
Abstract

A discrete variant of a multicriteria investment portfoliooptimization prob-

lem with Savage’s risk criteria is considered. One of the three problem parame-

ter spaces is endowed with Hölder’s norm, and the other two are endowed with

Chebyshev’s norm. The lower and upper attainable bounds on the stability radius

of one Pareto optimal portfolio are obtained. We illustratethe application of our

theoretical results by modeling a relevant case study.
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1 Preliminaries

Many problems of making multipurpose decisions (individual or group) in manage-

ment, planning and design can be formulated as multicriteria problems of continuous

and/or discrete optimization. Modern financial environments require mitigation in lim-

itations of modern portfolio theory to make portfolio choice easier in the context of

long-term and goal-based investing [1]. Most of business and management decisions

are being made within uncertain and risky environment that are caused by the influ-

ence of various factors such as an inadequacy of the mathematical models used by real

processes, errors in measurements or rounding, and many other factors. Investment

managing problems are of type problems with uncertainty in the initial data (see e.g.

[2, 3, 4, 5]). Usually, any separate investment asset has higher a level of risk and less

return than a portfolio of those assets and there is no reasonto invest in one partic-
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ular asset. Creating a portfolio by diversifying assets andmixing variety of invest-

ments, an investor reduces the riskiness of the portfolio. Different aspects of portfolio

optimization and project investment are scrutinized in literature, e.g. investments in

projects [6, 7, 8, 9], grouping projects into portfolios [10], project portfolio selection

[11, 12, 13], conflicting situations [14] etc. Many authors also focus on solving opti-

mization problems with multiple criteria [15, 16].

To manage financial investments, in [17, 18] an optimizationmodel was developed

that demonstrates how an investor can minimize the level of risk with a given expected

level of income. This formulation assumes the use of statistical and expert assessments

of risks (financial, environmental, etc.) as initial data. It is well known that the com-

plexity of calculating such quantities is accompanied by a large number of errors and

leads to a high degree of uncertainty in the initial information. In these conditions,

the question arises naturally of the plausibility of the results obtained in the solution

of such problems, which leads to the necessity of carrying out post-optimal analysis.

Following classical portfolio theory, the investor plots on the graph an efficient frontier

depending on various pairs of risk and expected return and chooses a portfolio drawing

on individual risk-return preferences. It gives an abilityto construct a portfolio with

the same expected return and less risk, classifying and measuring risk [19, 20]. The

risk values are usually derived from historical data [21].

The model we consider is rather different from the classicalmodels. The risk matrix

is constructed for several market states related to each type of risk. Unlike the classical

modern portfolio theory, where a portfolio consists of a percentage of each asset, in our

model a Boolean decision vector is used to describe feasibleportfolios. The problem

is in finding a set of Pareto optimal portfolios with Savage’srisk criteria.

The model formulation requires statistical and expert evaluations of different types

of risk (e.g. financial or ecological) [22] to be specified as the initial data. To construct

an efficient portfolio, the investor must be able to quantifyrisk and provide the neces-

sary inputs. Usually, the collected data contain computational errors and inaccuracies.

It leads to the situation when the initial data that represent risk values are inaccurate

and uncertain. A number of approaches has been described in literature to treat the

issue of uncertainty. For example, stability aspects for scalar problems are studied in
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[23, 24, 25, 26, 27] as well as stability for multicriteria cases is analyzed in [28, 29].

One of the key points in portfolio optimization under uncertainty is an estimation

of perturbation ranges for the initial data. The quantitative measure of the data per-

turbation level that does not violate optimality is known asthe stability radius. The

concept, widely presented and analyzed in the recent literature, focused on finding an-

alytical expressions and bounds (see e.g. [30, 31, 32, 33]).Similar approaches were

also developed in parallel for scheduling theory (see [34, 35, 36]). Analytic formulae

are pairwise comparisons of solutions depending on selected optimality principles. The

structure of global perturbations of this problem and the structure of the solution set

should be taken into account. The particular definition of the stability radius concept

depends on the chosen optimality principles (the given problem is multicriteria), un-

certain data and a type of a distance metric used to measure the closeness in problem

parameter spaces. Various types of metrics allow to consider a specificity of prob-

lem parameters perturbations. So in the case of Chebyshev’smetric l∞ the maximum

changes in the initial data are taken into account only. Thusthe perturbations are con-

sidered to be independent. In the case of the Manhattan metric l1 every change in the

initial data can be monitored in total. Hölder’s metriclp, 1 ≤ p ≤ ∞, is the metric with

the parameter and includes such extreme cases as Chebyshev’s metricl∞, the Manhat-

tan metricl1 and also the Euclidean metricl2. Thus,lp norm allows to monitor the

level and type of admissible perturbations, and therefore gives to the decision maker

more flexibility. For more details on the issue of using Hölder’s metric in portfolio

optimization we refer the reader to [37].

Along with the quantitative analysis, a qualitative approach is developed in paral-

lel. This approach concentrates on specifying analytical conditions that will guarantee

some certain pre-specified behavior of the set of optimal solutions. To highlight the

ideas of this approach, it is worth to mention papers [38, 39], where the comparative

analysis of five different types of stability is presented for a multicriteria integer linear

programming problem. Similar results were obtained for multicriteria combinatorial

problems with the bottleneck criteria [40] as well as with some other nonlinear criteria

[41].

