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Adaptive Identification of Sets of Vertices in
Graphs
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In this paper, we consider a concept of adaptive identificatif vertices and sets of vertices in different graphs,
which was recently introduced by Ben-Haim, Gravier, Lolvssend Moncel (2008). The motivation for adaptive
identification comes from applications such as sensor rmésand fault detection in multiprocessor systems.

We present an optimal adaptive algorithm for identifyingtiiees in cycles. We also give efficient adaptive algorithms
for identifying sets of vertices in different graphs suclcgsles, king lattices and square lattices. Adaptive idieati
tion is also considered in Hamming spaces, which is one afb&t widely studied graphs in the field of identifying
codes.
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1 Introduction

Let G = (V, E) be a simple connected undirected graph Witlas the set of vertices and as the set
of edges. Assume that the détof vertices ofG is finite. Then the sek’ of edges of is also finite. A
non-empty subset df is called acode and its elements are calleddewords Thedistanced(x, y) is
the number of edges in any shortest path between the vertimedy. Letr be a positive integer. We say
thatz r-coversy if d(z,y) < r. Define then the-ball B, (x) of radiusr centered at: € V' by

By (z) ={y €V |d(z,y) <r}.
If all the r-balls inG have the same cardinality, then the cardinality of-avall is denoted by.(G). For

X C V,we denote
B.(X)= | B(@).
rxeX

LetC C V be a code and be subset of/. An I-setof the setX with respect to the cod€ is

I(C;X) = I,(X) = B.(X)NC.
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A codeC is called an-covering(or anr-covering codg if the setl,.(C, z) is non-empty foralk € V.
In other words, each vertex i is r-covered by at least one codeword. The minimum cardinafignoe--
covering ofG is denoted byy,.(G). A codeC is called an-packing if the number of vertices i, (C, x)
is at most one for alk: € V. In other words, the-balls centered at the vertices 6fare all pairwise
disjoint. The maximum cardinality of artpacking ofG is denoted by:,.(G). If a codeC is both an
r-covering and am-packing ofG, thenC' is called an--perfect code

Definition 1.1 Letr and/ be positive integers. A code C V is said to be(r, < ¢)-identifyingin G if
forall X, Y C Vsuchtha{X| < /,|Y| < /andX # Y we have

I.(C; X) # I.(CY).

If ¢ =1, then we simply say thét is r-identifying.

Remark 1.2 Letr and/ be positive integers. Then there existsan< ¢)-identifying code” C V if and
onlyifforall X, Y C V suchthaiX| < ¢, |Y| < fandX # Y we have

B,(X) # B.(Y).

If there exists an(r, < ¢)-identifying code for a graplG = (V, E), thenG is said to be(r, < ¢)-
identifiable

The original motivation for identification comes from fadktection in multiprocessor systems [15].
A multiprocessor system can be modeled as a graph, whelieegedre seen as processor and edges as
links between processors. A set of processors. V' corresponding to an identifying code is chosen.
Then each processor {fi sends an alarm signal, if there exists a faulty processdsingighborhood.
Now the set of alarming processors corresponds tb-set(X) of the identifying code, wherd is the
set of faulty processors. Hence, the set of faulty processaran be located since eaéfset is unique.
Identifying codes can also be applied, for example, to senstworks, where they are used in design
of location and detection systems [17]. The most studiecetiyithg graphs for identification are, e.g.,
square and king lattices, Hamming spaces and cycles [16].

Assume that a given gragh may contairfaulty verticesand that we can ask whether there is a faulty
vertex (or faulty vertices) iB,.(z) for all z € V. Thequery@, : V. — {0, 1} is equal tol for z € V,
if there is a faulty vertex irB,.(z), elseQ, (z) is equal tod. We also say that a vertgxc V' is r-covered
by a queryQ.(z) (z € V), if y belongs to the-ball B, (x). Now the problem is to locate the faulty
vertices using the querigg,.(z). The definition of identifying codes guarantees thaf’ifC V is an
(r, < £)-identifying code inG, then by asking simultaneously all the quer@s(c) for ¢ € C we can
locate in one step all the faulty vertices@h(assuming that there are at mésaulty vertices inG).

The definition of identifying codes is based on the fact thigha queries have to be asked simultane-
ously. Howeveradaptive identificationwhich has been recently introduced in [2], is based on tha id
that the queries can be asked one after the other, i.e. thew awery may depend on the answers given
by the previous queries. In what follows, we call the ideyiti§ codes in Definition 1.1 asgular to
distinguish them from the adaptive ones.

Let ¢ be the maximum number of faulty vertices in a gr&ghThe minimum cardinality of afr, < ¢)-
identifying code inG is then denoted by;,. <, (G). In adaptive identification, the corresponding value
is the minimum number of queries required in the worst cadddaotify the (at mosY) faulty vertices
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and it is denoted by, <,)(G). We also say that an algorithm (or a series of queri¢sy adaptive
(r, < ¢)-identifying if it can identify the at most faulty vertices inG using only the querie§),(z)
(x e V).

In Ben-Haimet al. [1], [2] and [3], adaptivgr, < 1)-identification is considered in torii of square and
king lattices. They suggest that further study would be eded these torii whe#d > 1. This motivated
the study in Sections 2.2 and 2.4. Adaptive< ¢)-identification in cycles and Hamming spaces are
studied in Sections 2.1 and 2.3, respectively.

In adaptive(r, < ¢)-identification (and in regulafr, < ¢)-identification), it is common that we en-
counter problems with largé Namely, the considered graph is no longer< ¢)-identifiable with large
enough?. For example, square and king lattices are (oK ¢)-identifiable when- > 1 and?¢ > 3.
Therefore, we introduce a slightly modified version of adegptr, < ¢)-identification in Section 3 to
enable the handling of largérfor example, in king lattices.

