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ABSTRACT
It has long been recognised that quasi-periodic oscillations (QPOs) in the X-ray light curves of accreting black
hole and neutron star binaries have the potential to be powerful diagnostics of strong field gravity. However,
this potential cannot be fulfilled without a working theoretical model, which has remained elusive. Perhaps the
most promising model associates the QPO with Lense-Thirring precession of the inner accretion flow, with the
changes in viewing angle and Doppler boosting modulating the flux over the course of a precession cycle. Here,
we consider the polarization signature of a precessing inner accretion flow. We use simple assumptions about
the Comptonization process generating the emitted spectrum and take all relativistic effects into account, paral-
lel transporting polarization vectors towards the observer along null geodesics in the Kerr metric. We find that
both the degree of linear polarization and the polarizationangle should be modulated on the QPO frequency.
We calculate the predicted absolute rms variability amplitude of the polarization degree and angle for a specific
model geometry. We find that it should be possible to detect these modulations for a reasonable fraction of
parameter space with a future X-ray polarimeter such asNASA’s Polarization Spectroscopic Telescope Array
(PolSTAR: the satellite incarnation of the recent balloon experiment X-Calibur).

Subject headings:polarization – accretion, accretion disks – black hole physics – X-rays: binaries

1. INTRODUCTION

Low frequency quasi-periodic oscillations (hereafter
QPOs) with frequencies ranging from∼ 0.1 − 30 Hz are
routinely observed in the X-ray light curves of black hole
(BH) and neutron star binary systems. The QPO proper-
ties correlate strongly with spectral state, which evolves
from the hard power law dominatedhard stateto the disk
blackbody dominatedsoft stateon timescales of∼months
(Tananbaum et al. 1972; see van der Klis 2006; Done et al.
2007; Belloni 2010 for reviews). The QPO frequency
increases as the spectrum softens and the amplitude rises to
a peak in the hard intermediate state (HIMS: Belloni 2010)
before reducing as spectral evolution further continues (e.g.
Muno et al. 1999; Sobczak et al. 2000). Since the flux also
peaks in this state, the HIMS is ideal for studying QPOs.

The disk blackbody spectral component is from a ge-
ometrically thin accretion disk (Shakura & Sunyaev 1973;
Novikov & Thorne 1973) and the power law component re-
sults from Compton up-scattering of cool seed photons by
some cloud of hot electrons close to the BH (Thorne & Price
1975; Sunyaev & Truemper 1979). Some fraction of these
seed photons are provided by the disk, with the rest gen-
erated internally in the electron cloud via cyclo-synchotron
radiation (Ghisellini et al. 1988; Poutanen & Vurm 2009;
Veledina et al. 2011b). The exact geometry of the Comptoniz-
ing cloud is still a matter of debate but a prominent interpre-
tation is thetruncated disk model(Ichimaru 1977; Esin et al.
1997; Poutanen et al. 1997; Done et al. 2007; Gilfanov 2010),
in which the geometrically thin disk evaporates inside of some
radius larger than the innermost stable circular orbit (ISCO)
to form a geometrically thick, optically thin (τ ∼ 1) accre-
tion flow (hereafter the inner hot flow). The spectral transi-
tions can be explained if the truncation radius moves smoothly
from Ro ∼ 60Rg, whereRg = GM/c2, in the hard state to

Ro = RISCO in the soft state.
It has long been recognised that QPOs have the poten-

tial to be powerful diagnostics of the regions close to BHs.
However, this potential cannot be realised without a work-
ing model, which has long remained elusive. Suggested QPO
mechanisms in the literature either consider particle orbits in
General Relativity (GR) (Stella & Vietri 1998; Wagoner et al.
2001; Schnittman et al. 2006a) or instabilities in the accre-
tion flow (Tagger & Pellat 1999; Cabanac et al. 2010). Per-
haps the most successful model for explaining the array of
observational properties attributes the QPO to the effect of
frame dragging. In GR, a spinning massive object twists up
the surrounding space-time, leading to precession of particle
orbits inclined with the BH equatorial plane. This is gener-
ally called Lense-Thirring precession after the authors who
originally derived it (Lense & Thirring 1918), although their
derivation was only in a weak field limit, coming well before
the derivation of the Kerr metric (Kerr 1963). Stella & Vietri
(1998) first suggested that the QPO results from Lense-
Thirring precession, considering only the precession fre-
quency of test masses at different radii. Schnittman et al.
(2006a) considered instead a precessing ring in the accre-
tion disk. However, phase resolved spectroscopy reveals that
it is the Comptonized spectral component which oscillates
and not the disk (Markwardt et al. 1999; Revnivtsev et al.
2001; Sobolewska &̇Zycki 2006; Axelsson et al. 2013).
Ingram et al. (2009) suggested that the entire inner flow
precesses as a solid body, motivated by the General Rel-
ativistic Magneto-Hydrodynamic (GRMHD) simulations of
Fragile et al. (2007). This precessing flow model naturally
explains the observed QPO spectrum, predicts the correct
range of frequencies for BHs (Ingram et al. 2009), has been
incorporated into a full model for the power spectral prop-
erties of BHs (Ingram & Done 2011; Ingram & Done 2012a;
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Ingram & van der Klis 2013; Rapisarda et al. 2014) and has
been extended to also account for the optical QPOs observed
from BHs (Veledina et al. 2013; Veledina & Poutanen 2015).
The model can also explain the range of QPO frequencies
observed in low accretion rate neutron stars (Ingram & Done
2010), but not the11 Hz pulsar in the globular cluster Terzan
5 (Altamirano et al. 2012).

In this Paper, we consider the X-ray polarization sig-
nature from a precessing inner flow. Photons emerging
from a Comptonizing slab are expected to be polarized,
with the polarization degree as a function of viewing an-
gle depending on optical depth of the slab (Chandrasekhar
1960; Rybicki & Lightman 1979; Loskutov & Sobolev 1982;
Sunyaev & Titarchuk 1985; Poutanen & Svensson 1996). Al-
though the polarization degree is predicted to be less than
∼ 20%, the current generation of proposed X-ray polarime-
try missions should comfortably be able to detect a sig-
nal. Polarimetry promises to provide a powerful extra
lever arm to interpret the X-ray signal from BHs. The
predicted energy dependence of the polarization signature
has been extensively explored (e.g. Stark & Connors 1977;
Dovčiak et al. 2008b; Li et al. 2009; Schnittman & Krolik
2009; Schnittman & Krolik 2010; Krawczynski 2012). Vari-
ability of the signal is less well studied, although Lense-
Thirring precession did provide an early motivation for X-
ray polarimetery in the 1970s (Knox Long, private com-
munication). More recently, Dovčiak et al. (2008a) and
Zamaninasab et al. (2011) considered the polarization signa-
ture of orbiting hotspots and Marin & Dovčiak (2015) con-
sidered the polarization signatures of obscuring clouds, all for
the case of Active Galactic Nuclei. In this Paper, we predict
a modulation in the polarization signature from bright stellar
mass BHs on a timescale of∼ 1 s. We use simple parame-
terizations for the angular dependence of emission and polar-
ization designed to mimic the results of Sunyaev & Titarchuk
(1985, hereafter ST85) for theτ = 1 case. We then take
GR fully into account by ray tracing photon paths from the
precessing flow geometry to the observer, assuming the Kerr
metric.