In the previous papers (see e.g. [42, 43, 44, 45]), some bounds on the stability
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radii were obtained in the cases where the three-dimensional problem parameters space

is equipped with different combinations ofl1 and l∞ norms. In the present paper,

we obtain the lower and upper bounds on the stability radius of one Pareto optimal

portfolio for the multicriteria investment problem with Savage’s risk criteria where we

assume that in one space an arbitrarylp norm is defined with1 ≤ p ≤ ∞. At the

same time, we measure distances withl∞ norm in the remaining spaces. It crates a

possibility to make a more detailed and customized monitoring over changes in the

initial data in the framework of the different problem parameters spaces. For example,

the Euclidean metric is often used to deal with risks, andlp norm can treat the case

once the decision maker needs it.

2 Basic notations and concepts

Consider a multicriteria discrete variant of portfolio optimization problem. We assume

the model can be described by the following primitives listed below. Let

Nn = {1, 2, . . . , n} be a variety of alternatives (investment assets);

Nm be a set of possible financial market states (market situations, scenarios);

Ns be a set of possible risks;

rijk be a numerical measure of economic risk of typek ∈ Ns if investor chooses

projectj ∈ Nn given the market statei ∈ Nm;

R = [rijk] ∈ R
m×n×s;

x = (x1, x2, . . . , xn)
T ∈ E

n be an investment portfolio, whereE = {0, 1},

xj =







1, if investor chooses projectj,

0, otherwise;

X ⊂ E
n be a set of all admissible investment portfolios;

R
m be a financial market state space;

R
n be a portfolio space;

R
s be a risk space.

In our model, we assume that the risk measure is addictive, i.e. the total risk of one

portfolio is a sum of risks of the projects included in the portfolio. The risk of each
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project can be measured, for instance, by means of the associated implementation cost.

The presence of a risk factor is integral feature of a financial market functioning.

One can find information about risk measurement methods and their classification in

[46]. The last trend is to quantify risks using fiveR: robustness, redundancy, resource-

fulness, response and recovery. The natural target of any investor is to minimize dif-

ferent types of risks. It creates a motivation for the multicriteria analysis within risk

modeling. It leads to the usage of multicriteria decision making tools [47].

Assume that the efficiency of a chosen portfolio (Boolean vector)x ∈ X, |X | ≥ 2,

is evaluated by a vector objective function

f(x,R) = (f1(x,R1), f2(x,R2), . . . , fs(x,Rs)),

each partial objective represents Savage’s minimax risk criterion [48].

fk(x,Rk) = max
i∈Nm

Rikx = max
i∈Nm

∑

j∈Nn

rijkxj → min
x∈X

, k ∈ Ns,

whereRk ∈ R
m×n – k-th cutR = [rijk ] ∈ R

m×n×s with rowsRik = (ri1k,

ri2k, . . . , rink) ∈ R
n, i ∈ Nm.

If the investor chooses Savage’s risk criterion [49], then (s)he minimizes the total

risk of the selected portfolio in the worst (maximum risk state) case. This approach

takes place when the decision maker has most pessimistic expectations about the mar-

ket.

The problem of finding Pareto optimal (efficient) portfoliosis referred to as the

multicriteria investment Boolean problem with Savage’s risk criteria and denoted as

Zs(R), s ∈ N. The set of Pareto optimal portfolios is defined as follows

P s(R) = {x ∈ X : ∄x′ ∈ X (g(x, x′, R) ≥ 0(s) & g(x, x′, R) 6= 0(s))},

where

g(x, x′, R) = (g1(x, x
′, R1), g2(x, x

′, R2), . . . , gs(x, x
′, Rs)),

gk(x, x
′, Rk) = fk(x,Rk)− fk(x

′, Rk) = min
i′∈Nm

max
i∈Nm

(Rikx−Ri′kx
′), k ∈ Ns,

0(s) = (0, 0, . . . , 0) ∈ R
s.
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If m = 1, then the problemZs(R) transforms intos-criteria linear Boolean pro-

gramming problem:

Zs
B(R) : Rx→ min

x∈X
, (1)

whereX ⊆ E
n, R = [rkj ] ∈ R

s×n is a matrix with rowsRk = (rk1, rk2, . . . ,

rkn) ∈ R
n, k ∈ Ns. The casem = 1 can be interpreted as a stable market with one

state only.

While solving investment problems, it is necessary to take into account an inaccu-

racy of initial information (statistical and expert risks evaluation errors) that are very

common in real life. Under these conditions, it is highly recommended to get numerical

bounds about possible changes in the initial data that preserve efficiency of the original

Pareto optimal portfolio for any perturbation. Similarly to [43, 50], the number

ρ = ρs(x0) =







sup Ξ, if Ξ 6= ∅,

0, if Ξ = ∅,

is called a stability radius of a Pareto optimal solutionx0 ∈ P s(R), where

Ξ = {ε > 0 : ∀R′ ∈ Ω(ε) (x0 ∈ P s(R+R′))},

Ω(ε) = {R′ ∈ R
m×n×s : ‖R′‖ < ε}.

HereΩ(ε) is a set of feasible perturbation matrices,P s(R + R′) is a Pareto set of

perturbed problemZs(R+R′), ‖R′‖ is the norm of the matrixR′ = [r′ijk ]. This norm

depends on norms specified in the portfolio spaceR
n, the market state spaceRm as

well as the risk spaceRs.