2 Adaptive identification
The following theorem is a generalized version of Theorem[L] 2].

Theorem 2.1 Letr and/ be positive integers. Assurtigis an(r, < ¢)-identifiable graph such that each
r-ball in G has the same cardinality. Then we have

ar<0)(G) > ¢, (G) =1+ {ng <j0 (f))‘ ,

K3

whereK = |G| — (¢ (G) — 1)V,.(G).

Proof: Let G = (V, E) be an(r, < ¢)-identifiable graph such that eaetball in G has the same cardi-
nality. Consider then an algorithm that is adaptivér, < ¢)-identifying. It is clearly possible that the
values given by the first.(G) — 1 queries ofA are all equal td), i.e. that there are no faulty vertices in
ther-balls of the firste, (G) — 1 queries.

After the firstc,(G) — 1 queries there are still at leagt| — (¢, (G) — 1)V,.(G) vertices that are not
r-covered by any of the previously asked queries. Furthezmee know that among these uncovered
vertices there exist fror to ¢ faulty vertices. Therefore, the number of different potisies for these
faulty vertices to be among these uncovered vertic@fig,o (If) whereK = |G| — (¢, (G) — D)V,.(G).
Hence, we need at Iea[slbgz(Zfzo (If)ﬂ queries to locate these faulty vertices or to conclude treatt
are none. Thus, the following lower bound follows:

w201 o (5 ()]

1=0
O
Notice thaiG|— (¢, (G)—1)V,.(G) > V,.(G) since the value, (G) is the maximum number of vertices

in anr-packing ofG. Thus, the slightly weaker lower bound of Theorem 1 in [1,@iviediately follows
from the previous result:

agr,<1)(G) 2 ¢ (G) = 1+ [logy (Vo (G) + 1)1
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2.1 Adaptive identification in cycles

Let G be a cycle of lengtn, i.e. a cycle withn vertices. Regular identification in cycles have been
studied, for example, in [5], [10] and [18]. The followingethrem provides the accurate value for the
number of queries(, <1)(G) needed in the adaptie, < 1)-identification ofG, whenn > 2r + 1.
Notice also that il < 2r + 1, then the cyclé is not(r, < 1)-identifiable.

Theorem 2.2 LetG be a cycle of length. If n = 2r + 1 + k£ with 1 < k < 2r, then we have

aren)(G) = W;lJ + {mg2 (2r+1—kq2’“;1J —1))1. (1)

If n > 2(2r 4+ 1), then we have

ar<)(G) = bilJ —1+ [logQ <n— Q%”HJ - 1> (2r+1)+1ﬂ . @)

Proof: Let G = (V, E) be a cycle of lengthh andV' = {z1, 22, ..., z,}. Consider first the result (1) for
the cycles of length = 2r + 1 + k with 1 < k& < 2r. Notice that now each query outputtihdell us that
one of the vertices covered by the query is faulty and alsorttuiae of thek uncovered vertices is faulty.

Let us begin by showing a lower bound @p <1)(G) whenn = 2r + 1 + k with 1 < k& < 2r. We can
assume that the first query asked outputs valueherefore, the faulty vertex is one of the+ 1 vertices
covered by the first query. We can assume that the|f{éxt-1)/k] —1 queries also output value By the
considerations in the first paragraph above, there stiitexst leastr + 1 — k([ (2r+1)/k| — 1) vertices
such that exactly one of them is faulty. Hence, we still nedéast[log,(2r + 1 — k(| (2r+1)/k] — 1))]
queries to locate the faulty vertex. Thus, at l§d8t + 1)/k| + [logy(2r + 1 — k(| (2r + 1)/k| — 1))]
queries is needed to identify the faulty vertex.

Now the following algorithm is adaptive:, < 1)-identifying:

1. Begin by asking the que @, (z,+1). If Q.(z,+1) = 0, then there does not exist any faulty vertex
in B.(x,+1). Hence, the possible faulty vertex belongs to the remaitingrtices, which are
consecutive ones in a cycle. Therefore, sikhce 2(2r + 1) + 1, we obtain using dichotomic (or
binary) search (as in the step 3) that at mdsg, (k¥ + 1)] queries are needed to locate the faulty
vertex among the remainirigvertices or to conclude there is none. It can be easily vdrifiat in
this case we use at mog2r + 1)/k| + [logy(2r +1 — k([ (2r + 1)/k] — 1))] queries.

2. Assume thaf), (z,+1) = 1. Nowfori = 1,2,...,|(2r + 1)/k] — 1 ask the quer®.,.(z, 1tk )-
If the queryQ,(z,11jx) = 0 for somej, then the faulty vertex belongs to the def; 1)1,
T(j—1)k+2 - - - » Tjk }, Which consists ok consecutive vertices. Now the faulty vertex can be located
in this set as in the step 3. Again it is easy to verify that @isthis case we need at mdgr +
1)/k| + [logy(2r +1 — k(| (2r +1)/k] — 1))] queries.

3. Assume now that all the(2r + 1)/k] queries asked in the previous steps outputted the value 1.
Then the faulty vertex is one of the remainibg+ 1 — k(| (2r + 1)/k| — 1) vertices in the set

{Zh(|@r41) k] = 1) 415 Th(|(2r+1) k] —1)42> - - - > L2r41 }-
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Therefore, the faulty vertex can now be located by dichotmsearch using at moflog, (2r + 1 —
E([(2r + 1)/k| — 1)] queries. By the considerations in the first paragraph, tbleaiomic search
can now, indeed, be used sinze+ 1 — k(| (2r + 1)/k| — 1) < 2k and there ar&| (2r + 1)/k]
consecutive vertices that are known to be not faulty (th@sahcovered vertices can now always
be divided into two roughly equal halves).

