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A B S T R A C T

We introduce a practical method to perform private membership tests. In this method, clients are able to test
whether an item is in a set controlled by the server without revealing their query item to the server. After
executing the queries, the content of the server's set remains secret. One use case for a private membership test is
to check whether a file contains any malware by checking its signature against a database of malware samples in a
privacy preserving way. We apply the Bloom filter and the Cuckoo filter in the membership test procedure. In
order to achieve privacy properties, we present a novel protocol based on some homomorphic encryption
schemes. In our protocol, we rearrange the data in the set into N -dimensional hypercubes. We have implemented
our method in a realistic scenario where a client of an anti-malware company wants to privately check whether a
hash value of a given file is in the malware database of the company. The evaluation shows that our method is
feasible for real-world applications. We also have tested the performance of our protocol for databases of different
sizes and data structures with different dimensions: 2-dimensional, 3-dimensional and 4-dimensional hypercubes.
We present formulas to estimate the cost of computation and communication in our protocol.
1. Introduction

Utilizing publicly accessible databases to access information is an
essential part of everyday life. Usually, Internet users query through
databases by clearly stating their search terms. However, this makes it
possible for the database holders to gain personal information about their
users [1,2] which can be explored further, e.g., for advertisement pur-
poses. Moreover, these queries may leak sensitive and private informa-
tion about the users, such as their political views, ethnicity, etc [3–5].

Membership test is a query with an outcome of True or False, deter-
mining whether an item is in a given set or not. The procedure includes
two parties: a server that possesses a set of values, and a client that wants
to query this set for a certain value.

Private Membership Test (PMT) protocols empower users to perform
membership tests without revealing their search values to the database
holders. To illustrate the importance of PMT, consider the following real-
life scenario: A server holds a database consisting of malware hash
values. A client wants to check whether a certain file is clean or not. The
contents of the file may be privacy sensitive. In that case, giving away
even the hash of the file is not acceptable. Although it is not possible to
derive contents of arbitrary files from their hash values, the server may
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make an educated guess about the contents of the file and may be able
to check whether the guess is correct.

A trivial approach to this problem is delivering a copy of the server's
database to the client. However, in our case, due to the high bandwidth
usage, this solution is infeasible in practice.

Our contributions in this paper are as follows:

� We present a novel PMT protocol with lower communication
complexity compared with protocols known before. Our protocol is
built on top of the protocol of [6].

� We analyse both theoretically and experimentally the choice of pa-
rameters for the new protocol. Moreover, we evaluate the perfor-
mance of our protocol to achieve minimal communication
complexity.

� We show that our PMT protocol is a solution that could be used in
real-world cases and it is significantly more feasible than the earlier
solutions.

� We compare the performance of our protocol with the previous state
of the art, from points of view of privacy, time complexity and
communication complexity.
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After executing our PMT protocol, the server does not have enough
information to make a guess about the search item of the client. More-
over, our PMT protocol keeps the contents of the server's database secret.
The rest of the paper is constructed as follows: the required preliminaries
are presented in Section 2. We state the problem in Section 3. Then, in
Section 4 we explain the related work. Next, we present our protocol to
solve the problem of PMT in Section 5. The complexity analysis of the
protocol is presented in Section 6. Then, in Section 7 we show how to
implement the protocol and compare its performances based on a
real-life scenario. In Section 8, we present a security and privacy
analysis of the protocol. Finally, we conclude the paper in Section 9.

2. Preliminaries

In this section, we provide the necessary background of the tech-
niques that our protocol is based on.
2.1. Bloom filter

A Bloom filter is a probabilistic data structure that is commonly used
to store big databases [7]. If the Bloom filter represents a set X, then a
query for an item x through this filter shows whether x belongs to X or
not. More specifically, a Bloom filter is an array of m bits that are all
initially set to 0.

