Abstract

A discrete variant of a multicriteria investment portfoliptimization prob-
lem with Savage'’s risk criteria is considered. One of theehproblem parame-
ter spaces is endowed with Hdlder's norm, and the other twceadowed with
Chebyshev’s norm. The lower and upper attainable boundeeatability radius
of one Pareto optimal portfolio are obtained. We illustridte application of our

theoretical results by modeling a relevant case study.
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1 Preiminaries

Many problems of making multipurpose decisions (individoiagroup) in manage-

ment, planning and design can be formulated as multicsifgroblems of continuous
and/or discrete optimization. Modern financial environtseaquire mitigation in lim-

itations of modern portfolio theory to make portfolio cheieasier in the context of
long-term and goal-based investing [1]. Most of businessraanagement decisions
are being made within uncertain and risky environment thatcaused by the influ-
ence of various factors such as an inadequacy of the matloahrabdels used by real
processes, errors in measurements or rounding, and maey fatttors. Investment
managing problems are of type problems with uncertainthéinitial data (see e.g.
[2,13,[4,[5]). Usually, any separate investment asset hdeehig level of risk and less

return than a portfolio of those assets and there is no reasmvest in one partic-
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ular asset. Creating a portfolio by diversifying assets mixing variety of invest-
ments, an investor reduces the riskiness of the portfolifief@nt aspects of portfolio
optimization and project investment are scrutinized ieréture, e.g. investments in
projects[[6] 7| B, 9], grouping projects into portfolios [1project portfolio selection
[11,[12,13], conflicting situations [14] etc. Many autholsoafocus on solving opti-
mization problems with multiple criteria [15, 16].

To manage financial investments,(in[[17] 18] an optimizatimdel was developed
that demonstrates how an investor can minimize the leveskivith a given expected
level of income. This formulation assumes the use of stedilshnd expert assessments
of risks (financial, environmental, etc.) as initial datgislwell known that the com-
plexity of calculating such quantities is accompanied bgrgé number of errors and
leads to a high degree of uncertainty in the initial inforimat In these conditions,
the question arises naturally of the plausibility of theutessobtained in the solution
of such problems, which leads to the necessity of carryirtgpoat-optimal analysis.
Following classical portfolio theory, the investor plotsthe graph an efficient frontier
depending on various pairs of risk and expected return aondsgs a portfolio drawing
on individual risk-return preferences. It gives an abitityconstruct a portfolio with
the same expected return and less risk, classifying andurieggisk [19,20]. The
risk values are usually derived from historical data [21].

The model we consider is rather different from the classiadels. The risk matrix
is constructed for several market states related to eaehafisk. Unlike the classical
modern portfolio theory, where a portfolio consists of age@tage of each asset, in our
model a Boolean decision vector is used to describe feagditéolios. The problem
is in finding a set of Pareto optimal portfolios with Savagesk criteria.

The model formulation requires statistical and expertestidns of different types
of risk (e.qg. financial or ecological) [22] to be specifiedlas initial data. To construct
an efficient portfolio, the investor must be able to quantiék and provide the neces-
sary inputs. Usually, the collected data contain compuoatierrors and inaccuracies.
It leads to the situation when the initial data that represek values are inaccurate
and uncertain. A number of approaches has been describé@drature to treat the

issue of uncertainty. For example, stability aspects fatasgroblems are studied in



[23,124)25| 25, 27] as well as stability for multicriteriases is analyzed in [28, 29].

One of the key points in portfolio optimization under unegnty is an estimation
of perturbation ranges for the initial data. The quantimtineasure of the data per-
turbation level that does not violate optimality is knownthe stability radius. The
concept, widely presented and analyzed in the recenttiiterafocused on finding an-
alytical expressions and bounds (see €.q! [[30] 31, 32, S3filar approaches were
also developed in parallel for scheduling theory ($eé([34.38]). Analytic formulae
are pairwise comparisons of solutions depending on selegitmality principles. The
structure of global perturbations of this problem and tmacttre of the solution set
should be taken into account. The particular definition ef4tability radius concept
depends on the chosen optimality principles (the given lpralis multicriteria), un-
certain data and a type of a distance metric used to measigtaseness in problem
parameter spaces. Various types of metrics allow to considgecificity of prob-
lem parameters perturbations. So in the case of Chebysmexiic ., the maximum
changes in the initial data are taken into account only. Thegerturbations are con-
sidered to be independent. In the case of the Manhattanawg#very change in the
initial data can be monitored in total. Holder’'s metiicl < p < oo, is the metric with
the parameter and includes such extreme cases as Chelsysietit! ., the Manhat-
tan metricl; and also the Euclidean metrdg. Thus,{, norm allows to monitor the
level and type of admissible perturbations, and therefowesgo the decision maker
more flexibility. For more details on the issue of using Hi¥ld metric in portfolio
optimization we refer the reader {0 [37].

