
Solar Physics
DOI: 10.1007/•••••-•••-•••-••••-•

Nowcasting Solar Energetic Particle Events Using

Principal Components Analysis

A. Papaioannou1, A. Anastasiadis1,
A. Kouloumvakos2, M. Paassilta3,
R. Vainio3, E. Valtonen3, A. Belov4,
E. Eroshenko4 M. Abunina4 A. Abunin4

c© Springer ••••

Abstract In this work, we perform a principal component analysis (PCA) on a
set of six solar variables (i.e. CME width/size (s) and velocity (u), logarithm of
the solar flare (SF) magnitude (logSXRs), SF longitude (lon), duration (DT )
and rise time (RT )). We show a classification of the solar energetic particle
(SEP) events radiation impact (in terms of the NOAA scales) with respect to
the characteristics of their parent solar events. We further attempt to infer the
possible prediction of SEP events. In our analysis, we utilize 126 SEP events
with complete solar information, from 1997 to 2013. Each SEP event is a vector
in six dimensions (corresponding to the six solar variables used in this work).
PCA transforms the input vectors into a set of orthogonal components. The
mapping of the characteristics of the parent solar events to a new base defined by
these components led to the classification of the SEP events. We further, applied
logistic regression analysis with single, as well as, multiple explanatory variables,
in order to develop a new index (I) for the nowcasting (short-term forecasting) of
SEP events. We tested several different schemes for I and validated our findings
with the implementation of categorical scores (Probability of Detection - POD,
False Alarm Rate - FAR). We present and interpret the obtained scores and we
discuss the strengths and weaknesses of the different implementations. It was
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shown that I holds prognosis potential for SEP events, with the maximum POD
achieved being 77.78% and the relative FAR being 40.96%.

Keywords: Solar Energetic Particle Events; Statistical Methods; Flares; Coro-
nal Mass Ejections; Principal Components Analysis, Logistic Regression Method

1. Introduction

Solar energetic particle (SEP) events are marked as sudden excesses over a
background level in the time profiles of several different energies, ranging from
≈ 10 keV to ≈ 10 GeV/nuclei. Those last from hours to a few days and include
electrons, protons, alpha particles, and heavier ions up to Fe (Reames, 2017).
SEP events are categorized into “impulsive” and “gradual” ones based on their
parent solar events (Reames, 1999). In particular, the impulsive SEP events are
considered to be associated with solar flares (SFs) and type III radio bursts.
These events have an Fe/O ≈1 and a narrow injection cone. On the other
hand, gradual SEP events are presumably associated with coronal mass ejections
(CMEs) and type II radio bursts, while they have an Fe/O ratio ≈0.1 and a wide
injection cone (Reames, 2013). The underlying argumentation for this dichotomy
is based on the fact that SEP events are produced either in the solar atmosphere
by particle acceleration processes in association with flares of class higher than
C (Anastasiadis, 2002) or by a CME-driven shock in the interplanetary (IP)
space (Cane and Lario, 2006). However, as the observational evidence at hand
shows, this dichotomy has been regularly violated (Kocharov and Torsti, 2002;
Cane, Richardson, and Von Rosenvinge, 2010; Papaioannou et al., 2016). At this
point, it is worth noting that recent identifications of wide-spread SEP events
(e.g. Rouillard et al., 2012; Dresing et al., 2012; Kouloumvakos et al., 2016) has
challenged and extended our current understanding on SEP events (Dröge et al.,
2010; Wiedenbeck et al., 2012; Gómez-Herrero et al., 2015; Lario et al., 2016,
2017).

SEP events cause failures to spacecraft, damaging their electronic components
(Iucci et al., 2005; Mikaelian, 2009) and, at the same time, pose a radiation threat
for astronauts (Turner, 2006; Chancellor, Scott, and Sutton, 2014) and air crews
(Lim, 2002; Mishev, 2014; Tobiska et al., 2015). As a result different concepts and
techniques, focused on the short-term forecasting (nowcasting) of SEP events,
have been developed and set to operation by the scientific community. As a
rule, these concepts are based on data driven approaches. The basic inputs
utilized are: the magnitude and the position of the parent SF on the solar
disk (Smart and Shea, 1989), the time-integrated soft X-ray flux of SFs, and
the occurrence (or non-occurrence) of metric radio type II and type IV bursts
(Balch, 1999, 2008), evidence of particle escape (i.e. type III bursts) (Laurenza
et al., 2009; Alberti et al., 2017), near-Earth differential and integral proton
fluxes (Núñez, 2011), type II and type III radio bursts (Winter and Ledbetter,
2015). In addition, the scatter-free propagation of the near-relativistic electron
measurements or of the sub-relativistic protons (E≥433 MeV) have been utilized
either to infer the corresponding intensity of ions in the IP space (Posner, 2007)
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or to develop a concept for the prompt identification of ongoing high energy
SEP events (Souvatzoglou et al., 2014). Nowadays, the need for integrated SEP
event nowcasting systems has led to the implementation of ensemble solutions,
among them: the Forecasting Solar Particle Events and Flares (FORSPEF) tool
(Papaioannou et al., 2015; Anastasiadis et al., 2017) and the Space Radiation
Intelligence System (SPRINTS) framework (Engell et al., 2017).

