
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Aspects of Hyperdimensional Computing for
Robotics: Transfer Learning, Cloning,

Extraneous Sensors, and Network Topology

Nathan McDonald, Richard Davis, Lisa Loomis
Air Force Research Laboratory, Information Directorate

Rome, NY USA
Nathan.McDonald.5@us.af.mil

Johan Kopra
University of Turku

Turku, Finland

Abstract— Hyperdimensional computing (HDC) is a type of
machine learning algorithm but is not based on the ubiquitous
artificial neural network (ANN) paradigm. Instead of neurons
and synapses, HDC implements online learning via very large
vectors manipulated to represent correlations among the various
vectors, measured by a similarity metric. Yet this approach
readily affords one-shot learning, transfer learning, and native
error correction, which are standing challenges for traditional
ANNs. Further, implementations using binary vectors {0,1} are
particularly attractive for size, weight, and power (SWaP)
constrained systems, particularly disposable robotics.

The paper is the first to identify and formalize a method to
completely clone trained hyperdimensional behavior vectors.
Using shift maps, d-1 unique clones can be made from a parent
vector of length d. Additionally, expeditionary robots with
extraneous sensors were trained via HDC to solve a maze even
when up to 75% of the sensors fed irrelevant data to the robot.
Lastly, we demonstrated the resiliency of this encoding method to
random bit flips and how different network topologies contribute
to dynamic reprogramming of HDC robots. HDC is presented
here though not to replace ANNs but to encourage integration of
these complementary ML paradigms.

Keywords—hyperdimensional computing (HDC),
hyperdimensional binary vectors (HBV), elementary cellular
automata (ECA), swarm, robotics, network topology

I. INTRODUCTION

While artificial neural networks (ANN) are deservedly
popular in the machine learning community, they do not
efficiently map to traditional von Neumann computing
architectures with respect to size, weight, and power (SWaP).
Numerous floating-point matrix multiplications and frequently
long training times incur computational costs unacceptable for
resource constrained expeditionary robots. Alternative
associative learning methods are therefore of increasing interest.

Hyperdimensional computing (HDC) employs very long
“hyperdimensional” binary vectors (HBV) to represent symbols
or concepts, where simple mathematical operations such as
addition, multiplication, and permutation subsequently encode
and decode associations between these concepts. The iconic
example is to query “What is the dollar of Mexico?” from a
database encoded via HDC [1].

HBVs comprised of binary elements {0,1} can be readily
implemented in digital electronics [2, 3]. Recently, there have
been a series of articles applying HDC to robotics, e.g. solving

mazes [4] [5], “active perception” and multi-sensor “memory”
[3], recognition of objects from multiple angles [6], and
sequence processing for place recognition [6].

This work explored several areas particularly relevant for
expeditionary robotics. Such robots are frequently trained in one
environment but then tested against novel inputs in a novel
environment. We first expand upon the foraging honeybee
model [7] to demonstrate transfer of learned associations against
partial matches.

After training one robot, its “experience” or learned memory
may be trivially replicated across multiple robots. However,
simply copying these memory vectors may make all robots
vulnerable to the same attack by a malicious entity [8]. The
challenge is thus to replicate the parent’s set of HBVs such that
all learned associations are preserved yet the clone’s HBVs are
approximately uncorrelated (orthogonal) with the parent’s.

In practice, environments cannot be exhaustively defined
beforehand, so an expeditionary robot is afforded numerous
sensors with which it must learn associations between sensor
patterns in an environment and rewarded (penalized) actions.
There are cases then where only subsets of the available sensors
are relevant for solving a given task. This work explored
different encoding schemes to mitigate negative effects from
extraneous sensor input.

Lastly, swarm control may include dynamically
reprogramming behavior in the field. Several network
topologies were evaluated demonstrating the rapidity of HDC
vector convergence even over severely degraded channels.

The key contributions of this work are as follows:

a) We evaluated all 256 elementary cellular automata (ECA)
rules for cloning HBVs and identified 8 rules that satisfied all of
the replication requirements identified in [8], eliminating the
need for a separate connection matrix. To the best of the authors’
knowledge, this is the first report of complete and orthogonal
replication of HBVs using ECA.

b) We identified shift maps as the underlying operation
consistent across all 8 ECA rules, then mathematically proved
why these maps alone satisfy the cloning requirements.

c) For scenarios where only a subset of sensors are relevant
for action selection, we identified a training method resilient to
the extraneous sensor input.

