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Abstract 20 

Some metals and metalloids (e.g. Pb, Hg, Cd and As) are well-known for their 21 

bioaccumulation capacity and their toxic effects on birds, but concerns on other minor 22 

elements and rare earth elements (ME and REE) are growing due to their intensive use in 23 

modern technology and potential toxicity. Vitamins and carotenoids play essential roles 24 

in nestling growth and proper development, and are known to be affected by the metals 25 

classically considered as toxic. However, we are unaware of any attempts to evaluate the 26 

exposure to 50 elements and related effects in plasma vitamins and carotenoids in raptor 27 

species. The main goals of this study are: (i) to assess the exposure to 50 elements (i.e. 28 

classic toxic elements, trace elements, REE and ME) in nestling Eagle owls (Bubo bubo) 29 

inhabiting three differently polluted environments (mining, industrial and control areas) 30 

in southeastern Spain, and (ii) to evaluate how element exposure affects plasma vitamin 31 

and carotenoid levels, hematocrit and body measurements (mass and wing length) of the 32 

individuals. Our results show that local contamination in the mining area contributes to 33 

increased blood concentrations of Pb, As and Tl in nestlings, while diet differences 34 

between control and mining/industrial areas may account for the different levels of Mn, 35 
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Zn, and Sr in blood, and lutein in plasma. Plasma tocopherol levels were increased in the 36 

mining-impacted environment, which may be a mechanism of protection to prevent toxic 37 

element-related oxidative stress. Plasma α-tocopherol was enhanced by 20% at blood Pb 38 

concentrations ≥ 8 ng/ml, and nestlings exhibited up to 56% increase in α-tocopherol 39 

levels when blood Pb concentrations reached 170 ng/ml. Tocopherol seems to be a 40 

sensitive biomarker when exposed to certain toxic elements (e.g. Pb, As, Tl).  41 

Keywords: metal exposure; tocopherol; vitamins; lutein; Bubo bubo 42 

Capsule: Increased blood toxic elements, plasma α-tocopherol and lutein in nestling 43 

Eagle owls inhabiting a mining-impacted environment  44 
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1. Introduction 45 

Raptors are especially suitable and have been widely used as sentinel species in 46 

biomonitoring programs worldwide (García-Fernández 2014; Gómez-Ramírez et al. 47 

2014; Espín et al. 2016a). Such studies can provide early warning of contaminant 48 

occurrence and related impacts in wildlife and the environment, and can be used to track 49 

the success of the legislative emission reductions (Espín et al. 2016a; García-Fernández 50 

et al. 2020). The scientific community agrees that it is essential to perform biomonitoring 51 

studies in raptors in order to evaluate contaminant exposure and related effects (Movalli 52 

et al. 2019).  53 

Some metals and metalloids (i.e. Pb, Hg, Cd and As) are well-known for their persistence, 54 

bioaccumulation capacity and their toxic effects on birds, mainly affecting physiology, 55 

immune function, behavior, and reproduction (Eeva et al. 2005; Sánchez-Virosta et al. 56 

2015; Espín et al. 2016b, c; Whitney and Cristol 2018; Pain et al. 2019; Vallverdú-Coll 57 

et al. 2019). Accordingly, these elements are ranked in the first positions of the Substance 58 

Priority List elaborated by the Agency of Toxic Substances and Disease Registry 59 

(ATSDR 2019). However, concerns on other minor elements and rare earth elements (ME 60 

and REE) are growing due to their intensive use in modern technology, generating aerial 61 

emissions and tons of e-waste (Hussain and Mumtaz 2014; Tansel 2017). In spite of this, 62 

exposure and related effects of these elements have been rarely evaluated (e.g. in wildlife: 63 

Espín et al. 2020, and in humans: González-Antuña et al. 2017; Gaman et al. 2019).  64 

Birds normally show minimal clinical signs of disease, and the evaluation of some 65 

biochemical parameters in plasma becomes particularly relevant to evaluate potential 66 

metal-related health effects (Harr 2005). In this regard, some authors have provided 67 

biochemical reference values in avian species (e.g. Harr 2002; Casado et al. 2002; Han et 68 

al. 2016; Gómez-Ramírez et al. 2016; Agusti Montolio et al. 2018). Vitamins and 69 

carotenoids are nutrients extracted from the diet playing different essential roles in 70 

nestling growth and proper development. α-Tocopherol is the major form of vitamin E, a 71 

lipid-soluble vitamin with different functions: it is an antioxidant protecting membranes 72 

against lipid damage, it can be beneficial to bones, it has anti-inflammatory properties, 73 

and it stimulates immune response and phagocytic function (Traber and Atkinson 2007; 74 

Chin and Ima-Nirwana 2014; Rizvi et al. 2014). Retinol is the active antioxidant form of 75 

vitamin A, and plays important roles in differentiation and proliferation of cells, in 76 
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growth, antioxidant protection and immune function, and in the reduction of oxidized 77 

tocopherol into the useful form (Wang and Quinn 1999; Zile 2001, 2004; Tanumihardjo 78 

2011). In general, birds have higher plasma α-tocopherol and retinol levels than mammals 79 

(Schweigert et al. 1991), and some research has shown higher concentrations of α-80 

tocopherol and retinol in plasma of birds of prey compared to herbivorous birds/mammals 81 