Each Bloom filter has l independent hash functions HiðxÞ, where i ¼
1;…; l. To insert an element of set X to the Bloom filter, we should feed
the element to every hash function separately. The output of each hash
function is assumed to be an index from the set f1;2;…;mg and there-
fore, this step will result in l positions of the filter (some of which may be
equal to each other). We then set bits in those l positions to 1. This means
that each element of Xmaps to l random-looking positions in the filter. To
query an element from the Bloom filter, one should feed that element to
the hash functions HiðxÞ and check the corresponding l positions of the
filter. If the values are equal to one, then the query result is positive.
Otherwise, we know that the element does not belong to the set.

A query from a Bloom filter can never result in false negative. How-
ever, a query from the Bloom filter may result in false positive. This
means that an element does not belong to set X, but the hash values of the
element point to indices in the array such that each of them has been set
to one because of some other element. If the number of elements in set X
is n, then the probability of false positive is known to be

ε ¼ �1� e�ln=m
�l
: (1)

One important property of the filter is the number of bits per item. We
denote this measure of space efficiency by C, and here C ¼ m= n.

It can be shown that the length of the Bloom filter is m ¼ � lnε
ðln 2Þ2 � n,

where n is the number of elements in set X and ε is the target false positive
rate.
Table 1
Space cost comparison of Bloom filters, when the optimal number of hash
functions is used, and of Cuckoo filters, when b ¼ 4.

Type of the Filter Bits Per Item When α ¼ 95:5% and
ε ¼ 0:001

Bloom filter 1:44log2ð1=εÞ 14.3 Bits Per Item
Cuckoo filter dlog2ð1=εÞþ 3e =α 13.5 Bits Per Item
Cuckoo filter optimized
by semi-sorting buckets

dlog2ð1=εÞþ 2e =α 12.5 Bits Per Item
2.2. Cuckoo filter

Fan et al. introduced a data structure more efficient than the Bloom
filter, called Cuckoo filter in 2014 [8]. In order to store elements of set X in
this filter, one should first calculate the fingerprints of the elements and
store the fingerprints in a Cuckoo filter. The fingerprint of an element is a
short bit string that has been obtained by computing the hash value of
that element for a given hash function. Several different items may have
the same fingerprint. Therefore, a query on the Cuckoo filter may result
in false positive.

The Cuckoo filter is an array of buckets, where each bucket consists of
several entries. For efficiency reasons, there are a limited number of en-
tries. The fingerprints will be stored in these entries. There are two
candidate buckets for inserting the fingerprint of an element x into a
Cuckoo filter. The addresses of the two buckets are computed as follows:
2

h1ðxÞ ¼ hashðxÞ
h2ðxÞ ¼ h1ðxÞ � hashðx’s fingerprintÞ:

�

The hash function hashmaps the elements to one of the buckets in the
filter. The fingerprint of element x will be stored in either of the buckets
that has enough space. If both buckets are full (there are no empty entries
in either bucket), the Cuckoo filter chooses one of them randomly (let us
call it bucket i) and displaces a fingerprint from i to make space for x. The
displaced fingerprint is stored in its alternative bucket j utilizing the
following formula:

j¼ i� hashðfingerprintÞ: (2)

Fan et al. suggested repeating the procedure of relocating the dis-
placed fingerprint for 500 times. If all the 500 buckets were full, the filter
is considered too full to insert. Looking up an element in this filter is
simply done by checking both alternative buckets for the element's
fingerprint.

One of the advantages of Cuckoo filters over Bloom filters is their
ability to delete an item. To delete a fingerprint F from a Cuckoo filter,
one should find two possible buckets, check which one of them contains F
and then remove F from the bucket.