A wealth of statistical studies has indicated the dependence of the probability
of occurrence of SEP events on the magnitude and the longitude of the SF
(Kurt et al., 2004; Belov et al., 2005; Belov, 2009), and the relation between
the peak proton flux and the velocity of the CME (Kahler, 2001), as well as the
magnitude of the SF (Cane, Richardson, and Von Rosenvinge, 2010). It has also
been shown that SEP events are related to both type II and type III radio bursts
(Miteva, Samwel, and Krupar, 2017). However, most studies are limited to two
dimensional (2D) correlations. In addition, similar coefficients are identified for
the pair-wise correlation of the SEP peak intensity (at E>10 MeV) to both the
SF magnitude and the CME speed (Dierckxsens et al., 2015; Papaioannou et al.,
2016; Paassilta et al., 2017; Belov, 2017), while the situation is further compli-
cated by the fact that the solar parameters are not independent. To this end,
Trottet et al. (2014) performed an analysis with partial correlation coefficients
in order to disentangle the effects of correlations between the solar parameters
themselves. The next step was to investigate possible 3D relationships among
three numeric variables projected in two dimensions. From such a study it was
verified that the combination of strong SFs and fast CMEs result in enhanced
radiation storms. Furthermore it was shown that strong SFs result in enhanced
radiation effects even when associated with moderate CMEs. In addition, these
strong SFs can lead to major radiation storms even when they are not situated
on the west part of the visible solar disk (Papaioannou et al., 2016). Therefore,
aiming at a higher dimensional order correlations seems to be the way forward.
Given the complexity of the parent solar events of SEPs (e.g. SFs, CMEs) and
the different variables (e.g. Geostationary Operational Environmental Satellite
(GOES) peak photon flux, longitude of the SF, velocity and width of the CME)
that give rise to their peak proton flux, possible new methods for the nowcasting
of SEP events have to be associated with more accurate mathematical methods
of statistical analysis.

To this end, one method that can be used is the principal component analysis
(PCA), a multivariate statistical technique being used to examine the interrela-
tions among a set of variables (e.g. a dataset) aiming to identify the underlying
structure of those variables (Jolliffe, 2002). In particular, it extracts the essential
information hidden in the dataset, represents it as a set of new orthogonal vari-
ables - called principal components (PCs), and displays the pattern of similarity
of the observations and of the variables as points in maps (Abdi and Williams,
2010). PCA has often been used in several diverse scientific fields, since it is a
straightforward, non parametric method of extracting relevant information from
multi-variable data sets (Shlens, 2014). Recently, this method was applied to
radio data (i.e. type II and type III bursts identifications) and was proven to
lead to promising results (Winter and Ledbetter, 2015). Thereby, the goal of this
article is to utilize PCA in order to perform a classification and to derive and
test a possible index (I) for the nowcasting of the SEP events.
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2. Data and Methods

2.1. A Database of SFs, CMEs and SEP Events

Recently, we presented a new catalogue of SFs, CMEs, and SEP events, spanning
over almost three solar cycles from 1984 to 2013 (Papaioannou et al., 2016). This
database includes a total of 20498 SFs, 3680 CMEs, and 314 SEP events1. The
relevant solar information incorporated in the catalogue (for both SEP and non-
SEP events), comprises: a) peak soft X-ray (SXR) flux, b) longitude, c) latitude,
d) SXR fluence, e) rise time, and f) duration of the parent SF, as well as, g) the
velocity and h) the width of the associated CME. For the SEP events, the peak
proton flux and the fluence were determined for four integral energy channels
(E>10-, >30-, >60- and >100 MeV) for all SEP events with a peak proton flux,
at E > 10 MeV, of > 1 pfu (pfu = particle flux unit = particle cm−2 sr−1

s−1). In order to apply principal component analysis (PCA), we have identified
a complete parametric grid of six (6) solar variables (i.e. CME width/size (s)
and velocity (u), logarithm of the SF magnitude (logSXRs), SF longitude (lon),
duration (DT )2 and rise time (RT )), from the aforementioned database, covering
the time period from 1997–2013. This resulted in a total of 3663 records with
complete information for all six variables, out of which 126 were SEP events and
3537 were non-SEP events.

2.2. Principal Component Analysis (PCA)

The principal component analysis (PCA) is a multivariate technique that allows
the analysis of a data table in which observations are described by several inter-
correlated quantitative dependent variables (Abdi and Williams, 2010). The goal
of traditional PCA is to: (a) reduce the number of variables and (b) detect
structures in the relationships between variables, that is to classify variables.
As concerns (a), PCA reduces the number of variables to a smaller number of
uncorrelated variables called principal components which account for, as much
as possible, variance in the data. By definition, the first principal component
(PC1) is the one which maximizes the variance when data are projected onto a
line and the second one (PC2) is orthogonal to PC1 while it still maximizes the
remaining variance.

