
Discrete Mathematics and Theoretical Computer ScienceDMTCS vol. (subm.), by the authors, 1–1

Adaptive Identification of Sets of Vertices in
Graphs

Ville Junnila†

Department of Mathematics, University of Turku, FI-20012 Turku, Finland

received25th November 2008, revised 17thApril 2012, accepted ???????.

In this paper, we consider a concept of adaptive identification of vertices and sets of vertices in different graphs,
which was recently introduced by Ben-Haim, Gravier, Lobstein and Moncel (2008). The motivation for adaptive
identification comes from applications such as sensor networks and fault detection in multiprocessor systems.

We present an optimal adaptive algorithm for identifying vertices in cycles. We also give efficient adaptive algorithms
for identifying sets of vertices in different graphs such ascycles, king lattices and square lattices. Adaptive identifica-
tion is also considered in Hamming spaces, which is one of themost widely studied graphs in the field of identifying
codes.

Keywords: Identifying codes, Adaptive identification, Fault-detection, Sensor networks

1 Introduction
Let G = (V, E) be a simple connected undirected graph withV as the set of vertices andE as the set
of edges. Assume that the setV of vertices ofG is finite. Then the setE of edges ofG is also finite. A
non-empty subset ofV is called acode, and its elements are calledcodewords. Thedistanced(x, y) is
the number of edges in any shortest path between the verticesx andy. Let r be a positive integer. We say
thatx r-coversy if d(x, y) ≤ r. Define then ther-ball Br(x) of radiusr centered atx ∈ V by

Br(x) = {y ∈ V | d(x, y) ≤ r}.

If all the r-balls inG have the same cardinality, then the cardinality of anr-ball is denoted byVr(G). For
X ⊆ V , we denote

Br(X) =
⋃

x∈X

Br(x).

Let C ⊆ V be a code andX be subset ofV . An I-setof the setX with respect to the codeC is

Ir(C; X) = Ir(X) = Br(X) ∩ C.

†Email: viljun@utu.fi

subm. to DMTCS c© by the authors Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

2 Ville Junnila

A codeC is called anr-covering(or anr-covering code), if the setIr(C, x) is non-empty for allx ∈ V .
In other words, each vertex inG is r-covered by at least one codeword. The minimum cardinality of anr-
covering ofG is denoted byγr(G). A codeC is called anr-packing, if the number of vertices inIr(C, x)
is at most one for allx ∈ V . In other words, ther-balls centered at the vertices ofC are all pairwise
disjoint. The maximum cardinality of anr-packing ofG is denoted bycr(G). If a codeC is both an
r-covering and anr-packing ofG, thenC is called anr-perfect code.

Definition 1.1 Let r andℓ be positive integers. A codeC ⊆ V is said to be(r,≤ ℓ)-identifying in G if
for all X, Y ⊆ V such that|X | ≤ ℓ, |Y | ≤ ℓ andX 6= Y we have

Ir(C; X) 6= Ir(C; Y).

If ℓ = 1, then we simply say thatC is r-identifying.

Remark 1.2 Letr andℓ be positive integers. Then there exists an(r,≤ ℓ)-identifying codeC ⊆ V if and
only if for all X, Y ⊆ V such that|X | ≤ ℓ, |Y | ≤ ℓ andX 6= Y we have

Br(X) 6= Br(Y).

If there exists an(r,≤ ℓ)-identifying code for a graphG = (V, E), thenG is said to be(r,≤ ℓ)-
identifiable.

The original motivation for identification comes from faultdetection in multiprocessor systems [15].
A multiprocessor system can be modeled as a graph, where vertices are seen as processor and edges as
links between processors. A set of processorsC ⊆ V corresponding to an identifying code is chosen.
Then each processor inC sends an alarm signal, if there exists a faulty processor in its neighborhood.
Now the set of alarming processors corresponds to anI-setI(X) of the identifying code, whereX is the
set of faulty processors. Hence, the set of faulty processorsX can be located since eachI-set is unique.
Identifying codes can also be applied, for example, to sensor networks, where they are used in design
of location and detection systems [17]. The most studied underlying graphs for identification are, e.g.,
square and king lattices, Hamming spaces and cycles [16].

Assume that a given graphG may containfaulty verticesand that we can ask whether there is a faulty
vertex (or faulty vertices) inBr(x) for all x ∈ V . ThequeryQr : V −→ {0, 1} is equal to1 for x ∈ V ,
if there is a faulty vertex inBr(x), elseQr(x) is equal to0. We also say that a vertexy ∈ V is r-covered
by a queryQr(x) (x ∈ V), if y belongs to ther-ball Br(x). Now the problem is to locate the faulty
vertices using the queriesQr(x). The definition of identifying codes guarantees that ifC ⊆ V is an
(r,≤ ℓ)-identifying code inG, then by asking simultaneously all the queriesQr(c) for c ∈ C we can
locate in one step all the faulty vertices inG (assuming that there are at mostℓ faulty vertices inG).

The definition of identifying codes is based on the fact that all the queries have to be asked simultane-
ously. However,adaptive identification, which has been recently introduced in [2], is based on the idea
that the queries can be asked one after the other, i.e. that a new query may depend on the answers given
by the previous queries. In what follows, we call the identifying codes in Definition 1.1 asregular to
distinguish them from the adaptive ones.

Let ℓ be the maximum number of faulty vertices in a graphG. The minimum cardinality of an(r,≤ ℓ)-
identifying code inG is then denoted byi(r,≤ℓ)(G). In adaptive identification, the corresponding value
is the minimum number of queries required in the worst case toidentify the (at mostℓ) faulty vertices

Adaptive Identification of Sets of Vertices in Graphs 3

and it is denoted bya(r,≤ℓ)(G). We also say that an algorithm (or a series of queries)A is adaptive
(r,≤ ℓ)-identifying, if it can identify the at mostℓ faulty vertices inG using only the queriesQr(x)
(x ∈ V).

In Ben-Haimet al. [1], [2] and [3], adaptive(r,≤ 1)-identification is considered in torii of square and
king lattices. They suggest that further study would be needed in these torii whenℓ > 1. This motivated
the study in Sections 2.2 and 2.4. Adaptive(r,≤ ℓ)-identification in cycles and Hamming spaces are
studied in Sections 2.1 and 2.3, respectively.

