' migratory status explains yolk TH 
variation, we categorized each species as either migratory or 
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resident, based on Lehikoinen et al. (2003), McNab (2009) and Pap 
et al.  (2015). When the categorization was not consistent in these 
references, we determined the migratory status based on the popu-
lation from which we collected eggs.

To explore associations between yolk THs and pace-of-life-
related traits, we collected the following traits: 

	(i)	 Growth rate, measured as the logistic growth rate constants 
from Starck and Ricklefs  (1998) for better comparability. More 
recent literature was also consulted. When data from multiple 
sources were available, we calculated mean value. All literature 
we consulted are documented in Supplementary Data.

	(ii)	 Clutch size and number of clutches per year were collected 
mostly from Myhrvold et al. (2015), supplemented by other liter-
ature documented in Supplementary Data to represent a species' 
fecundity.

	(iii)	Basal metabolic rates (BMRs), mainly obtained from McKechnie 
et al.  (2006) and McNab  (2009), supplemented by other litera-
ture documented in Supplementary Data.

	(iv)	Maximum life span and age at sexual maturity were obtained 
from the database AnAge (Tacutu et al., 2013). We chose max-
imum life span rather than other measures, such as median life 
span because of its much higher availability (de Magalhães et 
al., 2007; Healy et al., 2014). Maximum life span is also mostly 
determined by intrinsic factors and less sensitive to extrinsic 
cause of death, such as predation, and, therefore, is an arguably 
better measure for the true potential of longevity of a species 
(Barja, 2013; Vágási et al., 2019).

When consulting the literature, we assumed that the trait values 
are representative of the traits from wild populations. For all cap-
tive species (see above and the Supplementary Data), we used the 
trait values from the literature based on the specific colony from 
which the eggs were collected when available (e.g. the rock pigeons 
and zebra finches). In other cases, we assumed that the literature 
data are representative (e.g. for pheasants and grey partridges). 
Among our captive species, four are considered domesticated (do-
mestic chicken, Japanese quail, homing pigeon and zebra finch), for 
which we additionally checked whether the trait values we obtained 
from the literature are relevant. These species may have highly dif-
ferent trait values compared to their wild ancestors. For example, 
the body mass of homing pigeons is known to be much larger than 
that of the wild-type rock pigeons. When the literature data were 
questionable, we consulted known experts or left it as unavailable 
data (e.g. clutch sizes for domesticated chicken and Japanese quail 
are not determinable because they have been selected to lay eggs 
continuously).

In addition, whether a species is captive or wild was also taken 
into account because captive environments differ in many aspects 
from wild environments, such as in food availability, predation risk, 
spatial confinement and regular human disturbance (Beaulieu, 2016; 
Mason, 2010), all of which may influence TH physiology (e.g. Angelier 
et al., 2016). Because all domesticated species in our data set are 

captive, domestication (yes or no) was not included in statistical 
analyses but was nevertheless documented in the Supplementary 
Data.

2.4  |  Phylogenetic mixed models

2.4.1  |  Brownian motion versus Ornstein-
Uhlenbeck process

When analysing interspecific data, the residuals are most likely non-
independent because of shared evolutionary history, which must be 
accounted for in the statistical model (Felsenstein, 1985). However, 
the true underlying evolutionary pattern is usually unknown. 
Because knowledge on yolk THs in wild birds is extremely limited, 
identifying a most likely evolutionary pattern of yolk THs is prema-
ture and beyond the scope of this paper. As such, we only assessed 
the two most commonly considered evolutionary models, Brownian 
motion (BM, Felsenstein,  1985) and a single-optimum Ornstein–
Uhlenbeck (OU) process (Hansen & Martins,  1996), to determine 
how the phylogenetic non-independence should be dealt with in our 
analysis. The BM model assumes that trait differences accrue over 
time and therefore are proportional to the branch lengths between 
species (Felsenstein, 1985). The OU process builds on a BM model, 
with an additional parameter to describe a force of stabilizing selec-
tion (α) that pulls the trait value back towards an optimum (Hansen 
& Martins, 1996). Using the r package geiger (Pennell et al., 2014), 
the BM model was favoured, as the Pagel's λ for yolk T3 and T4 are 
both at bound (T3, λ = 1; T4, λ = 0.999), consistent with BM per-
formance (Freckleton et al., 2002). The assessment also suggested 
the pulling force α is very small (T3, α = 0.006; T4, α = 0.012), ren-
dering the model essentially equivalent to a BM process (Hansen 
& Martins, 1996). We therefore considered BM an appropriate as-
sumption for our phylogenetic mixed models to control for phyloge-
netic non-independence.