DISTRIBUTION STATEMENT A. Approved for public release:
distribution unlimited: AFRL-2021-0158

This is the Accepted Manuscript version of the following article:
Nathan McDonald, Richard Davis, Lisa Loomis, Johan Kopra, “Aspects of hyperdimensional computing for robotics: transfer learning, cloning, extraneous sensors, and network topology,"
Proceedings Volume 11751, Disruptive Technologies in Information Sciences V; 117510C (2021). DOI: https://doi.org/10.1117/12.2585772
Copyright 2021 Society of Photo‑Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only.
Systematic reproduction and distribution, duplication of any material in this publication for a fee or for commercial purposes, and modification of the contents of the publication are prohibited.

2

d) We demonstrated the efficiency of dense networks for
dynamically reprogramming HDC-based robot swarms via
transmission of HBVs over noisy channels; however, it is
critical that the first reprogrammed node not be iteratively
updated.

Due to the involved nature of each task, the mathematics of
HDC are described in detail in the Background but afterwards
each task will contain its own Methods, Results, and Discussion.

II. BACKGROUND

There are a variety of ways to generate vectors for HDC [9-
14]. The Binary Spatter Codes used here involve very long
vectors of length d (typically 104) comprised of random {0, 1}
in roughly equal proportion [1]. The similarity between any two
such random vectors a and b was measured according to their
normalized Hamming distance (HD), i.e. the fraction of non-
identical bits:

𝐻𝐷 𝒂,𝒃 ∑ 𝒂⨂𝒃 /𝑑, (1)

where ⨂ denotes XOR. For sufficiently large d, the Hamming
distance between any two random vectors converges to 0.5, so
an HD ≠ 0.5 can be used to represent learned associations among
HBVs.

Note, HBVs for which HD ≈ 0.5 are said to be maximally
uncorrelated, or approximately orthogonal. By this definition,
the HD between a vector and itself is 0, HD(a, a) = 0; and an
HD > 0.5 indicates anti-correlation, where HD(a, NOT(a)) = 1.

Creating associative memories among HBVs typically
involves three operations: addition (bundling), multiplication
(binding), and cyclic shifting. Each of these operations effects
the HD between the individual item HBVs in the dictionary and
the resulting compositional HBVs (Table I).

TABLE I. HAMMING DISTANCE BETWEEN ITEM VECTORS AND
COMPOSITIONAL VECTORS

Bundling is a majority bit operation over a set of vectors
(Fig. 1), denoted as [a + b + c]. The resulting compositional
vector will be very similar (HD << 0.5) to the vectors added
together. In practice, if bundling an even number of vectors, a
random HBV is added to the set of vectors to create a majority
condition. Bundling is only approximately reversible.

Binding is implemented as bitwise XOR, again denoted as
⨂. Notably, the XOR operation is reversible and is analogous
therefore to the creation of a dictionary entry, with a key and
value pair. For example, consider the following equation:

[a⨂b + c⨂d] = e. (2)

We can later recall the value associated with b by applying
the XOR operation again,

b⨂e = b⨂[a⨂b + c⨂d]
= [a + b⨂c⨂d]

 â = [a + noise], (3)

where b⨂b cancels itself out and b⨂c⨂d is treated as a
random HBV, that is noise. But one more step is required.

By using such large, randomly defined vectors, information
is spread equally across the entire vector representation, often
termed “holographic computing.” That is, unlike binary
encoding with a most (least) significant bit, in HDC, each bit is
equally (in)significant. It is this property that allows one to
successfully perform HDC operations on severely degraded
vectors. The final “cleanup” step is performed by comparing the
Hamming distances between this noisy â and the HBV
dictionary vectors a, b, c, and d. In this case, the smallest
Hamming distance will be found with respect to a.

These two operations are commutative, associative, and
distributive; but there will be scenarios where we require
discrimination among vectors combinations. The final operation
is permutation, or rotation of the coordinates of the hypervector.
This is often implemented as cyclic shift, whereby vector a is
shifted by j elements, denoted as Πj, For example,

(a⨂b)⨂(c⨂d) = (a⨂d)⨂(b⨂c)

(a⨂b)⨂ Π1(c⨂d) ≠ (a⨂d)⨂(b⨂c) (4)

III. TRANSFER LEARNING

A. Method

Introduced as mini-game in [7], the foraging honey bee
model is a simple demonstration of learning associations
between physical shapes and/or positional relationships with a
Reward vector. While a Pain vector was discussed, it was not
actively used in their example. This work expands the original
model to incorporate both a Reward and Pain vector. Further,
we explored the effect of the scene encoding scheme upon the
Hamming distance range.