Further, we investigate the stability radius in three different cases depending on

which of those three spacesRn,Rm orRs is equipped with Hölder’slp-norm,1 ≤ p ≤

∞. For any dimensiond and1 ≤ p ≤ ∞, Hölder’slp norm ofa = (a1, a2, . . . , ad) ∈

R
d in R

d is defined by the following equation

‖a‖p =







(
∑

j∈Nd
|aj |p

)1/p

, if 1 ≤ p <∞,

max{|aj | : j ∈ Nd}, if p = ∞.
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It is well-known thatlp norm, defined inRd, induces conjugatedlp′ norm in(Rd)∗.

Forp andp′, the following relations hold

1

p
+

1

p′
= 1, 1 < p <∞.

Here as usual, we setp′ = 1 if p = ∞, andp′ = ∞ if p = 1. Thus, we assume that

p andp′ vary within the range[1,∞]. We also assume1/p = 0 if p = ∞.

It is easy to see

‖z‖p‖z‖p′ = ‖z‖1 for z ∈ {−1, 0, 1}n, p ∈ [1,∞]. (2)

For anyα > 0 andm ∈ N,

‖(α, ..., α
︸ ︷︷ ︸

m

)‖p = m1/pα. (3)

Further, we will use classical Hölder’s inequality

ab ≤ ‖a‖p‖b‖p′ ,

wherea = (a1, a2, . . . , an)
T ∈ R

n, b = (b1, b2, . . . , bn)
T ∈ R

n.

3 Theoretical aspects of stability: main results

3.1 Case A: portfolio space R
n is endowed with lp

We endow the portfolio spaceRn with an arbitrary Hölder’slp norm,1 ≤ p ≤ ∞,

while in the market state spaceRm and the risk spaceRs we measure distances by

means ofl∞. Thus, for any matrixR = [rijk] ∈ R
m×n×s

‖R‖p∞∞ = ‖(‖R1‖p∞, ‖R2‖p∞, . . . , ‖Rs‖p∞)‖∞ = max
k∈Ns

‖Rk‖p∞,

where

‖Rk‖p∞ = ‖(‖R1k‖p, ‖R2k‖p, . . . , ‖Rmk‖p)‖∞, k ∈ Ns.

Obviously,

‖Rik‖p ≤ ‖Rk‖p∞ ≤ ‖R‖p∞∞, i ∈ Nm, k ∈ Ns.
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Additionally, due to Hölder’s inequality, for anyx, x0 ∈ X we get

Rikx−Ri′kx
0 ≥ −(‖Rik‖p‖x‖p′ + ‖Ri′k‖p‖x

0‖p′) ≥

≥ −‖Rk‖p∞(‖x‖p′ + ‖x0‖p′), i, i′ ∈ Nm, k ∈ Ns. (4)

In this contextρ1 = ρs1(x
0,m, p,∞,∞) denotes the stability radius ofx0. For Pareto

optimal portfoliox0 in Zs(R), we will use the following notation

ϕ1 = ϕs
1(x

0,m, p,∞,∞) = min
x∈X\{x0}

‖[g(x, x0, R)]+‖∞
‖x‖p′ + ‖x0‖p′

,

ψ1 = ψs
1(x

0,m, p,∞,∞) = min
x∈X\{x0}

‖[g(x, x0, R)]+‖∞
‖x− x0‖p′

.

Obviously,ψ1 ≥ ϕ1 ≥ 0. Here and henceforth we will use a vectora = (a1, a2, . . . , as) ∈

R
s projection operator to the nonnegative orthant:

[a]+ = (a+1 , a
+
2 , . . . , a

+
s ),

where sign+ means the positive projection of the vector, i.e.a+k = max{0, ak},

k ∈ Ns.

Theorem 1. For anym, s ∈ N and p ∈ [1,∞], the stability radius ρs1(x
0,m, p,∞,∞)

of a Pareto optimal portfolio x0 ∈ P s(R) in Zs(R) has the following upper and lower

bounds

ϕs
1(x

0,m, p,∞,∞) ≤ ρs1(x
0,m, p,∞,∞) ≤ ψs

1(x
0,m, p,∞,∞). (5)

Attainability of the upper and lower bounds specified in (5) whenp = ∞ follows

also from the following evident statement, which is a directconsequence of Theorem

1.

Corollary 1. If for any investment portfolio x 6= x0 the set {j ∈ Nn : x0j = xj = 1}

is empty, then for any number m ∈ N the formula

ρs1(x
0,m,∞,∞,∞) = ϕs

1(x
0,m,∞,∞,∞) = ψs

1(x
0,m,∞,∞,∞) =

= min
x∈X\{x0}

‖[g(x, x0, R)]+‖∞
‖x+ x0‖1

holds.
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From Theorem 1 it also follows the corollary below.

Corollary 2. [44] For any m ∈ N, the following bounds take place

ϕs
1(x

0,m,∞,∞,∞) ≤ ρs1(x
0,m,∞,∞,∞) ≤ ψs

1(x
0,m,∞,∞,∞).

The following theorem gives an evidence about the attainability of lower bound

specified in Corollary 2, i.e. the lower bound (5) whilep = ∞.

Theorem 2. There exists a class of problems Zs(R), such that for portfolio x0 ∈

P s(R) the following relations are valid

0 < ρs1(x
0,m,∞,∞,∞) = ϕs

1(x
0,m,∞,∞,∞) < ψ1(x

0,m,∞,∞,∞). (6)

The following known result gives us the evidence about attainability of the upper

bound on the stability radius ofx0 ∈ P s(R) in Zs(R) for the casem = 1 (see (1)). In

this contextRn is endowed withlp, andRs is endowed withl∞.