2.4.2  |  Model specifications

We used phylogenetic mixed models (Housworth et al.,  2004) 
to test our hypotheses and chose a Bayesian approach following 
Hadfield and Nakagawa  (2010) with the r package MCMCglmm 
(Hadfield, 2010). Yolk T3 and T4 concentrations (pg/mg yolk) as well 
as total contents (ng/yolk) were ln-transformed and standardized 
and used as dependent variables in separated univariate models. 
Because yolk T3 and T4 may exhibit different patterns of variation 
(as found e.g. in great tits, Hsu, Verhagen, et al., 2019), we analysed 
T3 and T4 with separate models. In all models, species body mass 
and captivity status (captive versus wild) were always included, 
along with the life-history traits of interest, as fixed factors in the re-
spective models (see below and Table 1). In order to facilitate model 
fitting, body mass was ln-transformed and standardized and all two-
level categorical variables were dummy-coded as −0.5 and 0.5 (Table 
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S2). The life-history traits that are known to be associated with body 
mass (BMR, growth rate, maximum life span, age at sexual maturity) 
were first corrected for body mass and phylogenetic relatedness 
among species using the r package phytools (Revell,  2009, 2012). 
BMR data were first converted to mass-specific BMR (KJ hr−1  g−1) 
and ln-transformed and corrected for body mass and phylogeny as 
pointed out previously.

Because data on life-history traits were not available for all spe-
cies, we defined several sets of models depending on data availabil-
ity, listed in Table 1. Each model and dataset were thus pruned for 
the specific set of species where data were available. Unlike placen-
tal animals where mothers may continuously transfer maternal hor-
mones to the embryo throughout the gestational period, the total 
amounts of maternal hormones in egg yolks are determined during 
yolk formation and mothers cannot supplement more thereafter. 
Therefore, the total contents of hormones represent an initial max-
imum hormone availability and, albeit unclear, probably represents 
different biological significance from the concentration. We there-
fore analysed both concentrations (pg/mg yolk) and total contents 
(ng/yolk) of T3 and T4 in separate model sets (four models per set 
in total).

Overall, the Model set 1 may be viewed as the general model 
set that tests our hypotheses using the traits for which data are 
available for all the 34 species. Model set 2 tests for covariation 
between yolk THs and developmental duration (i.e. incubation du-
ration and age at fledging). Because precocial species have larger 
values for these two traits (Figure S4), we ran this set of models 
with and without developmental mode included (Model set 2a 
and 2b, respectively, Table 1). Model sets 3–6 specifically test for 
associations between THs and fecundity, age at sexual maturity, 
BMR and growth rate, using the respective phylogeny and data 
subsets.

In all models, the phylogenetic relatedness among all spe-
cies (represented by the branch lengths) was treated as random 
effects, following Hadfield and Nakagawa  (2010). Additionally, 
species name was included as a random factor to control for 
within-species non-independence (i.e. non-phylogenetic interspe-
cific variation), and also the batch of hormone extraction was in-
cluded as a random factor to control for inter-batch variation. On 
average, the extraction batch accounted for ~10% of the variation 
in yolk T3 concentration and total contents, and 14% and 18% of 
the variation in yolk T4 concentration and total contents respec-
tively (Table S3).

Response variables were all assumed to follow a Gaussian distri-
bution. All models were run for 750,000 iterations with a 350 thin-
ning interval and a burn-in of 50,000, aiming for an effective sample 
size of approximately 2,000 for all parameters. Following Houslay 
and Wilson (2017), we used an uninformative parameter-expanded 
prior following a Cauchy distribution (V = 1, nu = 1, alpha.mu = 0 
and alpha.V  =  252) for all random factors. Using an uninformative 
inverse-Wishart prior or improper flat prior gave qualitatively very 
similar results, suggesting that the results are robust against the 
choice of priors.TA
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In Bayesian statistics, posterior means of the models for each 
fixed factor represent an estimate of its correlation with the re-
sponse variable and its corresponding 95% credible interval (CI) 
represent the uncertainty around the estimate (Hadfield,  2010). 
Therefore, 95% CI that did not include 0 gave statistical support for 
an association or difference (Hadfield, 2010).

2.4.3  |  Phylogenetic trees and phylogenetic 
uncertainty

In order to account for phylogenetic uncertainty, each set of models 
was tested repeatedly across 100 possible trees generated based 
on two phylogenetic backbones (Ericson et al.,  2006; Hackett 
et al.,  2008) and the posterior means of parameter estimates and 
their 95% CIs were stored (Rubolini et al.,  2015). All phyloge-
netic trees were constructed using BEAST v1.5.1 (Drummond & 
Rambaut, 2007, for details see Jetz et al., 2012), pruned correspond-
ingly to each phylogenetic set (see Table 1) and obtained from BirdT​
ree.org (Jetz et al.,  2012). The results are highly similar across all 
possible trees (see Figure S5 for examples) and between the two 
backbones. Therefore, we only report here the results based on the 
Hackett backbone.

