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Density functional theory description of random Cu-Au alloys
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Density functional alloy theory is used to accurately describe the three core effects controlling the thermody-
namics of random Cu-Au alloys. These three core effects are exchange correlation (XC), local lattice relaxations
(LLRs), and short-range order (SRO). Within the real-space grid-based projector augmented-wave (GPAW)
method based on density functional theory (DFT), we adopt the quasinonuniform XC approximation (QNA),
and take into account the LLR and the SRO effects. Our approach allows us to study the importance of all three
core effects in a unified way within one DFT code. The results demonstrate the importance of the LLR term and
show that going from the classical gradient level approximations to QNA leads to accurate formation energies at
various degrees of ordering. The order-disorder transition temperatures for the 25%, 50%, and 75% alloys reach
quantitative agreement with the experimental values only when also the SRO effects are considered.
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I. INTRODUCTION

Density functional theory (DFT) [1,2] is used in many
areas of science owing to its accuracy coupled with
good computational efficiency. Even the earliest exchange-
correlation (XC) approximation, the local density approx-
imation (LDA) [3–5], is still being used today, but many
modern and more advanced approximations, for example,
metageneralized gradient approximations [6,7] and double-
hybrid approximations [8], offer fairly consistent improve-
ments on LDA. The predictive power of DFT is undeniable,
but there exists a good number of situations and paradigms
for which a direct application of DFT is still too difficult
or time consuming. One of the difficult areas is short-range
order (SRO) [9–11], because its accurate description typically
requires large unit cells of low symmetry. For best results the
local lattice relaxations (LLRs) should be taken into account,
which for systems with large atomic size mismatches, such as
Cu-Au, complicates the ab initio calculations even further.

Short-range order is a fundamental, but not yet fully un-
derstood, phenomenon in alloy theory. For example, SRO
makes an important contribution to the physical properties
of transition-metal-alloyed solid solutions [12–17], semicon-
ductor alloys [18], and even high-entropy alloys [19,20].
Experimental and theoretical studies of SRO, especially in
the case of binary alloys, have a long history, and one of the
earliest studies of SRO focused on the Cu-Au system [21],
which is probably the most widely studied binary system in
alloy theory [22,23]. Short-range order and its effect on the
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order-disorder transition temperature has mostly been studied
using the cluster-expansion method [24–26], cluster-variation
method [27], or effective-medium theory [28]. Studies based
on direct DFT calculations are much more scarce because
compared to, e.g., the cluster-expansion method they are
computationally much more demanding and there needs to be
good approximations for the different free-energy components
of each calculated structure. Nevertheless, the indisputable
advantage of a direct DFT approach is that all three core
effects, which are SRO, LLR, and XC, are all available on
equal footing, without further approximations.

Such a unified DFT approach is now becoming possible
for metallic alloys such as Cu-Au. In the past it was difficult
for the generalized gradient approximation (GGA) [29–33]
level XC functionals to produce acceptably accurate results
for Cu-Au and other binary alloys [23]. In our previous
work we have shown that for metallic alloys the XC prob-
lem can be solved without abandoning the computationally
tractable GGA level [34], by using the quasinonuniform XC
approximation (QNA) scheme [35,36]. QNA is an XC scheme
designed for metallic alloy and compound calculations, which
use element-specific optimal parameters for an improved
GGA-level description. Later, we found that QNA in combi-
nation with LLR still cannot reproduce experimental findings
on a quantitative level [37]. The deviations were ascribed to
the missing SRO effects, which should be considered on equal
footing with the LLR and XC effects.

In this paper we include all relevant effects within one DFT
scheme, putting forward a unified alloy theory for systems
with sizable XC, LLR, and SRO effects. We use this direct
DFT approach to predict the ordering properties of random
Cu1−xAux alloys. The ability to consider all significant effects

2469-9950/2019/99(6)/064202(8) 064202-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.064202&domain=pdf&date_stamp=2019-02-19
https://doi.org/10.1103/PhysRevB.99.064202


L.-Y. TIAN et al. PHYSICAL REVIEW B 99, 064202 (2019)

within one DFT program allows for a precise mapping of
their relative impacts and draws conclusions for future alloy
modeling.