In Sections 2 and 3, we outline our assumed geometry and
formalism for calculating the observed polarization degree
and angle as a function of QPO phase. In Section 4, we con-
sider a specific flow geometry appropriate for the HIMS and
a QPO frequency of∼ 1 − 2 Hz. We calculate the ampli-
tude of the modulation in both polarization degree and angle
for the full range of observer positions. In Section 5, we dis-
cuss the prospects of detecting this signature and suggest im-
provements that can be made to our modelling assumptions
in future. Throughout this Paper, we express distance in units
of Rg and time in units ofc/Rg in order to exploit the scale
invariant nature of GR. We use Einstein’s summing conven-
tion with Greek indices taken to run from 0 to 3 and Roman
indices taken to run from 1 to 3. We adopt the 4-vector for-
malism with negative time entries and positive spatial entries.

2. GEOMETRY

We assume the geometry proposed by Ingram et al. (2009),
following Ingram & Done (2012b) and Veledina et al. (2013,
hereafter VPI13). Specifically, the BH and binary system spin
axes are misaligned by some modest angleβ. The outer thin
disk is assumed to be in the binary plane and the flow spin axis
is assumed to precess around the BH spin axis, always main-
taining the same misalignment angleβ. In this section, we
first describe our coordinate system followed by a description

Figure 1. Coordinate system used in this Paper. We define right handed
Cartesian coordinate systems with z-axes aligned with the BH, flow and bi-
nary spin axes. The BH (black) and binary (red) z-axes are misaligned by
the angleβ and the binary system x-axis is chosen to be in the unique plane
shared by the BH and binary z-axes. The vectorô represents the observer’s
line of sight, and the BH x-axis is chosen as the projection ofthis vector onto
the BH equatorial plane. The flow z-axis (blue) precesses around the BH
z-axis with precession angleω, always maintaining the misalignment angle
β. The flow and binary z-axes are therefore aligned whenω = 180◦ and
misaligned by an angle2β whenω = 0◦.

of the assumed geometry of the inner flow.

2.1. Coordinate system

Figure 1 illustrates the coordinate system used in this paper.
As in VPI13, we assume the binary spin axis is misaligned
with the BH spin axis by an angleβ. We define a ‘binary’
coordinate system in which the z-axis,ẑb, aligns with the bi-
nary spin axis and therefore the plane of the binary is simply
the plane perpendicular tôzb. We choose to align the binary
system x-axis with the projection of the BH spin axis on the
plane of the binary. In binary coordinates, the vector pointing
from the BH to the distant observer is given by

ô = (sin i cosΦ, sin i sinΦ, cos i), (1)

wherei is the inclination angle andΦ is the viewer azimuth.
We use these angles to define the observer’s position be-
cause it is possible to measurei via dynamical methods (e.g.
Orosz et al. 2004, 2011). Throughout this Paper, a hat denotes
a unit vector.

We assume that the flow spin axis (ẑf ) precesses around
the BH spin axis, maintaining a misalignment angleβ as the
precession angleω increases. This means that the misalign-
ment between the flow and binary spin axes varies over a pre-
cession cycle between0 and2β. We define a ‘flow’ coordi-
nate system with exactly the same relationship to the binary
coordinate system as introduced in VPI13. Here, however,
we will perform calculations in the Kerr metric which is az-
imuthally symmetric around the BH spin axis, in contrast to
the Schwarzschild metric used in VPI13 which is spherically
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symmetric. Consequently, our calculations are greatly simpli-
fied by defining a ‘BH’ coordinate system with basis vectors
x̂, ŷ andẑ. The z-axis aligns with the BH spin axis, allowing
us to use Boyer-Lindquist coordinates, and the x-axis aligns
with the projection of̂o onto the BH equatorial plane. In this
coordinate system, the observer’s line of sight can be written
as

ô = (sin θ0, 0, cos θ0), (2)

where

cos θ0 = sin i cosΦ sinβ + cos i cosβ, (3)

is the cosine of angle between the observer’s line of sight and
the BH spin axis. We can express the flow basis vectors in this
coordinate system as

x̂f =(− cosβ cos(ω − ω0),− cosβ sin(ω − ω0), sinβ)

ŷf =(sin(ω − ω0),− cos(ω − ω0), 0)

ẑf =(sinβ cos(ω − ω0), sinβ sin(ω − ω0), cosβ), (4)

whereω0 is the precession angle at which the projection ofẑf
onto the BH equatorial plane aligns with the BH x-axis (see
Figure 1). This is given by

tanω0 =
sin i sinΦ

sin i cosΦ cosβ − cos i sinβ
. (5)

Note that the flow y-axis always remains in the BH equato-
rial plane and the flow x-axis maintains a constant misalign-
ment with the BH equatorial plane ofβ. Whenω = 0◦, the
flow is maximally misaligned (2β) with the disk, and when
ω = 180◦, the flow is aligned with the disk. Any point on the
surface of the flow can then be represented in this coordinate
system as

r = r (sin θf cosφf , sin θf sinφf , cos θf ), (6)

whereθf andφf are respectively the polar and azimuthal an-
gles defined in the flow coordinate system. The same point
can alternatively be represented in terms of the BH polar and
azimuthal angles

r = r (sin θ cosφ, sin θ sinφ, cos θ). (7)

We present the equations to convert between these two sets of
coordinates in Appendix C. We can also represent a point in
terms of binary polar and azimuthal angles,θb andφb.

2.2. Inner hot flow geometry

We assume that the inner flow is shaped like a torus de-
scribed in Boyer-Lindquist coordinates by the equation:

T (r, θf) = B − sin θf [1− (1−B)r/ro], (8)

whereB = [(h/r)2 + 1]−1/2, ro is the outer edge andh/r is
the scale height of the flow. Outside of the flow,T (r, θf ) > 0
and inside the flow,T (r, θf) < 0. On the flow boundary,
T (r, θf) = 0. Figure 2 shows some example cross-sections
of this shape; i.e. contours ofT = 0. For r ≪ ro, the flow
has a constant opening angle, withsin θf = B. For largerr,
sin θf ≥ B and the function curves round in the shape of a
tear drop. We also assume an inner radiation edge,ri, which
we set equal to the ISCO in this Paper. We can use Equation
(8) to assess if a given position, described by the vectorr, is
inside, outside or on the boundary of the flow.

This shape is motivated in part by the discussion on thick
disks in Chapter 10 of Frank et al. (2002). Equation (8)
comes from considering an inviscid fluid rotating about a

−20 0 20

−
5

0
5

r 
co

sθ
f (

R
g
)

r sinθf (Rg)Figure 2. Illustration of the flow geometry. This depends on only two pa-
rameters: the scale heighth/r and the outer radius in units ofRg , ro. For
r ≪ ro, this function has a constant opening angle, but curves around into a
tear drop shape for largerr. We show three example parameter combinations:
h/r = 0.1, ro = 20 (solid line),h/r = 0.2, ro = 25 (dashed line) and
h/r = 0.4, ro = 30 (dot-dashed line). In this Paper, we consider the first of
these geometries, represented by the solid line.

central (Newtonian) point mass (see Figure 10.2 therein).
Clearly this is over simplified, but it does provide a conve-
nient way to parameterize the flow geometry in the most re-
alistic way currently possible. Indeed, the shape illustrated
in Figure 2 is comparable to that seen in GRMHD simula-
tions (e.g. Fragile et al. 2007; Fragile & Meier 2009; Fragile
2009) which were initialized with a ‘Polish doughnut’ so-
lution (Jaroszynski et al. 1980) and allowed to evolve self-
consistently to show solid body precession. Dexter & Fragile
(2011) used ‘after the fact’ assumptions about the radiative
emissivity of the flow (following Schnittman et al. 2006b) in
order to ray trace emission from the Fragile et al. (2007) sim-
ulation but were unable to study long enough time scales to
see the precession period modulate the light curve (they con-
centrated instead on trying to find high frequency QPO candi-
dates). Thus defining a reasonable flow geometry analytically
is currently the best way to study the effects of precession on
the observed emission.