2.4.4  |  Model diagnostics

Because results were highly similar across all possible phylo-
genetic trees, we examined model performance by refitting all 
models with a consensus tree. The consensus tree was derived 
using the r package phytools (Revell,  2012) for each phylogeny 
set. Model diagnostics were conducted by visual inspection on 
the trace plots for proper mixing and on autocorrelations and 
raised no concern regarding poor mixing or substantial autocor-
relation. In support of our inspection, the autocorrelations for all 
models were <0.05 and Gelman–Rubin diagnostics (Gelman & 
Rubin, 1992, via the r package coda, Plummer et al., 2006) were 
all <1.05.

2.4.5  |  Phylogenetic heritability

We calculated phylogenetic heritability (H2) as an estimate of phylo-
genetic signal using the equation:

where �2
a
 represents the variance of the phylogeny, �2

s
 represents 

the variance accounted by individual species (non-phylogenetic 
part) and �2

e
 represents the residual variance. The phylogenetic 

heritability is a measure of the proportion of variance that is ex-
plained by phylogeny, conditional on the fixed factors included in 

the model. Please see Supplementary Methods for more informa-
tion regarding the properties and interpretation of the phyloge-
netic heritability.

3  |  RESULTS

3.1  |  Interspecific variation in yolk THs

We observed substantial interspecific variation in both T3 and T4 
concentrations (Figure 1; Table S1): the average yolk T3 = 3.15 pg/
mg yolk (SD = 2.70, CV = 85.71%) and the average yolk T4 = 8.12 pg/
mg yolk (SD = 4.83, CV = 59.48%). Great tits Parus major and red-
shanks Tringa totanus had the lowest and highest concentrations 
of yolk T3 and T4 among the 34 species respectively. Between 
the two species, the difference in average yolk TH concentration 
was 100-fold for T3 (great tit, mean ±  SD  =  0.112 ± 0.032 pg/mg 
yolk, n  =  11; redshank, mean ±  SD  =  11.242 ± 5.067 pg/mg yolk, 
n = 4) and 18-fold for T4 (great tit, mean ± SD = 0.989 ± 0.292 pg/
mg yolk, n  =  12; redshank, mean ±  SD  =  18.101 ± 4.125 pg/
mg yolk, n  =  4). The interspecific variation in total yolk TH con-
tents (T3: mean ±  SD  =  18.06 ± 24.93 ng/yolk, CV  =  138.04%; T4: 
mean ± SD = 40.80 ± 51.46 ng/yolk, CV = 106.32%) largely reflected 
the variation in species body mass, evidenced by the strong correla-
tion between yolk TH contents and species body mass (Figure  2). 
The lowest total T3 content was observed in the eggs of coal tits 
Periparus ater (n = 7, T3: mean ± SD = 0.045 ± 0.027 ng/yolk) and the 
highest in red junglefowl (n = 10, mean ± SD = 78.122 ± 25.792 ng/
yolk). Coal tits also had the lowest T4 contents in the egg yolk (n = 7, 
mean ±  SD  =  0.312 ± 0.157 ng/yolk), whereas common gull (Larus 
canus) had the highest (n  =  3, mean ±  SD  =  182.853 ± 99.314 ng/
yolk).

3.2  |  Phylogenetic heritability

We observed a moderate to strong phylogenetic heritability, indi-
cating that the phylogenetic relatedness among species accounted 
for 60%–85% of the interspecific variation in yolk THs (Table  2), 
even after key life-history traits had been accounted for (see 
Supplementary methods). On average, T3 had higher phylogenetic 
heritability than T4, although their 95% CIs largely overlapped with 
each other's posterior means (Table 2).

3.3  |  Yolk THs and migration

Migratory species generally deposited higher concentrations (poste-
rior means and 95% CIs: T3, 1.045 [0.358, 1.726]; T4, 1.166 [0.436, 
1.888]) and larger amounts (posterior means and 95% CIs: T3, 0.572 
[0.190, 0.954]; T4, 0.519 [0.147, 0.894]) of both THs in the egg yolks 
than resident species (Figure 3), which was supported by Model set 
1 (Figure 2).

H
2
=

�
2
a

�
2
a
+ �

2
s
+ �

2
e

,

http://birdtree.org
http://birdtree.org


8  |   Journal of Animal Ecology HSU et al.

