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Abstract— Hyperdimensional computing (HDC) is a type of 
machine learning algorithm but is not based on the ubiquitous 
artificial neural network (ANN) paradigm.  Instead of neurons 
and synapses, HDC implements online learning via very large 
vectors manipulated to represent correlations among the various 
vectors, measured by a similarity metric.  Yet this approach 
readily affords one-shot learning, transfer learning, and native 
error correction, which are standing challenges for traditional 
ANNs.  Further, implementations using binary vectors {0,1} are 
particularly attractive for size, weight, and power (SWaP) 
constrained systems, particularly disposable robotics.   

The paper is the first to identify and formalize a method to 
completely clone trained hyperdimensional behavior vectors. 
Using shift maps, d-1 unique clones can be made from a parent 
vector of length d. Additionally, expeditionary robots with 
extraneous sensors were trained via HDC to solve a maze even 
when up to 75% of the sensors fed irrelevant data to the robot. 
Lastly, we demonstrated the resiliency of this encoding method to 
random bit flips and how different network topologies contribute 
to dynamic reprogramming of HDC robots. HDC is presented 
here though not to replace ANNs but to encourage integration of 
these complementary ML paradigms.  

Keywords—hyperdimensional computing (HDC), 
hyperdimensional binary vectors (HBV), elementary cellular 
automata (ECA), swarm, robotics, network topology 

I. INTRODUCTION 

While artificial neural networks (ANN) are deservedly 
popular in the machine learning community, they do not 
efficiently map to traditional von Neumann computing 
architectures with respect to size, weight, and power (SWaP). 
Numerous floating-point matrix multiplications and frequently 
long training times incur computational costs unacceptable for 
resource constrained expeditionary robots. Alternative 
associative learning methods are therefore of increasing interest. 

Hyperdimensional computing (HDC) employs very long 
“hyperdimensional” binary vectors (HBV) to represent symbols 
or concepts, where simple mathematical operations such as 
addition, multiplication, and permutation subsequently encode 
and decode associations between these concepts. The iconic 
example is to query “What is the dollar of Mexico?” from a 
database encoded via HDC [1].  

HBVs comprised of binary elements {0,1} can be readily 
implemented in digital electronics [2, 3]. Recently, there have 
been a series of articles applying HDC to robotics, e.g. solving 

mazes [4] [5], “active perception” and multi-sensor “memory” 
[3], recognition of objects from multiple angles [6], and 
sequence processing for place recognition [6].  

This work explored several areas particularly relevant for 
expeditionary robotics. Such robots are frequently trained in one 
environment but then tested against novel inputs in a novel 
environment. We first expand upon the foraging honeybee 
model [7] to demonstrate transfer of learned associations against 
partial matches.  

After training one robot, its “experience” or learned memory 
may be trivially replicated across multiple robots. However, 
simply copying these memory vectors may make all robots 
vulnerable to the same attack by a malicious entity [8]. The 
challenge is thus to replicate the parent’s set of HBVs such that 
all learned associations are preserved yet the clone’s HBVs are 
approximately uncorrelated (orthogonal) with the parent’s. 

In practice, environments cannot be exhaustively defined 
beforehand, so an expeditionary robot is afforded numerous 
sensors with which it must learn associations between sensor 
patterns in an environment and rewarded (penalized) actions. 
There are cases then where only subsets of the available sensors 
are relevant for solving a given task. This work explored 
different encoding schemes to mitigate negative effects from 
extraneous sensor input. 

Lastly, swarm control may include dynamically 
reprogramming behavior in the field. Several network 
topologies were evaluated demonstrating the rapidity of HDC 
vector convergence even over severely degraded channels.  

The key contributions of this work are as follows: 

a) We evaluated all 256 elementary cellular automata (ECA) 
rules for cloning HBVs and identified 8 rules that satisfied all of 
the replication requirements identified in [8], eliminating the 
need for a separate connection matrix. To the best of the authors’ 
knowledge, this is the first report of complete and orthogonal 
replication of HBVs using ECA. 

b) We identified shift maps as the underlying operation 
consistent across all 8 ECA rules, then mathematically proved 
why these maps alone satisfy the cloning requirements. 

c) For scenarios where only a subset of sensors are relevant 
for action selection, we identified a training method resilient to 
the extraneous sensor input. 
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d) We demonstrated the efficiency of dense networks for 
dynamically reprogramming HDC-based robot swarms via 
transmission of HBVs over noisy channels; however, it is 
critical that the first reprogrammed node not be iteratively 
updated. 