Each Cuckoo filter has seven parameters: ε is the target false positive
rate, f is the length of a fingerprint in bits, b is the number of entries per
bucket, m' is the number of buckets, n is the number of items, C is the
average number of bits per item, and finally, α is the load factor, where
α 2 ½0;1� shows how full the Cuckoo filter is. Fan et al. showed that b ¼ 4
and α ¼ 95:5% give the best space efficiency for ε2 ð0:00001; 0:002�.
They also computed an upper bound for false positive rate to be:
ε � 1� ð1� 1=2f Þ2b � The minimum fingerprint size to return the above ε
is

f �dlog2ð2b=εÞe ¼ dlog2ð1=εÞ þ log2eð2bÞ (3)

bits. The value C of the Cuckoo filter has the property of

C � dlog2ð1=εÞ þ log2ð2bÞe=α: (4)

In order to reduce the space complexity of a Cuckoo filter, Fan et al.
used the semi-sorting buckets optimization in Ref. [9] and saved one bit per
item. Table 1 shows the space complexities of Bloom filters and Cuckoo
filters, as discussed in Ref. [8].

It is shown that the length of the Cuckoo filter is ðdlog2ð1=εÞþ
2e=αÞ � n, where n is the number of elements in set X.
2.3. Additively homomorphic encryption

An encryption method that allows computations to be performed on
ciphertext without first decrypting it is called a homomorphic encryption
[10]. Let Ek be an encryption function with a key k, and x be a message in
a set M. The scheme is additively homomorphic if the following holds:

EkðaÞ	EkðbÞ ¼ Ekðaþ bÞ for all a; b 2 M: (5)

Note that the operation on the left side of Equation (5) could be very
different from the one on the right side. Also, note that Ek does not have
to be a deterministic function, i.e., there may be several valid encryptions
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of x with the key, k.

2.4. Paillier's cryptosystem

Let p and q be two different safe primes (primes of the form 2Pþ 1
where P is also a prime number) of the same size, N ¼ pq, and g is an
element of the multiplicative group Z


N2 with the order that is a non-zero
multiple of N (for example, we may choose g ¼ Nþ 1). Paillier and
Pointcheval [11] proposed the following encryption scheme:

w¼Egðc; dÞ ¼ gcdNmodN2; (6)

where c 2 ZN is a plaintext, d 2 Z

N is a random number, and ciphertext

w ¼ gcdNmodN2 is in Z

N2 . The private key is ðp; qÞ, which is the factor-

ization of N. The ciphertext w is in Z

N2 and can be decrypted in the

following way:

c¼DgðwÞ ¼ LðwλmodN2Þ
LðgλmodN2Þ modN; (7)

where λ ¼ lcmðp� 1; q� 1Þ and LðuÞ is the integer quotient of ðu� 1Þ =N,
where u2 Z


N2 � .This cryptosystem is additively homomorphic.
The state of the art in factorization dictates that in order to have a

secure cryptosystem, the value of N should be at least 2048 bits.

2.5. Chang's cryptographic scheme

Chang [6] proposed a protocol to privately retrieve an element of a
2-hypercube as follows: A server possesses a two-dimensional database
DB of the size h� h. A client wants to query this database to learn the
value of the itemwhich is located on the i
-th row and j
-th column of DB,
denoted as xði
; j
Þ. Let us consider the identity matrix I:

Iðt; t'Þ ¼
8<
: 1 if t ¼ t'

0 otherwise:

Chang's protocol uses Paillier's cryptosystem and proceeds as follows:

1. The client C computes

αt ¼EgðIðt; i
Þ; rtÞ and βt ¼ EgðIðt; j
Þ; stÞ; (8)

where t 2 f1;2; …; hg, rt and st are random numbers that have been
uniformly chosen from Z


N . The client C sends αt and βt to the server.

2. For i ¼ 1; 2;…;h, the server computes

σi ¼
Yh

t¼1
ðβtÞxði;tÞmod N2: (9)

3. The server S computes ui; vi 2 ZN such that σi ¼ uiNþ vi.
4. The server S computes

u¼
Yh

t¼1
ðαtÞutmod N2 ; v ¼

Yh

t¼1
ðαtÞvtmod N2 (10)

and sends u and v to the client.

5. The client C retrieves the value of the wanted item as:

xði
; j
Þ ¼ Dg

�
DgðuÞN þ DgðvÞ

�
: (11)

3. Problem statement

We formulate the PMT problem as follows.: A server S holds a set X
with the cardinality of n. A client C wants to perform a membership test
3

for a search item x in a privacy preserving way. This query results in
positive if x 2 X, and negative otherwise. After executing this protocol, S
cannot learn x. Also the client C is prevented from learning too much
about the contents of X.