Parent compositional HBVs were created via online
learning, where scenes for 2 of 3 flower species were rewarded
and 1 of 3 color hues were penalized. Dictionary vectors were
flower (1x) and color (1x), with values species (3x) and hue (3x),
respectively. For example, the first hue vector was used to
represent “red,” the second “blue,” and the third “yellow.”
Feedback vectors were PAIN (1x) and REWARD (1x).

Each scene was encoded as

𝑆𝑐𝑒𝑛𝑒 𝑐𝑜𝑙𝑜𝑟⨂ℎ𝑢𝑒 𝑓𝑙𝑜𝑤𝑒𝑟⨂𝑠𝑝𝑒𝑐𝑖𝑒𝑠 . (5)

HD a b a⨂b [a+b+c] Sh(a, j)

a 0 0.5 0.5 0.25 0.5

b 0.5 0 0.5 0.25 0.5

a⨂b 0.5 0.5 0 0.5 0.5

[a+b+c] 0.25 0.25 0.5 0 0.5

Sh(a, j) 0.5 0.5 0.5 0.5 0

a 0 1 0 0 0 1 1 1
b 0 0 1 0 1 0 1 1
c 0 0 0 1 1 1 0 1
d 0 0 0 0 1 1 1 1

Fig. 1 Bundling of vectors a, b, and c, [a + b + c] = d, where d is calculated
as the majority bit at each position along the component vectors.

3

Then each rewarded (penalized) scene was bundled together and
bound with the respective feedback,

𝐸𝑋𝑃 𝑆𝑐𝑒𝑛𝑒 ⋯ 𝑆𝑐𝑒𝑛𝑒 ⨂𝑅𝐸𝑊𝐴𝑅𝐷, (5)

𝐸𝑋𝑃 𝑆𝑐𝑒𝑛𝑒 ⋯ 𝑆𝑐𝑒𝑛𝑒 ⨂𝑃𝐴𝐼𝑁, (6)

where there were 3 penalized, 2 rewarded, and 4 uncategorized
scenes. For example, let ‘rose’ be rewarded and let ‘red’ be
penalized including ‘red rose.’ Again, each EXP vector was thus
only of length d, the majority bit operation distilling the salient
patterns across the different scenes. For the rewarded
(penalized) scenes, the critical pattern was ‘rose’ (‘red’) HBV.
Lastly, a single Behavior composite vector likewise encoded
both experiences into a single HBV,

𝐵𝐸𝐻𝐴𝑉𝐼𝑂𝑅 𝐸𝑋𝑃 𝐸𝑋𝑃 . (7)

Testing included the original 9 training examples as well as
novel scenes introducing 3 novel species and 3 novel hues (new
random HBVs). for a total of j = 36 flower scenes described in
Eq. (5). The goal was for the “bee” to generalize the rewarded
(penalized) species (hues) to include the novel hues (species)
without undergoing additional training. Each testing scene
Scenej was queried of BEHAVIOR,

𝑄𝑢𝑒𝑟𝑦 𝑆𝑐𝑒𝑛𝑒 ⨂𝐵𝐸𝐻𝐴𝑉𝐼𝑂𝑅, (8)

where the resulting Query vector was classified as REWARD or
PAIN according to the smallest HD below a threshold. If both
HD values were above this threshold, then the scene was
classified as unknown ‘??.’ That is, HDC affords native
anomaly detection, an ongoing challenge with ANNs generally.

B. Results

Testing accuracy was 99.93%, again without any additional
training. Note that HDC performance does not suffer from class
imbalance (5x reward, 6x punished and 25x unclassified)
because each composite class HBV was independently
generated.

In the field, the desired robot behavior might change, e.g.
classify good (bad) flowers as bad (good). The new BEHAVIOR
vector would be created in a similar manner then transmitted
potentially over a noisy channel, leaving the “bee” with a
degraded version. Applying random noise to the new
BEHAVIOR and measuring the resulting classification accuracy,
we observed over 95% accuracy even out to 50% noise
(HD~0.25 difference between the clean and noisy version) (Fig.
2). The effect of noise can be further mitigated by repeatedly
transmitting BEHAVIOR. Since each degraded transmissions
will not be identically corrupted, the bundling operator can
recover BEHAVIOR. 95% accuracy was maintained out to 80%
noise with 9 copies.

IV. CLONING

Having thus trained one expeditionary robot, we want to
replicate the trained HBVs across multiple robots to perform
the same behavior. While these vectors can be trivially copied
to another robot, if this encoding is compromised by a
malicious agent, all copies are equally vulnerable.

In [8], elementary cellular automata (ECA) rule 90 was
proposed to clone the parent’s set of HBVs such that the

resultant copies were maximally uncorrelated with the parent.
ECA rule 90 proved to be inadequate since only two of the three
typical HDC operations, binding and permute, were preserved.
The third operation, bundling, was instead annotated in a
separate connection matrix paired with each clone.

