
PHYSICAL REVIEW B 101, 045103 (2020)

Study of the energy variation in many-body open quantum systems:
Role of interactions in the weak and strong coupling regimes
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We derive an expression for the rate of change of the energy of an interacting many-body system connected
to macroscopic leads. We show that the energy variation is the sum of contributions from each different lead.
Unlike the charge current each of these contributions can differ from the rate of change of the energy of the
lead. We demonstrate that the discrepancy between the two is due to the direct exchange of energy among the
considered lead and all other leads. We conclude that the microscopic mechanism behind it is virtual processes
via the interacting central region. We also speculate on what are the implications of our findings in the calculation
of the thermal conductance of an interacting system.
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I. INTRODUCTION

Understanding how quantum systems conduct energy is
currently at the center of investigation in different branches
of physics. Recent advances in the manipulation of nanoscale
systems [1] have given a new boost to theoretical investi-
gations in that direction; nevertheless how energy and most
intriguingly heat propagates through a medium has always
been at the center of theoretical debate. A better understanding
of the energy exchange mechanism is also crucial to design
devices which can act as (local) refrigerators [2], energy
harvesters [3], or can be used as a heat valve [4]. The study
of energy currents at nanoscale also helps in the characteriza-
tion of certain physical effects such as Seebeck effect [5,6],
violation of the Wiedemann-Franz law [7], and rectification
of currents which are useful in applications at nanoscales [8].
Another interesting problem is understanding the connection
between the diffusion properties in a closed system and its
conduction properties when it is connected to external leads
(open system) [9,10]. This question also arises in the case
of transport in classical systems [11] because it is known
that the transport properties are modified by the nature of the
scattering and the type of reservoirs chosen.

The Landauer-Büttiker formula for the particle current
through a noninteracting system is a milestone in transport
theory [12,13]. It was readily extended to the case of in-
teracting systems by Meir and Wingreen [14,15] giving the
possibility of studying the effects of interactions on the trans-
port properties of many-body quantum systems. It relates the
current to the spectral features of the system, therefore giving
a microscopic picture of the mesoscopic transport proper-
ties. Specifically, in the original work the transport features
of the single-impurity Anderson model (SIAM) are linked
to the spectral function of the system coupled to the leads in
both the Coulomb blockade and Kondo regimes. The Meir-
Wingreen expression, which holds in the stationary state, has

also been extended to transient times allowing us to study
transport in driven systems [16–20]. The energy current is
defined as the variation of the Hamiltonian of the lead; in
this case one obtains an expression analogous to the Meir-
Wingreen one for particle current, which holds for both inter-
acting and noninteracting systems provided that the leads are
assumed to be noninteracting. In the case of transport through
an interacting central region, these expressions correctly cap-
ture the many-body interactions through the transmission
function or alternatively through the spectral density of the
central correlated region [21]. A strictly related issue is the
definition of heat current, namely the contribution to energy
current which is irreversibly dissipated into the lead and that
is consistent with the laws of thermodynamics. The bone of
contention is the coupling energy term which needs to be
assigned either to the system, or to the terminal, or be split
among the two [22–28]. The debate about the definition of
heat current, although interesting and very important, goes
beyond the purpose of this work.

In our work, we are interested in the energy variation of the
central correlated region due to the reservoirs and we study
the difference of these quantities with the energy variation of
the reservoirs itself. We use the the nonequilibrium Green’s-
function formalism which naturally allows us to account for
both many-body interactions and coupling to external reser-
voirs through the self-energy functional. We show that the
two energy variations need not to be equal (and opposite in
sign) as it is for particle currents; we discuss this discrep-
ancy by looking at a specific example: the single-impurity
Anderson model.

II. NONEQUILIBRIUM GREEN’S-FUNCTION APPROACH

We consider a correlated central region where
particles can interact through a two-body potential
connected to N leads where particles are assumed to be
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(a) (b)

FIG. 1. (a) Schematic representation of a central system coupled
with N leads each characterized by its own chemical potential μα

and inverse temperature βα . Particle (green arrows) and energy (red
arrows) currents flow across the central region due to the biased
leads. (b) The Keldysh-Schwinger contour γ . The arrows show the
time ordering of the arguments along the complex contour.

noninteracting. This is the only assumption we make
and it is the same needed to derive the Meir-Wingreen
expression (and its time dependent version). A schematic
representation of the system we consider is shown
in Fig. 1(a) The Hamiltonian of the total system is
given by Ĥ (z) = ĤC (z) + ∑N

α=1 Ĥα (z) + ∑N
α=1 V̂ (α)

C (z),
where z is a generic complex time variable on the
Keldysh contour γ [17,18,29,30] [Fig. 1(b)]. In the
central region the Hamiltonian reads ĤC (z) = ∫

dx1

ψ̂†(1)h(1)ψ̂ (1) + 1
2

∫
dx1d1′ ψ̂†(1)ψ̂†(1′)v(1, 1′)ψ̂ (1′)ψ̂ (1).

The indices 1 = (x1, z1), 1′ = (x′
1, z′

1) are collective in-
dices for the position-spin coordinate x = (r, σ ) and complex
time z, h(1) the single-particle Hamiltonian in the central
region, and v(1, 2) = δγ (z1 − z2)v(x1, z1; x2, z2), a generic
two-body interaction. Ĥα (z) = ∫

dx1ψ̂
†
α (1)hα (1)ψ̂α (1) de-

scribes particles in the region of the αth lead with hα (1)
the single-particle Hamiltonian. The Hamiltonian account-
ing for the coupling between the interacting region and the
leads is chosen to be tunnel-like and given by V̂ (α)

C (z) =∫
dx1(ψ̂†(1)Tα (1)ψ̂α (1) + H.c.), where T (1) are the tunnel-

ing energies between particles in the interacting region and
those in the αth lead. The key object in the NEGF framework
is the single-particle Green’s function (SPGF) G(1, 1′) =
−i〈Tγ ψ̂ (1)ψ̂†(1′)〉0 with Tγ the time-ordering operator over
the Keldysh contour γ and 〈. . . 〉0 the average over the initial
many-body state. The knowledge of G gives access to all
single-particle quantities (e.g., density, momentum distribu-
tion, density of states). For an interacting system the SPGF
can be found by solving either the Kadanoff-Baym equations
[18,29,31,32], the Dyson equation [33,34], or other equivalent
techniques [35–39]. A crucial point is the choice of a self-
energy, which is typically a functional of the SPGF itself.
The reason to introduce the self-energy is to truncate the
hierarchy of equations which couples the equation-of-motion
for the SPGF to those of higher-order Green’s functions [18].
Henceforth, we shall assume that a self-energy, accounting
for both the many-body interactions and the coupling to the
leads, has been chosen and that a solution for the SPGF has
been found. Under these assumptions we shall compute the
energy variation in the interacting region in a way which is
consistent with the approximations embodied in the chosen
self-energy.