(Müller et al. 2011; Ingram et al. 2017). Carotenoids are essential for breeding, immune 82 

function, coloration, and some of them are precursors of vitamin A (Britton 1995; Chew 83 

and Park 2004), while the role of some carotenoids as antioxidants has been questioned 84 

and is still under debate (Costantini and Møller 2008; Koch et al. 2018). The effects of 85 

the elements classically considered as toxic (e.g. Pb, Hg, As) on plasma vitamin and 86 

carotenoid concentrations have been evaluated in some avian species (Geens et al. 2009; 87 

Martinez-Haro et al. 2011; Ortiz-Santaliestra et al. 2015; Ruiz et al. 2016; Sánchez-88 

Virosta et al. 2018). However, we are unaware of any attempts to evaluate the exposure 89 

to as many as 50 elements and related effects in plasma vitamins and carotenoids in raptor 90 

species, or in any wild animal except for a recent study on Red-necked nightjars 91 

(Caprimulgus ruficollis) (Espín et al. 2020a, b). 92 

In the light of this uncertainty, the main goals of this study are: (i) to assess the exposure 93 

to 50 elements (i.e. ATSDR’s list toxic elements, trace elements, REE and ME) in nestling 94 

Eagle owls (Bubo bubo) inhabiting three different scenarios of pollution (mining, 95 

industrial and control areas) in southeastern Spain, and (ii) to evaluate how element 96 

exposure affects plasma vitamin and carotenoid levels, hematocrit and body 97 

measurements of the individuals. Increased blood Pb concentrations are expected in 98 

nestlings from the mining-impacted environment based on previous findings (Espín et al. 99 

2015), but the exposure to many other elements and their accumulation capacity are still 100 

unknown. Moreover, we hypothesize that exposure to Pb and other toxic elements could 101 

alter vitamin levels in  plasma (Martinez-Haro et al. 2011; Ruiz et al. 2016). 102 

2. Material and methods 103 

2.1. Species and study area 104 

The Eagle owl is a large nocturnal raptor from the Strigidae family. This species is the 105 

largest nocturnal raptor in Spain, resident and highly territorial, and its population in the 106 

province of Murcia is abundant (Martínez, J.A.; Zuberogoitia, I. 2003; Martínez, J.E.; 107 

Calvo, J.F. 2006; León-Ortega et al. 2017). The study zone is located in the east of the 108 
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province of Murcia, southeastern Spain (37º45’ N, 0º57’ W) (Figure 1), characterized by 109 

a Mediterranean semi-arid climate. Different land uses and contamination sources are 110 

known in this zone, so it was divided into three areas. The northern zone (hereafter control 111 

area) is mainly dedicated to citrus and non-irrigation farming, with no known metal 112 

contamination sources (Espín et al. 2014b). In this area, the European rabbit (Oryctolagus 113 

cuniculus) is abundant, accounting for 71% of the prey consumed by Eagle owls (authors’ 114 

unpublished data). The southern zone is divided into two areas, the industrial and the 115 

mining areas. The industrial area has an important industrial complex of an international 116 

plastic plant (Innovative Plastics, SABIC company) in “La Aljorra” (Cartagena), this 117 

company was sanctioned by the Regional Ministry of the Environment “Consejería de 118 

Medio Ambiente de Murcia” for the emission of different metals (i.e. As, Cd, Co, Cr, Cu, 119 

Mn, Ni, Pb, Sb, Ti, Tl, V, Zn) during 2016 and 2017 (González 2019). The mining area 120 

is an ancient mine site called “Cartagena-La Unión Mining District” with extraction 121 

activity since Phoenicians, Carthaginians and Roman times until 1992 (Conesa et al. 122 

2008). However, toxic elements are still spread by small creeks from headwaters, due to 123 

the eroding process of runoff waters, impacting on surrounding ecosystems (Conesa and 124 

Schulin 2010). Significant blood levels of Pb, Hg and Cd (García-Fernández et al. 1995; 125 

Espín et al. 2014c, b, 2020a) and more recently of As (Espín et al. 2020a) have been 126 

reported in wildlife inhabiting this mining area. In the southern zone (including both 127 

industrial and mining areas) irrigation farming is predominant, and the European rabbit 128 

is less abundant (35% of Eagle owls’ diet), such that the raptor consumes a similar 129 

proportion of rats (Rattus rattus and Rattus norvergicus) (23% of the diet), in addition to 130 

pigeons (Columba spp.) (14%), partridges (Alectoris rufa) (5.26%), hedgehogs 131 

(Erinaceus europaeus and Atelerix algirus) (5.26%) and yellow-legged gulls (Larus 132 

michahellis) (3.16%) (authors’ unpublished data). 133 

2.2. Sampling and measurements 134 

A total of 87 blood samples were collected from Eagle owl nestlings (ca. 35 days old) 135 

from 30 nests in the period ranging 16th March 2017 – 8th May 2017 (n=18 nests/50 136 

nestlings from the control area, 5 nests/14 nestlings from the industrial area and 7 nests/23 137 

nestlings from the mining area; Figure 1). All nestlings were individually marked with 138 

metal rings, and both body mass and wing length were recorded. The health status of the 139 

individuals was clinically evaluated by a veterinarian before blood sampling, all nestlings 140 

being considered clinically healthy (no symptoms were observed in any individual). 141 
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Blood samples (ca. 3-5 ml) were collected by puncturing brachial veins with a 23G needle 142 