In adaptive(r,≤ ℓ)-identification (and in regular(r,≤ ℓ)-identification), it is common that we en-
counter problems with largeℓ. Namely, the considered graph is no longer(r,≤ ℓ)-identifiable with large
enoughℓ. For example, square and king lattices are not(r,≤ ℓ)-identifiable whenr > 1 andℓ ≥ 3.
Therefore, we introduce a slightly modified version of adaptive (r,≤ ℓ)-identification in Section 3 to
enable the handling of largerℓ, for example, in king lattices.

2 Adaptive identification
The following theorem is a generalized version of Theorem 1 in [1, 2].

Theorem 2.1 Let r andℓ be positive integers. AssumeG is an(r,≤ ℓ)-identifiable graph such that each
r-ball in G has the same cardinality. Then we have

a(r,≤ℓ)(G) ≥ cr(G) − 1 +

⌈

log2

(

ℓ
∑

i=0

(

K

i

)

)⌉

,

whereK = |G| − (cr(G) − 1)Vr(G).

Proof: Let G = (V, E) be an(r,≤ ℓ)-identifiable graph such that eachr-ball in G has the same cardi-
nality. Consider then an algorithmA that is adaptive(r,≤ ℓ)-identifying. It is clearly possible that the
values given by the firstcr(G) − 1 queries ofA are all equal to0, i.e. that there are no faulty vertices in
ther-balls of the firstcr(G) − 1 queries.

After the firstcr(G) − 1 queries there are still at least|G| − (cr(G) − 1)Vr(G) vertices that are not
r-covered by any of the previously asked queries. Furthermore, we know that among these uncovered
vertices there exist from0 to ℓ faulty vertices. Therefore, the number of different possibilities for these
faulty vertices to be among these uncovered vertices is

∑ℓ
i=0

(

K
i

)

, whereK = |G| − (cr(G) − 1)Vr(G).

Hence, we need at least⌈log2(
∑ℓ

i=0

(

K
i

)

)⌉ queries to locate these faulty vertices or to conclude that there
are none. Thus, the following lower bound follows:

a(r,≤ℓ)(G) ≥ cr(G) − 1 +

⌈

log2

(

ℓ
∑

i=0

(

K

i

)

)⌉

.

2

Notice that|G|−(cr(G)−1)Vr(G) ≥ Vr(G) since the valuecr(G) is the maximum number of vertices
in anr-packing ofG. Thus, the slightly weaker lower bound of Theorem 1 in [1, 2] immediately follows
from the previous result:

a(r,≤1)(G) ≥ cr(G) − 1 + ⌈log2(Vr(G) + 1)⌉ .

4 Ville Junnila

2.1 Adaptive identification in cycles

Let G be a cycle of lengthn, i.e. a cycle withn vertices. Regular identification in cycles have been
studied, for example, in [5], [10] and [18]. The following theorem provides the accurate value for the
number of queriesa(r,≤1)(G) needed in the adaptive(r,≤ 1)-identification ofG, whenn > 2r + 1.
Notice also that ifn ≤ 2r + 1, then the cycleG is not(r,≤ 1)-identifiable.

Theorem 2.2 LetG be a cycle of lengthn. If n = 2r + 1 + k with 1 ≤ k ≤ 2r, then we have

a(r,≤1)(G) =

⌊

2r + 1

k

⌋

+

⌈

log2

(

2r + 1 − k

(⌊

2r + 1

k

⌋

− 1

))⌉

. (1)

If n ≥ 2(2r + 1), then we have

a(r,≤1)(G) =

⌊

n

2r + 1

⌋

− 1 +

⌈

log2

(

n −

(⌊

n

2r + 1

⌋

− 1

)

(2r + 1) + 1

)⌉

. (2)

Proof: Let G = (V, E) be a cycle of lengthn andV = {x1, x2, . . . , xn}. Consider first the result (1) for
the cycles of lengthn = 2r + 1 + k with 1 ≤ k ≤ 2r. Notice that now each query outputting1 tell us that
one of the vertices covered by the query is faulty and also that none of thek uncovered vertices is faulty.

Let us begin by showing a lower bound ona(r,≤1)(G) whenn = 2r + 1 + k with 1 ≤ k ≤ 2r. We can
assume that the first query asked outputs value1. Therefore, the faulty vertex is one of the2r + 1 vertices
covered by the first query. We can assume that the next⌊(2r+1)/k⌋−1 queries also output value1. By the
considerations in the first paragraph above, there still exists at least2r +1− k(⌊(2r+1)/k⌋− 1) vertices
such that exactly one of them is faulty. Hence, we still need at least⌈log2(2r+1−k(⌊(2r+1)/k⌋−1))⌉
queries to locate the faulty vertex. Thus, at least⌊(2r + 1)/k⌋ + ⌈log2(2r + 1 − k(⌊(2r + 1)/k⌋ − 1))⌉
queries is needed to identify the faulty vertex.

Now the following algorithm is adaptive(r,≤ 1)-identifying:

1. Begin by asking the queryQr(xr+1). If Qr(xr+1) = 0, then there does not exist any faulty vertex
in Br(xr+1). Hence, the possible faulty vertex belongs to the remainingk vertices, which are
consecutive ones in a cycle. Therefore, sincek ≤ 2(2r + 1) + 1, we obtain using dichotomic (or
binary) search (as in the step 3) that at most⌈log2(k + 1)⌉ queries are needed to locate the faulty
vertex among the remainingk vertices or to conclude there is none. It can be easily verified that in
this case we use at most⌊(2r + 1)/k⌋+ ⌈log2(2r + 1 − k(⌊(2r + 1)/k⌋ − 1))⌉ queries.

2. Assume thatQr(xr+1) = 1. Now for i = 1, 2, . . . , ⌊(2r + 1)/k⌋ − 1 ask the queryQr(xr+1+ik).
If the queryQr(xr+1+jk) = 0 for somej, then the faulty vertex belongs to the set{x(j−1)k+1,
x(j−1)k+2, . . . , xjk}, which consists ofk consecutive vertices. Now the faulty vertex can be located
in this set as in the step 3. Again it is easy to verify that alsoin this case we need at most⌊(2r +
1)/k⌋+ ⌈log2(2r + 1 − k(⌊(2r + 1)/k⌋ − 1))⌉ queries.

3. Assume now that all the⌊(2r + 1)/k⌋ queries asked in the previous steps outputted the value 1.
Then the faulty vertex is one of the remaining2r + 1 − k(⌊(2r + 1)/k⌋ − 1) vertices in the set

{xk(⌊(2r+1)/k⌋−1)+1, xk(⌊(2r+1)/k⌋−1)+2, . . . , x2r+1}.