III. ENERGY VARIATION IN THE CENTRAL REGION

We start considering the rate of variation of the en-
ergy in the central (interacting) region d〈ĤC (t )〉/dt =
i〈[Ĥ (z), ĤC (z)]〉z=t + ∂〈ĤC (z)〉/∂z|z=t ≡ J (t ) + P(t ) where
we defined the energy current J (t ) and the power P(t )
due to external drive; in the following we will disregard
this last term as it is not relevant for the purposes of our
discussion. By computing the commutator of ĤC (z) with the
total Hamiltonian (see Appendix A for details), we obtain an
expression in terms of GCα (1, 1′) = −i〈Tγ ψ̂ (1)ψ̂†

α (1′)〉 and
G(2)

CCCα (1, 2; 3, 4) = (−i)2〈Tγ ψ̂ (1)ψ̂ (2)ψ̂†
α (4)ψ̂†(3)〉.

This expression can be manipulated by means of the
S-matrix expansion in the interaction picture with respect
to ĤC (t ) + ∑

α Ĥα (t ) to obtain J (t ) = ∑
α J

(α)
C (t ) (see

Appendix B for details) with

J (α)
C (t )=2Re

{∫
dx1d 1̄d 2̄ H (1, 1̄)G(1̄, 2̄)	α (2̄, 1̄+)

}
z1=t

,

(1)

where H (1, 1′) = [h(1)δ(1, 1′) + 	(1, 1′)] and 1+ =
(x1, z+

1 ), with z+
1 a time infinitesimally later than z1 on

the Keldysh contour.
Equation (1) expresses the variation of the energy in the

interacting region as the sum of different contributions each
coming from the individual leads. The single contribution
from the lead α is in turn made of two terms; the first one is
similar to the expression of the particles’ current due to the αth
lead: I (α)

C (t ) = 2Re{∫ dx1d 1̄d 2̄ G(1̄, 2̄)	α (2̄, 1̄+)}z1=t , with
the significant difference that it contains the single-particle
Hamiltonian h(1) and it accounts for the energy carried by
the flowing particles; the effect of the interactions is present
only in the SPGF G through a change in the density of states
of the particles in the central region. This term is analogous
to the energy variation of the lead where the single-particle
Hamiltonian of the central region is replaced by the single-
particle Hamiltonian of the αth lead. The second term contains
the many-body self-energy explicitly and therefore accounts
for the transport of the particle-particle interaction energy;
it can be seen as a mechanism of energy redistribution in
the central region due to particle-particle scattering: noninter-
acting electrons coming from the leads scatter in the central
region releasing part of their energy before tunneling into a
new noninteracting state of another lead.

IV. INTERLEADS COUPLING

The expression in Eq. (1) has to be compared with the
Meir-Wingreen-like expression Jα (t ) = i〈[Ĥ (z), Ĥα (z)]〉z=t ,
that describes the energy variation of the lead α due to the
coupling with the central correlated region. For the particle
currents, it is true that the current into the lead is equal and op-
posite to the charge variation in the central system due to that
lead, namely Iα = −I (α)

C . Here we defined the current in the α

lead as Iα = i〈[Ĥ (z), N̂α (z)]〉z=t and the currents into the cen-
tral region due to the lead α as

∑
α I

(α)
C = i〈[Ĥ (z), N̂C (z)]〉z=t .

This relation translates into a formal mathematical expres-
sion of the intuitive concept of the locality of the number
operator. Basically, they state that particles flowing out of a
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lead necessarily enter the central region causing an equal and
opposite variation. In analogy with the particle current we
would expect that the following relation for the energy current
Jα (t ) = −J (α)

C (t ) should always be true as well. However, as
we prove in the following, this is not always the case. It is
sufficient to look at the time derivative d〈V̂ (α)

C (t )〉/dt of the
coupling Hamiltonian between the terminal α and the central
region. It is easy to prove (see Appendix C for details) that

d

dt

〈
V̂ (α)

C (t )
〉 = −Jα (t ) − J (α)

C (t ) − 
Jα (t ) + ∂

∂t

〈
V̂ (α)

C (t )
〉
,

(2)

where 
Jα (t ) = ∑
β �=α

∫
dx1Tβ (1)Gβα (1; 1+)T ∗

α (1) and

Gβα (1, 1′) = −i〈Tγ ψ̂β (1)ψ̂†
α (1′)〉 is the lead β-lead α Green’s

function. It has been shown [24] that the DC component of
d
dt 〈V̂ (α)

C (t )〉 = 0 and therefore Jα (t ) = −J (α)
C (t ) − 
Jα (t ).

Therefore, we have shown that a variation of the energy of the
lead is not necessarily accompanied by an equal and opposite
change in the energy of the central region as in the case for the
particle variation. The difference between the two is given by
the term 
Jα (t ) which arises from the direct propagation of
particles from any other lead β( �= α) and the lead α via virtual
scattering through the central region. This interpretation
is supported by the physical meaning of Gβα (1, 1′) =∫

d 1̄d 2̄ gβ (1; 1̄)T ∗
β (1̄)G(1̄; 2̄)Tα (2̄)gα (2̄; 1′) (see Appendix C

for details): it represents the propagation of a particle from
one lead to another through the central region. The expression
	βα (1; 1′) = T ∗

β (1)G(1; 1′)Tα (1′) is also called the inbedding
self-energy [18] and accounts for the backaction of the central
region onto the leads. This term is usually either negligible
or zero altogether. In the weak coupling limit this term is
vanishingly small due to the fact that it is of fourth order in the
coupling between the central region and the leads. Moreover
it also vanishes when the two integrals in the expression for
Gβα (1; 1′) have different spatial supports, namely when Tα (1)
and Tβ (1′) for α �= β are nonzero on different spatial regions
and therefore their product vanishes.