and a syringe, and stored in heparinized Eppendorf tubes under refrigerated conditions 143 

until processed in the laboratory in the same day of collection. Hematocrit (% of red blood 144 

cells from total sample volume) was recorded using a capillary tube reader after blood 145 

centrifugation (2200 rcf, 5 min). One Eppendorf tube containing whole blood was frozen 146 

at −80°C until element analysis, and other tube with whole blood was centrifuged (9600 147 

rcf, 5 min) to separate plasma that was also frozen at −80°C until vitamin and carotenoid 148 

analysis. Duration of the handling process per individual ranged from 10 to 15 minutes 149 

and nestlings were returned to their nests. The prey remains found in the nests were 150 

recorded for investigating the diet in the different areas. 151 

2.3. Metal analysis 152 

We analyzed blood concentrations of 50 elements (see Table 1) selected according to 153 

their toxicity and/or use in electronic products (Hussain and Mumtaz 2014; Tansel 2017). 154 

We used an Agilent 7900 ICP-MS equipment (Agilent Technologies, Tokyo, Japan) 155 

equipped with standard nickel cones, Ultra High Matrix Introduction (UHMI) system, 156 

and a cross-flow nebulizer with a Make-Up Gas Port (X400 Nebulizer, Savillex 157 

Corporation, MN, USA). We followed the procedure described by González-Antuña et 158 

al. (2017). Briefly, blood (130 µL) was diluted with 1120 µL of ammonia solution (0.05% 159 

of EDTA, 0.05% of Triton X-100, and 1% of NH4OH), and 50 µL of internal standards 160 

(ISTD) were added (scandium, germanium, rhodium, and iridium; stock concentration of 161 

20 mg/mL each). Pure standards in acid solution (5% HNO3, 100 mg/L) were purchased 162 

from CPA Chem (Stara Zagora, Bulgaria). Two standard curves (ten points, 0.005 ng/mL 163 

– 20 ng/mL) were prepared to avoid interferences between elements: i) one using a 164 

commercial multi-element mixture (CPA Chem, 100 mg/L, 5% HNO3) containing all the 165 

essential elements and main toxic metals, and ii) other multi-element mixture tailor-made 166 

in our laboratory from individual elements (CPA Chem), which contained the REE and 167 

ME. The limits of quantification (LOQs) ranged between 0.005 and 1.0 ng/ml, and the 168 

accuracy of measurements were in the range of 79 − 138%, with relative standard 169 

deviations (RSD) below 6% (González-Antuña et al. 2017). 170 

2.4. Vitamin and carotenoid analysis 171 

Retinol and α-tocopherol in plasma were analyzed by high-pressure liquid 172 

chromatography coupled to diode array and fluorescence  detection (HPLC-DAD-FLD) 173 
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according to Rodríguez-Estival et al. (2010). Samples (ca. 100 µL plasma) were mixed 174 

with 200 µL of water and 150 µL of ethanol in an Eppendorf tube, to which ISTD were 175 

added (50 µL of retinyl acetate - 58 mM - and α-tocopheryl acetate - 1.04 mM - in 176 

ethanol). The head-space of the tube was flushed with N2 and immediately capped to 177 

avoid vitamin oxidation during the extraction process. Samples were then vortexed (5 178 

min), sonicated (1 min), and extracted twice with 1 mL of hexane using vortex mixing 179 

(15 min each time). Hexane phases were recovered after centrifuging (14,000 rcf, 5 min, 180 

4 ºC) and evaporated to dryness with N2 flow. Residues were redissolved in methanol 181 

(200 µL) and injected into the HPLC-DAD-FLD system (Agilent 1200 Series). Vitamins 182 

were separated using an Agilent ECLIPSE XDB-C18 4.6mm x 150mm 5um. Samples 183 

were eluted isocratically using 80% acetonitrile (Hipersolv Chromanorm HPLC LC-MS 184 

grade, Prolabo), 19% methanol (Hipersolv Chromanorm, Gradient Grade, Prolabo) and 185 

1% water. This starting proportion was maintained for 15 min; the acetonitrile was then 186 

increased to 100% during a 15 min period, was held at this level for 1 min, and then 187 

returned to initial conditions over 2 min. The flow rate was 1 mL/min and the injection 188 

volume was 20 µL. Data were collected using DAD and FLD simultaneously. The DAD 189 

wavelength used for free retinol was 325 nm; in FLD, the excitation and emission 190 

wavelengths for α-tocopherol were 295 nm and 325 nm, respectively. Calibration curves 191 

were prepared with standards of free retinol and α-tocopherol (Sigma). The percentage of 192 

recovery was 90% for both vitamins. 193 

2.5. Statistical procedures 194 

Data analyses were performed using the statistical software R v. 3.6.3 (R Core Team 195 

2020), which is freely distributed under the GNU General Public License and available 196 

at http://www.R-project.org/. Mean ± SD and range values were calculated for the 50 197 

elements analyzed in blood samples (Table 1). Most elements showed a low proportion 198 

of values above the limit of quantification (>LOQ) (Table 1). Therefore, for statistical 199 

comparison, we selected those 13 elements with medium (38-45%) or high detection rates 200 

(97-100%). For these elements we substituted <LOQ values by a random number between 201 