Thus, we need at mo$t2r + 1)/k] + [logy(2r +1 — k(| (2r + 1)/k] — 1))] queries to locate the faulty
vertex or to conclude there is none. In conclusion, the fasult (1) of the claim holds.

Consider then the result (2) for the cycles with length 2(2r + 1). Denote firsts = ¢;(2r + 1) + qo,
where0 < ¢o < 2r 4 1. Then consider the upper bound ap. <1)(G). The following algorithm is
adaptive(r, < 1)-identifying:

1. Fori = 1,...,q1 — 1 ask the quen, (z;2,41)—r). If Qr(2j2r11)—r) = 1 for somel < j <
q1 — 1, then there exists a faulty vertex i, (z;2,+1)-»). The vertices in the ball are clearly
consecutive and, therefore, we can locate the faulty vdayedichotomic (or binary) search as in
step 2. Thus, the number of queries needed in this case islbdabove by the value given in the
equation (2).

2. Assume then that all the verticesovered by the queries in step 1 are not faulty. Now there are
still 2r 4+ 1 4 g vertices that are notcovered by any of the queries from step 1. Since the number
of uncovered vertices i8r + 1 + g0 < 2(2r + 1), the possible faulty vertex can be located by
dichotomic search. Hence, we need at njast, (2r + 1 + go + 1)| queries in this step.

Thus, we havey, <1)(G) < ¢1 — 14 [logy(2r +14qo +1)].
By Theorem 2.1, we have(, <1)(G) > q1 — 1 + [logy(2r + 1 4 qo + 1)]. Hence, the claim (2)
immediately follows from the upper and lower bounds. O

Consider then adaptive, < 2)-identification in a cyclé of lengthn. By Theorem 2.1, we have

agr<2)(G) = bri 1J -1+ {bgz <§% ([j)ﬂ : ®)

where K = n — (|n/(2r+1)] —1)(2r +1). The following theorem provides an upper bound on
a(r,§2)(G)-
Theorem 2.3 Let G be a cycle of length. If n > 3(2r + 1), then we have

a(r,<2)(G) < { J +1+2[logy(2r +1)]. (4)

n
2r+1
Proof: LetG = (V, E) be acycle oflength andV = {z1, 22, ..., 2,}. Denote alsa = ¢; (2r+1)+qo,
where0 < ¢y < 2r 4 1. The following algorithm is adaptive-, < 2)-identifying:

1. Fori = 1,...,q1, we first ask the querie®, (z;(2r+1)—r). If two of these queries give valug
then we proceed as in step 3. Assuming this is not the caseg@¢ktn ask one additional (carefully
chosen) query. If the first que,.(z,+1) = 1, then the additional query 9,-(z,,—..), else it is
Qr(T(q,+1)(2r+1)—r)» Where the index of is subtracted by if itis larger thann. Notice that each
vertex inG has now beem-covered by a query and that if two queries output valuthen there
exist two faulty vertices iz (one in each query giving valug.
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2. If all the queries in step 1 output valQethen there clearly exist no faulty vertices@h

3. If two of the queries in step 1 give valuethen there are exactly two faulty verticesGh Namely,
one faulty vertex in each-ball corresponding to the queries outputtihg Denote these-balls
containing a faulty vertex by3; and B;. Note that the vertices if3; and B, are consecutive
ones. Hence, the faulty vertex By, (or Bs) can be located by dichotomic search and, in particular,
using queries that do natcover vertices fromBy (or B;). (Here we use the assumption that
n > 3(2r + 1).) Therefore, the faulty vertices can be located by dichatm®arch using at most
2[log,(2r 4+ 1)] queries.

4. If there is exactly one query giving valuiethen we know that this query iscoveringl or 2 faulty
vertices. Denote the consideretall by B = {y1, y2, . . ., y2,-+1 } and assume that the two vertices
adjacent tay; arey, andys. The faulty vertices irB can then be located as follows:

(i) First the r-ball B is divided into two halvesB; = {y1,...,y|@2r+1)/2)} and By =
{vi@r+1)/2)41> - - - ¥2r+1}. Then we find out whether there is a faulty vertexin or B,
using the querie), (yo) andQ; (y2r+1).

(ii) If the halvesB; andB; both contain a faulty vertex, then the faulty vertices fr@nand Bs
can be separately located by dichotomic search. Otherwisd&now that only eithe3; or
B, contain faulty vertices. For simplicity, assume tliat contains faulty vertices. Then we
proceed as in step)( but we replace the sét by B;.

Thus, in step 4 we locate the faulty vertices using at iflste, (27 + 1)] queries.

In conclusion, the algorithm locates the faulty verticemgst mosty; + 1 + 2[log,(2r + 1)] queries.
Thus, the claim follows. O

Notice that the difference between the lower bound (3) aeduper bound (4) is at mogtqueries
for anyr andn. Indeed, this can be concluded by estimating the term wihrithm in the lower bound
when the term with logarithm in the upper bound gives a fixddeizaHence, we conclude that the upper
and lower bounds differ only by a constant (for any radius

Let G = (V,E) be a cycle of lengttm with V' = {x;,23,...,2,}. Since B.({z1,2z3}) =
B, ({z1, z2,x3}) for any (positive)r, the cycleG is not(r, < ¢)-identifiable wher? > 3.