Mathematically speaking, PCA is defined as an orthogonal linear transforma-
tion that transforms the set of initial variables to a new coordinate system such
that the greatest variance by some projection of the data lies on the first coor-
dinate which is called the first principal component (PC1), the second greatest

1The associated CMEs span from 1997 to 2013, with the availability of the continuous
SOHO/LASCO measurements
2The start time of an X-ray event is defined as the first minute, in a sequence of 4 minutes,
of steep monotonic increase in the 0.1-0.8 nm flux. The end time is the time when the flux
level decays to a point halfway between the maximum flux and the pre–flare background level.
Thereby, the duration time (DT ) is the time difference between the end and the start time of
the flare.
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variance on the second principal component (PC2), and so on (e.g. PC3, PC4,
...) (Shlens, 2014).

In the most general case, a PCA transformation is defined by a set of p-
dimensional vectors (p is the number of variables under study) of loadings w(k)

(k is the number of the component) that map each row vector of the initial
variables X(i) to a new vector of principal component scores tk(i), given by:

tk(i) = X(i) ·w(k), (1)

in such a way that the individual component scores t inherit the maximum
possible variance from X, with each loading vector w constrained to be a unit
vector. In order to maximize the variance, the loading vectors w(k) have to
satisfy the following criterion:

w(k) = arg max
‖w‖=1

{
‖X̂kw‖2

}
= arg max

{
wT X̂T

k X̂kw
wTw

}
, (2)

therefore the loading vectors are eigenvectors of XTX, where XTX itself can
be recognised as proportional to the covariance matrix of the dataset X and
in this case the full principal components decomposition of X can be given as
T = XW, where W is a p-by-p matrix whose columns are the eigenvectors of
XTX (e.g. Abdi and Williams, 2010).

3. Application of the PCA

In order to perform a PCA, a dense filled parametric space is required; hence
from the initial sample of the 314 SEP events (Papaioannou et al., 2016), a
total of 126 SEP events presenting complete information with respect to all
SFs and CME parameters, which in turn were treated as the variables for the
PCA, were chosen. This analysis transforms the input vectors (here, each SEP
event is a vector in six dimensions corresponding to the six variables extracted
from the database, shown in the Appendix, Table A1) into a set of orthogonal
components. The inputs of the analysis were: a) the logarithm of the peak flare
flux, (logSXRs), b) the longitude of the associated flare, (lon), c) the flare rise
time, (RT ), d) the flare duration time, (DT ), e) the velocity of the CME, (u)
and f) the size of the CME, (s).

In our analysis we used the weighted principal component analysis (Abdi and
Williams, 2010; Jolliffe, 2002). First, we centred our variables so that the mean
of each column of the matrix X is equal to zero. Then, we used as weights the
inverse variable variances while performing the PCA. Despite the fact that the
PCA is a mathematically optimal method, it is sensitive to outliers in the data
that produce large errors, which in turn the PCA tries to avoid. In the weighted
PCA, the algorithm increases robustness by assigning different weights to data,
based on their estimated relevancy, therefore the contribution of the outliers is
reduced. Next, we computed the principal component transformation using the
singular value decomposition (SVD) of X.
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Table 1. Results of the Principal Component Analysis
(PCA)

Component Latent Variance (%) Cumulative (%)

PC1 2.485 41.42 41.42

PC2 1.314 21.90 63.32

PC3 0.997 16.61 79.94

PC4 0.649 10.82 90.76

PC5 0.447 7.44 98.20

PC6 0.108 1.79 100

Table 1 presents the outputs of the method. Column 1 provides the num-
ber of the component, column 2 presents the corresponding eigenvalues of the
covariance matrix of the six variables of our database (i.e. the latent), column
3 gives the variance expressed in percentages and column 4 shows the cumula-
tive variance, again in percentages. The first principal component PC1 explains
41.42% of the variation, with the following three components, i.e., PC2, PC3,
and PC4 that correspondingly explain, the 21.90%, 16.61%, and 10.82% of the
variation. The first four components (e.g. PC1 – PC4) account for the 90.76% of
the variation, while the other two components (e.g. PC5 and PC6) explain the
remaining ∼10% of the variation.

Based on the findings presented in Table 1, Figure 1 displays the number
of the principal component versus its corresponding eigenvalue, ordered from
the largest to the smallest. This is the so-called scree plot and it depicts the
explained variance as a function of the principal components.

Figure 1. Scree plot of the percentual variability explained by each principal component.

Next the correlation between the first two principal components, which seem
to be the dominant ones in our sample, and the original variables, called compo-
nent loadings, is presented in Table 2. Column 1 provides the initial variables,
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columns two to seven present the calculated loadings per principal component.
Focusing on the first two principal components, it can be seen that the highest
component loading for PC1 comes from the velocity of the CME (u), of the width
of the CME (w), and the logarithm of the peak flare flux (logSXRs), while PC2
loads on the flare duration time (DT ), and the the flare rise time (RT ).