3. FORMALISM

In this Section, we describe our method for calculating the
flux and polarization properties observed from a precessing
flow as a function of precession angle. Since we only con-
sider linear polarization, the polarization of the signal can be
described entirely by the polarization degree,p, and angle,χ.

3.1. Inner hot flow properties

The specific intensity emitted from a patch of the flow sur-
face is, in general, a function of position, photon energy and
emission angle,θe. Our calculations are greatly simplified by
assuming that these variables can be separated, such that

IEe
(Ee, r, µe) = IEe

qe(r) I(µe), (9)

whereIEe
is the emitted spectrum,qe(r) andI(µe) are re-

spectively the radial and angular emissivity profiles andµe =
cos θe. In the absence of a standard radial emissivity law
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Figure 3. Intensity as a function of emission angle assumed for this Paper.
We use the analytic functionI(µe) ∝ 1 + 1.1(1 − µe) − 1.4(1 − µe)2,
designed to mimic the results of ST85 for theτ = 1 case. This Figure can be
compared with Figure 4 of ST85, except we use a different normalization.
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Figure 4. Polarization degree as a function of emission angle assumed
for this Paper. We use the analytic functionp(µe) = 50%(1 − µe) −
23%[exp {(1 − µe)1.6}− 1], designed to mimic the results of ST85 for the
τ0 = 1 case. This Figure can be compared with Figure 5 of ST85.

for a large scale height accretion flow, we simply assume
the standard case for a thin disk (Shakura & Sunyaev 1973;
Novikov & Thorne 1973)

qe(r) = r−3(1−
√

ri/r), (10)

following VPI13. As for the angular profile, we define an
analytic function designed to mimic the shape obtained from
the calculations of ST85. We plot this profile in Figure 3, to
be compared with theτ0 = 1 case from Figure 4 of ST85.

Here, we have normalised the intensity to give

2π

∫ 1

0

I(µe)µedµe = 1. (11)

We also parameterize polarization degree as a function
of emission anglep(µe) (defined as the fraction of photons
emerging from the flow which are polarized) following the
calculations of ST85. Figure 4 shows this function, to be
compared with theτ0 = 1 case in Figure 5 of ST85. We plot
−p(µe) in order to account for the different sign convention in
ST85. We note that the emission angleθe is defined here with
respect to the flow spin axis rather than to the local normal
to the torus surface. This is because the calculations of ST85
(also see Viironen & Poutanen 2004) assume Thomson scat-
tering from a thin slab and the functions in Figures (3) and
(4) are therefore only defined with respect to the flow spin
axis. Since we expect the flow to have a rather small scale
height (h/r ∼ 0.1) this is likely a fairly good assumption.
There is however scope to improve upon these assumptions in
future work. For instance, Poutanen & Svensson (1996) con-
sidered cases where exact solutions can be found outside of
the Thomson scattering limit.

3.2. Ray tracing

We use the publicly available codeGEOKERR, described in
Dexter & Agol (2009), to solve for photon geodesics in the
Kerr metric. We start off by defining an observer’s cam-
era some large distance,D, from the BH1 along the vec-
tor ô. The impact parameters at infinity,α0 and β0, rep-
resent respectively horizontal and vertical distance on the
plane of the observer’s camera (a schematic illustrating the
impact parameters can be found to the left of Figure A1 in
Middleton & Ingram 2015). For a given observer position and
BH spin,a, null geodesics can be uniquely defined by these
two impact parameters. Alternatively, these geodesics canbe
parameterised by Carter’s constants of motionl = −α0 sin θ0
andq2 = β2

0 + cos2 θ0(α
2
0 − a2). Each combination of im-

pact parameters represents a pixel on the observer’s camera,
which is hit by a photon on a unique geodesic path. We define
a grid of impact parameters with equal logarithmic steps in
b =

√

α2
0 + β2

0 and equal linear steps in the angleϕ, defined
astanϕ = α0/β0. Ignoring parallax, which is the same for
each pixel, the solid angle subtended by each pixel isb dbdϕ.

For each pixel we setGEOKERRto compute 100 steps along
the photon geodesic towards the BH. For each step, a posi-
tion 4-vectorxµ = (t, r, θ, φ) is provided in Boyer-Lindquist
coordinates. We convert the BH polar and azimuthal angles
θ andφ to the corresponding flow anglesθf andφf using
Equations (C3) and (C4). This allows us to evaluate the func-
tion T (r, θf ) from Equation (8). IfT passes from positive
to negative between consecutive steps, we conclude that the
geodesic has crossed the flow boundary. If this does not hap-
pen, we also check ifµf ≡ cos θf has passed from positive
to negative, in which case the geodesic has crossed the flow
mid-plane and therefore must have crossed intoandout of the
flow in a single step. This is most likely to happen for smallr
where the flow is very shallow and a step does not need to be
particularly large to pass completely through the flow.

In either of these cases, we have isolated a root of Equation
(8) between two points on the geodesic path. We use linear
interpolation to representr as a function ofµf between these

1 The camera must be far enough away for all geodesics to be straight and
parallel. We useD = 105 Rg .
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two points, allowing us to expressT as a function ofµf only.
We then find the root of the equationT (µf) = 0 with a bi-
section search. From this solution forµf , we can interpolate
a solution forr and alsoφf . If r < ri, we carry on follow-
ing the geodesic in case it loops back around to intercept the
underside of the flow. Otherwise, we calculate the contribu-
tion to the flux observed from that pixel. We ignore direct
disk emission and also emission from the flow reflected from
the outer disk. This assumption is appropriate for the energy
range∼ 10 − 20 keV, which is dominated by Comptonized
emission from the flow. Direct disk emission contributes only
in soft X-rays. 5 keV and reflection is important at the iron
line (∼ 6.4 keV) and above∼ 20 keV.

3.3. Disk shielding

When tracing rays backwards from the observer, we also
test whether they intercept the outer disk before hitting the
flow. In this case, since the disk is optically thick, we con-
clude that our view of the flow is blocked for this pixel. We
assume that the outer disk occupies the binary plane and trun-
cates atr = ro. At every step along the ray, we convert to
binary coordinates to assess ifµb ≡ cos θb passes from posi-
tive to negative, indicating a crossing of the disk plane. Ifthis
happens, we use linear interpolation to calculate the valueof
r at µb = 0. If r > ro, we conclude the ray has crossed the
outer disk and stop following the ray. Otherwise, we carry
on following it. In the cases where the ray crosses both the
disk and flow in one step, we use linear interpolation to assess
which it hit first.