Adaptive Identification of Sets of Vertices in Graphs 5

Therefore, the faulty vertex can now be located by dichotomic search using at most⌈log2(2r + 1−
k(⌊(2r + 1)/k⌋ − 1)⌉ queries. By the considerations in the first paragraph, the dichotomic search
can now, indeed, be used since2r + 1 − k(⌊(2r + 1)/k⌋ − 1) < 2k and there arek⌊(2r + 1)/k⌋
consecutive vertices that are known to be not faulty (the setof uncovered vertices can now always
be divided into two roughly equal halves).

Thus, we need at most⌊(2r + 1)/k⌋+ ⌈log2(2r + 1− k(⌊(2r + 1)/k⌋− 1))⌉ queries to locate the faulty
vertex or to conclude there is none. In conclusion, the first result (1) of the claim holds.

Consider then the result (2) for the cycles with lengthn ≥ 2(2r+1). Denote firstn = q1(2r +1)+ q0,
where0 ≤ q0 < 2r + 1. Then consider the upper bound ona(r,≤1)(G). The following algorithm is
adaptive(r,≤ 1)-identifying:

1. Fori = 1, . . . , q1 − 1 ask the queryQr(xi(2r+1)−r). If Qr(xj(2r+1)−r) = 1 for some1 ≤ j ≤
q1 − 1, then there exists a faulty vertex inBr(xj(2r+1)−r). The vertices in the ball are clearly
consecutive and, therefore, we can locate the faulty vertexby dichotomic (or binary) search as in
step 2. Thus, the number of queries needed in this case is bounded above by the value given in the
equation (2).

2. Assume then that all the verticesr-covered by the queries in step 1 are not faulty. Now there are
still 2r + 1 + q0 vertices that are notr-covered by any of the queries from step 1. Since the number
of uncovered vertices is2r + 1 + q0 < 2(2r + 1), the possible faulty vertex can be located by
dichotomic search. Hence, we need at most⌈log2(2r + 1 + q0 + 1)⌉ queries in this step.

Thus, we havea(r,≤1)(G) ≤ q1 − 1 + ⌈log2(2r + 1 + q0 + 1)⌉.
By Theorem 2.1, we havea(r,≤1)(G) ≥ q1 − 1 + ⌈log2(2r + 1 + q0 + 1)⌉. Hence, the claim (2)

immediately follows from the upper and lower bounds. 2

Consider then adaptive(r,≤ 2)-identification in a cycleG of lengthn. By Theorem 2.1, we have

a(r,≤2)(G) ≥

⌊

n

2r + 1

⌋

− 1 +

⌈

log2

(

2
∑

i=0

(

K

i

)

)⌉

, (3)

whereK = n − (⌊n/(2r + 1)⌋ − 1) (2r + 1). The following theorem provides an upper bound on
a(r,≤2)(G).

Theorem 2.3 LetG be a cycle of lengthn. If n ≥ 3(2r + 1), then we have

a(r,≤2)(G) ≤

⌊

n

2r + 1

⌋

+ 1 + 2 ⌈log2(2r + 1)⌉ . (4)

Proof: LetG = (V, E) be a cycle of lengthn andV = {x1, x2, . . . , xn}. Denote alson = q1(2r+1)+q0,
where0 ≤ q0 < 2r + 1. The following algorithm is adaptive(r,≤ 2)-identifying:

1. For i = 1, . . . , q1, we first ask the queriesQr(xi(2r+1)−r). If two of these queries give value1,
then we proceed as in step 3. Assuming this is not the case, we need to ask one additional (carefully
chosen) query. If the first queryQr(xr+1) = 1, then the additional query isQr(xn−r), else it is
Qr(x(q1+1)(2r+1)−r), where the index ofx is subtracted byn if it is larger thann. Notice that each
vertex inG has now beenr-covered by a query and that if two queries output value1, then there
exist two faulty vertices inG (one in each query giving value1).

6 Ville Junnila

2. If all the queries in step 1 output value0, then there clearly exist no faulty vertices inG.

3. If two of the queries in step 1 give value1, then there are exactly two faulty vertices inG. Namely,
one faulty vertex in eachr-ball corresponding to the queries outputting1. Denote theser-balls
containing a faulty vertex byB1 andB2. Note that the vertices inB1 andB2 are consecutive
ones. Hence, the faulty vertex inB1 (or B2) can be located by dichotomic search and, in particular,
using queries that do notr-cover vertices fromB2 (or B1). (Here we use the assumption that
n ≥ 3(2r + 1).) Therefore, the faulty vertices can be located by dichotomic search using at most
2⌈log2(2r + 1)⌉ queries.

4. If there is exactly one query giving value1, then we know that this query isr-covering1 or 2 faulty
vertices. Denote the consideredr-ball byB = {y1, y2, . . . , y2r+1} and assume that the two vertices
adjacent toy1 arey0 andy2. The faulty vertices inB can then be located as follows:

(i) First the r-ball B is divided into two halvesB1 = {y1, . . . , y⌊(2r+1)/2⌋} and B2 =
{y⌊(2r+1)/2⌋+1, . . . , y2r+1}. Then we find out whether there is a faulty vertex inB1 or B2

using the queriesQr(y0) andQr(y2r+1).

(ii) If the halvesB1 andB2 both contain a faulty vertex, then the faulty vertices fromB1 andB2

can be separately located by dichotomic search. Otherwise,we know that only eitherB1 or
B2 contain faulty vertices. For simplicity, assume thatB1 contains faulty vertices. Then we
proceed as in step (i), but we replace the setB by B1.

Thus, in step 4 we locate the faulty vertices using at most2⌈log2(2r + 1)⌉ queries.

In conclusion, the algorithm locates the faulty vertices using at mostq1 + 1 + 2⌈log2(2r + 1)⌉ queries.
Thus, the claim follows. 2

Notice that the difference between the lower bound (3) and the upper bound (4) is at most4 queries
for anyr andn. Indeed, this can be concluded by estimating the term with logarithm in the lower bound
when the term with logarithm in the upper bound gives a fixed value. Hence, we conclude that the upper
and lower bounds differ only by a constant (for any radiusr).

Let G = (V, E) be a cycle of lengthn with V = {x1, x2, . . . , xn}. Since Br({x1, x3}) =
Br({x1, x2, x3}) for any (positive)r, the cycleG is not(r,≤ ℓ)-identifiable whenℓ ≥ 3.