A. Background

Cellular automata (CA) are cell–based state machines which
follow a homogeneous rule for state transitions based on local
interactions between a cell and its neighboring cells. One
dimensional ECA are the simplest class of CA, where each cell
may only have one of two states {0, 1}, and, for every iteration
i of the state update rule, a cell’s new state is determined based
on its own state q and those of its two neighbors p (left) and r
(right). Each ECA rule is numbered according to the decimal
equivalent of the rule’s output (Fig. 3). Despite their simplicity,
mathematical chaos and Turing complete behavior are
demonstrated amongst these rules [15].

B. Method

More formally, an ECA rule is viable for cloning when for
each set of parent HBVs, clones resultant from the ith iteration
of ECA rule R satisfy target Hamming distances (Tables II and
III) [8].

Random HBVs a, b, and c of length d = 104 were generated.
Each of the 256 ECA rules for i = [1, 50] iterations were used
to implement the cloning operations prescribed in Tables II and
III, where varying i provided insight into a rule’s cloning ability
over time. The resulting HDs were then measured against their
respective target HDs.

Fig. 3 All 23 state transitions for ECA rule 154 = 100110102

1 0 0 1 1 0 1 0

Fig. 2. Classification accuracy as a function of noise applied to BEHAVIOR.
Accuracy is improved by bundling multiple received (RX) noisy copies.

A
cc

ur
ac

y

4

To both illustrate the quality of ECA rules identified in this
way and in case the tables were incomplete, we cloned the HBVs
from the foraging honeybee model and evaluated each clone’s
performance against the same testing scenes (reencoded using
the cloned version of the item vectors) without any additional
training. All 17 item vectors and the trained BEHAVIOR vector
were cloned via each of the 256 ECA rules for i = 1-20 iterations.

TABLE II. TARGET HDS FOR BINDING AND SHIFT OPERATIONS,
 WHERE * DENOTES CLONING OPERATION

x y HD(x,y)

a a* 0.5

a⨂b (a⨂b)* 0.5

Π10(a) Π10(a)* 0.5

(a⨂b)* a*⨂b* 0

Π10(a)* Π10(a*) 0

TABLE III. TARGET HDS FOR BUNDLING AND SHIFT OPERATIONS,
WHERE * DENOTES CLONING OPERATION

x y HD(x,y)

[a + b + c]* [a* + b* + c*] 0

[a⨂b + b + c]* [a*⨂b* + b* + c*] 0

[a + b + Π10(c)]* [a* + b* + Π10(c*)] 0

[b + [a + b + c] + c]* [b* + [a* + b* + c*] + c*] 0

C. Results

1) ECA cloning rules
8 ECA rules, viz. 15, 85, 154, 166, 170, 180, 210, and 240,

attained all the target HDs, though not with all the same
frequency i (Table IV). Only 2 rules generated a viable clone
with every iteration, with the majority of rules requiring multiple
iterations. For the MUX-XOR rules, 16i affords perfect cloning,
yet 8i achieves extremely low HD difference values (<0.01).

TABLE IV. VIABLE ECA RULES FOR HBV CLONING

Logic
Family Literal

Rule 240 170 15 85
Iteration (i) 1 2

Boolean
Expression

p r ¬p ¬r

Logic

Family MUX-XOR
Rule 180 166 210 154

Iteration (i) 8, 16
Boolean

Expression
p⊕(q∧¬r) r⊕(¬p∧q) p⊕(¬q∧r) r⊕(p∧¬q)

2) ECA cloning results
Only the 8 aforementioned ECA rules demonstrated

complete replication of the learned associations (Fig. 4a black
dots) and approximate orthogonality with parent HBVs (not

shown). Fig. 4b illustrates 8i clone behavior, which is acceptable
in practice since threshold between known and unknown scenes
need not be redrawn.

D. Discussion

1) Maximum Number of Clones
What then is the maximum number of clones that may be

generated by this method? This depends chiefly on the
frequency with which an ECA rule generates a viable clone.
ECA rules 240 (170) clone every iteration i through a simple left
(right) circular shift. Intuitively, an HBV of length d can be
circularly shifted at most d times before repeating. That is, a
maximum of (d-1) unique clones can be made from an HBV of
length d. For rules limited to 2i and 16i, the number of possible
unique clones drops to (1/2)d and (1/16)d, respectively.