Due to the involved nature of each task, the mathematics of 
HDC are described in detail in the Background but afterwards 
each task will contain its own Methods, Results, and Discussion. 

II. BACKGROUND 

There are a variety of ways to generate vectors for HDC [9-
14]. The Binary Spatter Codes used here involve very long 
vectors of length d (typically 104) comprised of random {0, 1} 
in roughly equal proportion [1]. The similarity between any two 
such random vectors a and b was measured according to their 
normalized Hamming distance (HD), i.e. the fraction of non-
identical bits: 

𝐻𝐷ሺ𝒂,𝒃ሻ ൌ ∑ሺ𝒂⨂𝒃ሻ /𝑑,  (1) 

where ⨂ denotes XOR. For sufficiently large d, the Hamming 
distance between any two random vectors converges to 0.5, so 
an HD ≠ 0.5 can be used to represent learned associations among 
HBVs.  

Note, HBVs for which HD ≈ 0.5 are said to be maximally 
uncorrelated, or approximately orthogonal. By this definition, 
the HD between a vector and itself is 0, HD(a, a) = 0; and an 
HD > 0.5 indicates anti-correlation, where HD(a, NOT(a)) = 1. 

Creating associative memories among HBVs typically 
involves three operations: addition (bundling), multiplication 
(binding), and cyclic shifting. Each of these operations effects 
the HD between the individual item HBVs in the dictionary and 
the resulting compositional HBVs (Table I).  

TABLE I.  HAMMING DISTANCE BETWEEN ITEM VECTORS AND 
COMPOSITIONAL VECTORS 

 

 

 

 

 

 

 

 

Bundling is a majority bit operation over a set of vectors 
(Fig. 1), denoted as [a + b + c]. The resulting compositional 
vector will be very similar (HD << 0.5) to the vectors added 
together. In practice, if bundling an even number of vectors, a 
random HBV is added to the set of vectors to create a majority 
condition. Bundling is only approximately reversible. 

Binding is implemented as bitwise XOR, again denoted as 
⨂. Notably, the XOR operation is reversible and is analogous 
therefore to the creation of a dictionary entry, with a key and 
value pair. For example, consider the following equation: 

 

[a⨂b + c⨂d] = e.  (2) 

We can later recall the value associated with b by applying 
the XOR operation again, 

b⨂e = b⨂[a⨂b + c⨂d]    
= [a + b⨂c⨂d]     

          â = [a + noise],   (3) 

where b⨂b cancels itself out and b⨂c⨂d is treated as a 
random HBV, that is noise. But one more step is required.  

By using such large, randomly defined vectors, information 
is spread equally across the entire vector representation, often 
termed “holographic computing.” That is, unlike binary 
encoding with a most (least) significant bit, in HDC, each bit is 
equally (in)significant. It is this property that allows one to 
successfully perform HDC operations on severely degraded 
vectors. The final “cleanup” step is performed by comparing the 
Hamming distances between this noisy â and the HBV 
dictionary vectors a, b, c, and d. In this case, the smallest 
Hamming distance will be found with respect to a.  

These two operations are commutative, associative, and 
distributive; but there will be scenarios where we require 
discrimination among vectors combinations. The final operation 
is permutation, or rotation of the coordinates of the hypervector. 
This is often implemented as cyclic shift, whereby vector a is 
shifted by j elements, denoted as Πj, For example,  

(a⨂b)⨂(c⨂d) =  (a⨂d)⨂(b⨂c)   

(a⨂b)⨂ Π1(c⨂d) ≠  (a⨂d)⨂(b⨂c)  (4) 

III. TRANSFER LEARNING 

A. Method 

Introduced as mini-game in [7], the foraging honey bee 
model is a simple demonstration of learning associations 
between physical shapes and/or positional relationships with a 
Reward vector. While a Pain vector was discussed, it was not 
actively used in their example. This work expands the original 
model to incorporate both a Reward and Pain vector. Further, 
we explored the effect of the scene encoding scheme upon the 
Hamming distance range. 