Along with the quantitative analysis, a qualitative apmto&g developed in paral-
lel. This approach concentrates on specifying analytioatlitions that will guarantee
some certain pre-specified behavior of the set of optimalt®wis. To highlight the
ideas of this approach, it is worth to mention papers [38, @®lere the comparative
analysis of five different types of stability is presenteddonulticriteria integer linear
programming problem. Similar results were obtained fortrorteria combinatorial
problems with the bottleneck criteria [40] as well as withngoother nonlinear criteria
[41].

In the previous papers (see e.q. 1[42] 43,(44, 45]), some Isandhe stability



radii were obtained in the cases where the three-dimerigiooialem parameters space
is equipped with different combinations &f and /., norms. In the present paper,
we obtain the lower and upper bounds on the stability radfusne Pareto optimal
portfolio for the multicriteria investment problem with\&age'’s risk criteria where we
assume that in one space an arbitrgryiorm is defined witht < p < oco. At the
same time, we measure distances withnorm in the remaining spaces. It crates a
possibility to make a more detailed and customized momigpdver changes in the
initial data in the framework of the different problem paeters spaces. For example,
the Euclidean metric is often used to deal with risks, ghdorm can treat the case

once the decision maker needs it.

2 Basic notations and concepts

Consider a multicriteria discrete variant of portfolio impization problem. We assume
the model can be described by the following primitives tidbelow. Let

N, ={1,2,...,n} be a variety of alternatives (investment assets);

N,,, be a set of possible financial market states (market singtgrenarios);

N be a set of possible risks;

i De a numerical measure of economic risk of type IV, if investor chooses
projectj € N, given the market statec N,,;

R = [Tz'jk] c Rmxnxs:

r = (21,%2,...,7,)T € E" be an investment portfolio, wheke = {0, 1},

1, if investor chooses projegt

T; =
0, otherwise
X C E" be a set of all admissible investment portfolios;
R™ be a financial market state space;
R™ be a portfolio space;
R* be arisk space.
In our model, we assume that the risk measure is addicte/ethie total risk of one

portfolio is a sum of risks of the projects included in thetfmio. The risk of each



project can be measured, for instance, by means of the agsoanplementation cost.

The presence of a risk factor is integral feature of a findmogrket functioning.
One can find information about risk measurement methodstaiddlassification in
[46]. The last trend is to quantify risks using fiy® robustness, redundancy, resource-
fulness, response and recovery. The natural target of amgtior is to minimize dif-
ferent types of risks. It creates a motivation for the muiliicia analysis within risk
modeling. It leads to the usage of multicriteria decisiorkimg tools [47].

Assume that the efficiency of a chosen portfolio (Booleariage € X, | X| > 2,

is evaluated by a vector objective function

f(xa R) = (fl(xv Rl)v fQ(xv R2)7 R fs(xv Rs))v
each partial objective represents Savage’'s minimax rigkron [48].

©(x, Rx) = max R;pr = max E riiET; — min k € Ng
T, ) i€N, iENm L R gex’ *
JENR

whereR, € R"™ "™ — k-th cutR = [r;5] € R™*"™*¢ with rows R, = (714,
Tigks -y Tink) € R™, 1 € Npp,.

If the investor chooses Savage’s risk criterion [49], th&dm€ minimizes the total
risk of the selected portfolio in the worst (maximum risktejacase. This approach
takes place when the decision maker has most pessimistc&tipns about the mar-
ket.

The problem of finding Pareto optimal (efficient) portfolissreferred to as the
multicriteria investment Boolean problem with Savageskreriteria and denoted as

Z*(R), s € N. The set of Pareto optimal portfolios is defined as follows
PR)={zeX: ' € X (g9(z,2",R) > 0¢) & g(x,2', R) # 0(5))},
where
g(z,2',R) = (g1(x, 2", R1), g2(z,2', R2), ...,gs(x, 7', Ry)),
ge(z, 7', R) = fr(z, Ri) — fe(2', Ry) = min max (Rgx — Rypa’), k € Ng,

t"€ENm 1€Nm

O(S) :(0,0,...,0) € R’



If m = 1, then the problen¥*(R) transforms intos-criteria linear Boolean pro-
gramming problem:
Z%(R):  Rx — min, 1)

reX
whereX C E”, R = [r;] € R**™ is a matrix with rowsRy, = (7x1,7%2, .. -,
ren) € R™, k € Ng. The casen = 1 can be interpreted as a stable market with one
state only.