Nonetheless, it is possible to envisage situations in which
this term gives a nonvanishing contribution: short quantum
wires (mean free path comparable with the size of the wire),
more than one lead coupled to the same spatial region, or
spatially extended coupling between the leads and the central
region. As a consequence, the energy variation of the lead is
not only related to the one of the central region, as one would
expect, but also accounts for contribution coming from the
direct exchange of energy with other leads. Therefore, as one
can easily deduce, it is crucial to consider this term in situa-
tions where one wants to infer the thermal transport properties
of a system (the central region) by measuring the properties of
the reservoirs (e.g., particle distribution, temperatures).

V. SIAM IN THE KONDO REGIME

In order to show the consequences of the results presented
so far we look at the energy transport in the single-impurity
Anderson model [40,41] described by the Hamiltonian Ĥ =
ε
∑

σ d̂†
σ d̂σ +Ud̂†

↑d̂↑d̂†
↓d̂↓ + ∑

α,kσ (εαkσ + μα )ĉ†
αkσ

ĉαkσ −
g
∑

α,kσ (ĉαkσ d̂†
σ + H.c.). Here, d̂†

σ (d̂σ ) corresponds to creation
(annihilation) of electron on the impurity level with spin

σ , ε denotes the single-particle energies, and U is the
electronic charging energy. The operator ĉ†

αkσ
(ĉαkσ ) creates

(annihilates) electron with state k and spin σ in the lead
α = L, R with chemical potential μα . Finally, g denotes the
tunneling amplitude between the terminal and the impurity
level. In the wide-band limit approximation we are left with a
frequency-independent coupling � = |g|2. In what follows we
consider unbiased voltage (μ = μL = μR = 0), a finite and
symmetric thermal bias TL = T +
T/2, TR = T − 
T/2,
with T = (TL + TR)/2 = 0.125 and 
T = TL − TR = 0.15
and we study the dynamical quantities as function of the
impurity level position ε. We present our results as a
function of the shifted single-particle energies or gate voltage
vg = ε +U/2, such that the particle-hole symmetric point
ε = −U/2 correspond to vg = 0.

Under certain conditions the SIAM may reveal Kondo
effects characterized by the formation of a correlated asym-
metric resonance in the spectral structure of the system
[41,42]. The conditions to attain such regime are a large
charging energy and tunnel coupling at low temperature,
U 
 � 
 T and T � TK . The expression for the thresh-
old temperature or Kondo temperature is given by TK =
1
2

√
�Uexp(π

(v2
g−U 2/4)

�U ) [43] and is strictly valid in the Kondo
regime where −U/2 + �/2 < vg < U/2 − �/2. The inter-
actions in the correlated impurity are treated in the self-
consistent GW approximation (see Appendix D for details),
which on the one hand is guaranteed to satisfy macroscopic
conservation laws [18], and on the other hand allows us to
explore certain features of the Kondo regime [44]. We solve
the Dyson equation numerically using the method described
in Refs. [33,34]. We checked that the obtained expression
for the total current through the interaction region J (t ) in
Eq. (1) is consistent with the derivative of the total en-
ergy in the corresponding region dE (t )/dt where E (t ) =
〈ĤC (t )〉 = {i ∫ dx1d2 [h(1)δ(1, 2) + 1

2	(1, 2)]G(2, 1+)}. We
find, within numerical errors, a remarkable agreement be-
tween these two quantities at any time of the dynamics and
for any set of the parameters considered (Appendix D). This
demonstrates that the approximations done on the two-particle
Green’s function, while working out an expression for J (t ),
are indeed consistent with those used to solve the Dyson equa-
tion for the single-particle Green’s function and embodied into
the chosen self-energy.

Before moving to the systematic study of the currents,
we first characterize the regimes of parameters where the
Kondo effects may occur. Figure 2(a) shows a map in the
gate-voltage/frequency plane of the nonequilibrium spectral
function of the system A(ω) = i[GR(ω) − GA(ω)] obtained
from the solution of the Dyson equation in a strong coupling
regime with the leads � = 1.3 and for different charging
energies U = 0, 2, 4. As the interaction increases, one can
identify a range in the gate voltage where the spectral func-
tion is centered at the chemical potential of the leads, that
correspond exactly to the range where Kondo correlations
are expected −U/2 +�/2 < vg < U/2 − �/2 (white dashed
lines). Figure 2(b) shows instead how the Kondo correlations
reshape the spectral function at the charge degeneracy point
vg = 0. Going from zero to large interactions, the Lorentzian
shape is lost to leave a more asymmetric and pinned structure.
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(a)

(b) (c)

FIG. 2. Characterization of the Kondo regime. (a) Density plot
in the strong coupling regime � = 1.3 and different interactions
strength U = 0, 2, 4 of the nonequilibrium spectral function A(ω)
in the gate-voltage/frequency plane vg − ω. The white dashed lines
represent the range of gate-voltage where the Kondo correlations are
expected −U/2 + �/2 < vg < U/2 − �/2 for the respective interac-
tions strength. (b) Corresponding nonequilibrium spectral function at
the particle-hole symmetric point vg = 0, ε = −U/2 for the different
interactions considered. It is possible to appreciate how the shape of
spectral function changes as the Kondo regime is reached U/� 
 1.
(c) Kondo temperature TK as a function of vg in the range of gate
voltage where Kondo correlations occur for the charging energy
U = 4. The red solid line represents the value of the “average”
temperature of the leads T = (TL + TR )/2 = 0.125.