Parent compositional HBVs were created via online 
learning, where scenes for 2 of 3 flower species were rewarded 
and 1 of 3 color hues were penalized. Dictionary vectors were 
flower (1x) and color (1x), with values species (3x) and hue (3x), 
respectively. For example, the first hue vector was used to 
represent “red,” the second “blue,” and the third “yellow.” 
Feedback vectors were PAIN (1x) and REWARD (1x).  

Each scene was encoded as 

𝑆𝑐𝑒𝑛𝑒௝ ൌ ሾ𝑐𝑜𝑙𝑜𝑟⨂ℎ𝑢𝑒 ൅ 𝑓𝑙𝑜𝑤𝑒𝑟⨂𝑠𝑝𝑒𝑐𝑖𝑒𝑠ሿ.  (5) 

HD a b a⨂b [a+b+c] Sh(a, j) 

a 0 0.5 0.5 0.25 0.5 

b 0.5 0 0.5 0.25 0.5 

a⨂b 0.5 0.5 0 0.5 0.5 

[a+b+c] 0.25 0.25 0.5 0 0.5 

Sh(a, j) 0.5 0.5 0.5 0.5 0 

a 0 1 0 0 0 1 1 1 
b 0 0 1 0 1 0 1 1 
c 0 0 0 1 1 1 0 1 
d 0 0 0 0 1 1 1 1 

Fig. 1 Bundling of vectors a, b, and c, [a + b + c] = d, where d is calculated 
as the majority bit at each position along the component vectors. 



3 

Then each rewarded (penalized) scene was bundled together and 
bound with the respective feedback,  

𝐸𝑋𝑃ோ ൌ ሾ𝑆𝑐𝑒𝑛𝑒ோଵ ൅⋯൅ 𝑆𝑐𝑒𝑛𝑒ோଷሿ⨂𝑅𝐸𝑊𝐴𝑅𝐷,  (5) 

𝐸𝑋𝑃௉ ൌ ሾ𝑆𝑐𝑒𝑛𝑒௉ଵ ൅ ⋯൅ 𝑆𝑐𝑒𝑛𝑒௉ଷሿ⨂𝑃𝐴𝐼𝑁,  (6) 

where there were 3 penalized, 2 rewarded, and 4 uncategorized 
scenes. For example, let ‘rose’ be rewarded and let ‘red’ be 
penalized including ‘red rose.’ Again, each EXP vector was thus 
only of length d, the majority bit operation distilling the salient 
patterns across the different scenes. For the rewarded 
(penalized) scenes, the critical pattern was ‘rose’ (‘red’) HBV. 
Lastly, a single Behavior composite vector likewise encoded 
both experiences into a single HBV,  

𝐵𝐸𝐻𝐴𝑉𝐼𝑂𝑅 ൌ ሾ𝐸𝑋𝑃ோ ൅ 𝐸𝑋𝑃௉ሿ.   (7) 

Testing included the original 9 training examples as well as 
novel scenes introducing 3 novel species and 3 novel hues (new 
random HBVs). for a total of j = 36 flower scenes described in 
Eq. (5). The goal was for the “bee” to generalize the rewarded 
(penalized) species (hues) to include the novel hues (species) 
without undergoing additional training. Each testing scene 
Scenej was queried of BEHAVIOR, 

𝑄𝑢𝑒𝑟𝑦௝ ൌ  𝑆𝑐𝑒𝑛𝑒௝⨂𝐵𝐸𝐻𝐴𝑉𝐼𝑂𝑅,  (8) 

where the resulting Query vector was classified as REWARD or 
PAIN according to the smallest HD below a threshold. If both 
HD values were above this threshold, then the scene was 
classified as unknown ‘??.’ That is, HDC affords native 
anomaly detection, an ongoing challenge with ANNs generally. 

B. Results 

Testing accuracy was 99.93%, again without any additional 
training. Note that HDC performance does not suffer from class 
imbalance (5x reward, 6x punished and 25x unclassified) 
because each composite class HBV was independently 
generated.  