When discussing ECA rules, the literature typically remarks
on the characteristic behavior of each rule over sequential
iterations. It is not obvious, however, what is the characteristic
behavior at arbitrary iterations. Unexpectedly, all 8 rules
produce identical patterns (allowing for left/right symmetry)
every 16i (Fig. 5). This is particularly surprising since these rules
come from two different logic families [16]. Rules 15, 85, 170,
and 240 are Literal rules, dependent on a single cell’s value;
whereas, rules 154, 166, 180, and 210 are non-linear MUX-
XOR rules. Because of the equal density of 0’s and 1’s, the
MUX-XOR rules functionally implement a shift map with at
least period 16i. (However, for densities at either extreme, some
differences emerge among these 8 rules.) In short, the simple
shift map, one of the standard HDC operations, is sufficient to
generate d-1 unique clones from one parent HBV of length d.

a) b) c)

Fig. 5. Sample 16i ECA behavior observed for different initial conditions

a) b)

Fig. 4 Target parent behavior (shape outlines) and clone behavior (black
dots) for R = 180, a) i = 16 and b) i = 8

5

2) Shift Rules Exclusive Viability
An exhaustive ECA search only found shift-based rules, and

here we prove that indeed only shift rules are viable for HBV
cloning. Criterion (a⨂b)* = a*⨂b* implies the cellular
automata (CA) rule * is a group homomorphism w.r.t group
operator ⨂. Such CA rules on binary sequences perform modulo
2 addition of some neighboring coordinates, (folklore result,
Lemma 4.1.7 [17]).

Claim: If the summation is over at least two cells, the
following criterion fails:

HD([a + b + c]*, [a* + b* + c*]) = 0. (9)

Proof by example: For concreteness let us consider the
operator * defined by the Boolean expression p⨂r. If a, b, and c
are uniformly random sequences and a(k) denotes the triplet of
bits occurring in a starting at position k, then the combination of
the three events in the top part of the following table occurs with
proportion ε = (1/8)3 = 1/512:

State pqr Freq. Operator *: p⨂r

a(k) = 101 1/8 a*(k) = ?0?

b(k) = 100 1/8 b*(k) = ?1?

c(k) = 001 1/8 c*(k) = ?1?

[a + b + c] (k) = 101

[a + b + c]*(k) = ?0?

[a* + b* + c*](k) = ?1?

⸫ HD will be ≥ ε = 1/512 ≠ 0.

A similar argument (with the choice of ε depending on the
definition of *) rules out all nontrivial summation operators for
this task. Therefore, only shift rules can satisfy all criteria. (As
noted before, while HD need not be 0 for adequate performance
in practice, this proof establishes the limits for the ideal case.)

Lastly, if a set of HDC equations do not include all the
equations in Tables II and III, then there is an increase of the
possible cloning operators. For example, when the requirement
of shift preservation is dropped, we are allowed to use
positional information. Consider a map that shifts symbols at
even positions by two positions to the right and symbols at odd
positions by two positions to the left. Here we use only the
parity of the position, so this operation can be implemented by
some kind of finite state machine.

3) Cyber security considerations
The computationally lightweight nature of HDC lends itself

well to SWaP limited, “disposable” assets as opposed to
resource intensive traditional ANNs. The rapid training
methodology further lends itself to one-time-use programming
per short-term expeditionary/reconnaissance objective versus a
dedicated agent for a long-term task. Thus, while this cloning
method does not obfuscate the HBVs used in each clone
(desirable in long-term assets), the rapidity and diversity of
clone generation protects against proliferation of traditional
adversarial machine learning approaches against all clones in a
time-sensitive manner.

Furthermore, as illustrated by the 8i cases, some noise may
also be intentionally added to each clone’s HBVs without loss
of functionality, e.g. by redrawing thresholds. Alternatively,

instead of using these methods for generating clones, they can
be used to permute the agent’s internal memory, increasing the
difficulty of reverse engineering in a time-sensitive fashion.

V. EXTRANEOUS SENSORS

A. Method

Based on the maze in [4], a simulated robot must “find its
way out of a paper bag,” navigating to the white region (Fig.
6a). The robot has 3 sensors: left light sensor (Sl), right light
sensor (Sr), and center touch sensor (Sc), and two wheel motors:
left (Al) and right (Ar). Each sensor and motor has two states:
ON (1) and OFF (0). In the maze, the robot moves in the 4
cardinal direction, where the left, center, and right sensor
positions orient accordingly (Fig. 6b). In practice, an
expeditionary robot would be equipped with z more sensors (Sz)
than the 3 sufficient to navigate this maze. For example, a
temperature sensor would provide no relevant information for
this task. The robot was explicitly trained to map the 8 Sl, Sr, Sc
sensor combinations to 4 desired actions (expanding the 5 rows
in Table V to explicitly cover the “don’t care” states). Success
was measured as completion of the maze within 35 actions, the
maximum steps necessary to complete the maze.