2.2 Adaptive identification in torii of king lattice

Let p andq be positive integers. The graphT k
p,q = (V, E) is ap × q torus in the king lattice, if the vertex

set is
V = {(i, j) | 0 ≤ i ≤ p − 1, 0 ≤ j ≤ q − 1}

and the edge set is

E = {((i, j), (i, j + 1)), ((i, j), (i + 1, j)) | 0 ≤ i ≤ p − 1, 0 ≤ j ≤ q − 1}

∪ {((i, j), (i + 1, j + 1)), ((i, j), (i + 1, j − 1)) | 0 ≤ i ≤ p − 1, 0 ≤ j ≤ q − 1},

where the first coordinate is calculated modulop and the second coordinate is calculated moduloq (see
Figure 1).

Adaptive Identification of Sets of Vertices in Graphs 7

Fig. 1: A 2-ball centered at the black vertex is illustrated in the torus T
k
7,7. Notice that the vertices in the border are

wrapped around as suggested by the definition of the edge setE.

Consider then anr-ball in T k
p,q. Ther-ball Br((x, y)), which is shortened asBr(x, y), can be seen as

a (2r + 1) × (2r + 1) square in the king lattice since

Br(x, y) = {(i, j) | |x − i| ≤ r, |y − j| ≤ r}.

Now it is easy to see that there exists anr-perfect codeC ⊆ T k
p,q if and only if bothp andq are dividable

by 2r + 1.
Regular(r,≤ ℓ)-identification in king lattice (or grid) have been studied,for example, in [6] and [11].

Consider then adaptive(r,≤ ℓ)-identification inT k
p,q. If ℓ ≥ 3, then it can be easily seen thatT k

p,q is not
(r,≤ ℓ)-identifiable for anyr. The case withℓ = 1 is considered in [1, 3]. Thus, we concentrate here on
the case withℓ = 2. By Theorem 2.1, we have

a(r,≤2)(T
k
p,q) ≥

pq

(2r + 1)2
− 1 +

⌈

log2

(

2
∑

i=0

(

(2r + 1)2

i

)

)⌉

, (5)

sincecr(T
k
p,q) = pq/(2r + 1)2. The following theorem provides an upper bound fora(r,≤2)(T

k
p,q).

Theorem 2.4 Let p andq be positive integers dividable by2r + 1. If p ≥ 3(2r + 1) andq ≥ 3(2r + 1),
then we have

a(r,≤2)(T
k
p,q) ≤

pq

(2r + 1)2
+ 4 ⌈log2(2r + 1)⌉ . (6)

Proof: Assumep andq are positive integers dividable by2r + 1. Let T k
p,q be a torus in the king lattice

with pq vertices. Now there exists anr-perfect coveringC of T k
p,q. The following algorithm is adaptive

(r,≤ 2)-identifying:

1. For everyc ∈ C ask the queryQr(c).

2. If all the queries output value0, then there clearly exist no faulty vertices inT k
p,q.

8 Ville Junnila

3. If two queries output value1, then there are two queries eachr-covering exactly one faulty vertex.
The faulty vertexr-covered by a query can now be found as follows: we first locateby dichotomic
search the column containing a faulty vertex and then from this column we identify the faulty
vertex again using dichotomic search. (Notice that suitable queries used in dichotomic searches
can be found even if ther-balls of the two queries are next to each other. Here we actually use the
assumption thatp ≥ 3(2r+1) andq ≥ 3(2r+1).) In conclusion, we need at most4⌈log2(2r+1)⌉
queries in this step.

4. If there is exactly one query outputting value1, then this query isr-covering1 or 2 faulty vertices.
Using similar ideas as in the proof of Theorem 2.3, we can locate the columns (or a column)
containing faulty vertices using at most2⌈log2(2r + 1)⌉ queries (consider columns in the king
lattice as the vertices in cycles) and then from these columns (or a column) identify the faulty
vertices using at most2⌈log2(2r + 1)⌉ queries. Thus, we need at most4⌈log2(2r + 1)⌉ queries in
this step.

In conclusion, the previous algorithm identifies the faultyvertices using at mostpq/(2r+1)2+4⌈log2(2r+
1)⌉ queries. 2

Using similar arguments as in the case of cycles, we concludethat the difference between the lower
bound (5) and the upper bound (6) is at most5 queries for anyr.

2.3 Adaptive identification in Hamming spaces
In this subsection, we consider adaptive(1,≤ ℓ)-identification in binary Hamming spaces. Letn be
a positive integer. The binaryHamming spaceFn is then-fold Cartesian product of the binary field
F = {0, 1}. TheHamming distanced(x,y) between wordsx,y ∈ Fn is the number of coordinate places
in which they differ. The following simple lemma, which is needed in the sequel, can be easily proven.

Lemma 2.5 Letx,y ∈ Fn. Then

|B1(x) ∩ B1(y)| =







n + 1 if x = y,
2 if 1 ≤ d(x,y) ≤ 2,
0 otherwise.

We begin by considering adaptive(1,≤ 1)-identification in Hamming spaces. The following lemma is
needed in the proof of Theorem 2.7, which provides a lower bound fora(1,≤1)(F

n).

Lemma 2.6 LetX be a non-empty subset ofFn. Assume that there is0 or 1 faulty words inX . Then an
adaptive(1,≤ 1)-identifying algorithm needs at least

⌈
√

|X |

2

⌉

queries, which are centered at a word inFn, to locate the faulty word inX or to conclude that there is
none.

Proof: Let X be a non-empty subset ofFn and letA be an algorithm that identifies the faulty word in
X using queries fromFn. Define thenk as the maximum number of words inX that are1-covered by a

Adaptive Identification of Sets of Vertices in Graphs 9

1-ball ofFn, i.e.
k = max

x∈Fn

|B1(x) ∩ X |.

Now we have two approaches for the lower bound on the number ofqueries used inA:

(1) By the previous definition, a queryQ1(x) with x ∈ Fn can1-cover at mostk words ofX . Assume
that the first⌊|X |/k⌋− 1 queries ofA output value0. Now there still exist at leastk words that are
not1-covered by any of the previous queries, and we need at least⌈log2(k + 1)⌉ queries to locate
the faulty word among these uncovered words or to conclude that there is none. Thus, the number
of queries used inA is at least⌊|X |/k⌋ − 1 + ⌈log2(k + 1)⌉. If k = 1, then the claim clearly
follows. Otherwise, we need at least|X |/k queries in the algorithmA.