In the field, the desired robot behavior might change, e.g. 
classify good (bad) flowers as bad (good). The new BEHAVIOR 
vector would be created in a similar manner then transmitted 
potentially over a noisy channel, leaving the “bee” with a 
degraded version. Applying random noise to the new 
BEHAVIOR and measuring the resulting classification accuracy, 
we observed over 95% accuracy even out to 50% noise 
(HD~0.25 difference between the clean and noisy version) (Fig. 
2). The effect of noise can be further mitigated by repeatedly 
transmitting BEHAVIOR. Since each degraded transmissions 
will not be identically corrupted, the bundling operator can 
recover BEHAVIOR. 95% accuracy was maintained out to 80% 
noise with 9 copies. 

IV. CLONING  

Having thus trained one expeditionary robot, we want to 
replicate the trained HBVs across multiple robots to perform 
the same behavior. While these vectors can be trivially copied 
to another robot, if this encoding is compromised by a 
malicious agent, all copies are equally vulnerable.  

In [8], elementary cellular automata (ECA) rule 90 was 
proposed to clone the parent’s set of HBVs such that the 

resultant copies were maximally uncorrelated with the parent. 
ECA rule 90 proved to be inadequate since only two of the three 
typical HDC operations, binding and permute, were preserved. 
The third operation, bundling, was instead annotated in a 
separate connection matrix paired with each clone. 

A. Background 

Cellular automata (CA) are cell–based state machines which 
follow a homogeneous rule for state transitions based on local 
interactions between a cell and its neighboring cells. One 
dimensional ECA are the simplest class of CA, where each cell 
may only have one of two states {0, 1}, and, for every iteration 
i of the state update rule, a cell’s new state is determined based 
on its own state q and those of its two neighbors p (left) and r 
(right). Each ECA rule is numbered according to the decimal 
equivalent of the rule’s output (Fig. 3). Despite their simplicity, 
mathematical chaos and Turing complete behavior are 
demonstrated amongst these rules [15]. 

 

B. Method  

More formally, an ECA rule is viable for cloning when for 
each set of parent HBVs, clones resultant from the ith iteration 
of ECA rule R satisfy target Hamming distances (Tables II and 
III) [8]. 

Random HBVs a, b, and c of length d = 104 were generated. 
Each of the 256 ECA rules for i = [1, 50] iterations were used 
to implement the cloning operations prescribed in Tables II and 
III, where varying i provided insight into a rule’s cloning ability 
over time. The resulting HDs were then measured against their 
respective target HDs. 

 

 

Fig. 3 All 23 state transitions for ECA rule 154 = 100110102 

1 0 0 1 1 0 1 0

 

Fig. 2. Classification accuracy as a function of noise applied to BEHAVIOR. 
Accuracy is improved by bundling multiple received (RX) noisy copies. 
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To both illustrate the quality of ECA rules identified in this 
way and in case the tables were incomplete, we cloned the HBVs 
from the foraging honeybee model and evaluated each clone’s 
performance against the same testing scenes (reencoded using 
the cloned version of the item vectors) without any additional 
training. All 17 item vectors and the trained BEHAVIOR vector 
were cloned via each of the 256 ECA rules for i = 1-20 iterations. 

TABLE II.  TARGET HDS FOR BINDING AND SHIFT OPERATIONS, 
 WHERE * DENOTES CLONING OPERATION 

x y HD(x,y) 

a a* 0.5 

a⨂b (a⨂b)* 0.5 

Π10(a) Π10(a)* 0.5 

(a⨂b)* a*⨂b* 0 

Π10(a)* Π10(a*) 0 

TABLE III.  TARGET HDS FOR BUNDLING AND SHIFT OPERATIONS,  
WHERE * DENOTES CLONING OPERATION 

x y HD(x,y) 

[a + b + c]* [a* + b* + c*] 0 

[a⨂b + b + c]* [a*⨂b* + b* + c*] 0 

[a + b + Π10(c)]* [a* + b* + Π10(c*)] 0 

[b + [a + b + c] + c]* [b* + [a* + b* + c*] + c*] 0 

C. Results  

1) ECA cloning rules 
8 ECA rules, viz. 15, 85, 154, 166, 170, 180, 210, and 240, 

attained all the target HDs, though not with all the same 
frequency i (Table IV). Only 2 rules generated a viable clone 
with every iteration, with the majority of rules requiring multiple 
iterations. For the MUX-XOR rules, 16i affords perfect cloning, 
yet 8i achieves extremely low HD difference values (<0.01). 