3.4. Blueshift and flux

The energy of a photon reaching the observer will be mod-
ified by the gravitational field of the BH and the motion of
the emitting particle. For a stationary observer at infinity, the
ratio of the observed to emitted energy of a photon (hereafter
the blueshift) is given by

g ≡ Eo

Ee
=

−pto
pµeuµ

, (12)

wherepµe anduµ are respectively the 4-momentum of the pho-
ton and the 4-velocity of the emitting particle (e.g. Luminet
1979). We use a form for the 4-momentum (given in full
in the Appendix) normalised such thatpto = 1, simplifying
Equation (12) further. Since we use the metric convention
of negative time entries and positive distance entries, the4-
velocity of the emitting particle is(uµ)2 = −(dxµ/ds)2,
whereds2 = gµν dxµ dxν is the line element andgµν is the
metric. We can represent this in terms of coordinate veloci-
ties,Ωµ ≡ dxµ/dt, in the form

uσ =
Ωσ

√

−gµνΩµΩν
. (13)

We assume circular orbits (Ωr = 0) with Keplerian angular
velocity about the flow spin axis, so

Ωφf ≡ dφf

dt
=

1

r3/2 + a
(14)

andΩθf = 0. Note, we assume Keplerian angular velocity
perpendicular to the flow spin axis even for parts of the flow
not in the mid-plane. SinceΩφf ≫ Ωω = 2πνqpo, we convert

this to BH coordinates as follows:

Ωφ=
∂φ

∂φf
Ωφf

Ωθ =
∂θ

∂φf
Ωφf , (15)

where the differentials can be computed from Equations (C5)
and (C6). We use the Kerr metric throughout, which we pro-
vide in Appendix A for completeness.

The specific flux observed at energyEo from a pixel with
solid angleb db dϕ is given by (Luminet 1979)

dFEo
= g

3IEe
(Ee, r, µe)b db dϕ. (16)

For energies significantly greater than the seed photon tem-
perature (kTbb) and less than the electron temperature (kTe),
the emitted spectrum can be well approximated by a power
law, IEe

∝ E1−Γ
e . In this case, the observed spectrum is also

a power law,IEo
∝ E1−Γ

o . Substituting this (and Equation 9)
into Equation (16), we can represent the flux in a power law
dominated energy band (∼ 10− 20 keV) as

dF = g
2+ΓIEo

qe(r)I(µe)b db dϕ. (17)

The emission angle is given by (e.g. Misner et al. 1973;
Rybicki & Bromley 1997; Dovciak 2004)

µe = g pµenµ, (18)

wherenµ is a 4-vector normal to the flow mid-plane, defined
in the flow rest-frame. See Appendix B for the full form of
this 4-vector. The above formula encapsulates the effects of
both light bending and relativistic aberration. From this,we
evaluatedF for every pixel and sum to obtain the total ob-
served flux,F , as a function of precession angle,ω.

3.5. Polarization

For each geodesic that intercepts the flow, we calculate the
polarization degree from the function shown in Figure 4. We
initialize the polarization 4-vector,fµ, as the projection of
nµ on the plane perpendicular to the emergent photon’s 4-
momentum,pµ. Following, Dovciak (2004), this is defined
as

fµ =
nµ − µe(gp

µ
e − uµ)

√

1− µ2
e

. (19)

For each geodesic, we parallel transport the polarization 4-
vector forwards from the emission point to the observer’s
camera in geodesic steps,δxµ. That is, moving froms to
s+ δs changes the polarization 4-vector to

fµ(s+ δs) = fµ(s)− fσ(s)Γµ
σνδx

ν , (20)

with the Christoffel symbols given by

Γσ
µν =

1

2
gσκ

(

∂gνκ
∂xµ

+
∂gκµ
∂xν

− ∂gµν
∂xκ

)

. (21)

The position 4-vector,xµ, is specified for each point on each
geodesic byGEOKERR and so we can simply calculate the
step length asδxµ = xµ(s+ δs)− xµ(s).

Once we have transportedfµ all the way back to the ob-
server, we convert back to BH Cartesian coordinates (see Ap-
pendix C) and find the projection offµ on the horizontal and
vertical directions of the camera. These directions are given
in BH (Cartesian) coordinates by

α̂0=(0, 1, 0)

β̂0=(− cos θ0, 0, sin θ0), (22)
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Figure 5. Images of the flow for three precession angles for the model with i = 70◦, Φ = 110◦, β = 10◦ and h/r = 0.1. The left hand
side pictures blueshift and the right hand side pictures fluxwith the polarization vector overlaid, normalised to the maximum observed polarization de-
gree. The three precession angles pictured, in units of cycles, areω = 0, 0.3125 and 0.625 from top to bottom respectively. The full movies for
these images can be found athttp://figshare.com/articles/Polarization_modulation_gifs/1351920. Indivdual movies can alternatively be found on YouTube:
www.youtube.com/watch?v=Q2CwOGKVC9U&feature=youtu.be (blueshift) andwww.youtube.com/watch?v=E3kYAnS3pQI&feature=youtu.be (flux and po-
larization).
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and the projections are simplŷf · α̂0 andf̂ · β̂0, wherêf is the
3-vector describing the spatial part offµ. The polarization
angle for a given geodesic is then given by

tan[χ(αo, β0)] = − f̂ · α̂0

f̂ · β̂0

. (23)

We define Stokes parameters for each geodesic

dQ=dF (αo, β0) p(αo, β0) cos[2χ(αo, β0)] (24)
dU =dF (αo, β0) p(αo, β0) sin[2χ(αo, β0)], (25)

and sum over all geodesic paths to get the observed Stokes
parametersQ =

∫

dQ andU =
∫

dU . Note that, under this
convention, vertical and horizontal polarization corresponds
to Q/F = 1 andQ/F = −1 respectively for a100% polar-
ized signal. The overall polarization degree is then

p =

√

Q2 + U2

F
(26)

and the overall polarization angle,χ, can be calculated from

tan(2χ) =
U

Q
. (27)

3.6. Simple Newtonian approximation

In addition to the fully relativistic treatment described
above, we also define a simple Newtonian approximation to
assess the importance of GR effects. We make the simplifying
assumption that the flow is a flat disk, and so any point on the
flow surface is described by the vectorr = xx̂f + yŷf . In a
flat metric, photons emitted fromr hit the observer’s camera
at the coordinatesα0 = r · α̂0 andβ0 = r · β̂0. The Kep-
lerian velocity (in units ofc) has magnitudev = r−1/2 and
directionv̂ = (−yx̂f + xŷf )/

√

x2 + y2. We use Equation
(17) to calculate the flux for each pixel of the camera. Using
the Minkowski metric instead of the Kerr metric for Equations
(13) and (12), the blue shift becomes

g =

√
1− v2

1− ô · v . (28)

This is the special relativistic Doppler factor. Since all the
photons emitted at a given time now have the same polariza-
tion angle, the observed polarization vectorf̂ can be calcu-
lated as the projection of̂zf onto the plane perpendicular tôo
(if relativistic aberration is ignored). This gives for thepolar-
ization angle

tanχ = − sinβ sin(ω − ω0)

sin θ0 cosβ − cos θ0 sinβ cos(ω − ω0)
, (29)

which is the standard formula for a rotating vector (Ferguson
1973; Ferguson 1976; Viironen & Poutanen 2004). More-
over, the observed polarization degree simply becomes a flux
weighted average of the contribution from each pixel.