0 and LOQ.  202 

For each element, biochemical parameters (hematocrit, retinol, tocopherol and lutein) and 203 

body measurements (mass and wing length), we applied linear mixed models (LMMs) 204 

using the “nlme” package (Pinheiro et al. 2020), and considering “zone” as a fixed factor 205 
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and “nest” as a random factor. In a second set of LMMs, we further tested the associations 206 

between those 13 elements and the biochemical parameters, where element 207 

concentrations were used as explanatory variables and “nest” as random factor in the 208 

models. Finally, associations among elements, biochemical parameters and 209 

morphological measures were inspected using Pearson correlation (r) test. Variables were 210 

log10-transformed prior to analysis to make them better conform normal distribution. 211 

Alpha level was set to 0.05 in all analyses. 212 

3. Results and discussion 213 

3.1. Blood element concentrations in three different scenarios of pollution 214 

Most of the elements analyzed (37 out of 50) showed a low rate of values above LOQ 215 

(with a percentage of values above LOQ of 26% or lower; Table 1), mainly indicating 216 

general low blood concentrations. For those 13 elements with medium (38-45%) or high 217 

detection rates (97-100%), concentrations in whole blood of nestling Eagle owls by 218 

sampling environment are shown in Table 2. Concentrations of As, Pb and Tl were 219 

significantly increased in blood of individuals captured at the mining area compared to 220 

the control area, while Sr, Mn and Zn levels were reduced in owls from the industrial and 221 

mining areas compared to the control area (for Zn, differences were found only between 222 

mining and control area) (Table 2). In this sense, As, Pb and Tl were positively correlated 223 

(rAs-Pb=0.5, rAs-Tl=0.6, rPb-Tl=0.7; p<0.001, n=87), as well as Mn, Sr and Zn (rMn-Sr=0.3, 224 

rMn-Zn=0.4, rSr-Zn=0.5; p<0.02, n=87), while negative correlations were found between 225 

these two groups of elements (As-Sr, Pb-Sr, Pb-Mn, Pb-Zn, Tl-Mn, Tl-Sr: r=(−0.2) – 226 

(−0.5), p<0.03, n=87) (Table S1 in Supplementary Material).  227 

The increased blood Pb concentrations (ca. 63 times) found in the mining area compared 228 

to the control area were expected. Different bird species (including Eagle owl) inhabiting 229 

close to this mining site have shown higher blood Pb concentrations along the years 230 

(1993-2017) (García-Fernández et al. 1995, 1997; Gómez-Ramírez et al. 2011; Espín et 231 

al. 2014b, 2020a) due to the intensive mining activity generated for more than 2500 years 232 

until its closure in 1992 (Pavetti et al. 2006; Conesa et al. 2008). The Pb concentrations  233 

found in this study were similar to those reported in previous years in Eagle owl from the 234 

same area and in Black kites (Milvus migrans) from Spain (García-Fernández et al. 1995, 235 

1997; Blanco et al. 2003; Gómez-Ramírez et al. 2011; Espín et al. 2014b), and higher 236 

than those found in Northern goshawk (Accipiter gentilis) and Black kites from Spain and 237 
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Norway (Baos et al. 2006; Dolan et al. 2017) (Figure 2). These Pb concentrations have 238 

been related with effects on different physiological parameters in Eagle owls in this area 239 

(up to 79% decrease in blood δALAD, inhibition of antioxidant enzymes, depletion of 240 

glutathione levels and induction of lipid damage in red blood cells) (Espín et al. 2014b, 241 

2015). However, to the best of our knowledge, blood levels of other toxic elements such 242 

as As have never been reported in this owl species, or rarely described in any wild bird 243 

species in the case of Tl levels (Espín et al. 2020a). Evaluating As exposure in wild birds 244 

is uncommon in spite of its known toxicity (Sánchez-Virosta et al. 2015), and this is 245 

particularly important in areas influenced by past or present mining activities where As 246 

accumulates in plants growing in contaminated soils, which in turn will be consumed by 247 

animals (including prey of Eagle owls) entering the food chain (Martínez-López et al. 248 

2014). 249 

Our results show that local contamination in the mining area is also contributing to the 250 

higher concentrations of other important toxic elements, since nestlings inhabiting the 251 

mining area had mean blood As and Tl concentrations 15 and 17 times higher, 252 

respectively, than those found in the control site (Table 2). In addition, the positive 253 

correlations found between As, Pb and Tl suggest common origin in the polluted site. 254 

Thallium may be released into the biosphere from natural and anthropogenic sources, and 255 

increased levels are found in the vicinity of mining areas, smelters and coal-burning 256 

facilities (Karbowska 2016). This element tends to bioaccumulate in organisms, and 257 

blood concentrations higher than 100 ng/ml are considered toxic in humans (Lansdown 258 

2013; Karbowska 2016). In spite of the increased Tl levels in the mining-impacted site, 259 

concentrations in this study seem to be relatively low (Table 2), mean values in the mining 260 

area (0.52 ± 0.43 ng/ml; max. 1.77 ng/ml) being below the levels considered normal in 261 

blood of animals or humans (<1 ng/ml and <2 ng/ml; Mulkey and Oehme 1993; 262 

Lansdown 2013). 263 

In regards to As, concentrations reached in nestlings may be of special concern in the 264 

mining area. For comparison purposes, blood As levels in other raptor species were 265 

compiled in Figure 2. In general, nestling Eagle owls showed higher As levels than those 266 

reported in Northern goshawk and Common buzzard (Buteo buteo) from Spain, Norway 267 

and Portugal (Carneiro et al. 2014; Dolan et al. 2017), and similar to those found in Black 268 

kites from Spain and Portugal (Blanco et al. 2003; Carneiro et al. 2018) (Figure 2). Black 269 

kites sampled in Doñana (Spain) in 1999 after the Aznalcóllar mine spill showed 270 
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remarkable higher As levels (125 ng/ml) than those found in nestling Eagle owls, which 271 

was related to the toxic spill and the foraging habits of the species in that sampling site 272 