Theorem 3. [50] For any p ∈ [1,∞] and s ∈ N, the stability radius of x0 ∈ P s(R)

in the linear Boolean programming problem Zs
B(R), R ∈ R

s×n is expressed by the

formula

ρs1(x
0) = min

x∈X\{x0}

‖[R(x− x0)]+‖∞
‖x− x0‖p′

.

3.2 Case B: market state space R
m is endowed with lp

Now consider the case when the portfolio spaceR
n and the risk spaceRs are endowed

with l∞, whereas the market state spaceR
m is equipped with Hölder’slp norm,1 ≤

p ≤ ∞. Thus, the norm of the matrix is defined by

‖R‖∞p∞ = ‖(‖R1‖∞p, ‖R2‖∞p, . . . , ‖Rs‖∞p)‖∞ = max
k∈Ns

‖Rk‖∞p,

where

‖Rk‖∞p = ‖(‖R1k‖∞, ‖R2k‖∞, . . . , ‖Rmk‖∞)‖p, k ∈ Ns.

Obviously,

‖Rik‖∞ ≤ ‖Rk‖∞p ≤ ‖R‖∞p∞, i ∈ Nm, k ∈ Ns.
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Additionally, due to Hölder’s inequality, for anyx, x0 ∈ X we have

Rikx−Ri′kx
0 ≥ −(‖Rik‖∞‖x‖1 + ‖Ri′k‖∞‖x0‖1) ≥

≥ −‖Rk‖∞p‖x+ x0‖1, i, i′ ∈ Nm, k ∈ Ns. (7)

In this context,ρ2 = ρs2(x
0,m,∞, p,∞) is the stability radius ofx0. For a Pareto

optimal portfoliox0 in Zs(R) we use the following notations

ϕ2 = ϕs
2(x

0,m) = min
x∈X\{x0}

‖[g(x, x0, R)]+‖∞
‖x+ x0‖1

,

ψ2 = ψs
2(x

0,m) = min
x∈X\{x0}

‖[g(x, x0, R)]+‖∞
‖x− x0‖1

.

Evidently,ψ2 ≥ ϕ2 ≥ 0.

Theorem 4. For any m, s ∈ N and p ∈ [1,∞], the stability radius ρs2(x
0,m) of a

Pareto optimal portfolio x0 ∈ P s(R) in Zs(R) has the following lower and upper

bounds

ϕs
2(x

0,m) ≤ ρs2(x
0,m,∞, p,∞) ≤ m1/pψs

2(x
0,m).

The following known results confirms an attainability on theupper bound of the

stability radius ofx0 ∈ P s(R) in Zs(R) for the casem = 1 (see (1)). In this context,

bothRn andRs are equipped withl∞.

Theorem 5. [51] For the stability radius of x0 ∈ P s(R) in the Boolean linear pro-

gramming problem Zs
B(R), R ∈ R

s×n, and s ∈ N the following analytical expression

ρs2(x
0) = min

x∈X\{x0}

‖[R(x− x0)]+‖∞
‖x− x0‖1

holds.

Sinceρ1 = ρ2 whilep = ∞, then Corollaries 2 and 3 follow directly from Theorem

4.

3.3 Case C: risk space R
s is endowed with lp

We measure distances by means ofl∞ in the portfolio spaceRn and the market state

spaceRm. At the same time in the risk spaceRs, we uselp, 1 ≤ p ≤ ∞. In this case
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under the norm of the matrixR we understand the number

‖R‖∞∞p = ‖(‖R1‖∞∞, ‖R2‖∞∞, . . . , ‖Rs‖∞∞)‖p,

where

‖Rk‖∞∞ = ‖(‖R1k‖∞, ‖R2k‖∞, . . . , ‖Rmk‖∞)‖∞, k ∈ Ns.

Obviously,

‖Rik‖∞ ≤ ‖Rk‖∞∞ ≤ ‖R‖∞∞p, i ∈ Nm, k ∈ Ns.

It is easy to check that for any portfoliosx andx′ the following inequalities

Rikx−Ri′kx
′ ≥ −‖Rk‖∞∞‖x+ x′‖1, i, i′ ∈ Nm, k ∈ Ns (8)

hold.

In this context,ρ3 = ρs3(x
0,m,∞,∞, p) denotes the stability radius ofx0. For a

Pareto optimal portfoliox0 in Zs(R) we introduce the notation

ϕ3 = ϕs
3(x

0,m,∞,∞, p) = min
x∈X\{x0}

‖[g(x, x0, R)]+‖p
‖x+ x0‖1

,

ψ3 = ψs
3(x

0,m,∞,∞, p) = min
x∈X\{x0}

‖[g(x, x0, R)]+‖p
‖x− x0‖1

.

Evidently,ψ3 ≥ ϕ3 ≥ 0.

Theorem 6. For any m, s ∈ N and p ∈ [1,∞], the stability radius ρs3(x
0,m,∞,

∞, p) of a portfolio x0 ∈ P s(R) in Zs(R) has the following lower and upper bounds

ϕs
3(x

0,m,∞,∞, p) ≤ ρs3(x
0,m,∞,∞, p) ≤ ψs

3(x
0,m,∞,∞, p).

The following statement gives the evidence about the attainability on the lower and

upper bounds specified in Theorem 6.