While solving investment problems, it is necessary to take account an inaccu-
racy of initial information (statistical and expert riskgaduation errors) that are very
common in real life. Under these conditions, it is highlyosenended to get numerical
bounds about possible changes in the initial data that presdficiency of the original

Pareto optimal portfolio for any perturbation. Similarty[g3,/50], the number

# 0,
0, if = =0,

[1]

) sup =, if
p=p(a’) =

is called a stability radius of a Pareto optimal solutidne P*(R), where
E={e>0: VR € Q) (z' € P°(R+ R))},

Q) ={R e R"™"™**: |R|| < e}

HereQ(¢) is a set of feasible perturbation matricd3;(R + R’) is a Pareto set of
perturbed problen*(R + R'), || ®'|| is the norm of the matrixt’ = [r},,]. This norm
depends on norms specified in the portfolio spRée the market state spad™ as
well as the risk spacR”.

Further, we investigate the stability radius in three défe cases depending on
which of those three spacBs*, R™ or R? is equipped with Holder’s,-norm,1 < p <
oo. For any dimensiod andl < p < oo, Holder'sl, norm ofa = (a1, as,...,aq) €

R%in R is defined by the following equation
N\1/p .
(Syen,last?) s if 1<p <o,
lall, =

max{|a;|: j € Ng}, if p=ooc.



Itis well-known that,, norm, defined iR¢, induces conjugateg: normin(R%)*.

For p andp’, the following relations hold

+—==1, 1<p<ox.

1
v

=

Here as usual, we spt = 1 if p = oo, andp’ = oo if p = 1. Thus, we assume that
p andp’ vary within the rangél, oo]. We also assumg/p = 0 if p = co.

Itis easy to see
Izllpllzllpr = llzlly for z € {=1,0,1}", p € [1, 0. ()
For anya > 0 andm € N,

I(a,...,a)|l, = m*Pa. (3)

m

Further, we will use classical Holder’s inequality
ab < [lallp|[bll,,

wherea = (al,ag, Ce ,an)T cR" b= (bl,bg, .. .,bn)T € R".

3 Theoretical aspectsof stability: main results

3.1 CaseA: portfolio space R" is endowed with [,

We endow the portfolio spacB™ with an arbitrary Holder's, norm,1 < p < oo,
while in the market state spad™ and the risk spac®°® we measure distances by

means of ... Thus, for any matri® = [r;;;] € R"™*"**
[Rllpocse = [I(ll Brllpoos [1R2llpoos - - - s | Rsllpoc) oo = max || Rkllpso,

where
[Rkllpoe = [ Rakllp, 1 R2kllps - - - [ Rikllp) oo, Kk € Ns.

Obviously,
IRkl < I1Rkllpso < | Rllpooscs i € Non, & € N



Additionally, due to Holder’s inequality, for any, 2z° € X we get
Rirt — Riz® 2 —(|[Rillpllzlly + [ Rinellpllz®llpr) =

> —[|Rellpoo(lllp + 12°llp7), 4,7 € Nim, k € Ny (4)

In this contextp; = p5(2°,m, p, 0o, o0) denotes the stability radius af. For Pareto
optimal portfolioz® in Z*(R), we will use the following notation

lg(z, 2° R)* ||o
min 5
vex\ {20} [lz]lp + (2]l

0 +
g Mot 2% R) o
eeX\{z0} ||z — 20,

Y1 = go‘f(xo,m,p,oo,oo) =

wl = wf(aco,m,p,oo,oo) =

Obviouslys); > ¢1 > 0. Here and henceforth we will use aveator (ay, az, ..., as) €

R* projection operator to the nonnegative orthant:
[a]" = (af,a],...,a

where sign+ means the positive projection of the vector, i.@; = max{0, ax},
k € Ng.

Theorem 1. For anym, s € Nandp € [1, oo}, thestability radius p; (z°, m, p, o0, 00)
of a Pareto optimal portfolio 2° € P*(R) in Z*(R) hasthe following upper and lower

bounds

0

QOi($ ,m,p,oo,oo) < pi(x07m7paooaoo) < wf(mo,m,p,oo,oo). (5)

Attainability of the upper and lower bounds specifiedih ($)enp = oo follows

also from the following evident statement, which is a diremtsequence of Theorem

.

Corollary 1. If for any investment portfolio z # 2 theset {j € N,, : ¢

is empty, then for any number m € N the formula

Oama 00, 00, OO) = ,‘l}is(mO,m, 00, 00, OO) =

gl R
e X\{z} Hx—i—x0||1

p‘f(xo,m,oo,oo,oo) = pi(x

holds.