Table 2. Principal component loadings

Variables PC1 PC2 PC3 PC4 PC5 PC6

velocity of the CME (u) 0.4145 0.4478 -0.0202 0.3786 0.6955 -0.0164

width of the CME (w) 0.4474 0.3584 -0.0701 0.3938 -0.7145 -0.0293

flare duration (DT) 0.5012 -0.4940 -0.0137 -0.0024 0.0370 0.7094

flare longitude (Lon) 0.0504 0.0330 0.9972 0.0255 -0.0360 0.0086

flare rise time (RT) 0.4954 -0.5032 0.0012 -0.0678 0.0492 -0.7031

log. peak flare flux (logSXR) 0.3591 0.4156 -0.0118 -0.8345 -0.0269 0.0341

3.1. Classification of SEP Events

As stated in Section 3, it is possible to interpret the principal components in
a meaningful manner and identify structures reflected in the obtained results.
To this end, Figure 2 presents the score3 plots of the SEP sample for different
groups of the initial parameters and variables (from the top panel on the left,
labelled with a, to the bottom panel on the left, labelled with g), as well as the
loading plot (bottom panel on the right, labelled with h). The first four panels
of Figure 2 focus on the variables that stem from solar flares, while the following
two panels, i.e., e and f display the obtained score plots on the basis of the
CME characteristics. Panel a is colour coded on the basis of the position of the
parent solar flare, i.e., green stands for western longitudes (W20 – W120), blue
for central longitudes (E20-W20), and brick for eastern (E90-E20) longitudes of
the SEP associated solar flares. Next, panel b is colour coded on the basis of the
GOES peak photon flux with blue colour presenting C class, brick colour M class,
and green colour X class solar flares. Panel c is colour coded on the basis of the
solar flare rise time, with blue colour denoting gradual flares (i.e. rise time ≥ 13
min; Park et al. (2010)) and brick colour standing for impulsive solar flares (i.e.
rise time < 13 min). Furthermore, panel d is colour coded with respect to the
duration of the solar flare. Blue colour stands for long duration solar flares (i.e.
those lasting ≥ 60 min), while brick colour for short duration solar flares (i.e.
those lasting < 60 min). These four variables represent the timing, the position
as well as the magnitude of the solar flares, associated with SEPs. The next two
panels in Figure 2 are colour coded on the basis of the CME characteristics.
Panel e presents halo (Earth directed, 360◦ width) CMEs in blue colour and all

3In the weighted PCA scores are calculated as follows: X −mean(X)/variance(X)
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other non halo CMEs in brick colour. Panel f depicts fast CMEs (≥1000 km s−1)
in blue and slow CMEs (<1000 km s−1) in brick colour.

In addition, since the peak proton flux of each of the 126 SEP events was
precalculated in our database, we distributed the events with respect to their
achieved solar storm level4. Panel g presents the score plot of all 126 events
colour coded as a function of their solar radiation scale, e.g. S1 in brick colour,
S2 in green, S3 in purple, S4 in grey, and minor events (E> 10 MeV <10 pfu)
in blue colour. This is directly comparable to panels a-f and demonstrates the
effect of the different groupings (classification) on the derived peak proton flux
of the SEP events in our sample.

Finally, panel h depicts all six variables of our database, represented by a
vector (e.g. load vector), and the direction and length of the vector indicates
how each variable contributes to the two principal components, i.e. the loading
of each variable to the first two principal components as those are also presented
in Table 2. In this 2D biplot (that overlays the score and the loading plot) we also
include a point for each of the 3663 observations, with coordinates indicating the
score of each observation for the two principal components in the plot. These
points are scaled with respect to the maximum score value and the maximum
coefficient length, thus only their relative locations can be determined from the
biplot. Red colour stands for non-SEP entries in the database, while blue colour
represents SEP related entries. The ends of the vectors represent the correlations
of each variable with each component and the direction of the vectors shows
that the values of the variable increase in that direction. The first principal
component, on the horizontal axis, (PC1) has positive coefficients for all six
variables, while the CME variables w and u, as well as the logSXR seem to
load high in PC1. At the same time, the second principal component (PC2),
on the vertical axis, has negative coefficients for the variables DT and RT , and
positive coefficients for the remaining four variables. Inspection of Table 2 shows
that PC2 significantly loads on DT and RT . The variable (lon) has the lowest
contribution to the first two principal components. From panel h of Figure 2,
one can see that the velocity of the CME (u), the size of the CME (s), and the
logarithm of the peak flare flux (logSXRs) load high in PC2, while the duration
of the solar flare (DT ), and the the flare rise time (RT ) load high in PC1. As a
result, two groups can be distinguished.

A comparison of the score plots a-f to the score plot [g] identifies which
SEP events will result in enhanced peak proton fluxes (at E> 10 MeV). In
particular, SEP events related to fast and halo CMEs (panels e, f), as well as
solar flares of significant importance (> M class - panel b) lead to significant peak
proton fluxes, categorized as S4, S3, and S2 solar radiation storms (panel g). On
the other hand, slow and non–halo CMEs associated with small, in magnitude,
solar flares (C class), result to minor or S1 solar radiation storms. Furthermore,
impulsive and short duration solar flares (panels c, d) are mostly situated on
the western part of the visible solar disk (panel a), are associated to significant
solar flares (M and X class) and result to enhanced radiation storms (panel g).

4http://www.swpc.noaa.gov/noaa-scales-explanation
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Figure 2. Results of the PCA. From top to bottom, seven score plots, colour coded on the
basis of different groupings of the variables (see text for details), while the bottom panel on
the right depicts a 2D biplot.
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Finally, gradual and long duration solar flares are attributed mostly to M class
flares, with minor or S1 solar radiation storms, being prevalent.