(2) On the other hand, we know by Lemma 2.5 that the number of words in the intersection of two
different1-balls of Fn is at most2. Let thenx ∈ Fn be a word such that the number of words
in B1(x) ∩ X is equal tok. Assume that there exists a faulty word inB1(x) ∩ X . Using similar
arguments as in the first lower bound from (1), we obtain that the number of queries used inA is at
least

{

⌊k/2⌋ − 1 + ⌈log2 2⌉ if 2 | k,
⌊k/2⌋ − 1 + ⌈log2 3⌉ if 2 ∤ k.

Therefore, the number of queries needed is at leastk/2.

By the considerations above, the number of queries needed inA is at leastmax{|X |/k, k/2}. Therefore,
by straightforward analysis, it can be concluded that (withany choice ofk) the number of queries needed
is at least

⌈
√

|X |

2

⌉

.

2

The following theorem provides a lower bound fora(1,≤1)(F
n).

Theorem 2.7 We have

a(1,≤1)(F
n) ≥ c1(F

n) +

⌊

n + 1

8

⌋

.

Proof: Let algorithmA be an adaptive(1,≤ 1)-identifying code (inFn). (Notice that the size of a ball
of radius1 in Fn is equal ton + 1.) Assume then that the firstc1(F

n) − ⌈(n + 1)/8⌉ queries ofA output
value0. (By simple analysis, it can be shown that the number of queriesc1(F

n) − ⌈(n + 1)/8⌉ is chosen
in such a way that it gives the best possible lower bound usingthis approach.) Then the number of words
that are not1-covered by the previous queries is at least⌈(n + 1)/8⌉(n + 1). Therefore, by Lemma 2.6,
the number of queries used inA is at least

c1(F
n) −

⌈

n + 1

8

⌉

+

⌈
√

⌈(n + 1)/8⌉(n + 1)

2

⌉

≥ c1(F
n) +

⌈

n + 1

4

⌉

−

⌈

n + 1

8

⌉

≥ c1(F
n) +

⌊

n + 1

8

⌋

,

10 Ville Junnila

where the second inequality is obtained, for example, by considering two cases depending on whether
n + 1 is dividable by4 or not. 2

The following theorem provides an upper bound fora(1,≤1)(F
n).

Theorem 2.8 We have

a(1,≤1)(F
n) ≤ γ1(F

n) +

⌈

n + 1

2

⌉

.

Proof: Let C = {x1,x2, . . . ,x|C|} be a1-covering code ofFn attainingγ1(F
n). Denote then byei the

word in Fn that has value1 in theith coordinate place and value0 in all other places. Now the following
algorithm is adaptive(1,≤ 1)-identifying:

1. Fori = 1, . . . , |C| − 1 ask the queryQ1(xi). If Q1(xi) = 1 for anyi = 1, . . . , |C| − 1, then the
faulty word inB1(xi) can be located as in the following step 2.

2. Assume then that all the previous queries output value0, meaning that none of these queries do
not 1-cover any faulty word. Now we can assume without loss of generality thatx|C| = 0. For
i = 1, . . . , ⌈n/2⌉−1 ask the queryQ1(e2i−1+e2i). If now for anyi we haveQ1(e2i−1+e2i) = 1,
then the faulty word can be located using one more suitably chosen query. Hence, assume that none
of the previous queries1-cover any faulty word. Now it can be easily seen that we only need two
more queries to locate the faulty word in the remaining wordsor to conclude that there are none.

In conclusion, the previous algorithm uses at mostγ1(F
n) + ⌈n/2⌉+ 1 = γ1(F

n) + ⌈(n + 1)/2⌉ queries.
2

Let thenFn be a Hamming space with integersn = 2s − 1 ands ≥ 3. By [7], we know that there now
exists a1-perfect covering ofFn. Hence, we havec1(F

n) = γ1(F
n) = 2n/(n + 1). Therefore, for the

previous lengths, Theorems 2.7 and 2.8 can be written as follows:

c1(F
n) +

n + 1

8
≤ a(1,≤1)(F

n) ≤ c1(F
n) +

n + 1

2
.

As above, assume thatn = 2s − 1 ands ≥ 3. Consider then adaptive(1,≤ ℓ)-identification inFn with
ℓ > 1. Theorem 2.7 naturally provides a lower bound also fora(1,≤ℓ)(F

n). The following theorem gives
us then an upper bound ona(1,≤ℓ)(F

n).

Theorem 2.9 Letn ands be integers such thatn = 2s − 1 ands ≥ 3. If nowℓ < n/6 + 1, then we have

a(1,≤ℓ) ≤ c1(F
n) + ℓ ·

n + 3

2
.

Proof: Let C be a1-perfect code ofFn with n = 2s − 1 ands ≥ 3. The number of words inC is
equal toγ1(F

n) = c1(F
n). Denote thenn = 2m + 1, wherem = 2s−1 − 1. Usingc1(F

n) queries, we
can now locate the1-balls centered at the words ofC which contain faulty words. Assume then that the
1-ballsB1(x1), B1(x2), . . . , B1(xk) with 1 ≤ k ≤ ℓ are the ones containing faulty words. Denote the set
consisting of these1-balls byS.

Consider then locating the faulty words insideB1(x1). We can assume without loss of generality that
x1 = 0. We would now like to1-coverB1(0) usingm words of weight two and1 word of weight one

Adaptive Identification of Sets of Vertices in Graphs 11

(similarly to the proof of Theorem 2.8). However, here we cannot use such words of weight one and two
which 1-cover words from other1-balls containing faulty words. The choice ofm words of weight two
and1 word of weight one that1-coverB1(0) is called apartition of B1(0). Notice that ifx andy are two
different words in a partition ofB1(0), then the intersection of the setsB1(x)∩B1(0) andB1(y)∩B1(0)
is empty. A partition is calledunavailable, if some of the words in the partition1-cover words in other
1-balls containing faulty words. In what follows, we show that all partitions are not unavailable.

The number of all different partitions is equal to
(

n
2,2,...,2,1

)

m!
=

n!

m! · 2m
, (7)

where the numerator is the usual multinomial coefficient andthe number of2’s in it is equal tom. Notice
that all the1-balls ofS that make partitions unavailable are centered at words of weights three or four,
since words that are of weight at most two are not included in the1-perfect codeC and words of weight
at least five cannot clearly make partitions unavailable. Hence, we consider the number of partitions that
are made unavailable by a1-ball of S centered at a word of weight three or four.