From Theorerf]1 it also follows the corollary below.

Corollary 2. [[44] For any m € N, the following bounds take place

0 0

o1 (x”,m, 00, 00,00) < pi(x”, m,00,00,00) < z/;f(xo,m,oo,oo,oo).

The following theorem gives an evidence about the attalitvatof lower bound

specified in Corollari/2, i.e. the lower bourid (5) while= co.

Theorem 2. There exists a class of problems Z*(R), such that for portfolio 2° €

P?(R) thefollowing relations are valid

)

0< pi(:co,m, 00, 00,00) = cpi(x( , M, 00, 00, 00) < zbl(:co,m, 00,00,00).  (6)

The following known result gives us the evidence about adtaility of the upper
bound on the stability radius of € P*(R) in Z*(R) for the casen = 1 (seell)). In

this contex®™ is endowed witH,,, andR* is endowed with .

Theorem 3. [50] For any p € [1,00] and s € N, the stability radius of 2° € P*(R)
in the linear Boolean programming problem Z%(R), R € R**™ is expressed by the

formula
o . NRE-2)]tw
zeX\{z0}  flz — 20y

3.2 CaseB: market state space R™ isendowed with [,

Now consider the case when the portfolio spRéeand the risk spacR* are endowed
with [, whereas the market state sp&® is equipped with Holder'$, norm,1 <

p < oo. Thus, the norm of the matrix is defined by

[Rllocpoo = [I(ll Brlloops 1 B2llcps - - - » | Rsllocp)lloo = max || Rillocp,

where

[ Rk lloop = [[(1 Riklloos [[R2kllocs - - - [ Bmklloo) lp, & € N

Obviously,
||RikHoo < ||RkHoop < ||R||oopooa i € N, k € Ns.

10



Additionally, due to Holder’s inequality, for any, 2z € X we have
Ripx — Ry > —(||Rirel|ooll2[l1 + | Rirke [l o [|2”]11) >

> —||Ri|lcopllz + 2°||1, 4,4 € Ny, k € Ny, 7)

In this context, = p5(2°, m, oo, p, o) is the stability radius of°. For a Pareto
optimal portfolioz® in Z*(R) we use the following notations

gl B
e X\{z} Hx-ﬁ-l‘olll

in H[g(x7xoaR)]+||00
zeX\{a%} lz — 291

P2 = @;(xov ) =

)

o = 5 (2%,m) =
EVidently,”Ll)Q > oy > 0.

Theorem 4. For any m, s € N and p € [1, oo], the stability radius p3 (2, m) of a
Pareto optimal portfolio z° € P*(R) in Z*(R) has the following lower and upper

bounds

0 0

p5(x°,m) < p5(2°,m, 00, p,00) < m'/Pys(a,m).

The following known results confirms an attainability on tgper bound of the

stability radius oft € P*(R) in Z*(R) for the casen = 1 (see[(1)). In this context,
bothR™ andR* are equipped with,..

Theorem 5. [51] For the stability radius of z° € P*(R) in the Boolean linear pro-

gramming problem Z3(R), R € R**™, and s € N thefollowing analytical expression

. R(z — 2"
S | “
palel) = min T,

holds.

Sincep; = po While p = oo, then Corollarieg]2 arid 3 follow directly from Theorem
4.

3.3 CaseC: risk space R’ isendowed with [,

We measure distances by meang.ofin the portfolio spac&™ and the market state

spaceR™. At the same time in the risk spa&’, we usd,, 1 < p < oco. In this case

11



under the norm of the matriR we understand the number
[ Rllscocp = I R1llocos, [[R2llocoos - - - 5 [ Rsllococ )1
where
[ Rk llocoe = [[([Bukllocs [ Rk lloos - - - [ Bmklloc) locs & € N
Obviously,
[Riklloo < [[Bkllocoo < |Rllococps @ € N, k € Nis.
Itis easy to check that for any portfoliasandx’ the following inequalities
Rikr — Rig®’ > —||Ri|loccollz + 2|1, 4, ' € Ny, k € Ny (8)

hold.
In this context,ps = p3(z°, m, 0o, o0, p) denotes the stability radius ef. For a

Pareto optimal portfolia® in Z*(R) we introduce the notation

z,2% R)]|
— S .170,7’717 00, 00, _ m ||[g( ) ’ p
p3 = p3( p) reX\ {20} |z + 20|
_ s 0 o . ||[g(I,£C0,R)]+||p
u)B *wS(Z ;m;oojooﬂp) - xegl(l\l?xo} Hx—xonl .

EVidently,’Ll)g >3 > 0.