Corollary 3. If for any x 6= x0 the set {j ∈ Nn : x0j = xj = 1} is empty, then for

any m ∈ N any p ∈ [1,∞] the following holds:

ρs3(x
0,m,∞,∞, p) = ϕs

3(x
0,m,∞,∞, p) =

= ψs
3(x

0,m,∞,∞, p) = min
x∈X\{x0}

‖[g(x, x0, R)]+‖p
‖x+ x0‖1

.
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If m = 1, as it was pointed out before,Zs(R) transforms intos-criteria Boolean

linear programming problemZs
B(R), R ∈ R

s×n (see (1)). In this context,Rn is

equipped withl∞, andRs is equipped withlp, 1 ≤ p ≤ ∞. The following known

result illustrates the fact that the upper bound specified inTheorem 6 is right.

Theorem 7. [50] For any p ∈ [1,∞] and s ∈ N, the stability radius of x0 ∈ P s(R)

in Zs
B(R), R ∈ R

s×n is expressed by the formula

ρs3(x
0) = min

x∈X\{x0}

‖[R(x− x0)]+‖p
‖x− x0‖1

.

4 Case Study

For evaluating possibilities of investments in particularregions we chose five economic

unions: Caribbean Single Market and Economy (CSME), Eurasian Economic Union

(EAEU), Mercosur, Gulf Cooperation Council (GCC), CentralAmerican Integration

System (SICA). Gathering the countries, included in those unions, we formed the set

of portfolios. The portfolios were evaluated using values for the global economic risk

(Table 1). The risk evaluations were published in the GlobalRisk Report for the World

Economic Forum in 2016 (http://weforum.org/risks/). It has eight different types: as-

set bubble, deflation, energy price shock, failure of critical infrastructure, failure of

financial mechanism or institution, fiscal crises, unemployment or underemployment,

unmanageable inflation.

All five portfolios are Pareto optimal and based only on the risk evaluation it is not

possible to make a rational decision.

Every portfolio includes different countries. It make sense to implement Corollary

1 and Corollary 3. Following Corollary 2 for the case whenp = ∞ andp′ = 1 the

stability radius for every Pareto optimal portfolio can be calculated by the formula that

will be equal to the lower bound, described in Theorem 1. Based on Corollary 3 the

stability radius can also be calculated using the formula, which is equal to the lower

bound from Theorem 6 for any parameterp ∈ [1,∞].

In Figures 1-6 there are represented changes of the vales forthe lower and upper

bounds of the stability radii depending on the parameterp ∈ [1,∞].
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Table 1: Value function for portfolios

s

CSME 81 63 110 102 79 161 168 61

EAEU 120 68 155 92 137 149 231 90

MERCOSUR 144 50 186 100 124 152 146 119

GCC 125 58 182 192 125 136 254 116

SICA 58 66 171 94 126 139 323 106

In the case when we evaluate the stability radius, varying the parameterp in the

market state space or in the risk space, the values of the lower bounds of the stability

radius for GCC are larger than the values for EAEU. Increasing p the EAEU portfolio

becomes more robust than GCC. Similar situation happens when we consider MER-

COSUR and SICA portfolios. Following Figures 1 and 5 SICA is more robust than

MERCOSUR for the parameterp = 1. Selecting the parameterp close to∞ MER-

COSUR becomes the portfolio with the bigger lower bound thatSICA. This kind of

behavioral can be explained that forp = 1 it is assumed that the changes in the risk

evaluations between the countries are dependent. Setting the parameterp close to∞

we monitor only biggest changes in the initial data and we suppose that the adjustments

of the risk evaluations in different countries do not have influences on risk in the other

countries. As we can notice, depending on the investor assumptions through changing

the parameterp it is possible to customize the monitoring of perturbations.

5 Conclusion

The investor’s goal is to minimize the level of various typesof risks, while portfolio

development motivates the use of multicriteria environment in accordance with the

mathematical and economic models. This approach makes it possible to use a variety

of multicriteria decision-making tools [47, 52]. In this paper, to model various types of
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Figure 3: Values forϕs
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risk, we used bottleneck partial objectives that make the investor to choose a portfolio

with a minimum total level of risk in the worst scenario in themarket, i.e., in a situation

where the risk values are at the maximum.

Another challenge, while measuring various risks, is associated with inaccuracies

of statistical observations and expert assessments. In this context, there is a need to

perform post-optimal analysis for the quantitative evaluation of an extreme level of

initial changes in data that do not violate the portfolio optimality. In this work, the

different cases are analyzed depending on the type of metric, used in the problem pa-

rameter space. In every considered cases the lower and upperbounds for the stability

radius of an effective portfolio have been specified. The straightforward application of

the results to practical calculation is limited due to the enumerative structure of analyt-

ical expressions, which may require a number of comparisonsgrowing exponentially

with n ands. In the case when direct calculation is time consuming (it may happen if

n ≥ 40 ands ≥ 3), getting the values should be calculated heuristically, for example
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Figure 4: Values forψs
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some multicriteria genetic algorithms can be used.
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7 Appendix (for reviewing only,not for publishing)

The following lemma can be easily proven by contradiction.
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Lemma. Let x0 ∈ P s(R), γ > 0. If for any portfoliox ∈ X \ {x0} and every

perturbing matrixR′ ∈ Ω(γ) there exists an indexl ∈ Ns such thatgl(x, x0, Rl +

R′
l) > 0. Thenx0 is Pareto optimal in any perturbed problemZs(R + R′), i.e. x0 ∈

P s(R+R′) asR′ ∈ Ω(γ).

Proof of Theorem 1.

Proof. Let x0 ∈ P s(R). First we proveρ1 ≥ ϕ1. The claim is evident ifϕ1 = 0.