2.2 Adaptive identification in torii of king lattice

Let p andq be positive integers. The graﬂgﬁq = (V,E)is ap x q torus in the king latticeif the vertex
setis
V={07)]0<i<p—-1,0<j<q—1}

and the edge set is

E={((4),05+1),((4),(0+1,7)[0<i<p-1,0<j<q¢-1}
U{((l,]),(l-i-1,]+1)),((2,]),(2+1,]— 1)) | 0 Sigp—laogj Sq_l}’

where the first coordinate is calculated moduland the second coordinate is calculated modulsee
Figure 1).
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Fig. 1: A 2-ball centered at the black vertex is illustrated in the Wéi,% Notice that the vertices in the border are
wrapped around as suggested by the definition of the eddge. set

Consider then an-ball in 77 .. Ther-ball B,((x, y)), which is shortened aB,(z, y), can be seen as
a(2r +1) x (2r + 1) square in the king lattice since

Br('rvy) = {(’Lv]) | |x_l| < |y_.]| < T}'

Now it is easy to see that there existsraperfect code” C Tzﬁq if and only if bothp andq are dividable
by 2r + 1.

Regular(r, < ¢)-identification in king lattice (or grid) have been studiéat,example, in [6] and [11].
Consider then adaptivie;, < /)-identification inT}* . If £ > 3, then it can be easily seen tHgf , is not
(r, < £)-identifiable for any-. The case witif = 1 is considered in [1, 3]. Thus, we concentrate here on
the case witlf = 2. By Theorem 2.1, we have

2 2
a(r<2)(Tyq) = ﬁ -1+ Lng <Z <(2T;L b >>—‘ : (5)

i=0

sincec, (T} ,) = pq/(2r + 1). The following theorem provides an upper bounddgr <o (T}, ).

Theorem 2.4 Letp andg be positive integers dividable 2y + 1. If p > 3(2r + 1) andg > 3(2r + 1),
then we have

pq
a(r,§2)(T§,q) < m +4 [logy(2r +1)] . (6)

Proof: Assumep andgq are positive integers dividable iy + 1. Let Tﬁq be a torus in the king lattice
with pq vertices. Now there exists anperfect covering” of Tz’iq. The following algorithm is adaptive
(r, < 2)-identifying:

1. Forevery € C ask the query),.(c).

2. If all the queries output valug then there clearly exist no faulty verticeﬂﬁq.
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3. If two queries output valug, then there are two queries eaclkiovering exactly one faulty vertex.
The faulty vertex--covered by a query can now be found as follows: we first lobgitdichotomic
search the column containing a faulty vertex and then froim ¢blumn we identify the faulty
vertex again using dichotomic search. (Notice that suitajleries used in dichotomic searches
can be found even if the-balls of the two queries are next to each other. Here we bgtuse the
assumption that > 3(2r +1) andg > 3(2r+1).) In conclusion, we need at mostlog, (27 + 1)
queries in this step.

4. If there is exactly one query outputting valuehen this query ig-coveringl or 2 faulty vertices.
Using similar ideas as in the proof of Theorem 2.3, we cantéotiae columns (or a column)
containing faulty vertices using at masflog,(2r + 1)] queries (consider columns in the king
lattice as the vertices in cycles) and then from these cotuon a column) identify the faulty
vertices using at mog[log, (2r + 1)] queries. Thus, we need at mdstog,(2r + 1)] queries in
this step.

In conclusion, the previous algorithm identifies the faultytices using at mogty / (2r4-1)2+4[log, (2r+
1)] queries. 0

Using similar arguments as in the case of cycles, we condhaltethe difference between the lower
bound (5) and the upper bound (6) is at mgueries for any:.

2.3 Adaptive identification in Hamming spaces

In this subsection, we consider adaptile < ¢)-identification in binary Hamming spaces. Letbe

a positive integer. The binatjamming spac&™ is the n-fold Cartesian product of the binary field
F = {0,1}. TheHamming distancé(x, y) between words, y € F™ is the number of coordinate places
in which they differ. The following simple lemma, which iseted in the sequel, can be easily proven.

Lemma 2.5 Letx,y € F”. Then
n+1l ifx=y,

|Bi(x) N Bi(y)| =4 2 if1 <dx,y) <2,
0 otherwise.

We begin by considering adaptiyé, < 1)-identification in Hamming spaces. The following lemma is
needed in the proof of Theorem 2.7, which provides a lowenddar a(; <1 (F").

Lemma 2.6 Let X be a non-empty subsetBf. Assume that there sor 1 faulty words inX. Then an
adaptive(1, < 1)-identifying algorithm needs at least

&

queries, which are centered at a wordlitt, to locate the faulty word irX or to conclude that there is
none.

Proof: Let X be a non-empty subset &f* and let.A be an algorithm that identifies the faulty word in
X using queries fron”. Define thenk as the maximum number of words i that arel-covered by a
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1-ball of F", i.e.
k= max |B1(x) N X|.
xcFn

Now we have two approaches for the lower bound on the numbgueres used itd:

(1) By the previous definition, a quefy; (x) with x € F™ canl-cover at moskt words of X. Assume
that the first| | X |/k] — 1 queries ofA output valued. Now there still exist at leagt words that are
not 1-covered by any of the previous queries, and we need at[least(k + 1)] queries to locate
the faulty word among these uncovered words or to concluatethiere is none. Thus, the number
of queries used i is at least| | X|/k] — 1 + [logy(k + 1)]. If & = 1, then the claim clearly
follows. Otherwise, we need at led3f|/k queries in the algorithml.