Each1-ball centered at a word of weight three that contains faultywords produces at most
(

3
2

)(

n−2
2,2,...,2,1

)

(m − 1)!
+

(

3
1

)(

n−1
2,2,...,2

)

m!
=

3(n − 2)!

(m − 1)! · 2m−1
+

3(n − 1)!

m! · 2m
=

6(n − 1)!

m! · 2m
(8)

unavailable partitions. Each1-ball centered at a word of weight four that contains faulty words produces
at most

(

4

2

)

(

n−2
2,2,...,2,1

)

(m − 1)!
=

6(n − 2)!

(m − 1)! · 2m−1
=

6(n − 1)!

m! · 2m
(9)

unavailable partitions. Hence, by the equations (7), (8) and (9), the number of available partitions is at
least

n!

m! · 2m
− (k − 1) ·

6(n − 1)!

m! · 2m
.

Sincek ≤ ℓ < n/6 + 1, the number of available partitions is positive. Thus, there exists a partition that
is not unavailable. In conclusion, we need at mostm + 1 = (n + 1)/2 queries to locate which of them
pairs of two words of weight one contain faulty words and whether there exist faulty words in the pair
containing the last word of weight1 and the word0.

Assume now that a pair{ei1 , ei2} contains faulty words, wherei1, i2 ∈ {1, 2, . . . , n} (ei defined as in
the proof of Theorem 2.8). In order to conclude whetherei1 is a faulty word, we need a wordei1 + ej of
weight two such thatB1(ej) \ {ei1} contains no faulty vertices, i.e.ej is not included in any of the pairs
containing faulty words inB1(x1) andB1(ej) does not intersect with any of the1-balls ofS other than
B1(x1). Now we have that the number of such words of weight two is at least

n − 2(ℓ − k) −

(

4

2

)

(k − 1).

Sinceℓ < n/6 + 1, the previous number of words is positive. Hence, there exists a word of weight two
satisfying the previous conditions. Assume then that the pair {0, ei} (i ∈ {1, 2, . . . , n}) contain faulty
words. Using similar counting arguments as before, we can show that the faulty words can be found in

12 Ville Junnila

this pair by at most two queries. In conclusion, we need at most two queries to locate the faulty words
inside each pair containing them.

If k = ℓ, then, by the previous considerations and by the fact that now we need only one query to
identify the faulty word from a pair{ei1 , ei2}, we need at most

c1(F
n) + ℓ ·

n + 1

2
+ ℓ = c1(F

n) + ℓ ·
n + 3

2

queries to locate the faulty words inFn. If 1 ≤ k ≤ ℓ − 1, then we also need at most

c1(F
n) + (ℓ − 1) ·

n + 1

2
+ 2ℓ ≤ c1(F

n) + ℓ ·
n + 3

2

queries. Thus, the claim follows. 2

Remark 2.10 It should be noted that the upper bound of the previous theorem can be sharpened to
c1(F

n) + ℓ · (n + 1)/2. This slight improvement is obtained by more detailed considerations in the last
paragraph of the proof (as pointed out by an anonymous referee).

2.4 Adaptive identification in square lattices
Let p andq be positive integers. The graphTp,q = (V, E) is ap × q torus in the square lattice, if the
vertex set is

V = {(i, j) | 0 ≤ i ≤ p − 1, 0 ≤ j ≤ q − 1}

and the edge set is

E = {((i, j), (i, j + 1)), ((i, j), (i + 1, j)) | 0 ≤ i ≤ p − 1, 0 ≤ j ≤ q − 1},

where the first coordinate is calculated modulop and the second coordinate is calculated moduloq (see
Figure 2).

Fig. 2: A 1-ball centered at the black vertex is illustrated in the torusT7,7.

Adaptive Identification of Sets of Vertices in Graphs 13

Regular(r,≤ ℓ)-identification in square lattice (or grid) have been studied, for example, in [4], [13]
and [14]. Consider then adaptive(1,≤ ℓ)-identification ofTp,q. The case withℓ = 1 is considered in
[1, 2]. If, on the other hand,ℓ ≥ 4, then it is easy to see thatTp,q is not(1,≤ ℓ)-identifiable. Hence, we
concentrate on this subsection to the cases withℓ = 2 andℓ = 3.

The size of the1-ball in Tp,q is clearly5, i.e. V1(Tp,q) = 5 (see Figure 2). By [8] and [9], we know that
there exists a1-perfect code ofTp,q, if bothp andq are dividable by5.

Consider then adaptive(1,≤ 2)-identification inTp,q. By Theorem 2.1, we have the lower bound

a(1,≤2)(Tp,q) ≥
pq

5
+ 3. (10)

The following theorem provides an upper bound fora(1,≤2)(Tp,q).

Theorem 2.11 Letp andq be positive integers dividable by5. If p ≥ 10 andq ≥ 10, then we have

a(1,≤2)(Tp,q) ≤
pq

5
+ 6. (11)

Proof: The proof is similar to and even easier than the proof of Theorem 2.12. Therefore, the proof is
omitted here. 2

Consider then adaptive(1,≤ 3)-identification inTp,q. Again by Theorem 2.1, we have the lower bound

a(1,≤3)(Tp,q) ≥
pq

5
+ 4. (12)

The following theorem provides an upper bound fora(1,≤3)(Tp,q).

Theorem 2.12 Letp andq be positive integers dividable by5. If p ≥ 15 andq ≥ 15, then we have

a(1,≤3)(Tp,q) ≤
pq

5
+ 9. (13)

Proof: Assumep andq are positive integers dividable by5. Let Tp,q be a torus in the square lattice with
pq vertices. Now there exists a1-perfect coveringC of Tp,q. In what follows, we present a sketch of an
adaptive(1,≤ 3)-identifying algorithm:

1. For everyc ∈ C ask the queryQ1(c).

2. If all the queries output value0, then there clearly exist no faulty vertices inTp,q.

3. If exactly one query output value1, then this query1-covers1, 2 or 3 faulty vertices. Assume that
this query is centered at the vertex(x, y). Then ask the queriesQ1(x, y+2), Q1(x+2, y), Q1(x, y−
2) andQ1(x−2, y) (the first coordinate is calculated modulop and the second is calculated modulo
q). Depending on the answers of these queries, we need at most one auxiliary query to locate all the
(from 1 to 3) faulty vertices inB1(x, y). Thus, we need at most5 queries in this step.