(marine fish were found as prey remains in the nests) (Baos et al. 2006). In this study, 273 

few individuals reached As blood levels higher than 100 ng/ml (up to 214 ng/ml, Table 274 

2). This metalloid is not well-documented when it comes to birds, and the threshold blood 275 

values related to sublethal adverse effects have not been properly established in avian 276 

species (Sánchez-Virosta et al. 2015). Different authors refer to blood As levels below 20 277 

ng/ml as a suggested reference baseline value for birds in unpolluted areas (Benito et al. 278 

1999; Ortiz-Santaliestra et al. 2015; Rodríguez-Estival et al. 2019). However, recent 279 

studies have shown that, for other elements classically considered as toxic (i.e. Pb, Cd, 280 

Hg), blood levels below the threshold value commonly accepted for physiological effects 281 

in raptors are able to produce effects on the antioxidant system in Eagle owls and other 282 

bird species (Espín et al. 2014b, a, 2016b). Therefore, potential As-related effects on 283 

physiology in Eagle owls inhabiting mining-impacted areas cannot be discarded, even 284 

more if we consider that nestlings may be unable to regulate the As (and metals) body 285 

burden as efficiently as adults (Burger and Gochfeld 1997). 286 

On the other hand, pollutant-related indirect effects (e.g. lower food quality and quantity 287 

or changes in diet due to resource limitations) may be contributing to the lower essential 288 

element (Mn, Zn) and Sr concentrations in the mining-impacted and industrial sites 289 

compared to the control area. Strontium is classically considered a non-essential element, 290 

because it does not cause death when absent (Pors Nielsen 2004), but different studies 291 

show that this element is taken up at the bone, its supplementation increases calcified 292 

bone volume and limits bone resorption, preventing from bone mass loss, so it has been 293 

suggested that it may have a role in bone development (Marie et al. 1993; Sila-Asna et al. 294 

2007; Pemmer et al. 2013; Maciejewska et al. 2014). However, further studies are needed 295 

to better understand the essentiality of this element. 296 

As explained before, the control area is home to abundant European rabbits, accounting 297 

for 71% of the prey consumed by Eagle owls, while in the southern zones (including both 298 

the industrial and mining areas) this prey is less abundant (35% of Eagle owl’s diet), and 299 

birds consume a similar proportion of rats (23% of the diet), including also in their diet 300 

pigeons, partridges, hedgehogs and yellow-legged gulls (authors’ unpublished data). In 301 

this study, similar results were observed when recording the prey remains found in the 302 

nests (Table 3). In the control area, rabbits represented 70% of the diet, while 30% was 303 
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represented by other prey types. However, in the mining site, rabbits represented 50% of 304 

the diet, and Eagle owls also consumed partridges (20%), pigeons, rats, and hedgehogs 305 

(10% each). In the industrial area, rabbits represented 100% of the prey found in nests. 306 

However, it should be noted that there were only 4 nests with 1 rabbit each (Table 3). 307 

These diet differences may account for the different input of essential elements and Sr 308 

between control and mining and industrial areas. However, this should be further 309 

evaluated by analyzing element concentrations in prey remains in future studies. 310 

Moreover, Mn, Zn and Sr were positively correlated, which could reflect common origin 311 

through dietary intake and/or homeostatic regulation controlling absorption and body 312 

trace element levels (Espín et al. 2020a). 313 

3.2. Effects of toxic elements on body measurements, hematocrit, plasma vitamin and 314 

lutein levels 315 

Nestlings in the mining area showed increased plasma α-tocopherol and lutein 316 

concentrations, while the other parameters (hematocrit, retinol and body measurements) 317 

were not affected by zone (Table 2). Results from LMMs showed significant positive 318 

associations between blood Pb levels and plasma α-tocopherol (F=9.53, p=0.003), and 319 

blood Pb levels and plasma lutein (F=5.44, p=0.023), while negative associations between 320 

blood Mo (F=13.39, p < 0.001), Co (F=7.65, p=0.008) and Sr (F=4.28, p=0.043) and 321 

plasma lutein were observed (Table S2 in Supplementary Material). No element-related 322 

effects were observed in hematocrit nor retinol, and few associations were found between 323 

elements and body measurements: negative for blood Mo and body mass (F=4.15, 324 

p=0.046) and positive for blood Fe (F=4.72, p=0.034) and Se (F=6.75, p=0.012) and wing 325 

length (Table S2). Regarding Pearson correlations, tests showed that plasma α-tocopherol 326 

levels were positively correlated with blood As, Pb and Tl (r = 0.22-0.36, p < 0.039, n= 327 

87) and negatively correlated with blood Sr levels (r = −0.27, p = 0.012, n= 87) (Table 328 

S1). Plasma lutein levels were negatively correlated with Mo, Co and Sr (r = (−0.35) – 329 

(−0.37), p < 0.005, n= 87) and positively correlated with Pb (r = 0.22, p = 0.042, n= 87). 330 