We motivate the problem of PMT with a real-life scenario, where a
server S possesses a database with a malware. The server S stores the
hash values of the malware in a set X. A client C has a hash value x of a
file and wants to check whether the file contains any malware or not
while keeping the contents of the file private. However, if the result of the
PMT shows that the file is malicious, C is willing to reveal x to the server
to get instructions on how to handle the malicious file. Hash functions are
one-way functions and therefore, a client or any third party cannot find a
malware sample from its hash value. This means, in our scenario, keeping
the contents of set X private is not necessary for S .

In order to have realistic numbers, we apply the following setting in
our implementations: Set X contains 221 SHA-1 values. Each of the hash
values consists of 160 bits and therefore the size of X is 40MB. To make
the protocol more memory efficient, we apply a Bloom filter or a Cuckoo
filter. The Bloom filter consists of 225 bits with 10 hash functions. Based
on Equation (1), these numbers result in a false positive rate of 0.001.
Utilizing the Bloom filter reduces the size of the database to 4MB. The
Cuckoo filter with a false positive rate of 0.001 consists of 12:5� 221 bits.
This will reduce the size of the database to 3.2MB.

In our scenario, clientC wants to make sure that his/her file does not
have any malware. If the outcome of the PMT protocol is positive, C
sends the hash value of the file to the server for further action. However,
in some cases, the file is clean and the result of PMT could be false
positive. Fortunately, depending on false positive probability, this hap-
pens rarely and randomly. Note that when handling suspicious files, it is
better to make an error on the safe side. Therefore, a small number of
false positives is a less serious issue than even a smaller number of false
negatives.

4. Related work

Private Information Retrieval (PIR) is a well-known topic in cryptog-
raphy that was introduced by Chor et al. in 1995 [12]. Extensive work
has been done on PIR such as [13–15]. Single-server PIR protocols
involve two parties: Bob holds a database X of n records and Alice holds
an index i of a record where 1� i � n. Alice wants to retrieve the ith re-
cord of X without revealing her index to Bob. Bob wants to respond to
Alice's query in such a way that the communication complexity is much
less than O ðnÞ. The problem of PMT can be solved by using PIR in the
following way.: database X is stored in a Bloom or Cuckoo filter. Then the
PIR is used to fetch specific items from the filter. Values of these items are
sufficient to perform the PMT. Section 2.5 gives an example of the PIR
protocol.

In a Private Set Intersection (PSI) protocol, the server and the client
compute the intersection of their private sets together, i.e., at the end
they only learn their joint inputs. The PMT can be considered as a special
case of the PSI, where the client's set has one single element. In this case,
the emptiness or non-emptiness of the intersection of sets S and C
determines the result of a membership test. In a recent article by Pinkas
et al. [16], a PSI protocol based on Oblivious Transfer [17] has been
presented. Although the results of [16] are promising for general use
cases of the PSI, they are nevertheless infeasible in our case scenario. This
is because these PSI protocols have too high communication complexity
for practical on-line malware checking. We later show that the commu-
nication complexity of our protocol is significantly lower than that of the
protocol in Ref. [16].

Utilizing Trusted Hardware (TH) is another approach to solve the
problem of PMT, e.g., in Ref. [18]. However, in this paper, we do not
want to assume any special properties of the used computing platform.