4. Assume then that there exist two queries outputting1. Assume first that the1-balls of these queries
are next to each other, i.e. assume that the queries outputting1 areQ1(x, y) andQ1(x + 2, y + 1)
(other cases are symmetrical). Now we need to locate the1 or 2 faulty vertices inB1(x, y) without

14 Ville Junnila

using queries that1-cover vertices inB1(x+2, y+1). We start by asking the queryQ1(x, y−1). If
Q1(x, y−1) = 0, then the faulty vertices can be found using queriesQ1(x−1, y−1), Q1(x, y+2)
andQ1(x + 1, y − 1) as illustrated in Figure 3(a) (totally at most4 queries).

Assume thenQ1(x, y − 1) = 1. Ask the queryQ1(x− 1, y + 1). If Q1(x− 1, y + 1) = 1, then the
faulty vertices can be easily found using totally at most4 queries. Assume thenQ1(x−1, y+1) = 0.
Ask the queryQ1(x − 1, y) (see Figure 3(b)). IfQ1(x − 1, y) = 1, then the vertex(x, y) is faulty
and we proceed by asking the queryQ1(x + 1, y − 1). If Q1(x + 1, y − 1) = 0, then the vertex
(x, y) is the only faulty one inB1(x, y) (totally 4 queries used). Otherwise, the second faulty vertex
in B1(x, y) can be found by asking the queryQ1(x − 1, y − 1) (totally 5 queries used).

We have still not considered the somewhat more problematic case whenQ1(x − 1, y) = 0. Now
we know that the vertex(x, y − 1) is faulty and that the vertices(x, y), (x − 1, y) and(x, y + 1)
are not faulty (see Figure 3(c)). However, there exists no fourth query telling whether the vertex
(x+1, y) is faulty, since queries1-covering vertices inB1(x+2, y+1) cannot be used. Therefore,
we proceed next by locating the faulty vertices in the1-ball B1(x + 2, y + 1) using similar queries
as withB1(x, y). (Indeed, the faulty vertices can be located fromB1(x + 2, y + 1) using at most
5 queries, since we know that the vertices(x, y) and(x, y + 1) are not faulty.) After locating the
faulty vertices inB1(x + 2, y + 1), we can also conclude whether the vertex(x + 1, y) is faulty or
not. Hence, we use in this case at most9 queries to locate all the faulty vertices inTp,q.

In other cases, we also proceed by finding the faulty vertices(or a faulty vertex) inB1(x+2, y +1)
using similar queries as withB1(x, y). Notice that if there is only one faulty vertex in a1-ball, then
it can be located using4 queries, and if there are two faulty vertices, then they can be located using
5 queries. Hence, in all the cases we need at most9 queries to locate all the faulty vertices inTp,q.

It should also be noted that if the two queries outputting1 after step 1 are not next to each other we
can still use similar techniques to locate the faulty vertices using at most9 queries.

5. Assume then that three queries in step 1 output value1. Now each of these queries1-cover exactly
one faulty vertex. There are again several cases, but here weconsider only one case as an example
(others are analogous).

Assume that the queries outputting1 areQ1(x, y), Q1(x − 1, y + 2) andQ1(x + 2, y + 1). Ask
then the queryQ1(x − 1, y − 1) (see Figure 3(d)). IfQ1(x − 1, y − 1) = 1, the faulty vertex can
be found by the queryQ1(x− 2, y). Otherwise the faulty vertex can be located by asking the query
Q1(x + 1, y − 1) and depending on the answer we might need one auxiliary query. In conclusion,
we need at most3 queries to locate the faulty vertex inB1(x, y). Notice that these queries are
chosen in such a way that they do not intersect with the ballsB1(x−1, y +2) andB1(x+2, y +1).
Therefore, we need at most9 queries to locate the faulty vertices inTp,q.

With any other choice of the queries outputting1 in step 1, we can always found the faulty vertices
using at most9 queries.

In conclusion, the previous algorithm shows that

a(1,≤3)(Tp,q) ≤
pq

5
+ 9.

2

Adaptive Identification of Sets of Vertices in Graphs 15

(x,y)

(a)

(x,y)

(b)

(x,y)

(c)

(x,y)

(d)

Fig. 3: The proof of Theorem 2.12 illustrated. The black and squaredvertices respectively represent faulty and non-
faulty vertices. Moreover, at least one of the grey verticesis faulty. Furthermore, the dashed squares represent the
asked queries.

16 Ville Junnila

3 Adaptive weak identification
In this section, we introduce a concept of adaptive weak(r,≤ ℓ)-identification, which enables the handling
of largerℓ. Similar concept has also been considered in the case of regular (r,≤ ℓ)-identification. These
weakly(r,≤ ℓ)-identifying codes are considered, for example, in [12].

Assume that during the execution of an algorithm we can fix a faulty vertex after one is found and then
proceed with the algorithm. We call such an algorithm asadaptive weakly(r,≤ ℓ)-identifying, if it can fix
all the (at mostℓ) faulty vertices. The minimum of the maximum number of queries needed in an adaptive
weakly(r,≤ ℓ)-identifying algorithm is denoted byaW

(r,≤ℓ)(G), whereG is the underlying graph.

In what follows, we consider adaptive weak(r,≤ ℓ)-identification in torii of king latticeT k
p,q. The

following theorem provides an upper bound foraW
(r,≤ℓ)(T

k
p,q), whenp andq are dividable by2r + 1.

Theorem 3.1 Letp andq be positive integers dividable by2r + 1. If ℓ < min{p/(2r + 1), q/(2r + 1)},
then we have

aW
(r,≤ℓ)(T

k
p,q) ≤

pq

(2r + 1)2
+ ℓ (2 ⌈log2(2r + 1)⌉ + 1) .