TABLE IV.  VIABLE ECA RULES FOR HBV CLONING 

Logic 
Family Literal 

Rule 240 170 15 85 
Iteration (i) 1 2 

Boolean 
Expression 

p r ¬p ¬r 

 
Logic 

Family MUX-XOR 
Rule 180 166 210 154 

Iteration (i) 8, 16 
Boolean 

Expression 
p⊕(q∧¬r) r⊕(¬p∧q) p⊕(¬q∧r) r⊕(p∧¬q) 

 
2) ECA cloning results 
Only the 8 aforementioned ECA rules demonstrated 

complete replication of the learned associations (Fig. 4a black 
dots) and approximate orthogonality with parent HBVs (not 

shown). Fig. 4b illustrates 8i clone behavior, which is acceptable 
in practice since threshold between known and unknown scenes 
need not be redrawn. 

D. Discussion 

1) Maximum Number of Clones 
What then is the maximum number of clones that may be 

generated by this method? This depends chiefly on the 
frequency with which an ECA rule generates a viable clone. 
ECA rules 240 (170) clone every iteration i through a simple left 
(right) circular shift. Intuitively, an HBV of length d can be 
circularly shifted at most d times before repeating. That is, a 
maximum of (d-1) unique clones can be made from an HBV of 
length d. For rules limited to 2i and 16i, the number of possible 
unique clones drops to (1/2)d and (1/16)d, respectively. 

When discussing ECA rules, the literature typically remarks 
on the characteristic behavior of each rule over sequential 
iterations. It is not obvious, however, what is the characteristic 
behavior at arbitrary iterations. Unexpectedly, all 8 rules 
produce identical patterns (allowing for left/right symmetry) 
every 16i (Fig. 5). This is particularly surprising since these rules 
come from two different logic families [16]. Rules 15, 85, 170, 
and 240 are Literal rules, dependent on a single cell’s value; 
whereas, rules 154, 166, 180, and 210 are non-linear MUX-
XOR rules. Because of the equal density of 0’s and 1’s, the 
MUX-XOR rules functionally implement a shift map with at 
least period 16i. (However, for densities at either extreme, some 
differences emerge among these 8 rules.) In short, the simple 
shift map, one of the standard HDC operations, is sufficient to 
generate d-1 unique clones from one parent HBV of length d. 

 

 

a)        b)        c)  

Fig. 5. Sample 16i ECA behavior observed for different initial conditions 

a) b)  

Fig. 4 Target parent behavior (shape outlines) and clone behavior (black 
dots) for R = 180, a) i = 16 and b) i = 8  
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2) Shift Rules Exclusive Viability 
An exhaustive ECA search only found shift-based rules, and 

here we prove that indeed only shift rules are viable for HBV 
cloning. Criterion (a⨂b)* = a*⨂b* implies the cellular 
automata (CA) rule * is a group homomorphism w.r.t group 
operator ⨂. Such CA rules on binary sequences perform modulo 
2 addition of some neighboring coordinates, (folklore result, 
Lemma 4.1.7 [17]). 

Claim: If the summation is over at least two cells, the 
following criterion fails: 

HD([a + b + c]*, [a* + b* + c*]) = 0.  (9) 

Proof by example: For concreteness let us consider the 
operator * defined by the Boolean expression p⨂r. If a, b, and c 
are uniformly random sequences and a(k) denotes the triplet of 
bits occurring in a starting at position k, then the combination of 
the three events in the top part of the following table occurs with 
proportion ε = (1/8)3 = 1/512: 

State pqr Freq. Operator *: p⨂r 

a(k) = 101 1/8 a*(k)  = ?0? 

b(k)  = 100 1/8 b*(k)  = ?1? 

c(k)  = 001 1/8 c*(k)  = ?1? 

[a + b + c] (k)  = 101 

[a + b + c]*(k)  = ?0? 

  

[a* + b* + c*](k)  = ?1? 

⸫ HD will be ≥ ε = 1/512 ≠ 0. 

A similar argument (with the choice of ε depending on the 
definition of *) rules out all nontrivial summation operators for 
this task. Therefore, only shift rules can satisfy all criteria. (As 
noted before, while HD need not be 0 for adequate performance 
in practice, this proof establishes the limits for the ideal case.) 