(2) On the other hand, we know by Lemma 2.5 that the number ofisvim the intersection of two
different1-balls of F™ is at most2. Let thenx € F" be a word such that the number of words
in B1(x) N X is equal tok. Assume that there exists a faulty wordii (x) N X. Using similar
arguments as in the first lower bound from (1), we obtain thatiumber of queries used.iis at

least
k/2] — 14 [logy 2] if 2]k,
{ k/2] — 14 [logy, 3] if21k.

Therefore, the number of queries needed is at legat

By the considerations above, the number of queries needddsrat leastnax{|X|/k, k/2}. Therefore,
by straightforward analysis, it can be concluded that (aitk choice of) the number of queries needed

is at least
1X]
5 .

The following theorem provides a lower bound fgf <) (F").

Theorem 2.7 We have

ac,<1)(F") > e (F™) + {n;— 1J .
Proof: Let algorithm.A be an adaptivél, < 1)-identifying code (inF™). (Notice that the size of a ball
of radiusl in F™ is equal ton 4 1.) Assume then that the firs{ (F"*) — [(n + 1)/8] queries of4 output
value0. (By simple analysis, it can be shown that the number of @sefi{F™) — [(n + 1)/8] is chosen

in such a way that it gives the best possible lower bound usiisgapproach.) Then the number of words
that are not -covered by the previous queries is at legst + 1)/8](n + 1). Therefore, by Lemma 2.6,
the number of queries used.is at least

e (F") - V;r 1} + Wf(" + 1)/281 (n+1) w

nil-‘ B {n;lw > e (F™) + V;rlJ'

> (F™) + {
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where the second inequality is obtained, for example, bysiceming two cases depending on whether
n + 1 is dividable by4 or not. O

The following theorem provides an upper bounddgy <1 (F").
Theorem 2.8 We have

” n n—+1
ac,<1y (") <y (F") + { -‘ .

2

Proof: LetC' = {x1,xa,...,X|¢c|} be al-covering code of" attainingy, (F"). Denote then by; the
word inF™ that has valué in theith coordinate place and val@en all other places. Now the following
algorithm is adaptivél, < 1)-identifying:

1. Fori =1,...,|C| — 1 ask the query);(x;). If Q1(x;) = 1foranyi =1,...,|C| — 1, then the
faulty word in B; (x;) can be located as in the following step 2.

2. Assume then that all the previous queries output valumeaning that none of these queries do
not 1-cover any faulty word. Now we can assume without loss of galitg thatx | = 0. For
i=1,...,[n/2]—1askthe quer®):(ez;—1 +e2;). If now for any: we haveRQ; (e2;—1 +e2;) = 1,
then the faulty word can be located using one more suitatdgeh query. Hence, assume that none
of the previous queries-cover any faulty word. Now it can be easily seen that we omlgchtwo
more queries to locate the faulty word in the remaining wand® conclude that there are none.

In conclusion, the previous algorithm uses at mg$F”) + [n/2] + 1 = 71 (F™) + [(n+ 1)/2] queries.
O

Let thenF™ be a Hamming space with integers= 2° — 1 ands > 3. By [7], we know that there now
exists al-perfect covering of*”. Hence, we have, (F") = v, (F") = 2"/(n + 1). Therefore, for the
previous lengths, Theorems 2.7 and 2.8 can be written amsil

n+1 ” ” n+1
8 S a(17§1)(F )S Cl(F )+ T

As above, assume that= 2° — 1 ands > 3. Consider then adapti@, < ¢)-identification inF™ with
¢ > 1. Theorem 2.7 naturally provides a lower bound alsodf@r< (F"). The following theorem gives
us then an upper bound agy < (F™).

Theorem 2.9 Letn ands be integers such that = 2°* — 1 ands > 3. If now{ < n/6 + 1, then we have

C1 (Fn) +

n n+3
a(1,<0) < Cl(F )—Fé 5

Proof: Let C be al-perfect code off™ with n = 2° — 1 ands > 3. The number of words i@ is
equal toy; (F") = ¢;(F"). Denote them = 2m + 1, wherem = 25~! — 1. Usingc; (F") queries, we
can now locate the-balls centered at the words 6fwhich contain faulty words. Assume then that the
1-balls B1(x1), B1(x2), . . ., B1(xx) with 1 < k < ¢ are the ones containing faulty words. Denote the set
consisting of theseé-balls byS.

Consider then locating the faulty words insiBe(x;). We can assume without loss of generality that
x1 = 0. We would now like tol-coverB;(0) usingm words of weight two and word of weight one
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(similarly to the proof of Theorem 2.8). However, here wergatruse such words of weight one and two
which 1-cover words from othet-balls containing faulty words. The choice of words of weight two
and1 word of weight one that-coverB; (0) is called gpartition of B;(0). Notice that ifx andy are two
different words in a partition oB; (0), then the intersection of the seBs(x) N B;(0) andB; (y) N B1(0)
is empty. A partition is calledinavailable if some of the words in the partitiohrcover words in other
1-balls containing faulty words. In what follows, we showthd partitions are not unavailable.

The number of all different partitions is equal to

(2,2,.7.1.,2,1) . n!
m)! Tl .om’

(@)

where the numerator is the usual multinomial coefficienttiiechumber of’s in it is equal tom. Notice
that all thel-balls of S that make partitions unavailable are centered at words afhsthree or four,
since words that are of weight at most two are not includetién tperfect code” and words of weight
at least five cannot clearly make partitions unavailablendéewe consider the number of partitions that
are made unavailable bylaball of S centered at a word of weight three or four.

Eachi-ball centered at a word of weight three that contains fauttyds produces at most

(g) (22n_221) n (zl))) (23_12) _ 3(n—2)! 3n—1!  6(n—1)!