Theorem 6. For any m, s € N and p € [1, cc], the stability radius p§(z°, m, oo,

o0, p) of aportfolio z° € P*(R) in Z*(R) has the following lower and upper bounds

0 0

(pg(x 7m7oo7oo7p) S p;(x 7m7oo7oo7p) S wg(mo’m’oo)oojp)'

The following statement gives the evidence about the athality on the lower and

upper bounds specified in Theorem 6.

Corollary 3. If for any x # 2% theset {j € N,, : 29

§ = x; = 1} isempty, then for

anym € N any p € [1, o] the following holds:

pg(x07m7m7m7p):spg(x()7m7m7m7p):
R
= ¢5(z",m,00,00,p) = mi gz, 2 L
w3( p) zeX\{z} ||I+£COH1

12



If m = 1, as it was pointed out befor&?*(R) transforms intos-criteria Boolean
linear programming problen¥%(R), R € R**" (see[(1)). In this contexR" is
equipped withl,, andR* is equipped with,,, 1 < p < co. The following known
result illustrates the fact that the upper bound specifiekhigorent b is right.

Theorem 7. [50] For any p € [1,00] and s € N, the stability radius of 2° € P*(R)
in Z%(R), R € R**™ isexpressed by the formula

. R(z —a°)] "]
N | .
pile) = min

4 Case Study

For evaluating possibilities of investments in particutgions we chose five economic
unions: Caribbean Single Market and Economy (CSME), EaraBiconomic Union
(EAEU), Mercosur, Gulf Cooperation Council (GCC), Centtaherican Integration
System (SICA). Gathering the countries, included in thasens, we formed the set
of portfolios. The portfolios were evaluated using valuasthe global economic risk
(Table[1). The risk evaluations were published in the Glétisk Report for the World
Economic Forum in 2016 (http://weforum.org/risks/). Ishegight different types: as-
set bubble, deflation, energy price shock, failure of altiofrastructure, failure of
financial mechanism or institution, fiscal crises, unempiept or underemployment,
unmanageable inflation.

All five portfolios are Pareto optimal and based only on tls& gvaluation it is not
possible to make a rational decision.

Every portfolio includes different countries. It make setsimplement Corollary
[@ and CorollaryB. Following Corollaify] 2 for the case wher= co andp’ = 1 the
stability radius for every Pareto optimal portfolio can laécalated by the formula that
will be equal to the lower bound, described in Theofém 1. BaseCorollany3B the
stability radius can also be calculated using the formulaictvis equal to the lower
bound from Theorernl 6 for any paramegeg [1, oo].

In Figured -6 there are represented changes of the valésedower and upper
bounds of the stability radii depending on the paramegter(1, co].

13



Table 1: Value function for portfolios

S
CSME 81 63 110 102 79 161 168 61
EAEU 120 68 155 92 137 149 231 90
MERCOSUR 144 50 186 100 124 152 146 119
GCC 125 58 182 192 125 136 254 116
SICA 58 66 171 94 126 139 323 106

In the case when we evaluate the stability radius, varyiegp@rametep in the
market state space or in the risk space, the values of the loeeends of the stability
radius for GCC are larger than the values for EAEU. Incrapgithe EAEU portfolio
becomes more robust than GCC. Similar situation happens wieeconsider MER-
COSUR and SICA portfolios. Following Figurgs 1 dnd 5 SICA isrmrobust than
MERCOSUR for the parameter= 1. Selecting the parametgrclose toco MER-
COSUR becomes the portfolio with the bigger lower bound BI&A. This kind of
behavioral can be explained that for= 1 it is assumed that the changes in the risk
evaluations between the countries are dependent. Setngarametep close toco
we monitor only biggest changes in the initial data and weesp that the adjustments
of the risk evaluations in different countries do not haviugnces on risk in the other
countries. As we can notice, depending on the investor gsomns through changing

the parametes it is possible to customize the monitoring of perturbations

5 Conclusion

The investor’s goal is to minimize the level of various typdsisks, while portfolio
development motivates the use of multicriteria environtrieraccordance with the
mathematical and economic models. This approach makessilge to use a variety

of multicriteria decision-making tools [4[7, 52]. In thisgeer, to model various types of

14
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Figure 3: Values forps (2°, m, oo, p, 00)

8
0w 6
._g —— CSME
a —e— EAEU
E‘ MERCOSUR
'_CEU 4+ —e— GCC
& SICA
| |
¢ I g I g I g I g I $
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
p

risk, we used bottleneck partial objectives that make thestor to choose a portfolio
with a minimum total level of risk in the worst scenario in tharket, i.e., in a situation
where the risk values are at the maximum.