Figure 2(c) shows the Kondo temperature TK for the charg-
ing energy U = 4 as a function of vg in the range of gate
voltage where Kondo correlations take place. As we can see
the average temperature T (red solid line) lies slightly above
the Kondo temperature TK in a region close to the degeneracy
point vg = 0. Nonetheless, the spectral function is still pinned
at the chemical potential of the leads in the whole interval and
its shape is very different from a Lorentzian, a clear signature
of the Kondo regime. This may be explained from the highly
out-of-equilibrium scenario (T ∼ 
T ) that we consider; it is
quite reasonable that the system does not equilibrate to the
average temperature T of the leads and instead reaches a lower
temperature that allows the Kondo correlations to persist.

VI. PARTICLE AND ENERGY CURRENTS

We now look at the steady-state properties of
the time-dependent expressions for the particle and
energy currents, namely the limit t → ∞. In the
case of two symmetrically coupled terminals the
particle current is given by the Meir-Wingreen formula
limt→∞Iα (t ) ≡ I (S)

α = ∫
dω�(ω)[ fα (ω) − fᾱ (ω)]A(ω).

Here �(ω) = �L(ω)�R(ω)/[�L(ω) + �R(ω)], ᾱ �= α,
fα (ω) = (1 + eβα (ω−μα ) )−1 is the Fermi-Dirac distribution
function for electrons in the lead α and A(ω) is the
nonequilibrium spectral function of the central region. For
the energy current we compare J̄ (L)

C ≡ limt→∞J (L)
C (t ) with

limt→∞JL(t ) ≡ J (S)
L = ∫

dω ω�(ω)[ fα (ω) − fᾱ (ω)]A(ω).
The latest expression is the energy counterpart of the
Meir-Wingreen formula for the particle current and properly

describes how the energy runs across the noninteracting leads.
It is widely used to characterize thermoelectric properties
of correlated materials in linear response [45–47]. Figure 3
shows the agreement between the particle current in the
central region due to the left lead I (L)

C (t ), (t� 
 1) and the
opposite of the current that flows into the same lead −I (S)

L
for both weak coupling � � 
T [Fig. 3(a)] and strong
coupling � 
 
T [Fig. 3(b)], for different values of the
interaction strength U . The two currents are actually equal
and opposite regardless of the regime considered and for
any range of parameters chosen as one would expect. We
observe that for positive gate voltages particles flow from
the central region to the left lead (I (L)

C (t ) = −I (S)
L < 0)

because the position of the spectral function of the system
lies above the chemical potential of the lead (μL = 0). The
opposite situation is realized for negative gate potentials
where particles flow from the left lead to the central region
(I (L)

C (t ) = −I (S)
L > 0). In the weak coupling case, Fig. 3(a),

the particle current is fully specified by the window function
of the leads IL ∼ 
 f (vg) = fL(vg) − fR(vg). This may be
understood from the shape of the spectral function that,
although being a Lorentzian function, is much sharper and
narrower than the energy window of the leads (� � 
T )
and it can be approximated with A(ω) ∼ δ(ω − vg). This
picture is slightly different when the interaction is present
since, in this case, the overall effect is to broaden the spectral
function that cannot anymore be treated as a delta function.
Nonetheless, the physical scenario is qualitatively the same
and only quantitatively different. The strong coupling case,
Fig. 3(b), does not present significant differences outside of
the Kondo region. When the system enters the Kondo regime
(green and gray shaded areas) the behavior of the current
is drastically different from the window function 
 f (ω)
reflecting the change in the shape of the spectral function in
this regime.

In contrast to the particle current, a perfect agreement
between the energy current across the interacting region due
to the left reservoir J̄ (L)

C and the opposite current in the same
lead −J (S)

L is found only in the weak coupling scenario as
shown in Fig. 3(c). At strong coupling we observe a quali-
tatively different behavior and not only a merely quantitative
deviation between these two expressions, Fig. 3(d), as it was
for the particle currents. Interactions are not responsible for
it as the effect is present, and actually more pronounced, in
the noninteracting case (U = 0). The maximum difference
between the two currents is at the particle-hole symmetric
point (vg = 0) where J̄ (L)

C is zero and J (S)
L has its maximum.

This can be explained with the following argument: the central
region is at resonance, it is completely transparent, and all
the energy flows from one lead to the other without affecting
the energy of the central region. The presence of Kondo
correlations manifest themselves as a plateau in the energy
currents in the range of gate voltage where they are predicted,
namely for −U/2 + �/2 < vg < U/2 − �/2. These regions
are shown in Fig. 3 as green and gray shaded areas and they
correspond to the regions in which the spectral function is
pinned at the chemical potential of the leads, as shown by the
horizontal solid lines in Fig. 2(a). One interesting observation
is that the extension of the plateaux of the lead energy current
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(a) (c) (e)

(f)(d)(b)

FIG. 3. Particle and energy currents. (a),(b) Comparison of the steady-state particle currents flowing through the central region due to the
left lead limt→∞ I (L)

C (t ) (markers) and the reverse current that runs into the same lead −I (S)
L (solid lines) in the weak coupling � = 0.04 (a)

and in the strong coupling regimes � = 1.3. (b) At the charging energy U as indicated in the legend. (c),(d) Parallel between the steady-state
energy currents across the interacting system from the left lead J̄ (L)

C (markers) and the opposite of the energy current flowing into the respective
lead −J̄ (S)

L (solid lines) at the same couplings and charging energies as in the case of particle currents. (e),(f) Comparison between (minus) the
sum of the two steady-state energy currents −(J̄ (S)

L + J̄ (L)
C ) (markers) and the term limt→∞ 
JL (t ) (solid lines) in the region of parameters as

specified before. All the quantities are normalized by their respective �. The shaded areas in the figures correspond to the gate-potential range
of the Kondo regime −U/2 + �/2 < vg < U/2 − �/2 for the related couplings and charging energies.

overestimates these regions, whereas the one in the energy
variation of the central region shows a better agreement. As
we noticed above the pinning of the spectral function is a
hallmark of the emergence of the Kondo bound state and it
can be probed through transport experiments [6]. In these
experiments properties of the central region are inferred from
measurements onto the leads. We have just shown that in
the determination of the extent of the Kondo regime in gate
voltage, it might be beneficial to consider this extra term to get
a more precise estimation of the Kondo region for single level
quantum dots in the strong coupling regime. Interestingly, in
the case of a thermal bias in the leads the plateau induced
by the Kondo cloud appears in the energy current, whereas
in the case of small bias voltage it appears in the particle
current as shown in Ref. [34]. In general, interactions increase
the change of energy in the central region with respect to
the noninteracting case. Nevertheless, there is a reduction
between the energy current in the left lead J (S)

L and the energy
change in the central interacting region predicted by Eq. (1).