(m—1)! m! (m—1)!-2m=1 " pl.2m  pl.om

(8)

unavailable partitions. Eachball centered at a word of weight four that contains faultyrés produces
at most

(4) (22n7221) B 6(n —2)! ~ 6(n—1)! )
2) (m—1)!  (m—1).2m=1  ypl.2m
unavailable partitions. Hence, by the equations (7), (8) @), the number of available partitions is at
least | |

'n. —(k—l)-6(n_1)'.

m!.2m ml.2m

Sincek < ¢ < n/6 + 1, the number of available partitions is positive. Thus, ¢hexists a partition that
is not unavailable. In conclusion, we need at mast 1 = (n + 1)/2 queries to locate which of the
pairs of two words of weight one contain faulty words and \ieetthere exist faulty words in the pair
containing the last word of weightand the word.

Assume now that a pafre;, , e;, } contains faulty words, wherg, i € {1,2,...,n} (e; defined as in
the proof of Theorem 2.8). In order to conclude whetheris a faulty word, we need a wokg, + e; of
weight two such thaBy (e;) \ {e;, } contains no faulty vertices, i.e; is not included in any of the pairs
containing faulty words irB; (x:) and B, (e;) does not intersect with any of tleballs of S other than
B (x1). Now we have that the number of such words of weight two isastle

n—2(6—k)— (‘21)(14_1).

Sincel < n/6 + 1, the previous number of words is positive. Hence, thereggisvord of weight two
satisfying the previous conditions. Assume then that the{ige;} (i € {1,2,...,n}) contain faulty
words. Using similar counting arguments as before, we cashat the faulty words can be found in
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this pair by at most two queries. In conclusion, we need attivas queries to locate the faulty words
inside each pair containing them.

If & = ¢, then, by the previous considerations and by the fact thatwe need only one query to
identify the faulty word from a paife;, , e;, }, we need at most

n+1 n+3
+l=c1(F")+¢-

Cl(Fn) + é .

queries to locate the faulty wordslit. If 1 < k < ¢ — 1, then we also need at most

1 3
cl(IF")—l—(E—1)-%+2€§01(]F")+€-n;

queries. Thus, the claim follows. O

Remark 2.10 It should be noted that the upper bound of the previous thmaran be sharpened to
c1(F™) + £ - (n + 1)/2. This slight improvement is obtained by more detailed a®ersitions in the last
paragraph of the proof (as pointed out by an anonymous rejere

2.4 Adaptive identification in square lattices

Let p andq be positive integers. The gragh , = (V, E) is ap x g torus in the square latticef the
vertex set is
V={G0,)|0<i<p—-1,0<j<q—1}

and the edge set is

where the first coordinate is calculated moduland the second coordinate is calculated modulsee
Figure 2).

Fig. 2: A 1-ball centered at the black vertex is illustrated in the $afk 7.
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Regular(r, < ¢)-identification in square lattice (or grid) have been stddfer example, in [4], [13]
and [14]. Consider then adaptiye, < ¢)-identification ofT}, ,. The case witll = 1 is considered in
[1, 2]. If, on the other hand, > 4, then it is easy to see thd}, , is not(1, < ¢)-identifiable. Hence, we
concentrate on this subsection to the cases it and? = 3.

The size of the-ball in T}, , is clearly5, i.e. Vi (T}, 4) = 5 (see Figure 2). By [8] and [9], we know that
there exists a-perfect code of, ,, if both p andg are dividable bys.

Consider then adaptiv@, < 2)-identification inT,, ,. By Theorem 2.1, we have the lower bound

a(1,<2)(Tp,q) = % +3. (10)
The following theorem provides an upper boundder <2 (7}, ).
Theorem 2.11 Letp andq be positive integers dividable By If p > 10 andgq > 10, then we have

pq
a(laSQ) (an) S g + 6 (11)

Proof: The proof is similar to and even easier than the proof of Teeo2.12. Therefore, the proof is
omitted here. O

Consider then adaptiv@, < 3)-identification inT}, ,. Again by Theorem 2.1, we have the lower bound
pq
a(1,<3)(Tpq) 2 7 +4 (12)

The following theorem provides an upper boundder <3 (7}, ).
Theorem 2.12 Letp andq be positive integers dividable By If p > 15 andq > 15, then we have

pq
CL(1,S3) (an) S g + 9 (13)

Proof: Assumep andg are positive integers dividable by Let T, , be a torus in the square lattice with
pq vertices. Now there existslaperfect covering” of T}, ,. In what follows, we present a sketch of an
adaptive(1, < 3)-identifying algorithm:

1. Forevery € C ask the query);(c).
2. If all the queries output valug then there clearly exist no faulty verticesip ,.

3. If exactly one query output value then this quenyi-coversl, 2 or 3 faulty vertices. Assume that
this query is centered at the vertex y). Then ask the queri€g; (x, y+2), Q1(z+2,y), Q1 (x, y—
2) and@1 (z — 2, y) (the first coordinate is calculated modgland the second is calculated modulo
q). Depending on the answers of these queries, we need at moauailiary query to locate all the
(from 1 to 3) faulty vertices inB; (z, y). Thus, we need at moStqueries in this step.

4. Assume then that there exist two queries outputtingssume first that thé-balls of these queries
are next to each other, i.e. assume that the queries outiplitire Q1 (z,y) andQ(z + 2,y + 1)
(other cases are symmetrical). Now we need to locaté tre faulty vertices inB; (x, y) without
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using queries that-cover vertices irB, (z+2, y+1). We start by asking the que@ (z,y—1). If
Q1(z,y—1) = 0, then the faulty vertices can be found using quefleér — 1,y — 1), Q1 (z,y+2)
andQ:(x + 1,y — 1) as illustrated in Figure 3(a) (totally at mostjueries).