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

(e)

Turdus_pilaris
Turdus_iliacus
Turdus_merula

Turdus_philomelos
Ficedula_hypoleuca
Ficedula_albicollis

Phoenicurus_phoenicurus
Sturnus_vulgaris
Chloris_chloris

Fringilla_coelebs
Passer_montanus

Taeniopygia_guttata
Parus_major

Periparus_ater
Cyanistes_caeruleus
Garrulus_glandarius
Corvus_monedula

Aphrastura_spinicauda
Falco_tinnunculus
Sterna_paradisaea

Sterna_hirundo
Chroicocephalus_ridibundus

Larus_canus
Tringa_totanus

Charadrius_hiaticula
Charadrius_dubius
Vanellus_vanellus

Haematopus_ostralegus
Cuculus_canorus
Columba_livia

Phasianus_colchicus
Perdix_perdix

Coturnix_japonica
Gallus_gallus

−2.5 0.0 2.5 5.0
ln(Yolk T3 contents)

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

(c)

Turdus_pilaris
Turdus_iliacus
Turdus_merula

Turdus_philomelos
Ficedula_hypoleuca
Ficedula_albicollis

Phoenicurus_phoenicurus
Sturnus_vulgaris
Chloris_chloris

Fringilla_coelebs
Passer_montanus

Taeniopygia_guttata
Parus_major

Periparus_ater
Cyanistes_caeruleus
Garrulus_glandarius
Corvus_monedula

Aphrastura_spinicauda
Falco_tinnunculus
Sterna_paradisaea

Sterna_hirundo
Chroicocephalus_ridibundus

Larus_canus
Tringa_totanus

Charadrius_hiaticula
Charadrius_dubius
Vanellus_vanellus

Haematopus_ostralegus
Cuculus_canorus
Columba_livia

Phasianus_colchicus
Perdix_perdix

Coturnix_japonica
Gallus_gallus

−2 0 2 4 6
ln(Yolk T4 contents)

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

(d)

Turdus_pilaris
Turdus_iliacus
Turdus_merula

Turdus_philomelos
Ficedula_hypoleuca
Ficedula_albicollis

Phoenicurus_phoenicurus
Sturnus_vulgaris
Chloris_chloris

Fringilla_coelebs
Passer_montanus

Taeniopygia_guttata
Parus_major

Periparus_ater
Cyanistes_caeruleus
Garrulus_glandarius
Corvus_monedula

Aphrastura_spinicauda
Falco_tinnunculus
Sterna_paradisaea

Sterna_hirundo
Chroicocephalus_ridibundus

Larus_canus
Tringa_totanus

Charadrius_hiaticula
Charadrius_dubius
Vanellus_vanellus

Haematopus_ostralegus
Cuculus_canorus
Columba_livia

Phasianus_colchicus
Perdix_perdix

Coturnix_japonica
Gallus_gallus

−2 −1 0 1 2 3
ln(Yolk T3 concentrations)

��

��

��
��
��
��

��

��
��

��

��

��

��
��

��

��
��
��
��
��

��

Sterna_paradisaea
Sterna_hirundo
Chroicocephalus_ridibundus
Larus_canus
Tringa_totanus

Vanellus_vanellus

Charadrius_hiaticula
Charadrius_dubius

Haematopus_ostralegus

Columba_livia
Cuculus_canorus

Falco_tinnunculus

Phasianus_colchicus
Perdix_perdix
Coturnix_japonica
Gallus_gallus

Aphrastura_spinicauda

Garrulus_glandarius
Corvus_monedula

Sturnus_vulgaris

Turdus_pilaris
Turdus_iliacus
Turdus_merula
Turdus_philomelos

Phoenicurus_phoenicurus

Ficedula_hypoleuca
Ficedula_albicollis

Chloris_chloris
Fringilla_coelebs
Passer_montanus
Taeniopygia_guttata
Parus_major
Periparus_ater
Cyanistes_caeruleus

(a)

Order

a
a
a
a
a
a

Charadriiformes

Columbiformes

Cuculiformes

Falconiformes

Galliformes

Passeriformes

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

(b)

Turdus_pilaris
Turdus_iliacus
Turdus_merula

Turdus_philomelos
Ficedula_hypoleuca
Ficedula_albicollis

Phoenicurus_phoenicurus
Sturnus_vulgaris
Chloris_chloris

Fringilla_coelebs
Passer_montanus

Taeniopygia_guttata
Parus_major

Periparus_ater
Cyanistes_caeruleus
Garrulus_glandarius
Corvus_monedula

Aphrastura_spinicauda
Falco_tinnunculus
Sterna_paradisaea

Sterna_hirundo
Chroicocephalus_ridibundus

Larus_canus
Tringa_totanus

Charadrius_hiaticula
Charadrius_dubius
Vanellus_vanellus

Haematopus_ostralegus
Cuculus_canorus
Columba_livia

Phasianus_colchicus
Perdix_perdix

Coturnix_japonica
Gallus_gallus

0 1 2 3
ln(Yolk T4 concentrations)



    |  9Journal of Animal EcologyHSU et al.