Finally, plasma α-tocopherol and lutein levels were also positively correlated (r = 0.38, p 331 

< 0.001, n= 87) (Table S1). 332 

α-Tocopherol is the most common form of vitamin E, a potent antioxidant that neutralizes 333 

lipid peroxyl radicals preventing from lipid peroxidation in the cell membrane (Traber 334 

and Atkinson 2007). Therefore, the elevated plasma α-tocopherol concentrations in those 335 
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individuals from the mining area facing increased blood toxic elements, together with the 336 

positive association of α-tocopherol with blood As, Pb and Tl, can be interpreted as a 337 

protective response that helps them cope with metal-induced oxidative stress and lipid 338 

peroxidation (Koivula and Eeva 2010) in such a way that the antioxidant defense is 339 

strengthened. Along the same lines, red-necked nightjars inhabiting the same mining site 340 

showed increased blood element levels (i.e. Pb, As and Cd) compared to the control area, 341 

and they were also associated with increased α-tocopherol in plasma (Espín et al. 2020a, 342 

b). Previous field and experimental studies have found a similar response in different 343 

avian species exposed to toxic elements in Spain, Hungary and Finland (Martinez-Haro 344 

et al. 2011; Hargitai et al. 2016; Ruiz et al. 2016). In this study, Eagle owls with blood Pb 345 

levels ≥ 8 ng/ml showed a 20% increase in plasma α-tocopherol with regards to the mean 346 

α-tocopherol concentration in the control area; and α-tocopherol was enhanced by 31% 347 

and 56% at blood Pb concentrations ≥ 80 ng/ml and 170 ng/ml, respectively. In view of 348 

the results found in this and previous studies, α-tocopherol seems to be a very sensitive 349 

biomarker when exposed to certain toxic elements (e.g. Pb, As, Tl).  350 

Lutein is the most abundant carotenoid in birds of prey (Ingram et al. 2017). Different 351 

factors may affect carotenoid levels, including metal exposure but also food availability 352 

and type of diet (Eeva et al. 2008; Dauwe and Eens 2008; Cohen et al. 2009; Vallverdú-353 

Coll et al. 2016a, b; Sumasgutner et al. 2018; Pacyna et al. 2018). Blood Pb concentrations 354 

were positively associated with lutein levels in this study, as previously reported in other 355 

avian species both in experimental and biomonitoring studies (Vallverdú-Coll et al. 356 

2016a, b). It is well known that Pb, as well as many other metals, can induce oxidative 357 

stress in birds (Koivula and Eeva 2010), and lutein could be increased to counteract this 358 

Pb-related oxidative imbalance in the mining area. Although it has been suggested that 359 

lutein is not as effective in antioxidant defense as some other carotenoids (see review by 360 

Koivula and Eeva 2010), it may still have antioxidant properties by protecting 361 

phospholipids in cell membranes or by participating in the process of recycling vitamin 362 

E (Costantini 2008; Koivula and Eeva 2010). In this sense, Eagle owl nestlings showed a 363 

positive association between plasma α-tocopherol and lutein levels. 364 

However, plasma lutein concentrations in nestlings from the industrial area (showing 365 

equivalent element levels to those found in the control site) were similar to lutein levels 366 

found in the mining area (Table 2). Therefore, the increased lutein levels in the mining-367 

impacted environment compared to the control site could be mainly related to a higher 368 
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diet diversity in the south of our study area. Lutein is an abundant carotenoid in the diet 369 

and blood of birds, and birds in general contain more carotenoids than mammals (Urich 370 

1994; McGraw 2006), thus, the greater consumption of avian prey (pigeons, partridges, 371 

gulls) may lead to higher plasma lutein concentrations in Eagle owl inhabiting the 372 

southern zone.  373 

4. Conclusions 374 

Our results show that local contamination in the mining area contributes to increased 375 

concentrations of Pb, As and Tl in blood of nestling Eagle owls, while diet differences 376 

between control and mining/industrial areas may account for the different levels of blood 377 

Mn, Zn, and Sr, and plasma lutein.  378 

Increased levels of α-tocopherol in plasma of Eagle owls in the mining-impacted 379 

environment may prevent toxic element-related oxidative stress, thereby providing a 380 

mechanism of protection. This study shows that nestlings with blood Pb levels ≥ 8 ng/ml 381 

showed a 20% increase in plasma α-tocopherol levels. α-Tocopherol seems to be a very 382 

sensitive biomarker when exposed to certain toxic elements (e.g. Pb, As, Tl). 383 

Based on previous findings in other avian species inhabiting the same mining-impacted 384 

environment (Espín et al. 2020b), further studies should evaluate the potential combined 385 

effects of Pb, As and Tl on mineralization-related parameters in nestling Eagle owls 386 

experiencing an active growing process. 387 
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Figures 634 

 635 

Figure 1. Map showing the geographical location of the studied areas. Blue, red and grey 636 

circles represent Eagle owl (Bubo bubo) nest sites in the control (n=18 nests/50 nestlings), 637 

industrial (n=5 nests/14 nestlings), and mining (n=7 nests/23 nestlings) areas, 638 

respectively.   639 
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A) 640 

 641 

B) 642 

 643 

Figure 2. Blood Pb (A) and As (B) concentrations (ng/ml, ww) in raptor species 644 

inhabiting polluted/urban environments in the literature.  645 
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Tables 646 

Table 1. Element concentrations (ng/ml, w.w.) in whole blood of Eagle owl (Bubo bubo), n=87 nestlings.  