Assume ther® (z,y — 1) = 1. Askthe quen@i(z — 1,y +1). If Q1(z — 1,y + 1) = 1, then the
faulty vertices can be easily found using totally at mbgteries. Assume thep (x—1,y+1) = 0.

Ask the queny@: (xz — 1,y) (see Figure 3(b)). 1®:(x — 1,y) = 1, then the verteXz, y) is faulty
and we proceed by asking the quépy(x + 1,y — 1). If Q1(x + 1,y — 1) = 0, then the vertex
(x,y) is the only faulty one i3, (z, y) (totally 4 queries used). Otherwise, the second faulty vertex
in By (z,y) can be found by asking the quey (z — 1,y — 1) (totally 5 queries used).

We have still not considered the somewhat more problemasie wher@,(z — 1,y) = 0. Now
we know that the vertekz, y — 1) is faulty and that the vertices, y), (z — 1,y) and(z,y + 1)
are not faulty (see Figure 3(c)). However, there exists nwtfoquery telling whether the vertex
(x+1,y) is faulty, since queries-covering vertices iB; (x + 2,y + 1) cannot be used. Therefore,
we proceed next by locating the faulty vertices in thieall By (x + 2,y + 1) using similar queries
as with By (z,y). (Indeed, the faulty vertices can be located fr®(xz + 2,y + 1) using at most
5 queries, since we know that the vertidesy) and(z,y + 1) are not faulty.) After locating the
faulty vertices inB; (x 4+ 2,y + 1), we can also conclude whether the vertex 1, y) is faulty or
not. Hence, we use in this case at mogueries to locate all the faulty verticesdp ,.

In other cases, we also proceed by finding the faulty ver(iwes faulty vertex) inBy (z +2,y+1)
using similar queries as witB; (x, y). Notice that if there is only one faulty vertex inleball, then
it can be located usingiqueries, and if there are two faulty vertices, then they @alobated using
5 queries. Hence, in all the cases we need at Mgsieries to locate all the faulty verticesTs ,.

It should also be noted that if the two queries outputfiradter step 1 are not next to each other we
can still use similar techniques to locate the faulty vesiasing at mosi queries.

. Assume then that three queries in step 1 output valiNow each of these queriéscover exactly

one faulty vertex. There are again several cases, but hecengder only one case as an example
(others are analogous).

Assume that the queries outputtih@re Q1 (z,y), Q1(x — 1,y + 2) andQq(z + 2,y + 1). Ask
then the query), (z — 1,y — 1) (see Figure 3(d)). 1®:(z — 1,y — 1) = 1, the faulty vertex can
be found by the quer§), (x — 2, y). Otherwise the faulty vertex can be located by asking theyque
Q:1(x + 1,y — 1) and depending on the answer we might need one auxiliary glrecpnclusion,
we need at mos} queries to locate the faulty vertex i, (z,y). Notice that these queries are
chosen in such a way that they do not intersect with the Balls — 1,y +2) and By (x + 2,y + 1).
Therefore, we need at masgueries to locate the faulty verticesTp .

With any other choice of the queries outputtingn step 1, we can always found the faulty vertices
using at mos9 queries.

In conclusion, the previous algorithm shows that

pq

< —+409.
_5+

a(1=S3)(TP7Q)
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Fig. 3: The proof of Theorem 2.12 illustrated. The black and squaegtices respectively represent faulty and non-
faulty vertices. Moreover, at least one of the grey vertisefmulty. Furthermore, the dashed squares represent the
asked queries.
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3 Adaptive weak identification

In this section, we introduce a concept of adaptive weak ¢)-identification, which enables the handling
of larger/. Similar concept has also been considered in the case dardgu< ¢)-identification. These
weakly (r, < ¢)-identifying codes are considered, for example, in [12].

Assume that during the execution of an algorithm we can fixudtffarertex after one is found and then
proceed with the algorithm. We call such an algorithnadaptive weaklyr, < ¢)-identifying if it can fix
all the (at mostY) faulty vertices. The minimum of the maximum number of qasmeeded in an adaptive
weakly (r, < ¢)-identifying algorithm is denoted by(VKSZ) (@), whereG is the underlying graph.

In what follows, we consider adaptive weék < ¢)-identification in torii of king latticeT}* . The
following theorem provides an upper bound &é{g)(Tzﬁq), whenp andq are dividable by2r + 1.

Theorem 3.1 Letp andq be positive integers dividable By + 1. If £ < min{p/(2r + 1),q/(2r + 1)},
then we have

pq

Proof: Assumep andq are positive integers dividable By + 1. Lethﬁq be atorus in the king lattice with
pq vertices. Now there exists anperfect code” of Tzﬁq. The following algorithm is adaptive weakly
(r, < 2)-identifying:

1. Forevery € C ask the query),.(c).

2. If all the queries output value, then there clearly exist no faulty vertices]i;ij. Let then the
queries outputting valué be centered at;, vo, . .., v, With 1 < m < £. In what follows, the
first coordinate of a vertex is calculated modgl@and the second one is calculated moddlo
Choose therw,; = (z;,y;) to be such that there do not exist faulty verticesBn(z; — 2r,y,),
B, (z;—2r,y;+2r)andB,(z;,y;+2r). Indeed, such a vertex always exists siheemin{p/(2r-+
1),q/(2r+1)}. Now using some of the queri€s.(x; —2r, y,), Q- (x; —2r+1,y;),...,Qr(z; —
1,y;) we can locate a column containing a faulty vertex by dichatosearch. Assume that this
column is formed by the vertic§$x; + k,y; —r), (xj + k,y; —r+1),..., (x; + k,y; +r)} with
—r < k < r. The dichotomic search ensures that the found column isftradst of the columns
containing faulty vertices iB,.(v;). Therefore, we can locate the faulty vertex in this column by
dichotomic search using some of the quetis$x; + k — r,y; + 2r), Q- (x; + k —r,y; + 2r —
1),...,Qr(z; + k —r,y; + 1). In conclusion, one faulty vertex iB,(v;) can be identified using
at most2[log, (2r + 1)] queries.