Lastly, if a set of HDC equations do not include all the 
equations in Tables II and III, then there is an increase of the 
possible cloning operators. For example, when the requirement 
of shift preservation is dropped, we are allowed to use 
positional information. Consider a map that shifts symbols at 
even positions by two positions to the right and symbols at odd 
positions by two positions to the left. Here we use only the 
parity of the position, so this operation can be implemented by 
some kind of finite state machine. 

3) Cyber security considerations 
The computationally lightweight nature of HDC lends itself 

well to SWaP limited, “disposable” assets as opposed to 
resource intensive traditional ANNs. The rapid training 
methodology further lends itself to one-time-use programming 
per short-term expeditionary/reconnaissance objective versus a 
dedicated agent for a long-term task. Thus, while this cloning 
method does not obfuscate the HBVs used in each clone 
(desirable in long-term assets), the rapidity and diversity of 
clone generation protects against proliferation of traditional 
adversarial machine learning approaches against all clones in a 
time-sensitive manner.  

Furthermore, as illustrated by the 8i cases, some noise may 
also be intentionally added to each clone’s HBVs without loss 
of functionality, e.g. by redrawing thresholds. Alternatively, 

instead of using these methods for generating clones, they can 
be used to permute the agent’s internal memory, increasing the 
difficulty of reverse engineering in a time-sensitive fashion. 

V. EXTRANEOUS SENSORS  

A. Method 

Based on the maze in [4], a simulated robot must “find its 
way out of a paper bag,” navigating to the white region (Fig. 
6a). The robot has 3 sensors: left light sensor (Sl), right light 
sensor (Sr), and center touch sensor (Sc), and two wheel motors: 
left (Al) and right (Ar). Each sensor and motor has two states: 
ON (1) and OFF (0). In the maze, the robot moves in the 4 
cardinal direction, where the left, center, and right sensor 
positions orient accordingly (Fig. 6b). In practice, an 
expeditionary robot would be equipped with z more sensors (Sz) 
than the 3 sufficient to navigate this maze. For example, a 
temperature sensor would provide no relevant information for 
this task. The robot was explicitly trained to map the 8 Sl, Sr, Sc 
sensor combinations to 4 desired actions (expanding the 5 rows 
in Table V to explicitly cover the “don’t care” states). Success 
was measured as completion of the maze within 35 actions, the 
maximum steps necessary to complete the maze. 

 

TABLE V.  SENSOR INPUTS AND DESIRED ACTIONS, WHERE X INDICATES 

“DON’T CARE” SENSOR VALUES. 

Activated 
Sensor 

Sl Sr Sc S1, 2, …, z Al Ar 
Desired 
Action 

Light  1 1 X X 0 0 Stop 
Light  1 0 X 

X 0 1 Turn Left 
Object  0 0 1 
Light  0 1 X X 1 0 Turn Right 

No input 0 0 0 X 1 1 Go Straight 

 

There is little by way of design rules for HDC encoding with 
robotics, so we explored 2 methods. In the first method, since 
each sensor has two states, each sensor’s state was represented 
by a unique HBV, e.g. SlON and SlOFF. In this way, row 1 of Table 
V was encoded as follows:  

Scene1 = [SlON + SrON + ScX + S1X + …+ SzX] (10) 

Scenario1 = Scene1 ⨂ [AlOFF + ArOFF]  (11) 

where Sz denotes all z extraneous sensors and X is the randomly 
assigned “don’t care” ON or OFF state.  

a)        b)  

Fig. 6. a) Maze where black is navigable, grey is wall detected by Sc, 
and white is the target space detected by Sl & Sr. b) Robot moves in 
cardinal directions (red arrow), and sensors positions (blue) rotate with 
robot direction. 
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Alternatively, states ON and OFF can themselves be 
represented as HBVs, which were subsequently bound to a 
sensor. In this way, row 1 of Table V was encoded as follows:  

Scene1 = [Sl⨂ON + Sr⨂ON + Sc⨂X + S1⨂X + …+ Sz⨂X] (12) 

Scenario1 = Scene1 ⨂ [Al⨂OFF + Ar⨂OFF],  (13) 

where X is the randomly assigned ON or OFF state. 