II. METHODS

A. Computational details

Calculations were performed with the grid-based projector
augmented-wave DFT code GPAW [38,39], which is based
on the PAW formalism and the atomic simulation environ-
ment (ASE) [40,41]. A linear combination of atomic orbitals
(LCAO) mode [42] with a p-valence basis [43] was used.
The k points were generated using a 3 × 3 × 3 Monkhorst-
Pack grid [44]. The width of the Fermi-Dirac-type smearing
of the occupation numbers was set to 0.01 eV. To describe
the XC effects both the Perdew-Burke-Ernzerhof (PBE) [45]
and QNA XC functionals were used. The QNA scheme was
implemented in GPAW following the Becke fuzzy cell ap-
proach [46]. QNA divides to total system into atom-centered,
Voronoi-type regions and applies a slightly different XC ap-
proximation to each region. These region-specific XC approx-
imations are optimized based on which type of element the
Voronoi region belongs. The total QNA XC functional can
then be expressed as a superposition or sum of the atom-
centered optimized XC functionals [35,36]. The advantage
of the QNA scheme is that it represents a way to circum-
vent the accuracy limits of conventional GGA-level approx-
imations when it comes to metallic alloy and compound
calculations.

Atomic positions were relaxed using the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm as implemented in ASE.
Relaxations were deemed finished when all forces were below
0.3 eV Å−1, which ensured that the mixing energy would not
change appreciably upon any further relaxation. Ground-state
unit cells were found using equation-of-state fitting with the
constraints that for Cu0.75Au0.25 and Cu0.25Au0.75 structures
the cells remain cubic, and for Cu0.5Au0.5 structures the c/a
ratio is also optimized.

B. Free-energy model

Free energy F ({αi}, T ) at a finite temperature T is approx-
imated as

F (x, {αi}, T ) = E0(x, {αi}) − T Sconf (x, {αi}), (1)

where E0 is the 0-K ground-state DFT energy and Sconf is the
configurational entropy, which both depend on the so-called
Warren-Cowley SRO parameters {αi} [21,47–50]. Warren-
Cowley parameters are very often used in binary A1−xBx alloy
research to quantify the degree of SRO, and experimentally
the presence of SRO can be measured by x-ray diffraction
or scattering technologies. The SRO parameters describe the
probability of finding certain types of atoms on the ith co-
ordination shell that surrounds a given reference atom [51].
Mathematically, they can be represented as [52]

αi = 〈�i〉 − q2

1 − q2
, (2)

where q = 2x − 1 and 〈�i〉 is the (thermally) averaged pair
correlation function between lattice sites and their ith coordi-

FIG. 1. The α1, α2, and α3 values of the generated SRO structures
(middle and bottom panels). The top panel shows the computed con-
figurational entropy of the generated structures as a function of α1.
Blue “+” symbols denote all generated structures and black/orange
those that correspond to maximal/minimal configurational entropy.
Red symbols represent experimentally measured α values of Cu3Au
near the order-disorder transition temperature.

nation shell. For perfectly random structures all αi are zero,
whereas for the fully ordered L12 (Cu3Au, CuAu3) and L10

(CuAu) structures αi = −1/3 for i odd and αi = 1 for i even.
We neglect vibrational contributions to the free energy, not
only because they can be time consuming to calculate but also
because their contribution compared to the configurational
entropy is expected to be small [53–55]. A straightforward
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TABLE I. Experimental and present calculated α values. Most of the Cu0.75Au0.25 values can also be seen in Fig. 1.

Cu0.75Au0.25 α0 α1 α2 α3 Temperature (in K)

Cowley 1950 [21] 1.000 −0.152 +0.186 +0.009 678 Normalized to α0 = 1.0
Cowley 1950 [21] 1.000 −0.148 +0.172 +0.019 723 Normalized to α0 = 1.0
Moss 1964 [57] 1.280 −0.218 +0.286 −0.012 678 Corrected by subtracting excess intensity
Moss 1964 [57] 1.140 −0.195 +0.215 +0.003 723 Corrected by subtracting excess intensity
Moss 1964 [57] 1.400 −0.273 +0.450 −0.045 Quenched from 1073 K,