In Ref. [19], Meskanen et al. presented three unique protocols with
three different cryptosystems to perform the PMT with Bloom filters. The
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main idea in Ref. [19] is to deliver an encrypted version of the database
to the client, so that the query can be done independent of the server. In
the protocols, the server S either stores database X into B, encrypts it,
and sends the encrypted Bloom filter EB to the client C , or stores an
encrypted database into B and sends the filter B to C . Finally, C com-
putes l positions of the filter corresponding to x, and with the server's
help, decrypts these l bits of EB or B. The protocols have communication

complexity of O

 
� n lnε

ðln 2Þ2

!
because of the size of the (encrypted) Bloom

filter.
In this paper we present a protocol to perform PMT using homo-

morphic encryption. Our protocol improves the results of [19] and has a

communication complexity that is significantly smaller than O

 
�

n lnε
ðln 2Þ2

!
, which makes it feasible in practice. The improvement is neces-

sary because the server needs to respond to many clients at the same
time. Our protocol has a much lower communication complexity, and
reduces the bandwidth usage on the server's side significantly. Moreover,
the preprocessing speed in our protocol is at least four orders of magni-
tude faster than the preprocessing in protocols of [19]. Table 8 in Sect. 8
also compares the performance of the protocols in Refs. [16,19] with our
protocol.

5. The protocol

In this section, we present our protocol to solve the PMT problem. We
assume that a server S has a database X that consists of n records. Each
record is an s-bit string where s is an integer such that 2s > n. Let X ¼
fh1;h2;…;hng. We also assume that a client C possesses an item x and
wants to perform PMT for this item through database X.

The server picks a public-key cryptosystem ðP;C;K;Ek;Dsk Þ where P;
C and K are plaintext, ciphertext and key space, respectively. Moreover,
Ek : P → C is the encryption function and Dsk : C → P is the decryption
function, where k is the public key and sk is the secret key in space K. For
simplicity, we assume that the elements of P and C have fixed lengths lP
and lC, respectively. The lengths are known for both S andC . Moreover,
we assume that the elements of P are integers 0; 1;2;…;N� 1, whenN ¼
jPj; and that the elements of C are non-negative integers. S computes an
integer e such that Ne < maxðCÞ � Nðeþ1Þ. We require the cryptosystem
to be additively homomorphic, i.e., for all the plaintexts x1;x2 2 P:

Ekðx1Þ �Ekðx2Þ ¼ Ekðx1 þ x2Þ:
Here, on the right side, 'þ'' is an operation inside P. On the left hand

side, ’'� is an operation inside C.
4

5.1. The protocol on 2-dimensional approach

The server S divides X into 22a subsets, where 2a � s. Each subset
holds the elements of X that start with the same prefix of 2a bits. The
server S picks l hash functions for a Bloom filter or one hash function for
a Cuckoo filter depending on which data structure the server uses. The
server S stores each subset into a Bloom/Cuckoo filter with a false
positive rate of ε. Each Bloom filter is an array of � n lnε

ðln 2Þ2 � 1
22a bits and each

Cuckoo filter is an array of ðdlog2ð1=εÞ þ 2e=αÞ �
�

n
22a

�
bits. The server S

and the client C agree on the filter and its hash function(s) before
executing the protocol. The server constructs a 2a � 2a matrix M and
inserts the filters intoM, as it is shown in Equation (12). In this matrix, Fi;j
is a filter that contains all elements of X that begin with the binary rep-
resentation of ijjj.

M ¼

0
BBBB@

F0;0 F0;1 ⋯ F0;2a�1

F1;0 F1;1 ⋯ F1;2a�1

⋮ ⋮ ⋱ ⋮
F2a�1;0 F2a�1;1 ⋯ F2a�1;2a�1

1
CCCCA (12)

We call this a 2-dimensional approach, because the matrix is a two
dimensional object. In the next subsection, we explain the N -dimen-
sional approach.

In order to be able to encrypt elements of M individually, those ele-
ments should belong to P. Therefore, the matrix M is sliced into b
matricesM1;…;Mb, by dividing elements ofM into smaller pieces in such
a way that the elements in these new matrices can be read as integers

smaller than N. Thus Fi;j ¼ F1
i;j

������F2
i;j

������⋯������Fb
i;j, where Fγ

i;j is an element of

matrix Mγ . Equation (13) shows how the matrices Mγ look like.
The server S considers each element Fγ

i;j as a binary number.
Therefore, each filter Fi;j is interpreted as an ordered set of b integers.