In this work, we added up to z = 9 additional sensors per 
encoding method; that is, up to 75% of the sensors provided no 
useful information to the robot. Instead of training exhaustively 
on all 2z+3 possible sensor inputs, we performed training epochs 
comprised of the 8 training scenarios with random state values 
for each extraneous sensor Sz. For example, 3 training epochs 
affords 24 training scenarios. All these training scenarios were 
then bundled together to create one BEHAVIOR vector,  

BEHAVIOR = [Scenario1 + Scenario2 + … + Scenarioj]. (14) 

In addition to this BEHAVIOR vector, the simulated robot stored 
the 4 Action responses as dictionary entries used for deciding 
among the 4 possible wheel actions. For example, from row 1 of 
Table V, Action1 = [AlOFF + ArOFF] for Method 1 robots (Eq. 10-
11) and Action1 = [Al⨂OFF + Ar⨂OFF] for Method 2 robots 
(Eq. 12-13). Note, bundling requires an odd number of vectors; 
so we explored how using a fixed arbitrary tie-breaking vector 
ODD (1x) instead of a random one affected robot performance. 

During testing, the robot’s initial starting point and 
orientation were randomly assigned within the black field (Fig. 
6a). At each time step, the scene (sensor states) was queried of 
BEHAVIOR, Eq. (14). A “clean up” step returned the most 
similar of the 4 Action dictionary entries.  

The quality of Eq. (10-11) and (12-13) was measured as the 
Action classification accuracy. The number of unique sensor 
inputs increased exponentially with the number of extra 
sensors. A maximum of 1,024 unique scenes were tested 
against each robot configuration and equation set. 

B. Results 

1) Maze navigation 
Each robot version was tested in 1,000 mazes in each of 5 

trials. As a baseline, a robot whose BEHAVIOR was a random 
HBV attained a 6.1% success rate. Though the robot never 
started in the target area, it could start one cell next to it and 
randomly perform the rewarded action. Method 2 robots with no 
extra sensors Sz completed 100% of the mazes.  

Method 1 robots with no Sz achieved 52.1% success. All 
unsuccessful robots failed for the same reason: the sensor pattern 
associated with the “Go Straight” action returned “Turn Left” 
instead (Table V). This occurred because “Go Straight” appears 
only once in the 8 key training examples. While the “Stop” 
action is also only tested in a single way in the maze (Sl, Sr, Sc = 
[1,1,1] being impossible), both possible sensor representations 
(Sc = 0, 1) were explicitly trained for. A simple quality control 
check ensured robots with this encoding deficiency were not 
used in subsequent experiments. 

Note, the deficient Method 1 robots still attained 87.5% 
classification accuracy yet could only accidentally solve the 
maze. On the contrary, Method 2 robots across varying numbers 

of extraneous sensors and training epochs demonstrated 100% 
maze accuracy with less than 100% Action classification 
accuracy. Thus to aid interpretation of the extraneous sensors 
experiments, we note that Method 1 robots reliably achieves 
100% maze success if and only if demonstrating 100% 
classification accuracy; however, Method 2 robots achieved 
100% maze success if demonstrating >95% classification 
accuracy. 

2) Action selection 
Method 1 robots were decidedly not robust against 

extraneous sensor input (Fig. 7). Even training over 10 epochs 
(not shown) with varying “don’t care” values did not noticeably 
improve robot performance. Method 2 robots also decreased in 
accuracy as the number of sensors increased, though far less 
dramatically (Fig. 8). However, the same robots trained over 6 
epochs (48 scenes) maintained the requisite accuracies even 
when up to 9 (75% of the total) sensors were extraneous. No 
further improvement was observed after more than 6 training 
epochs (not shown).  

 

When a fixed tie-breaking vector was used for bundling, 
Method 2 robot accuracies fell below acceptable levels even 
with additional training epochs (Fig. 8b). Method 1 robot 
accuracies showed no discernable difference (not shown). 

3) Noise resiliency 
Lastly, a Model 2 robot (3 sensors, 1 training epoch) with 

100% maze success had its BEHAVIOR vector degraded by 
random noise. For this task, the trained robot subjected to 85% 
bit flips (HD~0.42) still solved 92% of mazes (Fig. 9). 