4. RESULTS

In our model, the geometry of the flow is governed by three
parameters: the inner radiusri, the outer radiusro and the
scale heighth/r. In this Paper, we consider parameters ap-
propriate for the HIMS and so fixro = 20 andh/r = 0.1
(e.g. Ingram & Done 2011; Ingram & Done 2012a). We set
ri = rISCO and assumea = 0.98. This assumption of high
spin maximizes the impact of relativistic effects which tend to
wash out variability, therefore yielding conservative estimates
for the QPO amplitudes predicted by the model. This corre-
sponds to a QPO frequency of∼ 2 Hz, typical of the HIMS.
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Figure 6. Flux, polarization degree and polarization angle plotted against
QPO phase for the high inclination model. The solid lines arefor the fully
relativistic model and dashed lines representing a simple Newtonian approx-
imation are included for comparison. The fractional rms (for the full model)
in the first and second harmonics respectively is10.0% and2.24% for the
flux. Theabsoluterms in the first and second harmonics is respectively1.0%
and0.3% for the polarization degree and respectively3.1◦ and0.2◦ for the
polarization angle.

We additionally fix the misalignment angle toβ = 10◦ fol-
lowing VPI13 and assume a spectral index ofΓ = 2, again
typical of the HIMS.

4.1. High and low inclination examples

We consider the observational appearance of the specific
geometrical setup described above for a range of viewing an-
gles. Since our geometry is asymmetric, the viewer must be
specified by both a polar anglei and an azimuthal angleΦ. In
this section, we first explore two specific examples, chosen to
represent respectively high and low inclination sources. For
the high inclination model, we usei = 70◦ andΦ = 110◦.
For the low inclination model, we usei = 30◦ andΦ = 180◦.
We then move on to explore a grid of viewing angles in the
following subsection. For these specific examples, we use a
high resolution with 400 steps in the impact parametersb and
ϕ (i.e. 400 × 400 pixels) and we consider 32 precession an-
gles.

Figure 5 shows images of the flow for three values of the
precession angle. The right hand images depict flux, with
colors defined by the key beneath in arbitrary units. We see
the characteristic apparent warping of the flow through light
bending, with the back of the flow appearing to bend towards
us. Since the BH is spinning rapidly, we also see an asymme-
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Figure 7. Flux, polarization degree and polarization angle plotted against
QPO phase for the low inclination model. Solid and dashed lines again re-
fer to the fully relativistic model and the Newtonian comparison respectively.
The fractional rms (for the full model) in the first and secondharmonics re-
spectively is4.6% and0.25% for the flux. Theabsoluterms in the first and
second harmonics is respectively1.1% and0.05% for the polarization degree
and respectively10.0◦ and1.0◦ for the polarization angle.

try to this apparent warping from the frame dragging effect.
In the top and bottom plots, we see the underside of the flow
due to rays bending dramatically from their starting point be-
fore passing through the gap between the flow and the disk
and towards the observer. In reality, we may expect material
in some transition region between the two accretion regimes
to block our view of this secondary image to some extent. In
these images, precession and rotation are anti-clockwise.We
see that the brightest patch of the flow is always just to the left
of the BH. This region not only has the largest radial emissiv-
ity, but emission from here is Doppler boosted by the rapid
rotation of material in the flow. Also, parts of the flow are
blocked from view by the outer disk. This can be seen for all
three precession angles but is perhaps clearest in the top plot
where the bottom left corner of the flow is hidden behind a
disk which is not pictured.

The images on the left show blueshift for the same three
precession angles, with a key again included beneath. Emis-
sion from the approaching material to the left of the BH is
blue shifted by Doppler effects, whereas the receding mate-
rial to the right of the BH is red shifted. Close to the BH,
we see the effects of gravitational red shift, whereby photons
lose a significant amount on energy escaping the gravitational
pull of the BH. For selected pixels on the right hand plot, we
also represent the polarization vector with a black line. The

length of the line gives the magnitude of the polarization de-
gree, normalised to the maximum measured from the entire
run. The orientation of these vectors is heavily influenced by
GR through two main effects (Stark & Connors 1977). First
of all, light bending means that photons reaching the observer
may have had a different trajectory upon emerging from the
flow and therefore the polarization vectors started off mis-
aligned with one another. Secondly, the parallel transport
of the polarization vector in heavily curved space-time fur-
ther changes the orientation. These effects are, as expected,
stronger for photons which passed closer to the BH, including
photons from the back of the flow that emerged from rela-
tively large radii but needed to pass very close to the BH to
reach the observer. We also see an asymmetry in this effect
which is directly due to the frame dragging effect. The ori-
entation of this vector oscillates as a function of precession
angle because the orientation of the flow itself is oscillating.
This is diluted by GR effects but not entirely.

Figure 6 shows the (normalised) integrated flux, polariza-
tion degree and polarization angle plotted against QPO phase
for this run of the model, with solid and dashed lines rep-
resenting respectively the full calculation and the simplified
Newtonian approximation. We see that relativistic effects
wash out variability in the flux and the polarization signature
as well as reducing the average observed polarization degree
and angle. The amplitude of variability is reduced mainly
through light bending, which allows us to see the back of the
flow even when the angle between the flow spin axis and the
line of sight is large. The overall polarization degree is lower
for the full calculation because the polarization vectors ob-
served from different regions of the flow are not aligned, and
therefore do not add together completely constructively asin
the Newtonian approximation. GR influences the polarization
angle because the polarization vectors of emergent photons
appear to be bent around the BH. The vectors in Figure 5 to
the left of the BH are forced clockwise and those to the right
are forced anti-clockwise. This is a more pronounced effect
on the left hand side of the BH because the ‘critical point’,
where only light rays that are emitted perpendicular to the
flow mid-plane can reach the observer, is situated here (due to
frame dragging). At this point, the observer sees the polariza-
tion vector rotate, mainly due to special relativistic aberration
(see e.g. Figure 3 in Dovčiak 2010).

For the full calculation, the flux has a fractional rms of
10.0% and2.24% in the first and second harmonics respec-
tively. This is representative of QPOs in high inclination
sources (e.g. GRS 1915+105; Yan et al. 2013) for the first
harmonic but the amplitude of the second harmonic is slightly
lower than is typically observed. For the polarization signa-
ture, we instead consider theabsoluterms, since this is rel-
evant for detection. This is respectively1.0% and0.3% for
the first and second harmonics of the polarization degree and
respectively3.0◦ and0.2◦ for the first and second harmonics
of the polarization angle. Also, the polarization degree lags
the flux by147.3◦ for the first harmonic but the polarization
angle leads the flux by125.4◦. To estimate the importance
of the secondary image, we additionally perform a calcula-
tion whereby rays that pass under the disk plane and hit the
underside of the flow are assumed to be blocked. For this al-
ternative calculation, the flux has a slightly higher fractional
rms of13.3% and3.75% for the first and second harmonics
respectively. This is because the secondary image appears to
have a roughly constant shape to the observer and so serves to
wash out variability. The polarization properties are remark-
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Figure 8. Images of the flow for three precession angles for the model with i = 30◦, Φ = 180◦, β = 10◦ and h/r = 0.1. The left hand side
pictures blueshift and the right hand side pictures flux withthe polarization vector overlaid, normalised to the maximum observed polarization degree.
The three precession angles pictured, in units of cycles, are ω = 0, 0.3125 and 0.625 from top to bottom respectively. Full movies correspondingto
these images can be found athttp://figshare.com/articles/Polarization_modulation_gifs/1351920. Individual movies can alternatively be found on YouTube:
www.youtube.com/watch?v=TSe--iXofu8&feature=youtu.be (blueshift) andwww.youtube.com/watch?v=GjlIRfkor_s&feature=youtu.be (flux and polariza-
tion).
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ably similar for the alternative calculation: the polarization
degree has an rms of1.0% and0.3% for the first two harmon-
ics and the angle has an rms of3.1◦ and0.1◦.