TABLE V. SENSOR INPUTS AND DESIRED ACTIONS, WHERE X INDICATES

“DON’T CARE” SENSOR VALUES.

Activated
Sensor

Sl Sr Sc S1, 2, …, z Al Ar
Desired
Action

Light 1 1 X X 0 0 Stop
Light 1 0 X

X 0 1 Turn Left
Object 0 0 1
Light 0 1 X X 1 0 Turn Right

No input 0 0 0 X 1 1 Go Straight

There is little by way of design rules for HDC encoding with
robotics, so we explored 2 methods. In the first method, since
each sensor has two states, each sensor’s state was represented
by a unique HBV, e.g. SlON and SlOFF. In this way, row 1 of Table
V was encoded as follows:

Scene1 = [SlON + SrON + ScX + S1X + …+ SzX] (10)

Scenario1 = Scene1 ⨂ [AlOFF + ArOFF] (11)

where Sz denotes all z extraneous sensors and X is the randomly
assigned “don’t care” ON or OFF state.

a) b)

Fig. 6. a) Maze where black is navigable, grey is wall detected by Sc,
and white is the target space detected by Sl & Sr. b) Robot moves in
cardinal directions (red arrow), and sensors positions (blue) rotate with
robot direction.

6

Alternatively, states ON and OFF can themselves be
represented as HBVs, which were subsequently bound to a
sensor. In this way, row 1 of Table V was encoded as follows:

Scene1 = [Sl⨂ON + Sr⨂ON + Sc⨂X + S1⨂X + …+ Sz⨂X] (12)

Scenario1 = Scene1 ⨂ [Al⨂OFF + Ar⨂OFF], (13)

where X is the randomly assigned ON or OFF state.

In this work, we added up to z = 9 additional sensors per
encoding method; that is, up to 75% of the sensors provided no
useful information to the robot. Instead of training exhaustively
on all 2z+3 possible sensor inputs, we performed training epochs
comprised of the 8 training scenarios with random state values
for each extraneous sensor Sz. For example, 3 training epochs
affords 24 training scenarios. All these training scenarios were
then bundled together to create one BEHAVIOR vector,

BEHAVIOR = [Scenario1 + Scenario2 + … + Scenarioj]. (14)

In addition to this BEHAVIOR vector, the simulated robot stored
the 4 Action responses as dictionary entries used for deciding
among the 4 possible wheel actions. For example, from row 1 of
Table V, Action1 = [AlOFF + ArOFF] for Method 1 robots (Eq. 10-
11) and Action1 = [Al⨂OFF + Ar⨂OFF] for Method 2 robots
(Eq. 12-13). Note, bundling requires an odd number of vectors;
so we explored how using a fixed arbitrary tie-breaking vector
ODD (1x) instead of a random one affected robot performance.

During testing, the robot’s initial starting point and
orientation were randomly assigned within the black field (Fig.
6a). At each time step, the scene (sensor states) was queried of
BEHAVIOR, Eq. (14). A “clean up” step returned the most
similar of the 4 Action dictionary entries.

The quality of Eq. (10-11) and (12-13) was measured as the
Action classification accuracy. The number of unique sensor
inputs increased exponentially with the number of extra
sensors. A maximum of 1,024 unique scenes were tested
against each robot configuration and equation set.

B. Results

1) Maze navigation
Each robot version was tested in 1,000 mazes in each of 5

trials. As a baseline, a robot whose BEHAVIOR was a random
HBV attained a 6.1% success rate. Though the robot never
started in the target area, it could start one cell next to it and
randomly perform the rewarded action. Method 2 robots with no
extra sensors Sz completed 100% of the mazes.

Method 1 robots with no Sz achieved 52.1% success. All
unsuccessful robots failed for the same reason: the sensor pattern
associated with the “Go Straight” action returned “Turn Left”
instead (Table V). This occurred because “Go Straight” appears
only once in the 8 key training examples. While the “Stop”
action is also only tested in a single way in the maze (Sl, Sr, Sc =
[1,1,1] being impossible), both possible sensor representations
(Sc = 0, 1) were explicitly trained for. A simple quality control
check ensured robots with this encoding deficiency were not
used in subsequent experiments.

Note, the deficient Method 1 robots still attained 87.5%
classification accuracy yet could only accidentally solve the
maze. On the contrary, Method 2 robots across varying numbers

of extraneous sensors and training epochs demonstrated 100%
maze accuracy with less than 100% Action classification
accuracy. Thus to aid interpretation of the extraneous sensors
experiments, we note that Method 1 robots reliably achieves
100% maze success if and only if demonstrating 100%
classification accuracy; however, Method 2 robots achieved
100% maze success if demonstrating >95% classification
accuracy.