Another challenge, while measuring various risks, is d@ssed with inaccuracies
of statistical observations and expert assessments. drctimtext, there is a need to
perform post-optimal analysis for the quantitative evibraof an extreme level of
initial changes in data that do not violate the portfolioioyatlity. In this work, the
different cases are analyzed depending on the type of maswéd in the problem pa-
rameter space. In every considered cases the lower and ppeds for the stability
radius of an effective portfolio have been specified. Thaightforward application of
the results to practical calculation is limited due to tharaerative structure of analyt-
ical expressions, which may require a number of comparigomsing exponentially
with n ands. In the case when direct calculation is time consuming (i imappen if

n > 40 ands > 3), getting the values should be calculated heuristicatlyekample

16



Figure 4: Values foi)s5(z°, m, oo, p, 00)
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some multicriteria genetic algorithms can be used.
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7 Appendix (for reviewing only,not for publishing)

The following lemma can be easily proven by contradiction.
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Lemma. Letz® € P*(R), v > 0. If for any portfolioz € X \ {z"} and every
perturbing matrixk’ € Q(v) there exists an indek € N, such thatg;(z,2°, R; +
R}) > 0. Thenz' is Pareto optimal in any perturbed problefi(R + R’), i.e. 2° €
Ps(R+ R')asR € Q(y).

Proof of Theorem[1l

Proof. Let 2° € P*(R). First we provep; > 1. The claim is evident ifp; = 0.
Assumep; > 0. According to the definition op, for any portfolior € X \ {2°} the
inequality

g (z, 2° R)Flloe = @1 (ll2llyr + 12°]0) 9)

holds. Further, we are going to prove by contradiction that
VR € Q(p1) A €N, (qi(x,2° R)) >0).

Suppose, there exists the perturbing mafek € Q(p1) with cutsRY, £ € N, such
that
gr(z,2°, Ry + RY) <0, k€ N,

Then due to[{4) for ant € N, we obtain

0> gi(x,2°, Ry + Rz) = max (R + R?k)x — max (R, + R?k):vo =

1€Nm 1€Nm

= Z,Iél]l\? Z_Igj&\mli(Rik:c — Rina® + RYw — RY20) >
> gi (2, 2%, Ri) = | R | poo (2]l + 12°]1r) >
> gi(x, 2% Ri) = | R [l pocoo (2l + [12°llpr) > gr(z, 2%, Ri) — o1 ([|llpr + [[2° )

From the statements above, we deduce
Ilg(z, 2% R)]F oo < @1(llzllpr + 12°]1),

and it contradicts td {9). Finally, using Lemma, we gétc P*(R+ R') foranyR’ €
Q(p1). Hencepr > 1.

Now we prove thap; < ;. According to definition ofyy > 0 there exists a
portfolioz* € X \ {2°} such that

gk(m*amoaRk) < [gk(m*vxoka)]Jr <
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<Illg(=", 2% R lloo = nll2” — 2°ll, k€ Ny (10)

Assuminge > ¢y, consider a perturbing matri®® = [r{;, ] € R™*™** with elements
0 *

Tj— Ty . .
= =2, i€ Np, j€N,, k&N,
P

0
Tijk =0
wherey; < 6 < e. Since inany cut®) € R™*", k € Ny, all the rowsRY,, i € N,
are the same (led denotes such a row), we have
(l.() _ l'*)T

A=0—-F".
[l =20,

(11)

Therefore || R?||pocse = R lpoe = |R%Ip = I|Allp = 6,7 € N, k € Ny, and,
henceR’ € Q(¢) for anye > 4. Further, due ta{2) and(lL1), for apye [1, ] the

chain of equalities is true

2" — 2%l

Ax* —2%) = =6 = —dl|lz* — 2.

la* — a0,
Finally, using the above equalities along withl(10), we dode that for anyk € N,

the following is true

gr(z*,2°, Ry + R)) = zmjé\l[:(Rik + A)x™ — ng}z\xfi(Rzk + A)z° =
= gr(2*,2°, Ry) + A(z* — 2°) = gr(2*,2° Ry) — §|lz* — 2%,y <
< gr(z*, 2% Ry) — oy ||z* — :co||p/ <0.
Thereforex® ¢ P*(R + R°). And hencep; < ¢;. Theorenfll is proved. O

Proof of Theorem[2

Proof. Let ;1 > 0. To fulfill the inequalityp; < 14 it is sufficient that inequality
|z +2°||1 > ||z — 2°||; holds for anyz € X \ {2"}. To provep; = ¢, according to
Theorent L, it is sufficient to specify a class of problems with< ;. So, the rest of

the proof is about this. From the definitionpf > 0 there exista* € X \ {z°} with
o1]|z* 4+ 2%1 > gr(z*,2° Ry), k€ N,. (12)
Further conclusions are true for ahye N,. Denote
i(2%) = argmax{ Rz’ : i € N,,.},
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i(z*) = argmax{R;rz* : i € Ny, },
A= |z* +2°|; — ||lz* — 2% > 0.