4. SEPs Short-Term Forecasting (Nowcasting) Based on PCA

As a next step, an attempt was made to identify whether the results from
the multi-variable PCA can be used to quantify the occurrence (or not) of an
SEP event. This is because, as denoted above (see Section 3) the parametric
space of the two principal components may lead to a dichotomous separation
between SEP events and non-SEP events. To this end, we further investigated
the nowcasting capabilities of the PCA parametric space with the application of
the logistic regression method (Garcia, 2004; Laurenza et al., 2009; Winter and
Ledbetter, 2015). Our results are summarized in the following:

4.1. Application of the Logistic Regression

At this point we applied the logistic regression analysis, a statistical method in
which there are one or more independent variables (the PCA components in our
case) that determine an outcome which is the dependent variable (Hosmer Jr,
Lemeshow, and Sturdivant, 2013). The outcome is a binary or dichotomous
variable, i.e. there are only two possible outcomes, 1 (SEP events in our case,
TRUE or success) or 0 (non-SEP events in our case, FALSE or failure).

The main purpose of the logistic regression analysis is to find the best fitting
model in order to describe the relationship between the dichotomous characteris-
tic of interest (dependent variable, response or outcome) and a set of independent
(predictor or explanatory variable) variables, which can be discrete and/or con-
tinuous (Hosmer Jr, Lemeshow, and Sturdivant, 2013). Rather than choosing
parameters that minimize the sum of squared errors (like in the ordinary regres-
sion), the logistic regression analysis estimates the parameters that maximize
the likelihood of observing the sample values. The application of this method
generates the coefficients of a sigmoidal function to predict a logit transformation
(i.e. the inverse of the sigmoidal “logistic” function) of the probability (Harrell,
2001).

In detail, we considered a generalized “logistic” function to model the SEP
occurrence probability as a function of the explanatory variables, which in our
analysis will be the PCA components. The “logistic” function is defined as:

hθ(g(x)) =
1

1 + e−θT g(x)
(3)

and it is parametrized by θ, which are the coefficients of the function, and g(x)
which is a function of the explanatory variables xi. In connection to the principal
components, the explanatory variables xi can be defined either as vector-matrix
or as an n-dimensional matrix of any linear or non-linear relation between the
principal components (PC1, PC2, ...). In particular, in the one-parametric linear
logistic regression case xi is a vector matrix, 1i is the unity matrix and g(x)=
(1i, xi) = (1,PC1i) or (1,PC2i) or (1,PC1i+PC2i) and the product θT g(x) =
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θ0 + θ1xi, where x1, x2, ..., xi are the explanatory variables defined above. In the
multivariate case (e.g. multiple logistic regression), xi is a matrix and g(x) =
(1i, x

j
i ) = (1i, x

1
i , x

2
i , ...), where each column-vector xj can be defined in any

linear or non-linear relation between the PCs. Therefore, in the multiple logistic
regression the product θTxji = θ0 +θ1x

1
i +θ2x

2
i + ..... Moreover, the independent

(explanatory) variables can be even the power terms or some other non-linear
transformations of the original independent variables (interaction terms), for
example the simplest case of multiple non-linear logistic regression with two
explanatory variables will have θT g(x) = θ0 + θ1x

1
i + θ2x

2
i + θ3x

1
ix

2
i . In our

analysis we will apply different logistic regression probabilistic models based on
the selection of the function g(x), to estimate their accuracy and their categorical
scoring in every case.

To estimate the coefficients, θ, of the “logistic” function we used the principle
of maximum likelihood, therefore we need to minimize the negative log likelihood
function (i.e. the cost function), given the current training set (Shevade and
Keerthi, 2003). For the logistic regression, the cost function is defined as:

J(θ) = − 1

m

m∑
n=1

y(i)log(h(x(i))) + (1− y(i))log(1− h(x(i))), (4)

which is a convex cost function that can be derived from statistics using the
principle of maximum likelihood estimation (Govan, 2006). To minimize the
logistic regression cost function we use an advanced cost minimization algorithm
which is based on the BFGS (Broyden-Fletcher-Goldfarb-Shanno) Quasi-Newton
method (Head and Zerner, 1985; Schraudolph, Yu, and Günter, 2007).

5. A Possible Index for the Prognosis of SEP Events

5.1. Logistic Regression With One Predictor or Explanatory Variable

In this scheme we produced an index (I) from the estimated principal com-
ponents of the flare and CME parameters of Section 3. Our purpose was to
determine if such an index could be used for the forecasting of the occurrence
of SEPs. In order to effectively use the new index for SEP forecasting, there
should be an apparent separation between the two categories, i.e. the non-
SEP events and the SEP ones, based on the distribution characteristics (mean
value, variance) of each case. With the use of box-plots we show in Figure 3 the
distributions of the first three principal components (e.g. PC1, PC2, and PC3)
for the two separate categories (responses). For the first and the second principal
component (PC1 and PC2) the SEP events are clearly separated from the non-
SEP ones, while for the third component there is no apparent separation. From
the results of the Figure 3 (panel on the left) it is clear that one may attempt to
make use of the first two principal components as a new forecasting index. We
started our analysis with the first principal component (PC1) of the PCA and
we defined the index (I) as follows:
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Figure 3. Box plots of the principal component score values for the non-SEP and the SEP
events separately. The red line inside the box indicates the median of the distributions, the
bottom and top edges of the box indicate the first and third quartiles respectively (i.e. 25th
and 75th percentile), and the outermost lines indicate the maximum and minimum values of
the distribution without the outliers which are depicted with the red crosses (panel on the left
hand side). The resulting fitting from the logistic regression (panel on the right hand side), see
text for details.