corrected by subtracting excess intensity
Norm. Moss 1964 [56] 1.000 −0.170 +0.223 −0.009 678 Normalized to α0 = 1.0
Norm. Moss 1964 [56] 1.000 −0.171 +0.189 +0.003 723 Normalized to α0 = 1.0
Bardhan 1976 [59] 1.641 −0.103 +0.246 +0.042 669
Bardhan 1976 [59] 1.107 −0.093 +0.141 +0.035 693
Butler 1989 [56] 0.935 −0.134 +0.158 +0.007 703
Calculated 1.000 −0.333 +1.000 −0.333 Fully ordered
Calculated 1.000 −0.226 +0.506 −0.144
Calculated 1.000 −0.144 +0.127 +0.045
Calculated 1.000 −0.004 −0.037 −0.012 Fully random

Cu0.5Au0.5 α0 α1 α2 α3 Temperature (in K)

Metcalfe 1975 [60] 1.263 −0.187 +0.230 −0.013 700
Metcalfe 1975 [60] 1.398 −0.156 +0.180 −0.011 800
Metcalfe 1975 [60] 1.038 −0.205 +0.444 −0.093 Quenched from 1070 K
Calculated 1.000 −0.333 +1.000 −0.333 Fully ordered
Calculated 1.000 −0.247 +0.605 −0.151
Calculated 1.000 −0.142 +0.062 +0.031
Calculated 1.000 +0.000 −0.025 −0.009 Fully random

Cu0.25Au0.75 α0 α1 α2 α3 Temperature (in K)

Korevaar 1961 [61] −0.170 +0.230 473
Korevaar 1961 [61] −0.110 +0.100 673

Calculated 1.000 −0.333 +1.000 −0.333 Fully ordered
Calculated 1.000 −0.226 +0.506 −0.144
Calculated 1.000 −0.144 +0.127 +0.045
Calculated 1.000 −0.004 −0.037 −0.012 Fully random

numerical scheme was conceived in order to obtain Sconf as a
function of α1, α2, and α3, where dependency on α4 and higher
has been neglected.

As Eq. (1) shows, Sconf (per atom) is needed as a function
SRO parameters αi. In other words, for each macrostate of
a unique combination of αi values, we want to estimate the
number of microstates that corresponds to that macrostate,
in order to get the Sconf (αi). We are implicitly assuming that
a unique combination of αi values corresponds to a unique
structure, or if not, then at least that every structure with
some given combination of αi values gives (up to some small
variation) the same DFT total energy. Let us have a binary
alloy with two atom types, A and B. Our starting point is the
fully ordered 3 × 3 × 3 108-atom L12 or L10 structure whose
Sconf = kB ln �/N = 0. Using bigger cell sizes would improve
the estimation, but here we use 3 × 3 × 3 cells, because we
want the entropy to be consistent with the structures that will
be used in DFT calculations, which are 3 × 3 × 3.

Now we consider randomly switching one pair of atoms.
Starting from the fully ordered structure, it is easy to see that
the multiplicity becomes

�(p = 1) =
(

NA

1

)(
NB

1

)
, (3)

where NA and NB are the total number of type A and B atoms,
respectively. For the L10 structure NA = N/2 and NB = N/2,
where N is the total number of atoms. For the L12 structure
NA = 3N/4 and NB = N/4. The variable p denotes the number
of pairs that have been switched. The entropy after one pair
switch becomes

Sconf (p = 1, αi ) = kB ln �(p = 1, αi )

N
, (4)

which can be evaluated numerically. The Warren-Cowley
parameters αi can be routinely computed for any structure. We
can thus compute the αi after the pair switch to obtain Sconf as
a function of αi.

We now consider switching two pairs of atoms and the
multiplicity becomes

�(p = 2) =
(

NA

2

)(
NB

2

)
. (5)

For a large cell and small number of pair switches p it is very
likely that the “disturbed” nearest-neighbor (NN) clusters are
all isolated, which means that for a small p the αi change
linearly. For example, the α1 of L10 grows linearly as a
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function of p as

α1(p) = − 1
3 [N − 2(1 + 4 + 8)p] + 2

[
1
3 − 4 · 1

2 − 8 · 1
6

]
p

N
.