C. Discussion 

Both Method 1 and Method 2 bundle a set of sensor states 
then bind these values with a pair of bundled motor actions. As 
the number of vectors bundled together increases, changing a 
single HBV in the set has a diminishing effect on the overall 
distinguishability between the two composite vectors (Fig. 10). 
This suggests small differences in sensor state patterns would 
became lost in the noise if only bundling is used, e.g. Eq. (10). 
Yet, as the bit overwrite experiment showed, only minimal 
information is necessary to preserve bound associations. Thus 
using binding of sensor with its state contributed to the resiliency 
of Eq. (12). That said, using a fixed tie-breaker vector encoded 

Fig. 7. Method 1 robot Action accuracy 
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yet another persistent pattern into BEHAVIOR which served no 
advantage during testing. A random tie-breaking vector better 
allowed underlying patterns to come through. 

 

 

 

 

 

VI. NETWORK TOPOLOGY 

A. Method 

Lastly, consider a swarm of expeditionary robots. As 
described in Fig. 2, noisy hyperdimensional vectors may be 
partially recovered by bundling multiple copies together, 
assuming uniform random noise across the received vector. Here 
we consider how the network topology effects the rapidity of 
convergence for a noisy HBV recovered in this way. 

We created 4 network topologies of 5 robots each (Fig. 11). 
The Node 1 robot receives a new BEHAVIOR vector B’ perfectly 
(HD=0), overwriting its previous version B. Every time step t, 
each robot transmits its current BEHAVIOR vector according to 
the network design and over a noisy channel (20% bits randomly 
replaced). (Note, this random noise only changes any particular 
bit half the time). After each robot received 2 such vectors 
transmissions from any node, it bundled them with its current 
BEHAVIOR, creating its new local vector. Network topology 
efficacy was measured as the time necessary for all robots to 
attain a threshold Hamming distance from B’. 

 

B. Results  

All topologies but the ring converged to HD = 0.03 within 
25 time steps (Fig. 12). With respect to network configurations, 
both proximity to Node 1 and connectivity density sped up 
convergence. Given the mesh network, nodes reached their 
update criteria (2 received messages) rapidly, resulting in the 
fastest convergence. The V network converged more quickly 

a)  

b)  

Fig. 8. a) Method 2 robot Action accuracy. b) Robot accuracy with 
fixed tie-breaking bundling vector (only used when z is odd). 
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Fig. 9. Maze success (black stars) and mean Hamming distance from 
original vector (red circles) as function of the noise in trained Model 2 

 
Fig. 10. Hamming distance for a set bundled HBVs [a+b+c+ …] as a 
function of the number of replaced vector elements. 
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Fig. 11. Agent communication network topology: a) line, b) mesh, c) V, 
and d) ring. Noisy channel (20% noise) indicated by dashed line. 
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than the linear network, since Node 1 was feeding twice as many 
nodes. The ring network failed to converge because, unlike all 
other networks, Node 1 received as well as transmitted. Since all 
node messages were weighted equally, Node 1’s new 
BEHAVIOR quickly became lost in the majority bit updates. 

 

VII. DISCUSSION & FUTURE WORK 

While ANNs have a deserved reputation, a tacit assumption 
may have crept into the machine learning community that neural 
networks are all you need. Hyperdimensional computing 
provides an exciting alternative to perform many of the 
operations difficult for traditional neural networks designs, e.g. 
one-shot learning, extreme noise resilience, anomaly detection, 
non-trivial cloning. 

HDC has some significant drawbacks however. The most 
pressing here is all the sensor data considered here was state 
based. We do not consider how the robot determined the flower 
was “red” (Section III). Real-valued sensor values would have 
to be discretized and mapped to hyperdimensional vectors to 
perform calculations. 

Conceptually, it is easy to envision an integrated ANN/HDC 
disposable robot where the ANN classifies raw, rea-valued 
sensor data. Based on this classification, a hyperdimensional 
state vector is submitted to a HDC decision element which 
constructs higher order meaning of scenes, compares said scenes 
against its behavior program, then determines the appropriate 
action.  

Consider that such a hierarchical approach would allow for 
sensor interchangeability. Assume a scene s = a*b*c*d, where 
each letter corresponds to a state provided by a sensor and an 
trained ANN. If the sensor associated with a is replaced, 
provided the attendant ANN is retrained for the new sensor but 
the target categories remain the same, nothing changes as far as 
the hyperdimensional state representation is concerned. Such 
simple network reconfiguration cannot be done using traditional 
ANNs without retraining the entire network. 
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Fig. 12. Maximum Hamming distance among Node 1 and the other four 
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