VII. VIRTUAL PROCESSES

In Sec. IV we have shown that the energy variation of one
lead and the lead’s contribution to the variation of the the
energy of the central region differ by 
Jα (t ). This term has
been shown to arise from the direct coupling of the lead to
all other leads via second-order processes through the central
region. Moreover, we observe that in the strong coupling
regime of the SIAM the two currents are indeed different and
that this effect does not come from the strong correlations
present in this regime, but actually it is more pronounced in
the noninteracting case. If we compute the term −J (S)

L − J (L)
C

and compare it with 
JL computed separately we obtain a
perfect agreement as shown in Figs. 3(e) and 3(f) for both
weak and strong coupling respectively. Recently, this term
has been shown [48] to be useful in computing the energy
variation in the lead, that has been also measured in a setup

analogous to the one we have considered. It is worthwhile to
notice that, whenever the interaction is present, the energy
rate contribution J (L)

C (t ) is never zero when the density of
states of the dot is in the energy window of the leads. Thus,
the presence of the interaction redistributes the energy inside
the dot and forbids from a perfect transparency as the one
observed in the noninteracting case.

The lead-lead coupling has been already discussed in
[21,49,50] with the remarkable difference that there a lead-
lead interaction was present from the beginning in the Hamil-
tonian of the system. Moreover, the effect of such coupling
on the energy transfer and its microscopic mechanism has
not been discussed. As a concluding remark, we would like
to highlight the importance and the implications of the term

Jα whenever it is not vanishing. When probing the conduc-
tion properties, either electrical or thermal, measurements are
performed on the leads. In the case of particle currents the
rate of change of particles in the lead equals the change of
particles in the central region due to the lead itself. Therefore,
measure of the charge current into the lead is equivalent to
measure the change in the particle currents in the central
region. Hence it is meaningful to infer the electrical con-
ductivity of the central region from the measured current
in the leads. Nevertheless, when it comes to compute the
thermal conductivity of the system in the central correlated
region κ = ∂Q̇L

∂
T |I (S)
L =0, with the heat current given by Q̇L =

(J (S)
L − μLI (S)

L ), one has to take extra care on what is the
actual interpretation of what is computed. Indeed, according
to Eq. (2), at stationarity and in the absence of external drive,
one has κ = − ∂

∂
T (J̄ (L)
C − μLIL

C + 
JL ) |I (L)
C =0, where we

replace I (S)
L → −I (L)

C = −limt→∞I (L)
C (t ). The last equation

shows that to compute the thermal conductance of the cen-
tral region, the lead-lead term 
JL needs to be considered.
The term, as we discussed, accounts for the energy transfer
through the contacts or terminals, thus in the strong coupling
or for spatially extended couplings, what is actually computed
is the interface thermal conductance between two leads, as if
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the two were directly coupled via a renormalized tunneling.
We conclude that in the case of strong coupling and/or when
the coupling of the leads is spatially extended, the usual defi-
nition of thermal conductance can be misleading as a figure of
merit for the thermal properties of the central region. This is
in contrast with the electrical conductance which is, instead,
always consistent with the rate of change of the particle cur-
rents in the middle region. As a concluding remark, we would
like to comment on the possibility to define, by analogy with
the lead, the heat rate Q̇(L)

C = J̄ (L)
C − μLIL

C , namely the heat
flowing from the central region to the left lead. However, this
definition is in contrast with the thermodynamic formulation
of heat as we will show in a forthcoming work.

VIII. CONCLUSIONS

We have shown that the energy variation of an interacting
system coupled to N leads is equal to the sum of different
contributions each related with the energy flowing from/to
the individual leads. Each term is in turn made of two further
contributions, a first one accounting for the energy transport
due to the flow of particles, and a second one accounting
for the particle-particle scattering which redistributes the

energy in the interacting region. This expression has been
compared to the energy variation into the corresponding lead
and we have found that the two are not always equal and
opposite in sign as it is in the case of particle current. The
difference between these two currents is due to the direct
exchange of energy among two of the leads and the micro-
scopic mechanism behind it is the coupling of these leads
through virtual processes involving the central interacting
region.
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APPENDIX A: ENERGY VARIATION OF THE CENTRAL REGION

We discuss here how to compute the expression of the energy variation in the central region:

ĖC ≡ d

dt
〈ĤC (t )〉 = i〈[Ĥ (t ), ĤC (t )]〉, (A1)

which can be recast in a form very similar to the time dependent Meir-Wingreen one for the particle current [14–16] in terms of
the single-particle Green’s function, the embedding self-energies, and, in this case, of the many-body self-energy. Here we show
how the energy variation can be expressed in terms of single- and two-particle mixed Green’s functions. In the next subsection
we demonstrate how to manipulate these expressions in order to recast them in terms of single-particle quantities of the central
region. First, we need to compute explicitly the commutators entering into the definition of the energy current:

ĖC (z1) = i〈[Ĥ (z1), ĤD(z1)]〉 = i〈[ĤT (z1), ĤD(z1)]〉

=
∑

α

(
i

〈[∫
dx1(ψ̂†(1)T (1)ψ̂α (1) + ψ̂†

α (1)T ∗(1)ψ̂ (1)),
∫

dx2ψ̂
†(2)h(2)ψ̂ (2)

]〉

+ i

〈[∫
dx1(ψ̂†(1)T (1)ψ̂α (1) + ψ̂†

α (1)T ∗(1)ψ̂ (1)),
1

2

∫
γ

dz′
1

∫∫
dx2dx′

1ψ̂
†(2)ψ̂†(1′)v(1′, 2)ψ̂ (1′)ψ̂ (2)

]〉)