I = PC1 = A1 · logSXR + A2 · long + A3 · RT + A4 ·DT+

A5 · u + A6 · w
(5)

The coefficients A1, ..., A6 are the loadings of the first principal component (PC1)
that have been estimated from the PCA (see column 2 of Table 2), so that most
of the variance (i.e. 41.42 %) of the initial observations, i.e. the SF and CME
parameters (see Table 1 and Figure 1), is taken into account. Next, we applied
the logistic regression method with one predictor (explanatory) variable in order
to identify the probability of SEP occurrence as a function of the new index I.
From the logistic regression we estimated the parameter θ that best fits to the
response variable, i.e. the two categories: SEP events or non-SEP events (see
Equations 3 and 4). The resulting fitting from the logistic regression is depicted
in Figure 3 (panel on the right). In particular, this panel presents the logistic
regression curve that depicts the probability of having an SEP (or non-SEP)
event as a function of the index I which for this example was selected to be the
PC1. The θ parameter controls the characteristics of the logistic regression curve
and the blue and the red points are the actual observations (SEPs or non-SEPs)
that has to be fitted in the probabilistic sense with the logistic function.

From this analysis we found that the cost function reaches a minimum for
θ = [−4.553, 0.865] and for a probability threshold of 50%, which is expressed
as an index value of I = 5.264, 27.0% of the SEP events lie above and 99.2%
of the non-SEP ones lie below this index value. These measures can be better
realized by constructing a confusion matrix (a special kind of contingency table;
Anastasiadis et al. (2017); Davis and Goadrich (2006) for a probability threshold
of 50%, therefore, we have 34 true positive (TP, a) predictions, 27 false positive
(FP, b) predictions, 3510 true negative (TN, d) predictions, and 92 false negative
(FN, c) predictions. From the above values we calculated the probability of
detection (POD, a/a + c) and the probability of a false alarm (PFA) or false-
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alarm rate (FAR, b/a+b) (Balch, 2008; Anastasiadis et al., 2017). We found that
with the use of the first principal component as a predictor variable we have a
relatively high false-alarm rate, FAR = 44.3% (27/61) and the probability of
detection was low, POD = 27.0% (34/126).

We additionally used as an index the second principal component (PC2) and
a linear combination of PC1 and PC2 (i.e. PC1+PC2), and we applied again the
logistic regression method with one predictor (explanatory) variable, in order to
investigate if the predictions qualitatively change. From the logistic regression
we found that using I = PC2 the overall accuracy of the scheme significantly
dropped, resulting in a POD = 15.1%. It seems that the use of the second
component as an index cannot effectively separate our sample into the two
categories. As a next step, using I = PC1+PC2 we found results improved
to those obtained for I =PC1. The POD was 43.7% (55/126) and the FAR was
31.25% (25/80). The probability of detection improved significantly and, at the
same time, we gained a relatively lower FAR.

5.2. Multivariate Logistic Regression

As a next step we applied a multivariate logistic regression (Tabachnick and
Fidell, 2007) to examine the SEP occurrence probability as a function of an
index with multiple explanatory variables. In this case the index was treated as
a multidimensional array comprising of the principal components of the PCA.
We started with the simplest case which is the 2D logistic regression of the first
two principal components. In this case the index is defined as I = [PC1, PC2],
where PC1 and PC2 are arrays of the first and the second principal component
score values, respectively, and their dimension is 1 × N where N is the length of
our dataset (i.e. 126 SEPs + 3537 non-SEPs = 3663 records), therefore, I is a
2 × N dimensional array. The application of the multivariate logistic regression
is based on the method presented in Section 4.1.

In the left hand side of Figure 4 we show a scatter plot of the two principal
components. Red circles depict the non-SEP events and blue crosses the SEP
events. From the characteristics of this figure it is clear that the use of the
two principal components in a multivariate regression can effectively separate
the events into the two categories of non-SEPs and SEPs. Although there is
significant scatter from the perfect dichotomous prediction case, SEP events
tend to be grouped in a region that can be visually separated from the region
where non-SEPs appear. We performed the multivariate logistic regression in
the first two principal components and we found that the cost function reaches
a minimum for θ = [−5.555, 1.042, 0.719]. In Figure 4 we show with a straight
line the resulting decision boundary for a probability threshold of 50%.

From the results of the multivariate logistic regression we constructed the
confusion matrix and we found 69 TP, 57 FN, 3507 TN, and 30 FP predictions.
From the confusion matrix we also calculated the POD and the FAR of this
scheme for a probability threshold of 50%. We found that the POD of this scheme
was 54.8%(69/126) and the FAR was 30.3%(30/99) which are both significantly
better than the POD and FAR that we estimated with the logistic regression of
the 1D index in the previous section.
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Figure 4. Scatter plot of the SEP (blue crosses) and non-SEP (red circles) events, as they
map on the projected space of PC1 and PC2. The decision boundary for a pth = 50% of the
I(2) scheme is depicted in the left hand side panel, while three decision boundaries for pth =

25%, 50% and 75% of the I(2+O2) scheme are depicted in the right hand side panel. See text
for details.