F I G U R E  1  Phylogenetic tree, yolk TH concentrations (pg/mg yolk) and total contents (ng/yolk) of the avian species included in this study. 
The phylogenetic tree (a) is one possible tree derived from the Hackett backbone (see text). Different colours of species names represent 
different orders they belong to. The concentrations of yolk T4 (b) and T3 (d) and total contents of yolk T4 (c) and T3 (e) exhibited substantial 
interspecific variation (mean ± SD, see Table S1 for exact values and sample sizes). In all panels, red circles represent resident altricial species, 
red squares represent resident precocial species, blue circles represent migratory altricial species and blue squares represent migratory 
precocial species. Silhouettes were obtained from Phylo​Pic.org.

F I G U R E  2  Posterior means (±95% credible intervals) between yolk THs and all life-history variables tested in this study. The white area 
presents the estimates from Model set 1 (see text and Table 1). The shaded areas present the variables tested in Model set 2a (the light grey 
areas), Model set 3 (the medium grey areas) and Model sets 4–6 (the darkest grey area). In Models 2–6, the estimates of the variables that 
had been tested in Model set 1 are not redundantly presented. For developmental mode, the estimate represents the difference of yolk THs 
in precocial species from altricial species. For migration, the estimate represents the difference in migratory species from resident species. 
For captivity, the estimate represents the difference in captive species from wild species.
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3.4  |  Yolk THs and development

Precocial species deposited larger total amounts of THs (both 
T3 and T4) in the yolks than altricial species (Figure  4), but not 
higher TH concentrations. Model set 1 supported this differ-
ence with positive posterior means and 95% CIs for estimates on 
TH contents (T3, 0.841 [0.270, 1.412]; T4, 0.814 [0.278, 1.348], 
Figure 2b,d) but not concentration (T3, 0.680 [−0.337, 1.714]; T4, 

TA B L E  2  Phylogenetic heritability for maternal yolk T3 and T4

Hormone Parameter
Posterior mean 
[95% CI]

T3 Concentration 0.84 [0.68, 0.95]

Total contents 0.84 [0.71, 0.95]

T4 Concentration 0.60 [0.25, 0.87]

Total contents 0.75 [0.54, 0.91]

F I G U R E  3  Boxplots and species-specific averages of yolk TH concentrations (a, c, unit: pg/mg yolk, ln-transformed) and total contents 
(b, d, ng/yolk, ln-transformed) between migratory and resident species. Boxplots represent the median (the middle line) and the first and the 
third quartiles (the box), and the whiskers extend to 1.5 times of the interquartile range. Coloured dots represent species-specific means 
(±SE).
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F I G U R E  4  Relationship between developmental duration and yolk THs across species. The phylogenetic mixed model excluding 
developmental mode suggested that both yolk T4 and T3 contents positively correlated with incubation duration, but not age at fledging 
(a). This positive correlation between incubation duration and yolk T4 (c) and T3 contents (e) was clear when plotting the raw data (species-
specific means ± SE). Yolk T4 and T3 concentrations also exhibit positive but weaker correlations with incubation duration (b, d), as reflected 
by the wider associated credible intervals (a). The concentrations (b, d, unit: pg/mg yolk) and total contents (c, e, unit: ng/yolk) were both 
ln-transformed. Dots and triangles represent altricial and precocial species respectively. Black lines (shaded areas: 95% CI) represent the 
average correlation between incubation duration and yolk THs across all species.
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0.562 [−0.426, 1.527], Figure 2a,c), when controlling for species 
body mass and other life-history traits. Neither incubation dura-
tion nor age at fledging were associated with yolk THs (Model set 
2a, Figure 2; Table S4). However, when developmental mode was 
removed from the model (i.e. Model set 2b), the total amounts of 
both yolk T3 and T4 were positively correlated with incubation du-
ration but not with age at fledging (posterior means and 95% CIs: 
T3, 1.227 [0.391, 2.068]; T4, 1.151 [0.309, 1.987], Figure 4a). The 
concentrations of yolk T3 and T4 also showed positive correlations 
with incubation duration, but the 95% CIs slightly overlapped 0 
(posterior means and 95% CIs: T3, 1.380 [−0.039, 2.796]; T4, 1.329 
[−0.207, 2.838], Figure 4a,b,d).