=
∑

α

(
−i

∫
dx1 T (1)h(1)〈ψ̂†(1)ψ̂α (1)〉+ i

∫
dx1 T ∗(1)h(1)〈ψ̂†

α (1)ψ̂ (1)〉

− i

2

∫
γ

dz′
1

∫∫
dx1dx′

1 T (1′)v(1, 1′)(−i)2〈ψ̂†(1)ψ̂†(1′)ψ̂ (1)ψ̂α (1′)〉

+ i

2

∫
γ

dz′
1

∫∫
dx1dx′

1 T (1)v(1, 1′)(−i)2〈ψ̂†(1)ψ̂†(1′)ψ̂ (1′)ψ̂α (1)〉

− i

2

∫
γ

dz′
1

∫∫
dx1dx′

1 T ∗(1)v(1, 1′)(−i)2〈ψ̂†
α (1)ψ̂†(1′)ψ̂ (1′)ψ̂ (1)〉

+ i

2

∫
γ

dz′
1

∫∫
dx1dx′

1 T ∗(1′)v(1, 1′)(−i)2〈ψ̂†
α (1′)ψ̂†(1)ψ̂ (1′)ψ̂ (1)〉

)
,

where z is the complex time variable on the path γ in the complex-time plane and 1 ≡ (x1, z1), 2 ≡ (x2, z2), and 1′ ≡ (x′
1, z′

1)
are multi-indexes for position, spin, and complex time. It is understood that at the end we take z1 = t to project the complex time
variable onto the real axis.
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We can rewrite the first two terms in the following way:∫
dx1 h(1)[T ∗(1)i〈ψ̂†

α (1)ψ̂ (1)〉 − T (1)i〈ψ̂†(1)ψ̂α (1)〉] = 2Re

{∫
dx1 h(1)T ∗(1)GCα (1; 1+)

}
,

where we use the definition of the mixed Green’s functions: GCα (1, 1′) = −i〈Tγ ψ̂ (1)ψ̂†
α (1′)〉 and GαC (1; 1′) =

−i〈Tγ ψ̂α (1)ψ̂†(1′)〉, with Tγ the time-ordering operator over the Keldysh contour γ in the complex-time plane and where
we exploit the property GαC (1; 1′) = −[GCα (1′; 1)]∗. Moreover 1+ ≡ (x1, z+

1 ) with z+
1 being a time infinitesimally greater than

z1 on the Keldysh contour.
A similar manipulation can be done in the other four terms arising from the commutator of the interacting Hamiltonian. By

a change of the integration variables and using the relation 〈ψ̂†(1)ψ̂†(1′)ψ̂ (1′)ψ̂α (1)〉 = −〈ψ̂†(1′)ψ̂†(1)ψ̂ (1′)ψ̂α (1)〉, the last
four terms are equal in pair; this cancels out the factor 1/2 and we are left with

i
∫

γ

dz′
1

∫∫
dx1dx′

1 T ∗
α (1′)v(1, 1′)(−i)2〈ψ̂†

α (1′)ψ̂†(1)ψ̂ (1′)ψ̂ (1)〉+ H.c.

= 2Re

{
i
∫

γ

dz′
1

∫∫
dx1dx′

1 v(1, 1′)T ∗
α (1′)G(2)

CCCα (1′, 1; 1+, 1′+)

}
, (A2)

where we use the definition of the mixed two-particle Green’s functions G(2)
CCCα (1, 2; 3, 4) = (−i)2〈Tγ ψ̂ (1)ψ̂ (2)ψ̂†

α (4)ψ̂†(3)〉
and G(2)

CαCC (1, 2; 3, 4) = (−i)2〈Tγ ψ̂ (1)ψ̂α (2)ψ̂†(4)ψ̂†(3)〉 together with the relation G(2)
CαCC (1, 1′; 1′+, 1+) =

[G(2)
CCCα (1′, 1; 1+, 1′+)]

∗
.

By collecting all terms we obtain

ĖC =
∑

α

2Re

{∫
dx h(1)T ∗(1)GCα (1+) + i

∫
γ

dz′
∫∫

dxdx′ v(1; 1′)T ∗
α (1′)G(2)

CCCα (1′, 1; 1+, 1′+)

}
. (A3)

APPENDIX B: MIXED GREEN’S FUNCTIONS

We have seen that it is possible to express the energy
current flowing through the central interacting region as the
sum of two contributions. These contributions contain the
mixed Green’s functions accounting for the propagation of
both particles in the central region and in the leads. It is
important to point out that such a situation occurs also in the
case of the calculation of the particle (charge) current [16].
The usual way to find an expression for the mixed Green’s
functions GCα (1; 1′) is based on the equation-of-motion ap-
proach [17,18]. Since the leads are noninteracting, the method
allows us to write down a closed set of equations and then a
general formula for GCα (1; 1′) in terms of the single-particle
Green’s function. Even though appealing for its simplicity, the
equation-of-motion technique cannot straightforwardly apply
to the mixed two-particle Green’s function GCCCα

2 (1, 2; 3, 4)
since the analysis gets quite complicated and a closed set
of equations can be found only if one relies on some

physical approximations. The latter must be chosen consis-
tently with the approximations used for the single-particle
Green’s function.

Rather than the equations-of-motion technique we find a
general expression for both mixed Green’s functions by a
direct expansion of the S matrix in the interaction picture with
respect to the coupling Hamiltonian [17]. Despite the fact
that the derivation is somehow more complex for the mixed
single-particle Green’s function, it is very general and can be
extended easily to the mixed n-particle Green’s functions.

Let’s look at the first term of the energy current, namely
the one containing the the single-particle Hamiltonian h(1).
The key idea of this approach is to express the contour-
ordered mixed single-particle Green’s function GCα (1; 1′) =
−i〈Tγ ψ̂ (1)ψ̂†

α (1′)〉 in terms of the contour-ordered single-
particle Green’s function of the particles in the central region
GCC (1; 1′) = −i〈Tγ ψ̂ (1)ψ̂†(1′)〉 and the one in the leads,
gα (1; 1′) = −i〈Tγ ψ̂α (1)ψ̂†

α (1′)〉.