Table 3. Summary of Categorical Scores per scheme

index Form (Scheme) POD (%) FAR (%) HSS

I(1) [PC1] 26.98 44.26 0.3490

I(2) [PC1, PC2] 54.76 30.30 0.6013

I(3) [PC1, PC2, PC3] 55.56 28.57 0.6134

I(4) [PC1, PC2, PC3, PC4] 53.97 29.17 0.6007

I(5) [PC1, ..., PC5] 53.17 29.47 0.5943

I(6) [PC1, ..., PC6] 53.17 28.72 0.5973

I(2+O2) [PC1,PC2,PC12,PC22,PC1 · PC2] 56.35 31.07 0.6080

I(3+O2) [PC1,PC2,PC3,PC12,PC22,PC32,PC1 · PC2] 58.73 24.49 0.6502

Further, we extended our analysis using different combinations of the principal

components for the construction of the index as a matrix. We started by adding

to the matrix I(2) = [PC1,PC2] one component at the time until we included

all six components (e.g. I(6) = [PC1,PC2,PC3,PC4,PC5,PC6]). In every case

we performed multivariate logistic regression and we calculated the POD and

FAR for every new index to examine its performance. The results for the derived

POD and FAR are presented in Table 3. From this analysis it seems that the

resulting POD and FAR do not change significantly with the addition of more

components to the index matrix. The best POD is obtained for I(2), while the

best FAR is obtained for I(3). The optimal score for each index can be traced

using the Heidke skill score (HSS), which is a measure of skill in forecasts and

quantifies the ability of achieving correct predictions with respect to chance. For

a probability threshold 50% we found that the best optimal HSS is obtained for

I(3), while for I(2) we have the next best score (see Table 3).
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5.3. Multivariate Logistic Regression with Interaction Terms

In this part of our analysis we performed a logistic regression with the inclusion
of interaction terms in the index matrix. The interaction terms are usually
either square (or higher order) values of the initial explanatory variables (i.e.
[PC12,PC22, ...]) or products of the explanatory variables (i.e. [PC1·PC2,PC2·PC3, ...]).
With this method the decision boundary is a non-linear function and its para-
metric form will depend on the selection of the interaction terms. For example
in Figure 4 (panel on the left), where no interaction terms are included in the
model, the decision boundary is a straight line (PC2 = a+bPC1) which separates
SEPs from non-SEPs. Higher order terms would lead to complex boundaries with
higher order parametric forms.

In addition, we examined if the inclusion of the interaction terms into the logis-
tic regression analysis scheme leads to an improvement of the prediction accuracy
of our model. We started from the simplest case of I(2) = [PC1,PC2] and we

added interaction terms in the form of I(O
2) = [PC12,PC22,PC1·PC2]. The new

index matrix becomes I(2+O
2) = [PC1,PC2,PC12,PC22,PC1·PC2]. We found

that the cost function becomes minimum for θ = [−6.043, 1.379, 1.188,−0.041,−0.058,−0.105].
Additionally, we found 71 TP, 55 FN, 3505 TN, and 32 FP predictions which
yield a POD of 56.35% (71/126) and a FAR of 31.07% (32/103) (for a threshold
set at 50%). The HSS was found to be 0.608 therefore the performance of this
scheme seems to be better (see Table 3). Figure 4 (panel on the right) illustrates
the resulting decision boundaries for three different probability thresholds (i.e.
pth = 25%, 50%, and 75%) for this scheme. It seems that the inclusion of the
non-linear terms in the index matrix, which also results in a non-linear decision
boundary, improves the overall performance of our method.

We further extended the above method by considering more principal com-
ponents in the index matrix and by adding the corresponding interaction terms.
Since the complexity of the method increases significantly with the addition of
new components, we limited our analysis up to the fourth principal component.
From this analysis we found that after the inclusion of the fourth component and
its interaction terms, in the model, the performance remained almost constant.

6. Categorical Scores

The schemes with the best skill score were I(3) and I(3+O
2) (see Table 3). As a

result, we calculated their categorical measures as a function of the probability
threshold. That is we treated pth as an independent parameter (not set to 50%,
as this was the case in Section 5) ranging between 0.0 to 1.0 with a step of 0.1. For
both schemes we then constructed the performance categorical quality measures
POD, FAR, and HSS, which are considered as functions of pth (Laurenza et al.,
2009; Anastasiadis et al., 2017).

Figure 5 depicts the categorical quality measures for I(3) (panel on the left)

and I(3+O
2) (panel on the right) versus the pth level. POD (blue colour line),

FAR (brick colour line), and HSS (orange colour line) are presented in each of the
two panels. Both POD and FAR are significantly high and tend to decrease when
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Figure 5. Categorical Scores (POD, FAR, HSS; see text for details) for I(3) and I(3+O2) .

pth increases. The optimal skill score for pth is an actual settlement in order to
achieve maximum POD, minimum FAR, and optimized HSS. For both schemes,
the optimal skill score is achieved at a range of pth from 25% to 40%. The
optimal HSS is observed at pth = 0.33 (HSS=0.6411) for I(3) and at pth = 0.25

(HSS=0.6579) for I(3+O
2). In turn, this results in a POD = 65.87% and a FAR

= 35.16% as well as a POD = 77.78% and a FAR = 40.96%, respectively.