Further assume
(Ri@yk — Rizoye) ™ > 014, (13)
which impliesi(z°) # i(z*) sincep; A > 0. For anys > ¢; the elements of the cut
RY in the perturbing matrixz® we define as follows
J, if i =i(2?), 29 =1,
o= (14)
—6, otherwise

where

A
Notice also that last inequalities are valid dudid (13).&mse of the specific construc-

1
min {6, _(Ri(;c*)k - RZ(‘LO)]C)Z'*} >0 > ©1- (15)

tion of R) we have

Ria™ = =8lla* |1, i€ N\ {i(a")}, (16)

R0y, 2” = 8|21, (17)

HR2||1)00 = HROHpoooo =6, R’ e Q(e).

Additionally,
Rijzoya™ = 6(A — [|2*|1). (18)
Indeed, let
Qi={jeN,: a} =20 =1},
Q:={jEN,: xj=1,2] =0}
Then

Q1] = A/2,
Q2] = [l="]l = A/2,

R poy* = 6(|Q1] — Q2l),
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and [I8) follows.
Further we provey (z*,z°%, Ry, + R?) < 0. According to [I¥) we have

Fi(@®, Ry + Ry) = max (Ry + Ry )a’ = fi(2®, By) + 0] (19)

Now we show
fr(@*, Ry + RY) = fr(z®, Ri) — 6]|a* |1 (20)

Using [16), we yield
fu(a*, R + RY) = max{(Ri(x*)k + R?(x*)k):c*, Z_g(ax)i)(Rik + R?k):c*} =
= max{ (fee”, Re) = 0l 1), mae (R + Ri)a |
Therefore, taking into account that
fr(@*, Ry) = 0|lz*[ly = (Rax + RY))z*, i € N \ {i(2°),i(a")},
in order to prove[(20) it is sufficient to check the followingeguality
fr(@*, Ri) = 8)|2*ln > (Rigoy + Ripoyp)a™

To do this, we usd (15) and (118)

fu(@™, Ri) = 8lla*[ly = (Rigeoyr + Rifgoy)z” =

= (Rigeryk — Riqaoyr)a™ — 8]|2* [l — Ri(goy2™ >

> 6(A = [|2*]l1) = Rffpoyz™ = 0.

Finally, sequentially applyind (19}, (RO}, (12) andl(1%); &ny indexk € N, we get
gr(@*, 2% Ry + RY) = gr(z*, 20, Ry) — 0|jz* + 2°||1 < (@1 — 9)||z* + Y1 < 0.
And hence, the formula below holds

Ve > ¢, IR Q) (2 ¢ P*(R+ RY)),

which due tar® € P*(R) produces; < ¢;. Summarizing, the correctnesskof (6) now

becomes clear. Theorém 2 is proved. O

27



Proof of Theorem[4

Proof. Letz® € P*(R). First we provepy > . Itis evidentifpy, = 0. Let gy > 0.
According to the definition of,, for any portfolioz € X \ {z"} the inequality

(2,2 R)]* [l = wallz +2°[lx (21)
is true. Further, by contradiction, we show the correctioé$ise formula given below
VR € Q(p2) A €N, (gi(x,2° R)) >0).

From contrary, let it be so that there exists a perturbingimd@’® € Q(y2) with cuts

RY, k € Ny such that
gr(z,2°, Ry + RY) <0, k€ N,.
Then according td {7) for any inddxe N, we obtain

0> gu(x,2°, Ry + Rz) = max (R, + R?k)x — max (R, + R?k):vo =

? m 1€ENm,

= Z,Iél]l\? félz%fi(R““x — Rina® + RYw — RY20) >
> gz, 2% Ri) = | R)|ocpllz + 2°[l, >
> gi(x, 2% Ri) = [|R[[copool + 2%l > gk (z,2°%, Ri) — ol + 2°]1.