3.5  |  Yolk THs and pace-of-life-related traits

Species body mass strongly correlated with yolk TH contents, but 
not with yolk TH concentration (Figure 2). Age at sexual maturity 
positively correlated with yolk T3 concentration (posterior mean 
and 95% CI = 0.214 [0.028, 0.403], Figure 2c) and total contents 
(posterior mean and 95% CI  =  0.132 [0.027, 0.237], Figure  2d), 
but not with yolk T4 (Table S4; Figure S6). No other pace-of-life-
related trait, including fecundity, maximum life span, BMR and 
growth rate, was correlated with maternal yolk TH concentra-
tions or contents in Model sets 3–6 (Figure 2). Given the previous 
findings that migratory birds have higher BMR (Jetz et al., 2008) 
and live faster (Soriano-Redondo et al., 2020), we additionally re-
peated the models excluding migratory status to examine whether 
pace-of-life-related traits would show associations with yolk THs. 
However, no clear associations with yolk THs were found in these 
models.

3.6  |  Yolk THs and captivity

Our models consistently suggested that captive species deposited 
higher concentrations and larger total amounts of both yolk T3 and 
T4 than wild species (Figure 2; Figure S7; Table S4).

4  |  DISCUSSION

Our phylogenetic mixed models suggest clear differences in ma-
ternal yolk THs between migratory and resident species and be-
tween precocial and altricial developmental modes. However, 
contrary to our expectation, we found no statistical support for 
associations between maternal yolk THs and pace-of-life-related 
traits, after controlling for body mass. These results suggest that 
among the life-history traits we tested, the associations with THs 
are more likely related to migration (Hypothesis 1) and develop-
mental mode (Hypothesis 2), but not pace-of-life (Hypothesis 3). 
Moreover, captive life appears to exert some influence on maternal 
TH transfer, probably reflecting phenotypic plasticity, physiological 

acclimation or some unintentional selective force due to the captive 
environment.

4.1  |  Interspecific variation and phylogenetic 
heritability of yolk THs

For the first time, we assessed the interspecific variation in mater-
nal yolk THs in birds. Passerines, particularly tits (family: Paridae), 
tended to have the lowest TH levels in egg yolks, whereas waders 
(order: Charadriiformes) tended to have the highest yolk TH lev-
els. The variation across species is large (CV of yolk TH concen-
trations  =  85.71% and 59.48% for T3 and T4, respectively), but 
comparable to other yolk hormones [e.g. yolk testosterone in birds 
ranges from 2.37 to 51.10 pg/mg yolk (mean ± SD = 10.32 ± 10.12, 
n  =  101 species), with a CV  =  98.06%, and yolk androstenedione 
ranges from 2.54 to 213.95 pg/mg yolk (mean ± SD = 34.51 ± 38.97), 
with a CV = 112.92% (Gil et al., 2007)].

Even after taking into account key life-history traits (i.e. migra-
tory status, developmental mode and body mass) and the influence 
of captivity, we still detected moderate to strong phylogenetic heri-
tability on both yolk THs. This indicates that besides life histories, a 
substantial proportion of variation in maternal THs is accounted for 
by the phylogeny itself. Our assessment on raw yolk TH data also 
indicated that the interspecific variation of yolk THs conforms to 
the stochastic evolutionary process predicted by Brownian motion 
based on the values of Pagel's λ. While the phylogenetic dependence 
of yolk THs could arise from a conserved physiological mechanism 
underlying maternal TH transfer to egg yolks, it seems premature to 
discuss about the processes underlying the observed phylogenetic 
signal, given our sample size and the predominance of passerines in 
our sampling.

4.2  |  THs and migration

Our results supported the hypothesis that migratory life history is 
associated with higher maternal TH transfer in egg yolks. Higher 
yolk THs might mirror elevated circulating THs in migratory species, 
which might be directly or indirectly linked to their higher BMRs 
(Jetz et al.,  2008). In line with this explanation, in two closely re-
lated skylark species, the migratory Eurasian skylarks Alauda arven-
sis had higher pre-breeding blood T3 levels than the resident Asian 
short-toed larks Calandrella cheleensis (Zhao et al., 2017). In fish, a 
marine migratory ecotype of the stickleback Gasterosteus aculeatus 
also had higher plasma T4 than a stream resident ecotype (Kitano 
et al., 2010).