Figure 8 shows images of the low inclination model, for the
same three precession angles as previously depicted in Fig-
ure 5. For both the flux (right) and blueshift (left), we still
see Doppler shifts due to rapid rotation, gravitational redshift
and the effects of light bending, however all these effects are
less pronounced since the component of velocity in the line
of sight is lower and also less photons need to pass close to
the BH in order to reach the observer. The full movies for
all of the images shown in Figures 5 and 8 can be found at
http://figshare.com/articles/Polarization_modulation_gifs/1351920
(additionally, YouTube links for individual movies are given
in the Figure captions).

Figure 7 shows the flux, polarization degree and polariza-
tion angle plotted against QPO phase for this model, again
with the results of the simple Newtonian calculation repre-
sented with dashed lines. Here, the flux is less affected by
light bending, since the angle between the flow spin axis and
the line of sight never gets particularly large. GR effects only
reduce the mean and rms of the polarization degree and angle,
with the phase of the oscillations only slightly modified from
the Newtonian approximation. The amplitude of flux variabil-
ity is lower here than in the high inclination case, althoughthe
inclination dependence of amplitude is far more pronounced
for the Newtonian approximation than for the full calculation.
This is again down to light bending. The absolute rms of the
polarization degree is comparable to the high inclination case,
but thefractional variation in polarization degree is actually
significantly larger here than for the high inclination model.
This can be understood from Figure 4 which shows that the
emergent polarization degree is a far steeper function ofµe

for largeµe. However, the mean polarization degree is far
lower here than for the high inclination angle, and these two
considerations happen to balance. The amplitude of the po-
larization angle oscillation is greater for the low inclination
model, which is purely a geometrical effect. It is clear from
Figure 7 that the polarization degree and flux are nearly in
phase for this example, in contrast to the results for the high
inclination model. We find thatp lagsF by 20.3◦ for the fun-
damental andχ lagsF by 113.8◦. Since we see no secondary
image from the underside of the flow for this viewing angle,
assuming the material between the disk and flow to be opti-
cally thick does not change our results.

4.2. Parameter study

We now consider the full range of viewing angles for the
specific geometrical setup described at the start of this sec-
tion. The corresponding parameter exploration in VPI13 con-
sidered viewing angles ranging from0◦ ≤ i ≤ 90◦ and0◦ ≤
Φ ≤ 180◦. However, our use of the Kerr metric introduces
a subtle asymmetry (which disappears fora = 0 of course)
meaning that we must explore the range0◦ ≤ Φ ≤ 360◦ to
be exhaustive. We use a reduced resolution of80× 80 pixels
and consider16 precession angles. When we test for the spe-
cific high and low inclination models considered above, we
find that this reduced resolution provides a very good approx-
imation to the high resolution run.

In Figure 9, we use colors and contours to plot four dif-
ferent quantities for the entire range of viewing angles. Each
plot has it’s own logarithmic scale. The top-left plot showsthe
fractional rms amplitude of the flux modulation,σF /〈F 〉, for
the first harmonic only. The contours in this plot are labeledas

percentages and labels always face in the uphill direction.We
see that the amplitude of the QPO increases withi as we may
expect from the previous subsection. This is consistent with
observations (Schnittman et al. 2006a; Motta 2014; Heil et al.
2015). We note that this rise of amplitude with inclination
angle would be even more pronounced if we had assumed
secondary images to be blocked by optically thick material,
since these wash out variability for high viewer inclinations.
The plot (and all subsequent plots) is nearly symmetric about
Φ = 180◦ but a subtle asymmetry is introduced by the as-
sumption of high spin. The top-right plot shows the absolute
rms amplitude of the polarization degree modulationσp, again
for the fundamental only, with contours labeled as percent-
ages. This peaks ati ∼ 60−70◦. The bottom-right plot shows
mean polarization degree〈p〉, again with contours labeled as
percentages. We see that this increases withi. For smalli, the
mean polarization degree is very low indeed, which leads to
thefractionalrms amplitude of the polarization degree modu-
lation becoming very large for low inclinations. However, it is
likely theabsoluterms amplitude that is relevant to detection.

The bottom-left plot shows the absolute rms variability of
polarization angleσχ, with contours now labelled in degrees,
again for the first harmonic only. Note that the polarization
angle is only defined on an interval of180◦, since upward
polarization is indistinguishable from downward polarization.
This can produce phase wrapping: e.g. ifχ oscillates between
a minimum and maximum of80◦ and100◦ but is defined on
the interval−90◦ to 90◦, the measuredχ will jump from 90◦

to −90◦ at some point during the QPO cycle, producing a
spuriously large rms measurement. To avoid this, for every
combination ofi andΦ, we defineχ for the first QPO phase
on the interval−90◦ to 90◦. For each subsequent value of
QPO phase, we first calculateχ on the same interval, but also
try adding0, 180◦ and−180◦, and choose the interval that
minimises the difference to the previous measurement ofχ.
We see that the amplitude decreases with inclination angle,
but is above1◦ for most of parameter space.

In Figure 10 (left), we plot the phase lag between polar-
ization degree and flux againsti andΦ. Here, positive lags
mean thatp lagsF and we again consider only the fundamen-
tal. We see thatp lagsF for nearly all viewing angles. In the
right panel, we instead plot the phase lag betweenχ andF .
Here we see phase wrapping ati ∼ 60◦ which occurs because
the lag between the two functions is only defined on the inter-
val−180◦ to 180◦. The magnitude of the lag is large for most
of parameter space. This can be understood by looking at the
images in Figures (5) and (8). The peak inχ for our coordi-
nate system occurs approximately when we see the flow spin
axis tilted the furthest to the left. The flux rarely peaks close
to this phase in the precession cycle. If a high enough sig-
nal to noise can be achieved to observe these lags, they may
provide a powerful extra diagnostic.

5. DISCUSSION

We have calculated the polarization signature predicted by
the precessing inner flow model for low frequency QPOs. We
find that the polarization degree and angle are expected to be
modulated on the QPO period.

5.1. Assumptions

In our analysis, we calculate the GR effects very accu-
rately but make a number of simplifying assumptions about
the properties of the inner accretion flow. We use analyti-
cal parameterizations for the angular dependence of intensity



Polarization modulation 11

Figure 9. Top-Left: Fractional rms in the first harmonic of the flux modulation plotted as a function of the two viewing angles,i andΦ, with contours labelled
as percentages.Top-Right:Absolute rms in the first harmonic of the polarization degreemodulation, with contours again labelled as percentages.Bottom-Right:
Mean polarization degree, with contours once again labelled as percentages.Bottom-Left:Absolute rms in the first harmonic of the polarization angle modulation,
with contours now labelled in degrees. The colors in each plot follow separate logarithmic scales. We see that the amplitude of the flux and polarization degree
modulations increase with inclination angle,i, whereas the amplitude of the polarization angle modulation reduces withi. Note the slight asymmetry in all plots
aroundΦ = 180◦, which occurs becausea 6= 0.
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Figure 10. Left: Phase lag in degrees between the polarization degree and theflux, with positive lag meaning thatp lagsF . Here, we only plot for the
fundamental and color scales linearly from−180◦ (darkest) to180◦ (lightest). We see that the model predicts the oscillation in polarization degree to lag the
first harmonic of flux for almost the full range of viewing angles.Right: Phase lag between polarization angle and flux. The model predicts the magnitude of the
phase lag betweenχ andF to be large for most of parameter space.