2) Action selection
Method 1 robots were decidedly not robust against

extraneous sensor input (Fig. 7). Even training over 10 epochs
(not shown) with varying “don’t care” values did not noticeably
improve robot performance. Method 2 robots also decreased in
accuracy as the number of sensors increased, though far less
dramatically (Fig. 8). However, the same robots trained over 6
epochs (48 scenes) maintained the requisite accuracies even
when up to 9 (75% of the total) sensors were extraneous. No
further improvement was observed after more than 6 training
epochs (not shown).

When a fixed tie-breaking vector was used for bundling,
Method 2 robot accuracies fell below acceptable levels even
with additional training epochs (Fig. 8b). Method 1 robot
accuracies showed no discernable difference (not shown).

3) Noise resiliency
Lastly, a Model 2 robot (3 sensors, 1 training epoch) with

100% maze success had its BEHAVIOR vector degraded by
random noise. For this task, the trained robot subjected to 85%
bit flips (HD~0.42) still solved 92% of mazes (Fig. 9).

C. Discussion

Both Method 1 and Method 2 bundle a set of sensor states
then bind these values with a pair of bundled motor actions. As
the number of vectors bundled together increases, changing a
single HBV in the set has a diminishing effect on the overall
distinguishability between the two composite vectors (Fig. 10).
This suggests small differences in sensor state patterns would
became lost in the noise if only bundling is used, e.g. Eq. (10).
Yet, as the bit overwrite experiment showed, only minimal
information is necessary to preserve bound associations. Thus
using binding of sensor with its state contributed to the resiliency
of Eq. (12). That said, using a fixed tie-breaker vector encoded

Fig. 7. Method 1 robot Action accuracy

a
cc

u
ra

cy

7

yet another persistent pattern into BEHAVIOR which served no
advantage during testing. A random tie-breaking vector better
allowed underlying patterns to come through.

VI. NETWORK TOPOLOGY

A. Method

Lastly, consider a swarm of expeditionary robots. As
described in Fig. 2, noisy hyperdimensional vectors may be
partially recovered by bundling multiple copies together,
assuming uniform random noise across the received vector. Here
we consider how the network topology effects the rapidity of
convergence for a noisy HBV recovered in this way.

We created 4 network topologies of 5 robots each (Fig. 11).
The Node 1 robot receives a new BEHAVIOR vector B’ perfectly
(HD=0), overwriting its previous version B. Every time step t,
each robot transmits its current BEHAVIOR vector according to
the network design and over a noisy channel (20% bits randomly
replaced). (Note, this random noise only changes any particular
bit half the time). After each robot received 2 such vectors
transmissions from any node, it bundled them with its current
BEHAVIOR, creating its new local vector. Network topology
efficacy was measured as the time necessary for all robots to
attain a threshold Hamming distance from B’.

B. Results

All topologies but the ring converged to HD = 0.03 within
25 time steps (Fig. 12). With respect to network configurations,
both proximity to Node 1 and connectivity density sped up
convergence. Given the mesh network, nodes reached their
update criteria (2 received messages) rapidly, resulting in the
fastest convergence. The V network converged more quickly

a)

b)

Fig. 8. a) Method 2 robot Action accuracy. b) Robot accuracy with
fixed tie-breaking bundling vector (only used when z is odd).

a
cc

u
ra

cy
ac

cu
ra

cy

Fig. 9. Maze success (black stars) and mean Hamming distance from
original vector (red circles) as function of the noise in trained Model 2

Fig. 10. Hamming distance for a set bundled HBVs [a+b+c+ …] as a
function of the number of replaced vector elements.

1 2 3 4 5 6 7 8 9

replaced HBV

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

1
3
5
7
9

HBV components

Fig. 11. Agent communication network topology: a) line, b) mesh, c) V,
and d) ring. Noisy channel (20% noise) indicated by dashed line.

8

than the linear network, since Node 1 was feeding twice as many
nodes. The ring network failed to converge because, unlike all
other networks, Node 1 received as well as transmitted. Since all
node messages were weighted equally, Node 1’s new
BEHAVIOR quickly became lost in the majority bit updates.

VII. DISCUSSION & FUTURE WORK

While ANNs have a deserved reputation, a tacit assumption
may have crept into the machine learning community that neural
networks are all you need. Hyperdimensional computing
provides an exciting alternative to perform many of the
operations difficult for traditional neural networks designs, e.g.
one-shot learning, extreme noise resilience, anomaly detection,
non-trivial cloning.