7. Discussion and Conclusions

We analysed 126 SEP events and 3537 non-SEP events with complete solar
associations expressed in six variables (i.e. a) the logarithm of the peak flare
flux (logSXRs), b) the longitude of the associated flare (lon), c) the flare rise
time (RT ), d) the flare duration (DT ), e) the velocity of the CME (u), and f)
the size of the CME (s)), occurring in 1997 – 2013.

Next, we applied a Principal Component Analysis (PCA) to the SEP events
of our sample and showed that significant radiation storms, categorized as S4,
S3 and S2, are related to fast and halo CMEs, as well as SFs of class larger
than M. PCA, also, showed that impulsive and short duration, strong (M and
X class) SFs mostly situated on the west part of the visible solar disk also result
to enhanced radiation storms, as illustrated in the different panels of Figure 2.
These results are in agreement with and, actually, summarize earlier independent
studies (e.g. Belov et al., 2005; Cane, Richardson, and Von Rosenvinge, 2010;
Huang, Wang, and Li, 2012; Park and Moon, 2014; Papaioannou et al., 2016;
Belov, 2017; Paassilta et al., 2017) but contradict the results presented by Park,
Moon, and Lee (2017) who concluded that the longitudinal separation angle is
the most important parameter with respect to the SEP peak flux.

Furthermore, using the outputs of the PCA, a new index (I) was introduced
and tested with respect to its predictive capabilities. It was demonstrated that
it actually holds prognosis potential for SEP events. Employing the logistic
regression analysis, we introduced several different schemes for the I index, start-
ing from one predictor or explanatory variable, going to multiple explanatory
variables, treating I as a multidimensional array. We found that the statistical
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classification of SEP events versus non-SEP ones, based on the PCA and the
related solar variables, for a threshold pth=50% leads to a FAR of 24.49 % while
correctly predicting 58.73 % of solar events as SEP versus non-SEP events (see
Section 5).

As a final step, when we treated the probabilistic threshold as an independent
variable ranging from 0.0 to 1.0 and calculated the categorical measures (POD,
FAR, HSS) we showed that the optimal skill score was achieved at a range of pth
from 25% to 40% for two configuration of the index I, i.e. I(3) = [PC1,PC2,PC3]

and I(3+O
2) = [PC1,PC2,PC3,PC12,PC22,PC32,PC1·PC2]. In particular, for

I(3) this was achieved at pth = 0.33 (HSS=0.6411) with POD = 65.87% and

a FAR = 35.16%. At the same time for I(3+O
2) the relevant outputs were

pth = 0.25 (HSS=0.6579), with POD = 77.78% and a FAR = 40.96%. These
results show that when the PCA is applied to SEP events and their parent
solar sources, as defined by a multi-variable data grid parametrised from SFs
(longitude, maximum soft X-ray flux, rise time, duration) and CMEs (velocity,
width) characteristics, together with the logistic regression analysis, it is possible
to predict the occurrence (or not) of SEP events. Our results are comparable to
the derived POD and FAR of the Empirical Model for Solar Proton Events Real
Time Alert (ESPERTA) concept that utilized a logistic regression scheme on,
basically, two parameters: (i) the SXR fluence and (ii) the radio fluence at ≈ 1
MHz for three different longitudinal bands (Alberti et al., 2017). This highlights
the fact that the outcome of any treatment (e.g. PCA with logistic regression
or logistic regression alone) depends on which solar observables (variables) are
used.

Furthermore, it is noteworthy, that most of the SEP prediction concepts that
rely on empirical or semi-empirical relations are in need of solar observables
i.e. precursor data, which in turn are used as variables (inputs). Therefore, if
no identification of an SF or a CME is available (for example, if a behind the
limb SF is taking place) and an SEP does occurs, such an event will be missed
(not forecasted). At the same time, the work from Posner (2007) has proven the
concept of short-term forecasting of the appearance and intensity of solar ion
events utilizing in situ relativistic electron recordings, making use of the higher
speed of these electrons propagating from the Sun to 1 AU.

Our results should be considered as a first step towards an integrated SEP
event prognosis. Given the current wealth of observations at hand and the as-
sociation of SEP events to both SFs and CMEs, multi–variate methods may
hold a key for future advances in the field. It has already been noted by Winter
and Ledbetter (2015) that when applying PCA to type II bursts it was possible
to achieve a POD=62% and an FAR=21% (their Table 8). Further work is
necessary in order to refine the proposed index I, in terms of the variables used
in the PCA. For example, the duration of the SF (DT ), as well as the width of
the CME (s) are particularly uncertain parameters. Furthermore, it is desirable
to go beyond the nowcasting of the occurrence (or not) of SEP events and try
to quantify the expected impact in terms of the expected radiation storm level.
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Principal Component Analysis and Solar Energetic Particle Events
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A. Papaioannou et al.
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