Figure 11. Required count rate in order to detect a modulation in polarization degree (left) and angle (right). We assume a200 ks exposure and a modulation
factor ofµ = 0.5. See text for more details.
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and polarization degree of radiation emerging from the flow.
Since these parameterizations are based on the calculations
of ST85, this is a reasonable assumption but there is scope
to extend this work in future. Our parameterization is only
valid for one value of optical depth (τ = 1) and so we cannot
explore the dependence of our results on this parameter. In
addition, we assume that the angular dependence of the flow
emissivity can be separated from the radial and energy depen-
dencies (Equation 9). In reality, it is likely that the shapeof
the emitted spectrum depends on both radiusandviewing an-
gle. Since the outer part of the flow is illuminated by a greater
flux of cool disk photons, the spectrum should be softer for
larger r, giving rise to the observed time lags (Kotov et al.
2001; Ingram & van der Klis 2013). There is now observa-
tional evidence that the spectral shape of the flow depends on
viewing angle (Heil et al. 2015; Ingram & van der Klis 2015).
Similarly, the angular dependence of polarization degree will
likely depend on energy of the emitted photon, and also per-
haps the radius it was emitted from. We also expect the flow
optical depth, and therefore mean polarization degree, to de-
pend on truncation radius / spectral state. For a low luminos-
ity hard state we expectτ to drop below unity and polarization
degree to reach∼ 50% (see Viironen & Poutanen 2004). Re-
placing our simple parameterization with a full Monte Carlo
simulation in future will be a significant improvement upon
this work.

We also effectively assume that the seed photon luminos-
ity stays constant during a QPO cycle. This is a good as-
sumption if the seed photon luminosity is completely domi-
nated by internally generated photons (Veledina et al. 2011a;
VPI13). However, the luminosity of disk photons incident
on the flow will vary as the misalignment between the disk
and flow changes over the course of a precession cycle. A
calculation of disk seed photon luminosity as a function of
precession angle has yet to be performed taking GR effects
fully into account. The relative importance of internally gen-
erated seed photons will increase with truncation radius. It
should be possible to put constraints on such an evolution of
the seed photon origin with X-ray polarimetry, since polariza-
tion degree depends strongly on scattering order for disk seed
photons (see Fig. 2 in Viironen & Poutanen 2004).

5.2. Detection

It may be possible to detect the predicted polarization de-
gree and angle modulation in the near future with a dedicated
polarization satellite mission. Here we present a simple cal-
culation to roughly assess detectability. X-ray polarimeters
generally use either Thomson scattering (e.g. thePolarization
Spectroscopic Telescope Array; PolSTAR) or the photoelectric
effect (e.g. Gravity & Extreme Magnetism SMEX; GEMS).
Scattering polarimeters measure the landing position of scat-
tered photons, which travel preferentially in the direction per-
pendicular to their electric field vector (e.g. Guo et al. 2013).
Photoelectric effect polarimeters track the direction of pho-
toelectrons, which are preferentially emitted in the direction
parallel to the incoming electric field vector (e.g. Black etal.
2010). In either case, an estimate for the polarization angle
of each incident photon,χk (i.e. for thekth photon), can
be recorded. When many photons are incident on the detec-
tor, a polarized signal will exhibit a sinusoidal modulation
with distribution (Krawczynski et al. 2011; Lei et al. 1997;
Kislat et al. 2014):

f(χk) ∝ 1 + p µ cos[2(χk − χ)], (30)

whereχ is the ‘true’ polarization angle of the source,p is
the ‘true’ polarization degree andµ is the modulation factor.
The performance of a polarimeter can be characterised by the
modulation factor, since it governs the distribution of a100%
polarized signal. WhenC photons are incident on the detec-
tor, the measurement error onp is (Kislat et al. 2014)

dp ≈
√

2/µ2 − p2

C − 1
, (31)

whenC is sufficiently large to be in a Gaussian regime (note,
p is represented here as a fraction rather than a percentage).
The measurement error onχ (in radians) is

dχ ≈ 1

pµ
√

2(C − 1)
. (32)

Detection of a∼ 1 s QPO requires a time resolution≤ 0.1 s.
Very few photons can likely be collected in such a short time
and therefore a high time resolution time series of individual
Stokes parameters would be very noisy indeed. It is, however,
possible to stack into QPO phase bins (Tomsick & Kaaret
2001), resulting in one folded time series. If we stack into
N phase bins, the number of counts detected per phase bin
is simplyC = R T/N , whereR is the mean count rate and
T is the total exposure time. We can estimate that detection
of a QPO in the polarization degree requires a measurement
error in each phase bin around one fifth of the absolute rms
variability amplitude,dp ∼ σp/5. Thus, the mean count rate
we must be able to detect for the observation is

R ∼ 25N

Tσ2
p

[

2

µ2
− 〈p〉2

]

. (33)

We can estimate the count rate required to detect a modulation
in polarization angle in a similar manner. In this case

R ∼ 4.1× 104
N

T 〈p〉2µ2σ2
χ

, (34)

whereσχ is in degrees. In Figure 11, we show these required
count rates for all of parameter space assumingN = 8 phase
bins, an exposure ofT = 200 ks and a modulation factor of
µ = 0.5. The plots on the left and right are for polarization
degree and angle respectively. We see that to detect either
modulations at all, a polarimeter must have the sensitivityto
measure a count rate above40 c/s, and a count rate of∼ 60 c/s
opens up a reasonably large fraction of parameter space (i ∼
40◦ − 75◦) in which both modulations can be detected. The
same folding method can be used to measure lags between the
polarization properties and the flux, although this may require
a more challenging sensitivity.

A number of missions proposed forNASA’sSmall Explorer
Program (SMEX) should be able to detect count rates& 40
c/s. PolSTAR(the satellite incarnation of the balloon experi-
mentX-Calibur; Guo et al. 2013) is sensitive to the∼ 10−20
keV energy range in which the Comptonized spectrum dom-
inates, and would therefore be ideal for this application. The
soft X-ray missionsGEMS(Black et al. 2010) andthe Imag-
ing X-ray Polarimetry Explorer(IXPE; Weisskopf et al. 2008)
should also be able to measure a similar count rate, how-
ever contribution to the flux from the constant disk compo-
nent at softer energies will dilute the variability amplitude of
the polarization signature, making detection more challenging
(rms ≈ rmsflow[1 − xdisk], wherexdisk is the fraction of the
flux contributed by the disk). Disk dilution is not a problem
in the hard state, but here the flux is lower and the QPOs are
generally not as coherent as in the HIMS.
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5.3. Implications

Detection of a polarization modulation on the QPO fre-
quency would have strong implications. First of all, this
would confirm that the QPO is indeed a geometric effect,
as is strongly hinted in the literature at the moment (Motta
2014; Heil et al. 2015; Ingram & van der Klis 2015). It will
also provide a strong test for the Lense-Thirring QPO model.
This is fairly profound in itself, since Lense-Thirring preces-
sion has never been unambiguously observed in the strong
field regime, but this also has implications with regard to mak-
ing spin measurements. Current spin measurements from disk
spectral fitting (e.g. Kolehmainen & Done 2010; Steiner et al.
2011) assume that the BH and binary spin axes are aligned,
in contradiction of the Lense-Thirring QPO model. Care-
ful modelling of QPO properties can be used to estimate the
misalignment angleβ to improve the spectroscopic measure-
ments and also the very measurement of the QPO frequency
itself gives an orthogonal spin estimate if high frequency
QPOs are also present (Motta et al. 2014; Ingram & Motta
2014).