Assumeϕ1 > 0. According to the definition ofϕ1, for any portfoliox ∈ X \ {x0} the

inequality

‖[g(x, x0, R)]+‖∞ ≥ ϕ1(‖x‖p′ + ‖x0‖p′) (9)

holds. Further, we are going to prove by contradiction that

∀R′ ∈ Ω(ϕ1) ∃l ∈ Ns (gl(x, x
0, R′

l) > 0).

Suppose, there exists the perturbing matrixR0 ∈ Ω(ϕ1) with cutsR0
k, k ∈ Ns such

that

gk(x, x
0, Rk +R0

k) ≤ 0, k ∈ Ns.

Then due to (4) for anyk ∈ Ns, we obtain

0 ≥ gk(x, x
0, Rk +R0

k) = max
i∈Nm

(Rik +R0
ik)x− max

i∈Nm

(Rik +R0
ik)x

0 =

= min
i′∈Nm

max
i∈Nm

(Rikx−Ri′kx
0 +R0

ikx−R0
i′kx

0) ≥

≥ gk(x, x
0, Rk)− ‖R0

k‖p∞(‖x‖p′ + ‖x0‖p′) ≥

≥ gk(x, x
0, Rk)−‖R0‖p∞∞(‖x‖p′ +‖x0‖p′) > gk(x, x

0, Rk)−ϕ1(‖x‖p′ +‖x0‖p′).

From the statements above, we deduce

‖[g(x, x0, R)]+‖∞ < ϕ1(‖x‖p′ + ‖x0‖p′),

and it contradicts to (9). Finally, using Lemma, we getx0 ∈ P s(R+R′) for anyR′ ∈

Ω(ϕ1). Hence,ρ1 ≥ ϕ1.

Now we prove thatρ1 ≤ ψ1. According to definition ofψ1 > 0 there exists a

portfoliox∗ ∈ X \ {x0} such that

gk(x
∗, x0, Rk) ≤ [gk(x

∗, x0, Rk)]
+ ≤
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≤ ‖[g(x∗, x0, R)]+‖∞ = ψ1‖x
∗ − x0‖p′ , k ∈ Ns. (10)

Assumingε > ψ1, consider a perturbing matrixR0 = [r0ijk ] ∈ R
m×n×s with elements

r0ijk = δ
x0j − x∗j

‖x∗ − x0‖p
, i ∈ Nm, j ∈ Nn, k ∈ Ns,

whereψ1 < δ < ε. Since in any cutsR0
k ∈ R

m×n, k ∈ Ns, all the rowsR0
ik, i ∈ Nm,

are the same (letA denotes such a row), we have

A = δ
(x0 − x∗)T

‖x∗ − x0‖p
. (11)

Therefore,‖R0‖p∞∞ = ‖R0
k‖p∞ = ‖R0

ik‖p = ‖A‖p = δ, i ∈ Nm, k ∈ Ns, and,

henceR0 ∈ Ω(ε) for anyε > δ. Further, due to (2) and (11), for anyp ∈ [1,∞] the

chain of equalities is true

A(x∗ − x0) = −δ
‖x∗ − x0‖1
‖x∗ − x0‖p

= −δ‖x∗ − x0‖p′ .

Finally, using the above equalities along with (10), we conclude that for anyk ∈ Ns

the following is true

gk(x
∗, x0, Rk +R0

k) = max
i∈Nm

(Rik +A)x∗ − max
i∈Nm

(Rik +A)x0 =

= gk(x
∗, x0, Rk) +A(x∗ − x0) = gk(x

∗, x0, Rk)− δ‖x∗ − x0‖p′ <

< gk(x
∗, x0, Rk)− ψ1‖x

∗ − x0‖p′ ≤ 0.

Therefore,x0 6∈ P s(R+R0). And hence,ρ1 ≤ ψ1. Theorem 1 is proved.

Proof of Theorem 2.

Proof. Let ϕ1 > 0. To fulfill the inequalityϕ1 < ψ1 it is sufficient that inequality

‖x+ x0‖1 > ‖x− x0‖1 holds for anyx ∈ X \ {x0}. To proveρ1 = ϕ1, according to

Theorem 1, it is sufficient to specify a class of problems withρ1 ≤ ϕ1. So, the rest of

the proof is about this. From the definition ofϕ1 > 0 there existsx∗ ∈ X \ {x0} with

ϕ1‖x
∗ + x0‖1 ≥ gk(x

∗, x0, Rk), k ∈ Ns. (12)

Further conclusions are true for anyk ∈ Ns. Denote

i(x0) = argmax{Rikx
0 : i ∈ Nm},
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i(x∗) = argmax{Rikx
∗ : i ∈ Nm},

∆ = ‖x∗ + x0‖1 − ‖x∗ − x0‖1 > 0.

Further assume

(Ri(x∗)k −Ri(x0)k)x
∗ > ϕ1∆, (13)

which impliesi(x0) 6= i(x∗) sinceϕ1∆ > 0. For anyε > ϕ1 the elements of the cut

R0
k in the perturbing matrixR0 we define as follows

r0ijk =







δ, if i = i(x0), x0j = 1,

−δ, otherwise,

(14)

where

min

{

ε,
1

∆
(Ri(x∗)k −Ri(x0)k)x

∗

}

> δ > ϕ1. (15)

Notice also that last inequalities are valid due to (13). Because of the specific construc-

tion ofR0
k we have

R0
ikx

∗ = −δ‖x∗‖1, i ∈ Nm \ {i(x0)}, (16)

R0
i(x0)kx

0 = δ‖x0‖1, (17)

‖R0
k‖p∞ = ‖R0‖p∞∞ = δ, R0 ∈ Ω(ε).