HDC has some significant drawbacks however. The most
pressing here is all the sensor data considered here was state
based. We do not consider how the robot determined the flower
was “red” (Section III). Real-valued sensor values would have
to be discretized and mapped to hyperdimensional vectors to
perform calculations.

Conceptually, it is easy to envision an integrated ANN/HDC
disposable robot where the ANN classifies raw, rea-valued
sensor data. Based on this classification, a hyperdimensional
state vector is submitted to a HDC decision element which
constructs higher order meaning of scenes, compares said scenes
against its behavior program, then determines the appropriate
action.

Consider that such a hierarchical approach would allow for
sensor interchangeability. Assume a scene s = a*b*c*d, where
each letter corresponds to a state provided by a sensor and an
trained ANN. If the sensor associated with a is replaced,
provided the attendant ANN is retrained for the new sensor but
the target categories remain the same, nothing changes as far as
the hyperdimensional state representation is concerned. Such
simple network reconfiguration cannot be done using traditional
ANNs without retraining the entire network.

ACKNOWLEDGMENT

I wish to thank Jeffrey Hudack and Justice Prelow without
whom this line of experiments would not have occurred. Any
opinions, findings and conclusions, or recommendations
expressed in this material are those of the authors, and do not
necessarily reflect the views of the US Government, the
Department of Defense, or the Air Force Research Lab.

REFERENCES
[1] [1] P. Kanerva, “Hyperdimensional Computing: An Introduction to

computing in distributed representations with high-dimensional random
vectors,” Cogn. Comput., vol. 1, no. 2, pp. 139-159 (2009)

[2] [2] M. Schmuck, L. Benini, and A. Rahimi, “Hardware optimizations of
dense binary hyperdimensional computing: Rematerialization of
hypervectors, binarized bundling, and combinational associative
memory,” arXiv preprint arXiv:1807.08583 (2018)

[3] [3] A. Mitrokhin, P. Sutor, C. Fermüller, & Y. Aloimonos, “Learning
sensorimotor control with neuromorphic sensors: Toward
hyperdimensional active perception,” Science Robotics, 4, (30), (2019)

[4] [4] Levy, S.D. & Bajracharya, Sagar & Gayler, Ross. (2013). Learning
behavior hierarchies via high-dimensional sensor projection. AAAI
Workshop - Technical Report. 25-27.

[5] [5] P. Neubert,S. Schubert, P. Protzel, “Learning Vector Symbolic
Architectures for Reactive Robot Behaviours,” IROS (2016)

[6] [6] P Neubert, S Schubert, P Protzel, “An Introduction to
Hyperdimensional Computing for Robotics,” KI-Künstliche Intelligenz,
33 (4), 319-330, (2019)

[7] [7] D. Kleyko, et. al., “Imitation of honey bees’ concept learning
processes using Vector Symbolic Architectures,” BICA, Vol 14, p 57-72,
(2015)

[8] [8] D. Kleyko, E. Osipov, “No two brains are alike,” AISC 636, pp. 91-
100, (2017)

[9] [9] Gayler, Ross & Levy, Simon. (2009). A distributed basis for
analogical mapping.

[10] [10] T. A. Plate. Holographic reduced representations. Neural Networks,
IEEE Transactions on, 6 (3): 623-641 (1995)

[11] [11] D. A. Rachkovskij. Representation and Processing of Structures with
Binary Sparse Distributed Codes. Knowledge and Data Engineering,
IEEE Transactions on, 3(2):261-276 (2001)

[12] D. Aerts, M. Czachor, and B. De Moor. Geometric analogue of
holographic reduced representation. Journal of Mathematical Psychology,
53: 389-398 (2009)

[13] S. I. Gallant and T. W. Okaywe. “Representing objects, relations, and
sequences,” Neural Computation, 25 (8): 2038–2078 (2013)

[14] P. Kanerva, Sparse Distributed Memory. MIT Press Cambridge. (1988)

[15] [15] S. Wolfram, A New Kind of Science (Wolfram Media, Champaign
Illinois, USA) (2002)

[16] [Bricken 2019] W. Bricken, “Symmetry in Boolean Functions with
Examples for Two and Three Variables,” retrieved online 2019-01-17,
http://iconicmath.com/mypdfs/symmetry-and-figures.020404.pdf

[17] [Salo 2014] V. Salo, “Subshifts with Simple Cellular Automata,” PhD
thesis, University of Turku (2014)

Fig. 12. Maximum Hamming distance among Node 1 and the other four
nodes as a function of transmission time steps

H
D