(6)

The configurational entropy as a function of αi towards the
fully ordered end is thus known to a high degree of accuracy.
The general formula for the entropy after p pair switches is

Sconf (p) = kB ln �(p)

N
= kB ln

[(
NA

p

)(
NB

p

)]/
N. (7)

It should be noted that we only need to consider switching
unique pairs of atoms, because any structure can be reached
by switching unique pairs of atoms. This means that switching
some atom two or more times is not needed, since it does not
provide any new states or any new useful information. It is
easy to see that when we randomly change p = NA/2 (L10) or
p = 3NB/4 (L12) of all the unique pairs we get fully random
structures,

Sconf (L10) = kB

ln
[(N/2

N/4

)(N/2
N/4

)]
N

N→∞−−−→ Srandom(L10), (8)

Sconf (L12) = kB

ln
[( 3N/4

3N/16

)( N/4
3N/16

)]
N

N→∞−−−→ Srandom(L12). (9)

The ideal fully random entropies are

Srandom(L10) = −
∑

i=A,B

ci ln(ci ) ≈ 0.693, (10)

Srandom(L12) = −
∑

i=A,B

ci ln(ci ) ≈ 0.562, (11)

where cA/B is NA/B/N .
Our goal is to use the above pair switching strategy to

map Sconf as a function of αi parameters. For each p in
the range 0 � p � NA/2 (L10) or 0 � p � 3NB/4 (L12) we
randomly generate a large number, say, Niters = 30 000, of
such structures. We then define an “effective”

�̃(αi ) =
∑Niters

i=1 �(p, αi )

Niters
, (12)

whose purpose is to keep track of the multiplicity of a given
unique αi combination across all p values, and to normalize it
according to the number of iterations Niters. For example, with
p = 0 the correct multiplicity �̃(α1 = −1/3, α2 = 1, . . . ) =
Niters · �(p = 0, αi )/Niters = �(p = 0, αi ) = 1 is recovered.
The effective multiplicity gives the entropy as a function of
αi as Sconf (αi ) = kB ln �̃(αi )/N .

To decide which αi combinations are unique and which
ones are not calls for some kind of binning of αi values.
We have defined the bins to be the range −1/3 � α1 � 0
divided by 1000 for α1, and α2 and α3 are binned similarly.
As a final step, due to the small size of the 108-atom unit
cell, we scale the numerically computed entropies so that the
maximum value becomes Srandom.

III. RESULTS AND DISCUSSION

The Cu-Au system is characterized by ordered structures
at lower temperatures and random face-centered-cubic (fcc)

TABLE II. Polynomial fitting coefficient of the maximal config-
urational entropy.

L10 L12

A 14763.7215045 20645.93862937
B 8417.91404382 10760.37462964
C −417.21566695 −831.06405021
D −900.25560279 −1146.33055137
E −126.64603736 −154.9843227

structures with a certain degree of SRO above and below
the order-disorder transition temperature Tc. Experimentally,
the stable ordered structures of Cu3Au, CuAu, and CuAu3

at low temperatures are L12, L10, and L12, respectively. The
experimental Tc of Cu3Au, CuAu, and CuAu3 are 663, 656,
and ≈500 K, respectively [25,28]. CuAu has an additional,
more complicated ordered CuAu-II phase, which is only
stable between 656 and 683 K [25,28], but this phase is not
part of our simulations.

Using the scheme of Sec. II B, we generate a large group
of 108-atom SRO structures whose size is 3 × 3 × 3 times
the conventional fcc unit cell. Figure 1 and Table I show
the α1, α2, and α3 values of the generated structures and the
corresponding configurational entropies for L12-based struc-
tures (Cu0.75Au0.25 and Cu0.25Au0.75). Similar results were
obtained for the L10 structure as well, and those α values
can be seen in Table I. For maximal information one would
have to compute the DFT energy of every generated structure.
This is, however, computationally far too prohibitive, so here
we choose to decrease the number of calculated structures
to a manageable number by parametrizing α2 and α3, thus

FIG. 2. Configurational entropy per atom of L12 and L10 binary
systems as a function of α1. Polynomial fits to the data are drawn
using black lines. The errors of the fits in terms of the R-squared
value are also shown.
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TABLE III. Order-disorder transition temperatures Tc (in K) and their relative errors (in %) compared to experimental data. Solid (open)
tick boxes indicate which effects have been included (excluded) when calculating the transition temperatures.