From the statements above, we deduce inequality
g (z, 2%, R)]*lloo < @2llz +2°l1,

which contradicts to[{21). Finally, applying Lemma, we haVec P*(R + R') for
every perturbing matri’ € Q(p2). Henceps > ¢s.
Now we proveps < m/Pap,. According to the definition)s > 0, there exists a

portfolioz* € X \ {z°} such that
gk(x*a ZO; Rk) < [gk(x*v xov Rk)]Jr <

<|llg(z*,2°, R)]*lloc = t2lla” — 2°ll1, k€ N (22)
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Assumings > m!/P1),, consider a perturbing matrir® = [rg;r] € R whose

elements are defined as follows
roje = 0(2§ —}), i € Nm, j € Nn, k€N,

wheres/ml/P > § > ¢,. Since all the rows?y,, i € N,, in the cutR? € R™*",

k € N, are the same in the matrRR?, then we have (letl € R™ denotes such a row)
A =62 —a9)T. (23)
IR ]loo = |Alloc =6, € Ny, k € Ns.
From the equalities above arid (3), we get
IBRl|ocp = m'/?5, k€ Ny,

1R |loopoo = m* /P8 > m' /Py,
ThusR? € Q(e) for anye > m!/P1,. Further due td{23), we have

A(z* — 2%) = —5|a* — 291

Finally, combining the equality above aiid22), we concltds for anyk € N, the

following relations are true

gr(z*,2% Ry + R)) = max (R, + A)z* — max (R + A)z® =

1€Nm 1€ENm,
= gr(z*,2°, Ry) + A(z* — 2°) = g (2", 2°, Ry,) — 02" —2°|1 <
< gr(z*, 2% Ry) — holjz* — 2°||; < 0.
Thusz® ¢ P*(R + R°). Hencepy < m'/Py. Theoreni# is proved. O

Proof of Theorem[@

Proof. Letz" € P*(R). First we proveps > 3. Without loss of generality, assume
3 > 0 (otherwise the inequalitys > 3 is obvious). According to the definition of

3, for anyz # 20 the following is true
gz, 2% R lp = wsllz + 2”1 (24)
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To prove the lower bound, it is necessary to show that the ditarelow is true
VR € Q(p3) €N, (q(zx,2° R+ R}) > 0). (25)
From contrary, assume there exists a perturbing mattix Q(y3) such that
ge(z,2° R+ RY) <0, ke N,.
Then using[(B), we easily deduce
0> gr(z,2°, Rp + RY) = 1/1211\}1 ZIél]E\%]X(RZkIC — Rina® + RYw — RY 20) >

2 gk(l‘,JEO,Rk) - ||R2H0000Hx + mOHl’

g (z,2%, Ry) < | Ryllocos|le + 2%, k € N
Thus, due tak° € Q(y3) while p € [1, 0o] we have
g (, 2% R)]*[lp < |1 R%[lscocpllz + 211 < gsllz + 271

This contradicts td(24), and hen€e}(25) is true. From hegraling to Lemmag? ¢
P*(R+ R') forany R’ € Q(p3). Hencep(2°,m, 00, 00, p) > 5 (2°, m, 0o, 00, p).
Further, we prove thai; < ¢3 holds for anyp € [1, 0c]. Lete > ¢35 > 0, and the

portfolio z* # 2" is such that
Ig(a®, 2% R |lp = ¥sllx — 2°1.

Then, taking into account that the nofgdepends on the vector continuously, we take

0 € R? with positive components such that
Sillz* — 2% > g (2*,2° Ry), k€ Ny, (26)

ande > |§|l, > 3. Then we construct a perturbing matd¥’ € Q(e), where

e > ||d]|,, with the cutsR?, k € N, such that for every € N, the inequality

gr(x*, 2% Ry + RY) < 0 (27)
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holds. Using components of the vecipmve define the elements of akyth cut R9 =

[r%;x] € R™*™ of the perturbing matri®’ = [r;,] € R™*"** using the formula
op, it i€ Ny, a > a?,
0k, if i€ Ny, 2§ <a3.

Then, we have
||R2|\OOOO =0k, k€ N;.

Therefore, it is easy to see thHak" ||y = ||6]|, < £. Additionally, all the rowsRY,
(i € N,,,) inthe cutR?, k € N, are the same and contain componeftand —6,

only. Denoting such a row a4;,, we obtain
Ap(z* —2%) = —op||z* — 2°||;, k€ N..
From this for anyk € N, due to [26) we gef(27) as follows:
gr(x*, 2% Ry + RY) = gr(z*, 2%, Ry) + A(z* —2°) =
= grp(z*, 2% Ry) — 6p|lz* — 291 <

< g (@*,2% Ry) — 0kllz* — 2], <0, ke N,

Thus, whiles > 15 there exists a perturbing matrix’ € Q(e) such that® € P*(R)
is not Pareto optimal in the perturbed probléf( R + R°). This implies that for any
e > 13 we haveps < e. Hence,p; < 93, and thenp € [1,00]. Theorenl# is
proved. O
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