The difference between migratory and resident species could 
also be due to temporal changes in THs. Given the crucial regulatory 
role of THs on migration (e.g. Pant & Chandola-Saklani, 1993; Pérez 
et al.,  2016), one plausible scenario could be that circulating THs 
were elevated during migration and had not returned to the non-
migrating level during egg formation, which occurs right after vernal 
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migration in migratory species, while resident species lack such sea-
sonal variation in circulating THs. In migratory red knots Calidris ca-
nutus, high plasma T4 coincided with the period of high body mass 
increase in spring (Jenni-Eiermann et al., 2002), consistent with the 
proposed function that T4 stimulates fattening and muscle hyper-
trophy in preparation of migration (Pérez et al., 2016). In migratory 
brent geese Branta bernicla, plasma T3 was also found to be higher 
in spring than in the wintering grounds (Poisbleau et al., 2006). In 
comparison, in resident great tits and willow tits Poecile montanus, 
an increase of T4 was observed only during the post-breeding moult 
period and not during the pre-breeding stage (Silverin et al., 1989). 
These studies support the idea that migratory birds have different 
temporal variation in blood THs compared with resident species. 
However, we still need comprehensive phylogenetic comparative 
studies to verify whether migratory and resident species differ in 
their circulating THs across seasons.

At the intraspecific level, there is variation in whether individ-
uals are migratory or resident, which can depend on local condi-
tions (Acker et al.,  2021; Chapman et al.,  2011; Reid et al.,  2018). 
The physiological mechanism underlying such variation in migration 
propensity is unclear although various perspectives have been pro-
posed (Hegemann et al., 2019). Based on our findings, it is possible 
that maternal yolk THs might predispose an individual to migration 
via the activational or organizational effects, which would be an in-
teresting topic for future investigation.

4.3  |  Does precocial development require more 
maternal THs?

Our finding that precocial species deposited larger amounts of 
THs in egg yolks than altricial species (while accounting for body 
mass) fits with their distinct developmental trajectories (Starck 
& Ricklefs,  1998). Chicks of precocial species hatch at a more ad-
vanced developmental stage in terms of visual and locomotory 
ability (Starck & Ricklefs,  1998), endocrine function (de Groef 
et al.,  2013; McNabb,  2006; Wada,  2008) and thermoregulation 
(Price & Dzialowski, 2018). Our result therefore suggests that the 
larger amount of maternal THs in eggs of precocial species may be 
related to this advanced ontogenetic trajectory. However, it is cur-
rently too early to tell whether the larger amounts of yolk THs may 
be a cause of precocial development or a consequence.

The larger amounts of yolk THs in precocial species is after body 
mass is controlled for in our model and does not reflect an allometric 
relationship between yolk THs and body mass. Developmental mode 
therefore explains some variation in yolk THs that is not predicted 
by body mass. An interesting point here is that precocial species also 
have a higher yolk proportion in the egg than altricial species (Collins 
& LeCroy, 1972; Ricklefs, 1977). This can explain the larger amounts 
of yolk THs in precocial species and also might be a hint that the 
maternal TH transfer is linked with the process of vitellogenin (yolk 
precursor) accumulation during egg formation. Further studies to 
examine the covariation between yolk mass and yolk THs as well as 

experiments to test the role of vitellogenin in maternal TH transfer 
will provide further insights into these questions.

Although precocial species have both longer prenatal and post-
natal developmental periods than altricial species (Figure  S4), our 
models suggested that maternal THs are only positively correlated 
with incubation duration, but not age at fledging, when the model 
did not control for developmental mode (Figure  4). This finding is 
consistent with the major functions maternal THs have on embry-
onic development. One possible interpretation of this result could 
be that larger amounts of maternal yolk THs extend the prenatal 
developmental period, hence allowing precocial chicks to hatch at 
a more advanced stage. Nevertheless, such an interpretation con-
tradicts the results of within-species studies. In experiments with a 
direct elevation of yolk THs in altricial pigeons and precocial quail, 
incubation duration was not extended (Hsu et al.,  2017; Sarraude 
et al., 2020b). In fact, experimentally elevated yolk THs might even 
shorten incubation duration (in great tits, Cossin-Sevrin et al., 2022). 
In a reptile species (short-necked turtles Emydura macquarii), exog-
enously injected T3 in the middle of incubation was also found to 
shorten incubation duration (McGlashan et al., 2017). Therefore, ei-
ther the relationship between yolk THs and prenatal development 
are opposite at the inter- versus intraspecific level, or the positive 
association between yolk THs and incubation period across species 
may not be causal.

4.4  |  No size-independent associations between 
maternal THs and pace-of-life traits

Despite the known function of THs in metabolism, we did not de-
tect associations between maternal yolk THs and most pace-of-
life-related traits. The only finding was a weak positive correlation 
suggesting that species that become sexually mature at an older age 
(i.e. having a slower pace-of-life) deposit higher levels of T3, but not 
T4, in egg yolks. This result contradicts our expectation that higher 
T3 being associated with a ‘faster’ pace-of-life, that is earlier sexual 
maturation. Importantly, no other pace-of-life trait showed a similar 
trend. We therefore do not consider that this result alone supports 
our hypothesis that maternal TH transfer covaries with pace-of-life 
syndrome.