The derivation follows by writing the Green’s function GCα (1; 1′) in terms of the interaction-picture operators (denoted by
a tilde) with respect to the free Hamiltonians ĤC and Ĥα of both the central region and the terminal α. Therefore the evolution
operator will be expressed in terms of the coupling Hamiltonian H̃T in the interaction picture. Thus in this picture the mixed
single-particle Green’s function can be written as

GCα (1; 1′) = −i〈Tγ ψ̂ (1)ψ̂†
α (1′)〉 = −i〈Tγ ψ̃ (1)ψ̃†

α (1′)S〉, (B1)

where we defined the S matrix as

S =
∞∑

k=0

(−i)k

k!

∫
γ

dz̄1· · ·
∫

γ

dz̄kH̃T (1̄) . . . H̃T (k̄). (B2)
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By inserting the explicit form of the S matrix into Eq. (B1) we obtain

− i

〈
Tγ ψ̃ (1)ψ̃†

α (1′)
∞∑

k=0

(−i)k

k!

∫
γ

∫
dz̄1d x̄1(ψ̃†(1̄)T (1̄)ψ̃α (1̄) + H.c.) × · · · ×

∫
γ

dz̄kH̃T (k̄)

〉

=
∫

d 1̄
∞∑

k=0

(−i)k

k!
(−i)〈Tγ ψ̃α (1̄)ψ̃†

α (1′)〉T (1̄)

〈
Tγ ψ̃ (1)ψ̃†(1̄) × · · · ×

∫
γ

dz̄kH̃T (k̄)

〉
+ (k − 1 remaining terms).

The key point in the second step is the assumption that the leads are noninteracting allowing us to use Wick’s theorem for the α

operators. Besides, we use the fact that in the interaction picture the operators ψ and ψα are independent and thus the expectation
values can be factorized. Finally, by relabeling all integration variables in the remaining k − 1 it turns out that all these terms are
equal and hence we get a factor k, therefore

GCα (1; 1′) =
∫

d 1̄(−i)

〈
Tγ ψ̃ (1)ψ̃†(1̄)

∞∑
k=0

(−i)k−1

(k − 1)!

k∏
p=1

∫
γ

dz̄pH̃T ( p̄)

〉
× Tα (1̄)(−i)〈Tγ ψ̃α (1̄)ψ̃†

α (1′)〉

=
∫

d 1̄ G(1; 1̄)Tα (1̄)gα (1̄; 1′), (B3)

where in the last line we use ψ̂α (1) = ψ̃α (1), and restore the S-matrix expansion for the single-particle Green’s function.
The first term in Eq. (A3) can be rewritten as

∑
α

2Re

{∫
dx1h(1)T ∗

α (1)GCα (1; 1+)

}
=

∑
α

2Re

{∫
dx1d 1̄ h(1)G(1; 1̄)	α (1̄; 1+)

}
, (B4)

where we define the embedding self-energy 	α (1; 2) = Tα (1)gα (1; 2)T ∗
α (2). It accounts for the presence of the α− lead. The

second term of Eq. (A3) containing the mixed two-particle Green’s function G(2)
CCCα can be manipulated in a similar way and we

rewrite it in terms of the contour-ordered two-particle Green’s function of the central interacting region G(2):

G(2)
CCCα (1′, 1; 1+, 1′+) = (−i)2〈Tγ ψ̂ (1′)ψ̂ (1)ψ̂†

α (1′+)ψ̂†(1+)〉 = (−i)2〈Tγ ψ̃ (1′)ψ̃ (1)ψ̃†
α (1′+)ψ̃†(1+)S〉

= (−i)2

〈
Tγ ψ̃ (1′)ψ̃ (1)ψ̃†

α (1′+)ψ̃†(1+) ×
∞∑

k=0

(−i)k

k!

∫
γ

∫
d 1̄(ψ̃†(1̄)T (1̄)ψ̃α (1̄) + H.c.) × · · · ×

∫
γ

dz̄kH̃T (k̄)

〉

=
∫

d 1̄ (−i)2

〈
Tγ ψ̃ (1′)ψ̃ (1)ψ̃†(1̄)ψ̃†(1+)

∞∑
k=0

(−i)k

k!

k∏
p=1

∫
γ

dzpH̃T ( p̄)

〉
× (−i)〈Tγ ψ̃α (1̄)ψ̃†

α (1′+)〉T (1̄)

=
∫

d 1̄ G(2)(1′, 1; 1+, 1̄)T (1̄)gα (1̄; 1′+), (B5)

where in the last step we recognize the series expansion in the interaction picture of the two-particle Green’s function of the
central region and the single-particle Green’s function of the lead α.

Inserting this result into the second term of Eq. (A3) we obtain

i
∑

α

∫
dx′d1 v(1′, 1)T ∗(1′)G(2)

CCCα (1′, 1; 1+, 1′+) = i
∑

α

∫
dx′d1d 1̄ v(1′, 1)T ∗(1′)G(2)(1′, 1; 1+, 1̄)T (1̄)gαα (1̄; 1′+)

= −i
∑

α

∫
dx′d1d 1̄ v(1′, 1)G(2)(1′, 1; 1̄, 1+)T (1̄)gα (1̄; 1′+)T ∗(1′) =

∑
α

∫
dx′d1d 1̄ 	(1′; 1)G(1; 1̄)	α (1̄; 1′+), (B6)

where we use v(1, 1′) = v(1′, 1), the symmetry relations of the two-particle Green’s function G(2)(1, 2; 3, 4) = −G(2)(1, 2; 4, 3),
and the definition of the embedding self-energy 	α (1; 2).