Element Category* Mean SD Min Max % > LOQ LOQ 

Aluminum (Al) 2 124 713 <LOQ 5560 2 38.4 

Antimony (Sb) 2 0.1 0.4 <LOQ 2.5 9 0.038 
Arsenic (As) 2 10.0 32.8 0.4 214 100 0.008 

Barium (Ba) 2 7.8 30.5 <LOQ 269 15 1.016 

Beryllium (Be) 2 0.0 0.1 <LOQ 0.8 7 0.013 
Bismuth (Bi) 4 0.0 0.1 <LOQ 0.6 13 0.008 

Cadmium (Cd) 2 0.0 0.3 <LOQ 2.0 2 0.015 

Cerium (Ce) 3 0.1 0.5 <LOQ 3.9 7 0.035 
Chromium (Cr) 1 1.2 4.2 <LOQ 23.7 8 0.229 

Cobalt (Co) 1 9.1 6.6 2.2 35.6 100 0.011 

Copper (Cu) 1 225 48 154 460 100 1.724 
Dysprosium (Dy) 3 0.0 0.0 <LOQ 0.2 11 0.001 

Erbium (Er) 3 0.0 0.0 <LOQ 0.1 9 0.001 

Europium (Eu) 3 0.0 0.0 <LOQ 0.2 10 0.000 
Gadolinium (Gd) 3 0.0 0.0 <LOQ 0.2 10 0.002 

Gallium (Ga) 4 0.1 0.1 <LOQ 0.8 23 0.009 

Gold (Au) 4 0.2 0.6 <LOQ 4.6 26 0.007 

Holmium (Ho) 3 0.0 0.0 <LOQ 0.2 13 0.000 

Indium (In) 4 0.0 0.0 <LOQ 0.1 21 0.001 

Iron (Fe) 1 218434 27698 152422 282851 100 24.6 
Lanthanum (La) 3 0.0 0.1 <LOQ 0.7 7 0.020 

Lead (Pb) 2 21.7 41.8 <LOQ 173 38 0.361 

Lutetium (Lu) 3 0.0 0.0 <LOQ 0.1 2 0.000 
Manganese (Mn) 1 24.5 11.6 10.8 71.1 100 0.371 

Mercury (Hg) 2 6.9 8.4 <LOQ 46.8 97 0.028 

Molybdenum (Mo) 1 17.2 5.8 7.0 38.7 100 0.148 
Neodymium (Nd) 3 0.0 0.1 <LOQ 0.6 10 0.010 

Nickel (Ni) 1 14.5 80.3 <LOQ 737 2 7.95 

Niobium (Nb) 4 0.0 0.1 <LOQ 0.3 15 0.005 
Osmium (Os) 4 0.0 0.1 <LOQ 0.6 9 0.002 

Palladium (Pd) 2 0.0 0.0 <LOQ 0.2 2 0.001 

Platinum (Pt) 4 0.0 0.1 <LOQ 0.6 23 0.001 
Praseodymium (Pr) 3 0.0 0.0 <LOQ 0.2 10 0.003 

Ruthenium (Ru) 4 0.0 0.0 <LOQ 0.0 0 0.000 
Samarium (Sm) 3 0.0 0.0 <LOQ 0.2 11 0.002 

Selenium (Se) 1 451 139 252 994 100 0.153 

Silver (Ag) 2 1.4 11.6 <LOQ 108 17 0.029 

Strontium (Sr) 2 90.7 54.0 24.6 249 100 0.439 

Tantalum (Ta) 4 0.0 0.1 <LOQ 0.9 14 0.001 

Terbium (Tb) 3 0.0 0.0 <LOQ 0.2 13 0.000 
Thallium (Tl) 2 0.2 0.3 <LOQ 1.8 38 0.008 

Thorium (Th) 2 0.0 0.0 <LOQ 0.2 9 0.002 

Thulium (Tm) 3 0.0 0.0 <LOQ 0.1 11 0.000 
Tin (Sn) 2 1.0 2.8 <LOQ 19.4 15 0.199 

Titanium (Ti) 4 5.1 9.8 <LOQ 52.5 23 0.757 

Uranium (U) 2 0.0 0.1 <LOQ 0.8 3 0.002 
Vanadium (V) 2 0.8 1.4 <LOQ 9.1 45 0.034 

Ytterbium (Yb) 3 0.0 0.0 <LOQ 0.1 7 0.001 

Yttrium (Y) 3 0.0 0.1 <LOQ 0.2 13 0.005 
Zinc (Zn) 1 4200 682 2462 5957 100 51.0 

*Category: 1 = Essential trace elements, 2 = ATSDR's list toxic elements, 3 = Rare earth elements, 4 = Other minor elements. 647 
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Table 2. Mean ± SD, median (range) element concentrations (ng/ml, w.w.) in whole blood, body measurements, hematocrit and plasma 

biochemistry in Eagle owl (Bubo bubo) at three sampling environments (control, industrial and mining area), n=87 nestlings.   