Proof: Assumep andq are positive integers dividable by2r+1. LetT k
p,q be a torus in the king lattice with

pq vertices. Now there exists anr-perfect codeC of T k
p,q. The following algorithm is adaptive weakly

(r,≤ 2)-identifying:

1. For everyc ∈ C ask the queryQr(c).

2. If all the queries output value0, then there clearly exist no faulty vertices inT k
p,q. Let then the

queries outputting value1 be centered atv1, v2, . . . , vm with 1 ≤ m ≤ ℓ. In what follows, the
first coordinate of a vertex is calculated modulop and the second one is calculated moduloq.
Choose thenvj = (xj , yj) to be such that there do not exist faulty vertices inBr(xj − 2r, yj),
Br(xj−2r, yj+2r) andBr(xj , yj+2r). Indeed, such a vertex always exists sinceℓ < min{p/(2r+
1), q/(2r+1)}. Now using some of the queriesQr(xj −2r, yj), Qr(xj −2r+1, yj), . . . , Qr(xj −
1, yj) we can locate a column containing a faulty vertex by dichotomic search. Assume that this
column is formed by the vertices{(xj + k, yj − r), (xj + k, yj − r +1), . . . , (xj + k, yj + r)} with
−r ≤ k ≤ r. The dichotomic search ensures that the found column is the leftmost of the columns
containing faulty vertices inBr(vj). Therefore, we can locate the faulty vertex in this column by
dichotomic search using some of the queriesQr(xj + k − r, yj + 2r), Qr(xj + k − r, yj + 2r −
1), . . . , Qr(xj + k − r, yj + 1). In conclusion, one faulty vertex inBr(vj) can be identified using
at most2⌈log2(2r + 1)⌉ queries.

3. After locating the faulty vertex, we fix it and ask again thequeryQr(vj). Then we proceed as in
the step 2.

In conclusion, the previous algorithm locates the faulty vertices using at most

γr(T
k
p,q) + ℓ (2 ⌈log2(2r + 1)⌉ + 1)

queries. Thus, the claim follows. 2

Adaptive Identification of Sets of Vertices in Graphs 17

As in the previous theorem, letp andq be positive integers dividable by2r + 1. Consider then adaptive
weak(r,≤ ℓ)-identification inT k

p,q with ℓ = p/(2r + 1). Let then the following sets be two patterns of
faulty vertices inT k

p,q:

X1 = {(i · p/(2r + 1), 0) | i = 0, . . . , ℓ − 1},

X2 = {(1 + i · p/(2r + 1), 0) | i = 0, . . . , ℓ − 1}.

Clearly, ifQr(v) = 1 (v ∈ T k
p,q) when the faulty vertices ofT k

p,q areX1, thenQr(v) = 1 when the faulty
vertices ofT k

p,q areX2. The same also holds for the other direction. Hence,Qr(v) = 1 (v ∈ T k
p,q) with

fault patternX1 if and only if Qr(v) = 1 with fault patternX2. Thus, we cannot locate any faulty vertices
in T k

p,q. Similar considerations also apply whenℓ = q/(2r + 1). In conclusion, there does not exist any
adaptive weakly(r,≤ ℓ)-identifying code, ifℓ ≥ p/(2r + 1) or ℓ ≥ q/(2r + 1). Therefore, the bound on
ℓ is the best possible in the previous theorem.

Acknowledgements
I wish to thank an anonymous referee for the insightful comments and suggestions. In particular, the
sharpened result of Remark 2.10 is based on the referee’s observation.

References
[1] Y. Ben-Haim, S. Gravier, A. Lobstein, and J. Moncel. Adaptive identification in graphs. Technical

report, Rapport interne Telecom Paris-2007D012, September 2007.

[2] Y. Ben-Haim, S. Gravier, A. Lobstein, and J. Moncel. Adaptive identification in graphs.J. Comb.
Theory Ser. A, 115(7):1114–1126, 2008.

[3] Y. Ben-Haim, S. Gravier, A. Lobstein, and J. Moncel. Adaptive identification in tori in the king
lattice. Electron. J. Combin., 18(1):Paper 116, 13, 2011.

[4] Y. Ben-Haim and S. Litsyn. Exact minimum density of codesidentifying vertices in the square grid.
SIAM J. Discrete Math., 19(1):69–82, 2005.

[5] N. Bertrand, I. Charon, O. Hudry, and A. Lobstein. Identifying and locating-dominating codes on
chains and cycles.European J. Combin., 25(7):969–987, 2004.

[6] I. Charon, I. Honkala, O. Hudry, and A. Lobstein. The minimum density of an identifying code in
the king lattice. Discrete Math., 276(1-3):95–109, 2004. 6th International Conference on Graph
Theory.

[7] G. Cohen, I. Honkala, S. Litsyn, and A. Lobstein.Covering codes, volume 54 ofNorth-Holland
Mathematical Library. North-Holland Publishing Co., Amsterdam, 1997.

[8] S. W. Golomb and L. R. Welch. Algebraic coding and the Lee metric. In Error Correcting Codes
(Proc. Sympos. Math. Res. Center, Madison, Wis., 1968), pages 175–194. John Wiley, New York,
1968.

18 Ville Junnila

[9] S. W. Golomb and L. R. Welch. Perfect codes in the Lee metric and the packing of polyominoes.
SIAM J. Appl. Math., 18:302–317, 1970.

[10] S. Gravier, J. Moncel, and A. Semri. Identifying codes of cycles.European J. Combin., 27(5):767–
776, 2006.

[11] I. Honkala and T. Laihonen. Codes for identification in the king lattice.Graphs Combin., 19(4):505–
516, 2003.

[12] I. Honkala and T. Laihonen. On the identification of setsof points in the square lattice.Discrete
Comput. Geom., 29(1):139–152, 2003.

[13] I. Honkala and T. Laihonen. On identifying codes in the triangular and square grids.SIAM J.
Comput., 33(2):304–312, 2004.

[14] I. Honkala and A. Lobstein. On the density of identifying codes in the square lattice.J. Combin.
Theory Ser. B, 85(2):297–306, 2002.

[15] M. G. Karpovsky, K. Chakrabarty, and L. B. Levitin. On a new class of codes for identifying vertices
in graphs.IEEE Trans. Inform. Theory, 44(2):599–611, 1998.

[16] A. Lobstein. Watching systems, identifying, locating-dominating and discrminating codes in
graphs, a bibliography. Published electronically athttp://perso.enst.fr/∼lobstein/
debutBIBidetlocdom.pdf.

[17] S. Ray, D. Starobinski, A. Trachtenberg, and R. Ungrangsi. Robust location detection with sensor
networks.IEEE Journal on Selected Areas in Communications, 22(6):1016–1025, August 2004.

[18] D. L. Roberts and F. S. Roberts. Locating sensors in paths and cycles: The case of 2-identifying
codes.European J. Combin., 29(1):72–82, 2008.