3. After locating the faulty vertex, we fix it and ask again theery@,.(v;). Then we proceed as in
the step 2.

In conclusion, the previous algorithm locates the faultgtiges using at most
'yr(Tziq) +4(2[log,(2r+1)] +1)

queries. Thus, the claim follows. O
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As in the previous theorem, Iptandq be positive integers dividable I2 + 1. Consider then adaptive
weak (r, < /)-identification inT}¥ , with ¢ = p/(2r 4 1). Let then the following sets be two patterns of
faulty vertices inZ’; :

X1 = {@-p/(2r+1),0)]|i=0,...,0—1},
Xy = {(I+4+i-p/(2r+1),0)]i=0,...,0—1}.

Clearly, ifQ,(v) = 1 (v € T)¥ ) when the faulty vertices of¥ | are X, thenQ,.(v) = 1 when the faulty
vertices oﬂ;ﬁq are X,. The same also holds for the other direction. Herdggp) = 1 (v € Tzﬁﬁq) with
fault patternX; if and only if Q. (v) = 1 with fault patternX,. Thus, we cannot locate any faulty vertices
in Tzﬁq. Similar considerations also apply whér= ¢/(2r + 1). In conclusion, there does not exist any
adaptive weaklyr, < ¢)-identifying code, if¢ > p/(2r + 1) or¢ > q/(2r + 1). Therefore, the bound on
£ is the best possible in the previous theorem.

Acknowledgements

I wish to thank an anonymous referee for the insightful comti@nd suggestions. In particular, the
sharpened result of Remark 2.10 is based on the refereasvalion.

References

[1] Y. Ben-Haim, S. Gravier, A. Lobstein, and J. Moncel. Adagp identification in graphs. Technical
report, Rapport interne Telecom Paris-2007D012, Septef0i¥.

[2] Y. Ben-Haim, S. Gravier, A. Lobstein, and J. Moncel. Atep identification in graphsJ. Comb.
Theory Ser. A115(7):1114-1126, 2008.

[3] Y. Ben-Haim, S. Gravier, A. Lobstein, and J. Moncel. Adeag identification in tori in the king
lattice. Electron. J. Combin.18(1):Paper 116, 13, 2011.

[4] Y. Ben-Haim and S. Litsyn. Exact minimum density of codtsntifying vertices in the square grid.
SIAM J. Discrete Math19(1):69-82, 2005.

[5] N. Bertrand, I. Charon, O. Hudry, and A. Lobstein. Idéyitig and locating-dominating codes on
chains and cycle€uropean J. Combin25(7):969-987, 2004.

[6] I. Charon, I. Honkala, O. Hudry, and A. Lobstein. The minim density of an identifying code in
the king lattice. Discrete Math, 276(1-3):95-109, 2004. 6th International Conference cap&
Theory.

[7] G. Cohen, I. Honkala, S. Litsyn, and A. Lobstei@overing codesvolume 54 ofNorth-Holland
Mathematical Library North-Holland Publishing Co., Amsterdam, 1997.

[8] S. W. Golomb and L. R. Welch. Algebraic coding and the Lestnia. InError Correcting Codes
(Proc. Sympos. Math. Res. Center, Madison, Wis., 19&8)es 175-194. John Wiley, New York,
1968.



18 Ville Junnila

[9] S. W. Golomb and L. R. Welch. Perfect codes in the Lee roetrid the packing of polyominoes.
SIAM J. Appl. Math.18:302—-317, 1970.

[10] S. Gravier, J. Moncel, and A. Semri. Identifying codésycles. European J. Combin27(5):767—
776, 2006.

[11] I. Honkala and T. Laihonen. Codes for identificationhe king lattice Graphs Combin.19(4):505—
516, 2003.

[12] I. Honkala and T. Laihonen. On the identification of setgoints in the square latticeDiscrete
Comput. Geom29(1):139-152, 2003.

[13] I. Honkala and T. Laihonen. On identifying codes in thiarigular and square gridsSIAM J.
Comput, 33(2):304-312, 2004.

[14] I. Honkala and A. Lobstein. On the density of identifginodes in the square latticd. Combin.
Theory Ser. B85(2):297-306, 2002.

[15] M. G. Karpovsky, K. Chakrabarty, and L. B. Levitin. On emclass of codes for identifying vertices
in graphs.IEEE Trans. Inform. Theory4(2):599-611, 1998.

[16] A. Lobstein. Watching systems, identifying, locatidgminating and discrminating codes in
graphs, a bibliography. Published electronicalyhat p: / / perso. enst. fr/ ~l obst ei n/
debut BI Bi det | ocdom pdf .

[17] S. Ray, D. Starobinski, A. Trachtenberg, and R. UngsanBobust location detection with sensor
networks.IEEE Journal on Selected Areas in Communicatj@26):1016-1025, August 2004.

[18] D. L. Roberts and F. S. Roberts. Locating sensors ingattd cycles: The case of 2-identifying
codes.European J. Combin29(1):72—-82, 2008.