The lack of associations with most of the pace-of-life-related 
traits could have several non-mutually exclusive explanations: First, 
our hypothesis for THs to be involved in pace-of-life is based on the 
interactions between THs and BMR, as well as with glucocorticoids. 
However, while the pace-of-life framework suggests a ‘nexus’ of 
physiological and life-history traits (Ricklefs & Wikelski, 2002), this 
does not necessarily pose a constraint that forces related physiologi-
cal systems to exhibit correlated phenotype (Versteegh et al., 2012). 
Therefore, THs and pace-of-life-related traits might display complex 
relationships that are difficult to characterize (cf. glucocorticoids, 
Crespi et al., 2013). Second, some constraints in our methods may 
have limited our power to detect the relationship between THs 
and pace-of-life-related traits. Our sampling mostly focused on 
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temperate species for logistic reasons, and it is thus possible that our 
sampling did not capture enough variation across the pace-of-life 
syndrome. Future studies should therefore consider expanding the 
sampling to a more comprehensive list of species across a larger geo-
graphical scale if possible. Alternatively, focusing on a smaller clade 
that is distributed across a wider latitudinal range could be promis-
ing, such as the stonechat (Saxicola spp.) model system that shows 
variation across the pace-of-life syndrome (Wikelski et al.,  2003). 
Third, we have to keep in mind that what we examined in the pres-
ent study are THs transferred from the mother to egg yolks, not 
THs in blood circulation. Although some studies have shown parallel 
changes in yolk THs in response to experimentally manipulated cir-
culating THs (Sarraude et al., 2020c, 2021; Wilson & McNabb, 1997), 
circulating THs may not explain all variation observed in yolk THs 
(e.g. Hsu et al., 2016). Therefore, our result suggests that yolk THs 
do not show associations along the pace-of-life continuum but we 
cannot exclude the possibility that variation in blood THs might still 
align with pace-of-life trait variation. Further comparative studies on 
blood circulating THs are therefore needed to answer this question.

4.5  |  Captive life is associated with higher maternal 
TH deposition

Our models consistently suggested that captive species depos-
ited higher concentrations and larger total amounts of THs in the 
egg yolks than wild species. Although we did not have a specific 
hypothesis on how captivity would be correlated with yolk THs, 
a straightforward explanation to this result lies in the differences 
between captive and wild environment, including food availability 
and chronic stress (Beaulieu, 2016; Mason, 2010). A number of stud-
ies have reported cases in which captive animals exhibit different 
morphology, physiology, behaviour and genetic variation from their 
free-living conspecifics (e.g. Beaulieu, 2016; Forstmeier et al., 2007; 
Gilby et al., 2013; Romero & Wingfield, 1999). Therefore, the higher 
deposition of THs in egg yolks by captive species likely reflects phe-
notypic plasticity or intentional (i.e. selective breeding) or uninten-
tional selection. Indeed, there were several domesticated species 
among the captive species in our dataset, which may have driven 
this result. The actual underlying factors are elusive at the moment, 
but likely to be manifold. A direct comparison of conspecific captive 
and wild populations would be a fruitful next step to understand 
the consequences of captivity on yolk TH deposition and identify 
potential causal factors.

4.6  |  Study limitations

Our study revealed intriguing patterns, but our relatively low sam-
ple size (n = 34 species) and large proportion of passerines (n = 18 
species) warrants some caution. Errors and uncertainty in life-
history trait values and hormone data, partly because of the small 

within-species sample sizes in some species, are also relevant when 
interpreting the results. Nevertheless, the identified patterns we 
report here suggest that aspects of life-history variation are associ-
ated with maternal TH transfer into egg yolks.

5  |  CONCLUSIONS

Our study reveals large variation in egg THs across bird species. 
Phylogenetic mixed models revealed that a part of this inter-species 
variation is explained by migratory status and developmental mode, 
with migratory species depositing higher concentration and total 
amounts of THs in egg yolks than resident species and precocial 
species, which have longer prenatal development, depositing larger 
total amounts of THs in egg yolks than altricial species. Intriguingly, 
we did not find evidence that maternal THs were related to pace-
of-life-associated traits. The strong phylogenetic heritability im-
plies that the physiological mechanism responsible for maternal 
TH transfer may be highly conserved across species. Further effort 
should be invested to uncover the physiological mechanisms under-
lying the observed patterns of interspecific maternal TH transfer 
as well as variation in adult circulating THs. Interspecific studies 
on maternally transferred THs, like this one, will also benefit from 
a larger sample size across a greater phylogenetic range and geo-
logical scale. Since variation in migration and developmental mode 
are not unique to birds, whether maternal THs may associate with 
life-history variation also in other vertebrate taxa awaits further 
investigation.
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