Cu0.75Au0.25

LLR � LLR � LLR � LLR �
SRO� SRO� SRO� SRO� Expt. a

PBE 1574K 1104K 807K 609K 663K
QNA 1706K 1251K 975K 763K

Relative error
PBE 137.3 66.5 21.7 −8.2
QNA 157.3 88.7 47.1 15.0

Cu0.5Au0.5

LLR � LLR � LLR � LLR �
SRO� SRO� SRO� SRO� Expt.

PBE 1514K 1130K 812K 656K 656K
QNA 1666K 1324K 986K 843K

Relative error
PBE 130.7 72.3 23.8 −0.1
QNA 154.0 101.9 50.3 28.5

Cu0.25Au0.75

LLR � LLR � LLR � LLR �
SRO� SRO� SRO� SRO� Expt.

PBE 895K 649K 354K 294K ≈500 K
QNA 949K 736K 426K 395K

Relative error
PBE 79.1 29.8 −29.1 −41.1
QNA 89.7 47.2 −14.8 −21.1

aReferences [25,28].

leaving only α1 as a free parameter. How α2 and α3 can be
parametrized (as a function of α1) is based on the following
rationale.

In Fig. 1 the blue “+” symbols represent the α1/2/3 dis-
tribution of all generated structures and the black dots are
structures with such α2/3 values that they yield maximum
Sconf for a given α1. We can see that the structures that
have the maximum Sconf are those structures that maximize
disorder, i.e., the magnitudes of α2 and α3 are minimized.
Conversely, the minimum entropy structures (orange symbols)
are those that maximize order (magnitudes of α2 and α3

are maximized). The red symbols represent experimentally
measured α1/2/3 values of Cu3Au around the Tc of 663 K.
There is a convincing agreement in the α1/2/3 values between
the calculated maximum Sconf structures and the experimental
ones. This makes sense given that the Sconf term stabilizes
disordered structures at high temperatures most, and therefore
stable structures at such temperatures are those with the high-
est Sconf . The same trend, though not shown, is also true for
CuAu and CuAu3. We note that our numerical results can also
explain the experimentally observed anomalously small value
of α3 [57]; the value of α3 is minimized in order to maximize
configurational entropy at high temperatures. It is interesting
to note that by normalizing the α values of Ref. [57] to α0 = 1
(Norm. Moss 1964 in Fig. 1 and Table I), as has been done in
Ref. [56], they fall nicely in line with other measurements, as
well as our calculated maximum entropy α values.

Based on the above reasoning we choose to calculate
the four most representative structures along the maximum

entropy path, which in Fig. 1 are shown by the blue “×”
symbols. By doing so we are able to fix the values of α2

and α3 using the maximum entropy condition and repre-
sent the free energy as a function of α1 only. In order to
make the free energy a continuous function of α1, we fit
a seventh-order polynomial to the maximum entropy curve
of the top panel of Fig. 1. By imposing the boundary con-
ditions Sconf (α1 = −1/3) = 0, Sconf (α1 = 0) = Srandom, and
∂Sconf/∂α1(α1 = 0) = 0, we obtain

Sconf (α1) = Aα7
1 + Bα6

1 + Cα5
1 + Dα4

1 + Eα3
1

+
(

A

35
− B

34
+ C

33
− D

32
+ E

3
− 9Srandom

)
α2

1

+ Srandom, (13)

where Srandom is the ideal fully random configurational en-
tropy, and A, B, C, D, and E are the fitting coefficients whose
values are listed in Table II for x = 0.25/0.75 (L12) and
x = 0.5 (L10). The graphical results of the fits using the fitting
coefficients of Table II are shown in Fig. 2. The entropy curves
of Fig. 2 resemble quite closely those of Ref. [58], which
were calculated within the cluster-variation method. Both our
curves and those of Ref. [58] are seen to have a “shoulder”
around α1 ≈ −0.15, which corresponds to the experimental
α1 value near the Tc