6. CONCLUSIONS

We find that the polarization signature emitted from a trun-
cated disk / precessing inner flow geometry oscillates on the
QPO frequency. The modulation in polarization degree has
an absolute rms which increases gradually with viewer incli-
nation angle, peaking at1.5% for i ∼ 60◦. In contrast, the
absolute rms of the polarization angle modulation is higher
for lower inclination angles. For polarization degree, this in-
clination dependence is mainly due to the assumed angular
dependence of polarization degree and emissivity for Comp-
ton scattering, which we parameterize to agree with the calcu-
lations of ST85. Although our parameterization is only appro-
priate for an optical depth ofτ = 1, we note that the results of
ST85 are qualitatively similar for optical depths up toτ ∼ 2.5.
The inclination dependence of the polarization angle depends
mainly on the precessing geometry and GR effects, and so is
robust to our assumptions about the Compton scattering pro-
cess. Our calculations here only consider one specific flow
geometry, and we explore the full range of viewing angles. In
future, we will also explore the effects of changing parameters
such as the truncation radius and spin. In particular, we note
that assuming a larger misalignment angle,β, will increase
the predicted amplitudes of all modulations.

We find through a rough calculation that, in order to detect
this effect for a reasonable fraction of parameter space, an
X-ray polarimeter will need to detect a10 − 20 keV count
rate of& 60 c/s from a bright object displaying QPOs. The
current generation of proposed X-ray polarimetery missions
will likely fill this requirement. In particular,NASA’s PolSTAR
is suited to this application due to its sensitivity to hard X-
rays.
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Dovčiak, M., Karas, V., Matt, G., & Goosmann, R. W. 2008a, MNRAS,384,

361
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APPENDIX

A: THE KERR SPACE-TIME

The non-zero entries of the Kerr metric can be expressed in Boyer-Lindquist coordinates as

gtt = −
(

1− 2r

Σ

)

, gtφ =
−2ar sin2 θ

Σ
, gφt = gtφ , grr =

Σ

∆
, gθθ = Σ , gφφ =

A sin2 θ

Σ
, (A1)

whereΣ ≡ r2 + a2 cos2 θ, ∆ ≡ r2 − 2r + a2 andA ≡ (r2 + a2)2 −∆a2 sin2 θ. The 4-momentum of photons travelling in the
Kerr space-time can be expressed as (Carter 1968; Misner et al. 1973; Dovciak 2004)

pt=Σ−1
[

a(l − a sin2 θ) + (r2 + a2)(r2 + a2 − al)/∆
]

(A2)
pr =RsgnΣ

−1
[

(r2 + a2 − al)2 −∆[(l − a)2 + q2]
]1/2

(A3)
pθ =−ΘsgnΣ

−1
[

q2 − cot2 θ(l2 − a2 sin2 θ)
]1/2

(A4)
pφ=Σ−1

[

l/ sin2 θ − a+ a(r2 + a2 − al)/∆
]

, (A5)

where Carter’s constants of motion,l andq2 are given in the main text and the sign of the radial and polar coordinates is denoted
byRsgn andΘsgn. Both of these are positive for the case of an even number of turning points between the viewer and the emission
point and negative for an odd number.

B: THE FLOW NORMAL

According to the equivalence principle, we can always definea ‘free falling laboratory’ frame in which GR reduces to Special
Relativity. Mathematically, this can be achieved by defining a tetrad of orthonormal unit 4-vectors. We require the flow normalnµ

to be part of such an orthonormal tetrad in order to calculatethe emission angle from it. We calculate ther, θ andφ components
of nµ by transforminĝzf into Boyer-Lindquist coordinates (see Appendix C). The time-like unit vector in the tetrad is simply
uµ; i.e. the instantaneous rest frame (e.g. Krawczynski 2012;Wilkins & Fabian 2012). The time-like component ofnµ can thus
be calculated by settingnµuµ = 0 to give

nt = − ẑd
f
gdνu

ν

gtµuµ
, (B1)

whered = r, θ, φ but Greek letters run fromt to φ as usual. Finally, we normalise to ensurenµnµ = 1.

C: COORDINATE TRANSFORMS

We can convert from the BH anglesθ andφ to the flow anglesθf andφf using the formulae

cos θf = r̂ · ẑf (C1)

tanφf =
r̂ · ŷf

r̂ · x̂f

. (C2)

This gives
cos θf = sin θ sinβ cos(ω − ω0 − φ) + cos θ cosβ (C3)

tanφf =
sin θ sin(ω − ω0 − φ)

cos θ sinβ − sin θ cosβ cos(ω − ω0 − φ)
. (C4)
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The reciprocal conversion is
cos θ = cos θf cosβ + sin θf cosφf sinβ (C5)

and
tanφ =

− sin θf [cosβ sin(ω − ω0) cosφf + cos(ω − ω0) sinφf ] + cos θf sinβ sin(ω − ω0)

sin θf [− cosβ cos(ω − ω0) cosφf + sin(ω − ω0) sinφf ] + cos θf sinβ cos(ω − ω0)
. (C6)

Additionally, sincêzb = ẑf (ω = π), we can convert to and from binary angles using the above formulae by settingω = π (i.e.
replacing subscript f with subscript b and replacingω with π).

Our calculation also requires the conversion of Cartesian coordinates to Boyer-Lindquist coordinates. The two are related as

x=
√

r2 + a2 sin θ cosφ

y=
√

r2 + a2 sin θ sinφ

z= r cos θ. (C7)

To convert the coordinates of a 3-vector,A, from a Cartesian to a Boyer-Lindquist representation, we simply apply the general
formula

Ab′ =
∂xb′

∂xa
Aa, (C8)

whereb′ can take the valuesr, θ andφ anda can take the valuesx, y andz. Combining Equations (C7) gives

r2 =
1

2

[

ρ2 − a2 +
√

(ρ2 − a2)2 + 4a2z2
]

, (C9)

whereρ2 ≡ x2 + y2 + z2, along with the familiar expressionscos θ = z/r andtanφ = y/x. The differentials ofr can be
expressed as

∂r

∂x
=

√

1 +
(a

r

)2 sin θ cosφ

2

[

1 +
r2 − a2 cos2 θ

Σ

]

∂r

∂y
=

√

1 +
(a

r

)2 sin θ sinφ

2

[

1 +
r2 − a2 cos2 θ

Σ

]

∂r

∂z
=

cos θ

2

[

1 +
r2 + a2(1 + sin2 θ)

Σ

]

. (C10)

and forθ:

∂θ

∂x
=

√

1 +
(a

r

)2 cos θ cosφ

2r

[

1 +
r2 − a2 cos2 θ

Σ

]

∂θ

∂y
=

√

1 +
(a

r

)2 cos θ sinφ

2r

[

1 +
r2 − a2 cos2 θ

Σ

]

∂θ

∂z
=−r sin θ

Σ
. (C11)

Note that these expressions, as expected, reduce to the relations for spherical polar coordinates in the Schwarzschildlimit. The
case ofsin θ = 0 must be treated separately, although this is rather straight forward. The differentials ofφ are the same as the case
of spherical polars. These can then be substituted into Equation (C8) in order to convert the vector. The reciprocal conversion,
from Boyer-Lindquist to Cartesian, is far simpler requiring the differentials of Equations (C7) with respect to the Boyer-Lindquist
coordinates.