The crucial point in obtaining the above result is to use the relation linking the two-particle Green’s function in the interacting
region with the many-body self-energy:∫

d 1̄ v(1, 1̄)G(2)(1, 1̄; 1′, 1̄+) = i
∫

d 1̄ 	(1, 1̄)G(1̄, 1′), (B7)

which is nothing but the relation which defines the many-body self-energy itself.
Now we can write the final expression in terms of the currents, which in Eq. (1) gives

d

dt
〈ĤC (t )〉 =

∑
α

J (α)
C (t ) ≡

∑
α

2Re

{∫
dx1d 1̄d 2̄[h(1)δ(1, 1̄) + 	(1; 1̄)]G(1̄; 2̄)	α (2̄, 1+)

}
z1=t

. (B8)
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The expression for the variation of the energy has to be compared to the derivative of the total energy:

d

dt
EC (t ) = d

dz1

[
i
∫

dx1d 1̄

[
h(1)δ(1, 1̄) + 1

2
	(1; 1̄)

]
G(1̄; 1+)

]∣∣∣∣
z1=t

. (B9)

APPENDIX C: ENERGY VARIATION OF THE CONTACT REGION

Here we show how to compute the variation of energy in the contact region. Instead of considering directly the commutator,
we exploit some useful identities that make the calculation faster and straightforward. The average variation of energy in the
tunneling region then reads

d

dt

〈
V̂ (α)

C (t )
〉 = 2Re

{
−i

∫
dx1 T ∗

α (1)
d

dz1
GCα (1; 1+)

}
z1=t

= 2Re

{∫
dx1d 1̄ G(1; 1̄)	α (1̄; 1+)hα (1)

}
z1=t

− 2Re

{∫
dx1d 1̄d 2̄[h(1)δ(1, 1̄) + 	(1; 1̄)]G(1̄; 2̄)	α (2̄, 1+)

}
z1=t

− 2Re

{∫
dx1d 1̄d 2̄ 	emb(1; 1̄)G(1̄; 2̄)	α (2̄, 1+)

}
z1=t

, (C1)

where we use Eq. (B3) together with the equation of motion for the single-particle Green’s functions in the central region and in
the leads:

i
d

dz
G(1; 1′) = δ(1, 1′) + h(1)G(1; 1′) +

∫
d 1̄ [	(1; 1̄) + 	emb(1; 1̄)]G(1̄; 1′) (C2)

i
d

dz′ gα (1; 1′) = −δ(1, 1′) − gα (1; 1′)h(1′), (C3)

and where 	emb(1; 1′) = ∑
β 	β (1; 1′).

It is easy to recognize that the first term is nothing but the opposite of the variation of the energy of the lead α: Ėα = d
dt 〈Ĥα (t )〉.

The second term is −J (α)
C (t ), namely the opposite of the variation of the energy on the central region due to the coupling with

the lead α.
The third term is the most interesting one and describes the direct coupling of the lead α with all the others. The coupling is

mediated by the central region and therefore is of the fourth order in the coupling between the central region and the leads. To
see it explicitly, we consider the mixed single-particle Green’s function Gβα (1; 1′) ≡ −i〈Tγ ψ̂β (1)ψ̂†

α (1′)〉 and use once again the
S-matrix expansion:

Gβα (1; 1′) ≡
∫

d 1̄d 2̄ (−i)〈Tγ ψ̃β (1)ψ̃†
β (1̄)〉T ∗

β (1̄) Tα (2̄)(−i)〈Tγ ψ̃α (2̄)ψ̃†
α (1′)〉(−i)

〈
Tγ ψ̃ (1̄)ψ̃†(2̄)

∞∑
k=0

(−i)k

k!

k∏
p=1

∫
γ

dzpH̃T ( p̄)

〉

=
∫

d 1̄d 2̄ gβ (1; 1̄)T ∗
β (1̄)G(1̄; 2̄)Tα (2̄)gα (2̄; 1′). (C4)

Physically this term represents exactly the scattering of a particle (or a hole) from the lead α to the lead β through the central
region. It is now easy to see that the third term in Eq. (C1) can be written as∫

dx1d 1̄d 2̄ 	emb(1; 1̄)G(1̄; 2̄)	α (2̄, 1+) =
∫

dx1d 1̄d 2̄
∑

β

Tβ (1)gβ (1; 1̄)T ∗
β (1̄) G(1̄; 2̄) Tα (2̄)gα (2̄; 1+)T ∗

α (1)

=
∫

dx1

∑
β

Tβ (1)Gβα (1; 1+)T ∗
α (1).

It is simple to check that the term β = α does not contribute since it is purely imaginary.

APPENDIX D: SELF-CONSISTENT GW APPROXIMATION

In this section we recall the main equations to treat the
interaction within the GW approximation. It is useful to split
the full interaction self-energy into its Hartree and exchange-
correlation parts,

	(1; 2) = 	(1; 2)H + 	(1; 2)xc. (D1)

The Hartree term, or first-order polarization diagram,
is local in time and can be written as 	(1; 2)H =
−iδ(1; 2)

∫
d3v(1; 3)G(3; 3+).

In the GW approximation the exchange-correlation part of
the self-energy is given as a product of the Green function G
with a dynamically screened interaction W :

	(1; 2)xc = iW (1; 2)G(1; 2). (D2)
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FIG. 4. Energy current JC (t ) (grey) and rate of change of the
total energy dE/dt (red) as a function of time t in the strong coupling
regime � = 1.3, charging energy U = 4, and for different values of
the gate voltage vg = 0, 0.8, 1.6 (dotted, dashed, solid).

The dressed interaction W satisfies the self-consistent equa-
tion

W (1; 2) = v(1; 2) +
∫

d3d4v(1; 3)P(3; 4)W (4; 2) (D3)

with v the bare two-body interaction, and P(1; 2) =
−iG(1; 2)G(2; 1) the irreducible polarization diagram. As is

clear from the previous expressions the self-energy happens
to be dependent on the Green’s function and thus it must be
determined self-consistently in conjunction with the Dyson
equation [34]. Moreover, the GW self-energy can be exp-
resed as the functional derivative of a so-called � func-
tional, i.e., 	GW [G] = δ�[G]/δG. This has been proven to
be an effective way to guarantee macroscopic conservation
laws [18].

The reliability of the fully self-consistent GW approxi-
mation can be easily seen from Fig. 4 where we compare
the expression obtained for the total current through the
interaction region J (t ) in Eq. (1) alongside the derivative of
the total energy in the same region dE (t )/dt , with E (t ) =
〈ĤC (t )〉 = {i ∫ dx1d2 [h(1)δ(1, 2) + 1

2	(1, 2)]G(2, 1+)}. It is
possible to appreciate the agreement within the numerical
accuracy of the two quantities in the strong coupling and for
large charging energy at different gate voltage. The agreement
holds also for the other set of parameters considered (not
shown) and confirms the validity of the approximation.
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