The calculated 0-K mixing energies are shown in Fig. 3,
where the solid curves are a spline fit through the calculated
DFT mixing energies. Previous studies have shown that the
magnitudes of PBE mixing energies of CuAu alloys are
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FIG. 3. The top panels show the mixing energies of Cu-Au alloys as a function of the Warren-Cowley α1 parameter. Experimental mixing
energies are from Ref. [48] (ordered at 320 K and random at 720 K) and in the top panels they have been coupled with experimental α1 values
from Refs. [52,56]. The middle and bottom panels show temperature-dependent mixing energies of Cu-Au alloys as functions of temperature
and the Warren-Cowley α1 parameter. The black star symbols indicate the minima of the curve at a given temperature.

underestimated quite significantly [23,34]. Here, we report
that this underestimation happens at all degrees of SRO. It has
also been shown previously that the QNA scheme can produce
vastly improved mixing energies while managing to stay on
the same GGA level as PBE [34]. At temperatures around the
Tc there is a good agreement between QNA and experimental
α1 versus mixing energy data points, which indicates that
QNA predictions about the stability and the degree of SRO
around the Tc are in good agreement with experiments.

The middle and bottom rows of Fig. 3 show the free
mixing energy �F at various temperatures. By finding the
energy minimum (black stars in Fig. 3) for a dense mesh of
temperatures we can compute how α1 evolves as a function
of temperature T . These temperature-dependent α1 curves
are plotted in Fig. 4. The PBE and QNA curves are very
similar and there is practically only a shift toward a higher
Tc from PBE to QNA, which means that there is no significant
difference in the predicted transition α1 values between PBE
and QNA. We extract the Tc from the data of Fig. 4 and
list the resulting Tc in Table III. It turns out that our DFT
model, together with the numerically estimated Sconf , is able
to reproduce the experimental trend Tc(x = 0.25) ≈ Tc(x =
0.5) > Tc(x = 0.75), which seems to have been previously
possible only by cluster-expansion [26] or effective-medium
theory methods [28].

Having access to the unified DFT model, we can now
measure the impact of various core effects on the critical
temperature. Table III lists the Tc with LLR, SRO, or both
either enabled (�) or disabled (�). The SRO-free Tc is
calculated by considering only the fully ordered (α1 = −1/3)
and fully random (α1 = 0) structures and then calculating
their energy difference divided by the ideal fully random
entropy Srandom. Table III shows that the effect of SRO is
to decrease the predicted Tc by a significant amount. By
repeating our calculations without relaxing atomic positions
we can probe the effect LLR on Tc. For the CuAu system,
with its large atomic size mismatches, the LLR effect turns
out to be the most crucial. Without LLR the predicted Tc are
highly overestimated, with and without taking XC or SRO
effects into account. This is not surprising given the large
size mismatch between Cu and Au atoms. When it comes
to XC effects, despite predicting inaccurate mixing energies,
PBE gives very accurate estimates for Tc of Cu0.75Au0.25

and Cu0.5Au0.5, while Tc of Cu0.25Au0.75 is heavily underes-
timated. The surprisingly good performance of PBE for Tc

can be attributed to the fact that even though the PBE mixing
energies in the top row of Fig. 3 are highly underestimated,
this large error cancels because the slopes of the PBE curves
are not bad, and Tc depends on the slope of the curve and not
on its position on the mixing energy axis. QNA slopes are a
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FIG. 4. Evolution of short-range order parameter α1 as a function
of temperature T . Dashed lines mark the order-disorder transition
temperatures.

bit larger than those of PBE, and QNA therefore somewhat
overestimates Tc of Cu0.75Au0.25 and Cu0.5Au0.5 and only
slightly underestimates it for Cu0.25Au0.75. Overall, QNA
gives balanced estimates for all three alloy concentrations,
which are actually very similar to those of SRO-free PBE, and

according to Table III it has the smallest maximum absolute
relative error across all three concentrations.

IV. CONCLUSIONS

In summary, using a unified DFT approach, we studied the
thermodynamics of Cu-Au alloys. The LLR effects are the
strongest, but accurate descriptions of XC and SRO are also
needed in order to quantitatively predict the order-disorder
transition temperatures. Coupled with numerical estimates
for the configurational entropy, our direct DFT approach can
predict the transition temperatures with an accuracy that previ-
ously only specialized cluster-expansion or effective-medium
theory methods could. One great advantage of the present
model is that it can be extended to multicomponent systems,
such as high-entropy alloys.
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