Additionally,

R0
i(x0)kx

∗ = δ(∆− ‖x∗‖1). (18)

Indeed, let

Q1 = {j ∈ Nn : x∗j = x0j = 1},

Q2 = {j ∈ Nn : x∗j = 1, x0j = 0}.

Then

|Q1| = ∆/2,

|Q2| = ‖x∗‖1 −∆/2,

R0
i(x0)kx

∗ = δ(|Q1| − |Q2|),
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and (18) follows.

Further we provegk(x∗, x0, Rk + R0
k) < 0. According to (17) we have

fk(x
0, Rk +R0

k) = max
i∈Nm

(Rik +R0
ik)x

0 = fk(x
0, Rk) + δ‖x0‖1. (19)

Now we show

fk(x
∗, Rk +R0

k) = fk(x
∗, Rk)− δ‖x∗‖1. (20)

Using (16), we yield

fk(x
∗, Rk +R0

k) = max
{

(Ri(x∗)k +R0
i(x∗)k)x

∗, max
i6=i(x∗)

(Rik +R0
ik)x

∗
}

=

= max
{

(fk(x
∗, Rk)− δ‖x∗‖1), max

i6=i(x∗)
(Rik +R0

ik)x
∗
}

.

Therefore, taking into account that

fk(x
∗, Rk)− δ‖x∗‖1 ≥ (Rik +R0

ik)x
∗, i ∈ Nm \ {i(x0), i(x∗)},

in order to prove (20) it is sufficient to check the following inequality

fk(x
∗, Rk)− δ‖x∗‖1 ≥ (Ri(x0)k +R0

i(x0)k)x
∗.

To do this, we use (15) and (18)

fk(x
∗, Rk)− δ‖x∗‖1 − (Ri(x0)k +R0

i(x0)k)x
∗ =

= (Ri(x∗)k −Ri(x0)k)x
∗ − δ‖x∗‖1 −R0

i(x0)kx
∗ >

> δ(∆− ‖x∗‖1)−R0
i(x0)kx

∗ = 0.

Finally, sequentially applying (19), (20), (12) and (15), for any indexk ∈ Ns we get

gk(x
∗, x0, Rk +R0

k) = gk(x
∗, x0, Rk)− δ‖x∗ + x0‖1 ≤ (ϕ1 − δ)‖x∗ + x0‖1 < 0.

And hence, the formula below holds

∀ε > ϕ1 ∃R0 ∈ Ω(ε) (x0 6∈ P s(R+R0)),

which due tox0 ∈ P s(R) producesρ1 ≤ ϕ1. Summarizing, the correctness of (6) now

becomes clear. Theorem 2 is proved.
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Proof of Theorem 4.

Proof. Let x0 ∈ P s(R). First we proveρ2 ≥ ϕ2. It is evident ifϕ2 = 0. Letϕ2 > 0.

According to the definition ofϕ2, for any portfoliox ∈ X \ {x0} the inequality

‖[g(x, x0, R)]+‖∞ ≥ ϕ2‖x+ x0‖1 (21)

is true. Further, by contradiction, we show the correctnessof the formula given below

∀R′ ∈ Ω(ϕ2) ∃l ∈ Ns (gl(x, x
0, R′

l) > 0).

From contrary, let it be so that there exists a perturbing matrix R0 ∈ Ω(ϕ2) with cuts

R0
k, k ∈ Ns such that

gk(x, x
0, Rk +R0

k) ≤ 0, k ∈ Ns.

Then according to (7) for any indexk ∈ Ns we obtain

0 ≥ gk(x, x
0, Rk +R0

k) = max
i∈Nm

(Rik +R0
ik)x− max

i∈Nm

(Rik +R0
ik)x

0 =

= min
i′∈Nm

max
i∈Nm

(Rikx−Ri′kx
0 +R0

ikx−R0
i′kx

0) ≥

≥ gk(x, x
0, Rk)− ‖R0

k‖∞p‖x+ x0‖1 ≥

≥ gk(x, x
0, Rk)− ‖R0‖∞p∞‖x+ x0‖1 > gk(x, x

0, Rk)− ϕ2‖x+ x0‖1.

From the statements above, we deduce inequality

‖[g(x, x0, R)]+‖∞ < ϕ2‖x+ x0‖1,

which contradicts to (21). Finally, applying Lemma, we havex0 ∈ P s(R + R′) for

every perturbing matrixR′ ∈ Ω(ϕ2). Hence,ρ2 ≥ ϕ2.

Now we proveρ2 ≤ m1/pψ2. According to the definitionψ2 > 0, there exists a

portfoliox∗ ∈ X \ {x0} such that

gk(x
∗, x0, Rk) ≤ [gk(x

∗, x0, Rk)]
+ ≤

≤ ‖[g(x∗, x0, R)]+‖∞ = ψ2‖x
∗ − x0‖1, k ∈ Ns. (22)
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Assumingε > m1/pψ2, consider a perturbing matrixR0 = [r0ijk ] ∈ R
m×n×s whose

elements are defined as follows

r0ijk = δ(x0j − x∗j ), i ∈ Nm, j ∈ Nn, k ∈ Ns,

whereε/m1/p > δ > ψ2. Since all the rowsR0
ik, i ∈ Nm in the cutR0

k ∈ R
m×n,

k ∈ Ns are the same in the matrixR0, then we have (letA ∈ R
m denotes such a row)

A = δ(x0 − x∗)T . (23)

‖R0
ik‖∞ = ‖A‖∞ = δ, i ∈ Nm, k ∈ Ns.