Element Control area (N=50) Industrial area (N=14) Mining area (N=23) 
 

Mean ± SD Mean ± SD Mean ± SD 

  Median (range) Median (range) Median (range) 

ATSDR’s list toxic elements in whole blood 

Arsenic (As)  2.22 ± 3.04 1.04 ± 0.98 32.2 ± 59.0* 
 

1.08 (0.48 - 16.2) 0.57 (0.4 - 3.49) 12.4 (2.31 - 214) 

Lead (Pb)  1.24 ± 2.74 2.44 ± 4.50 77.9 ± 48.0* 
 

0.19 (<LOQ - 10.7) 0.20 (<LOQ - 11.5) 83.1 (12.0 - 172) 

Mercury (Hg)  6.15 ± 8.90 7.54 ± 9.34 7.94 ± 6.59 
 

3.05 (<LOQ - 46.7) 4.92 (0.71 - 34.4) 5.69 (1.15 - 24.0) 

Strontium (Sr)  120 ± 53.1 61.8 ± 21.2* 44.6 ± 11.7* 
 

121 (32.5 - 249) 58.8 (30.7 - 122) 43.7 (24.6 - 74.2) 

Thallium (Tl)  0.03 ± 0.10 0.05 ± 0.07 0.52 ± 0.43* 
 

<LOQ (<LOQ - 0.51) <LOQ (<LOQ - 0.17) 0.29 (<LOQ - 1.77) 

Vanadium (V)  0.82 ± 1.52 0.16 ± 0.57 1.06 ± 1.40 
 

<LOQ (<LOQ - 9.12) <LOQ (<LOQ - 2.15) 0.65 (<LOQ - 5.24) 

Essential trace elements in whole blood 

Cobalt (Co) 9.67 ± 6.29 7.89 ± 9.83 8.51 ± 4.86 
 

7.64 (2.36 - 29.2) 4.65 (2.55 - 35.6) 8.39 (2.25 - 21.7) 

Copper (Cu)  226 ± 38.2 231 ± 71.9 218 ± 51.0 
 

227 (153 - 297) 215 (172 - 459) 214 (161 - 411) 

Iron (Fe)  221043 ± 28740 216888 ± 20237 213702 ± 29613 
 

219356 (161264 - 275123) 213024 (194096 - 256380) 213007 (152422 - 282850) 

Manganese (Mn)  29.1 ± 12.6 16.1 ± 5.59* 19.4 ± 5.56* 
 

27.3 (12.8 - 71.1) 15.5 (10.8 - 33.7) 17.7 (11.8 - 32.0) 

Molybdenum (Mo)  18.3 ± 6.73 15.4 ± 4.27 15.8 ± 3.37 
 

17.6 (6.99 - 38.6) 14.3 (11.0 - 27.3) 15.0 (11.2 - 26.8) 

Selenium (Se)  477 ± 162 472 ± 84.0 380 ± 74.7 
 

428 (290 - 993) 473 (340 - 637) 381 (251 - 544) 

Zinc (Zn)  4409 ± 741 4046 ± 387 3838 ± 504* 

  4299 (3261 - 5957) 4029 (3256 - 4727) 3790 (2461 - 5059) 

Body measurements, hematocrit and plasma biochemistry 

Hematocrit (%) 25.8 ± 4.49 26.1 ± 2.12 27.4 ± 4.70 

 26.0 (15.0 – 35.0) 26.0 (23.0 – 29.0) 27.0 (19.0 – 36.0) 

Body mass (g) 1232 ± 230 1320 ± 208 1290 ± 292 

 1212 (800 − 1850) 1288 (1000 − 1825) 1250 (825 − 2000) 

Wing lenth (mm) 198 ± 42 218 ± 40 212 ± 80 

 195 (115 − 292) 210 (135 − 280) 180 (112 − 400) 

Retinol (µM) 16.5 ± 2.39 15.7 ± 1.13 15.8 ± 2.14 

 16.2 (11.4 – 22.3) 15.8 (13.6 – 17.9) 15.3 (13.0 – 22.5) 

Tocopherol (µM) 79.8 ± 15.9 87.1 ± 13.1 99.3 ± 18.3* 

 78.9 (47.0 – 112) 84.3 (69.2 – 108) 96.6 (68.9 – 155) 

Lutein (µM) 6.36 ± 3.78 9.35 ± 4.39 9.42 ± 3.61** 

 5.48 (1.57 – 16.3) 9.08 (3.81 – 18.3) 8.82 (4.55 – 16.8) 

Asterisks denote significant differences between industrial or mining area and control area (*p<0.01, **p<0.05) as observed in the 649 
linear mixed models (“zone” used as fixed factor and “nest” used as random factor; response variables were log10-transformed prior 650 
to analysis).  651 
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Table 3. Diet items found in 30 nests of Eagle owl (Bubo bubo) at three sampling environments (control, industrial and mining area) 

from Murcia, Spain, in 2017. Both the number of each prey item and the percentage of the total number of prey are provided.  
Control area (18 nests) Industrial area (5 nests) Mining area (7 nests) 

Diet item Total  number  % Total  number  % Total  number  % 

European rabbit (Oryctolagus cuniculus)  16 69.6 4 100 5 50 

Pigeon (Columba spp.) 2 8.7 0 0 1 10 

Rats (Rattus rattus and Rattus norvergicus)  1 4.3 0 0 1 10 

Mallard (Anas platyrhynchos) 1 4.3 0 0 0 0 

European hedgehogs (Erinaceus europaeus) 1 4.3 0 0 1 10 

Partridge (Alectoris rufa) 2 8.7 0 0 2 20 

Nests with no preys 4   1   2   
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