From the equalities above and (3), we get

‖R0
k‖∞p = m1/pδ, k ∈ Ns,

‖R0‖∞p∞ = m1/pδ ≥ m1/pψ2.

ThusR0 ∈ Ω(ε) for anyε > m1/pψ2. Further due to (23), we have

A(x∗ − x0) = −δ‖x∗ − x0‖1.

Finally, combining the equality above and (22), we concludethat for anyk ∈ Ns the

following relations are true

gk(x
∗, x0, Rk +R0

k) = max
i∈Nm

(Rik +A)x∗ − max
i∈Nm

(Rik +A)x0 =

= gk(x
∗, x0, Rk) +A(x∗ − x0) = gk(x

∗, x0, Rk)− δ‖x∗ − x0‖1 <

< gk(x
∗, x0, Rk)− ψ2‖x

∗ − x0‖1 ≤ 0.

Thusx0 6∈ P s(R+R0). Hence,ρ2 ≤ m1/pψ2. Theorem 4 is proved.

Proof of Theorem 6.

Proof. Let x0 ∈ P s(R). First we proveρ3 ≥ ϕ3. Without loss of generality, assume

ϕ3 > 0 (otherwise the inequalityρ3 ≥ ϕ3 is obvious). According to the definition of

ϕ3, for anyx 6= x0 the following is true

‖[g(x, x0, R)]+‖p ≥ ϕ3‖x+ x0‖1. (24)
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To prove the lower bound, it is necessary to show that the formula below is true

∀R′ ∈ Ω(ϕ3) ∃l ∈ Ns (gl(x, x
0, Rl +R′

l) > 0). (25)

From contrary, assume there exists a perturbing matrixR0 ∈ Ω(ϕ3) such that

gk(x, x
0, Rk +R0

k) ≤ 0, k ∈ Ns.

Then using (8), we easily deduce

0 ≥ gk(x, x
0, Rk +R0

k) = min
i′∈Nm

max
i∈Nm

(Rikx−Ri′kx
0 +R0

ikx−R0
i′kx

0) ≥

≥ gk(x, x
0, Rk)− ‖R0

k‖∞∞‖x+ x0‖1,

i.e.

g+k (x, x
0, Rk) ≤ ‖R0

k‖∞∞‖x+ x0‖1, k ∈ Ns.

Thus, due toR0 ∈ Ω(ϕ3) while p ∈ [1,∞] we have

‖[g(x, x0, R)]+‖p ≤ ‖R0‖∞∞p‖x+ x0‖1 < ϕ3‖x+ x0‖1.

This contradicts to (24), and hence (25) is true. From here, according to Lemma,x0 ∈

P s(R+R′) for anyR′ ∈ Ω(ϕ3). Hence,ρs3(x
0,m,∞,∞, p) ≥ ϕs

3(x
0,m,∞,∞, p).

Further, we prove thatρ3 ≤ ψ3 holds for anyp ∈ [1,∞]. Let ε > ψ3 > 0, and the

portfoliox∗ 6= x0 is such that

‖[g(x∗, x0, R)]+‖p = ψ3‖x− x0‖1.

Then, taking into account that the normlp depends on the vector continuously, we take

δ ∈ R
s with positive components such that

δk‖x
∗ − x0‖1 > g+k (x

∗, x0, Rk), k ∈ Ns, (26)

and ε > ‖δ‖p > ψ3. Then we construct a perturbing matrixR0 ∈ Ω(ε), where

ε > ‖δ‖p, with the cutsR0
k, k ∈ Ns such that for everyk ∈ Ns the inequality

gk(x
∗, x0, Rk +R0

k) < 0 (27)
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holds. Using components of the vectorδ, we define the elements of anyk-th cutR0
k =

[r0ijk] ∈ R
m×n of the perturbing matrixR0 = [r0ijk ] ∈ R

m×n×s using the formula

r0ijk =







δk, if i ∈ Nm, x
0
j ≥ x∗j ,

−δk, if i ∈ Nm, x
0
j < x∗j .

Then, we have

‖R0
k‖∞∞ = δk, k ∈ Ns.

Therefore, it is easy to see that‖R0‖∞∞p = ‖δ‖p < ε. Additionally, all the rowsR0
ik

(i ∈ Nm) in the cutR0
k, k ∈ Ns are the same and contain componentsδk and−δk

only. Denoting such a row asAk, we obtain

Ak(x
∗ − x0) = −δk‖x

∗ − x0‖1, k ∈ Ns.

From this for anyk ∈ Ns due to (26) we get (27) as follows:

gk(x
∗, x0, Rk +R0

k) = gk(x
∗, x0, Rk) + A(x∗ − x0) =

= gk(x
∗, x0, Rk)− δk‖x

∗ − x0‖1 ≤

≤ g+k (x
∗, x0, Rk)− δk‖x

∗ − x0‖1 < 0, k ∈ Ns.

Thus, whileε > ψ3 there exists a perturbing matrixR0 ∈ Ω(ε) such thatx0 ∈ P s(R)

is not Pareto optimal in the perturbed problemZs(R + R0). This implies that for any

ε > ψ3 we haveρ3 < ε. Hence,ρ3 ≤ ψs
3, and thenp ∈ [1,∞]. Theorem 4 is

proved.
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