M1 ¼

2
664

F1
0;0 ⋯ F1

0;2a�1
⋮ ⋱

F1
2a�1;0 ⋯ F1

2a�1;2a�1

3
775

;⋯;

Mb ¼

2
664

Fb
0;0 ⋯ Fb

0;2a�1
⋮ ⋱

Fb
2a�1;0 ⋯ Fb

2a�1;2a�1

3
775

(13)

The client C wants to perform the PMT for an item x. The client
extracts a2a-bit prefix from x, divides the prefix into two halves and
computes the decimal representation of these halves as i
 and j
. Then,C
computes vectors α and β as follows:
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α ¼ ðEkðIð1; i
ÞÞ;…;EkðIð2a; i
ÞÞÞ and
β ¼ ðEkðIð1; j
ÞÞ;…;EkðIð2a; j
ÞÞÞ;

where Iðt; t 'Þ ¼ 1, if t ¼ t ', ;and Iðt; t 'Þ ¼ 0 otherwise.
Now, C has 2a þ 2a encrypted values. The client C sends vectors α

and β and the public key k to the server.
For every matrixMγ , γ ¼ 1;…;b, the server S performs the following

calculations.:

1. S computes a vector σγ ¼ ðσγ1;…;σγ2a Þ, where each element σγi equals

to
Q2a

t¼1ðβtÞF
γ
i;t .

2. For each element σγi of the vector σ
γ , the server computes ai;e;…;ai;0 2

P, such that σγi is equal to ai;eNe þ ai;e�1Ne�1 þ …þ ai;0N0.
3. S computes vector Uγ ¼ ðUγ;0;…; Uγ;eÞ, where each Uγ;i equals toQ2a

t¼1ðαtÞat;j .

The server S repeats steps 1–3 for every matrix Mγ and sends U ¼
fU1;…;Ubg to the client.

For every Uγ in U, the client computes:

Dsk

�
Dsk ðUγ;eÞ �Ne þ Dsk ðUγ;e�1Þ �Ne�1 þ…þ Dsk ðUγ;0Þ �N0

�
(14)

and retrieves Fγ
i
;j
 . The client C calculates the binary representation of

Fγ
i
 ;j
 for 1� γ � b, concatenates them together, and gets a smaller Bloom/

Cuckoo filter to perform the query by himself/herself. An overview of
this protocol is shown in Fig. 1.

The proof of the correctness of our scheme is similar to the reasoning
that is given by Chang in Ref. [6]. In our protocol, we use an additively
homomorphic encryption scheme and therefore, for every 1� γ � b, the
components σγi of the vector σ

γ are the encryptions of Fγ
i;j
 , where 1� i �

2a, because all components ofβt , 1� t � 2a, of the vector β are encryp-
tions of zeros, except βj
 , which is an encryption of one. Similarly, every
Uγ;i is an encryption of ai
 ;j, where 0� j � e. Therefore, when the client
uses Eq. (14), first he/she computes all Dsk ðUγ;iÞ ¼ ai
;j and gets
ðai
 ;eÞ �Ne þ ðai
 ;e�1Þ �Ne�1 þ …þ ðai
 ;0Þ �N0, which is equal to σγi
 .
Consequently, Dsk ðσγi
 Þ ¼ Fγ

i
 ;j
 .
The protocol of Chang [6] is a special case of the PIR phase of our

protocol, where the cryptosystem is Paillier [11] and there is only one h�
h matrix with n entries of equal length of s bits. Table 2 lists the
computation complexities of our protocol and the protocol of [6]. When
n ¼ 220, h ¼ 210, b ¼ 32, a ¼ 4 and utilizing Bloom filters in our pro-
tocol, it can be derived from Table 2 that a server utilizing Chang's
protocol performs 114 times more modular exponentiations than a server
using our protocol.

The size of the filter retrieved by the client depends on the value of a.
A larger a leads to a smaller filter. On the other hand, the larger a makes
the homomorphic encryption computationally expensive. We imple-
mented this protocol for a database of more than twomillion elements. In
order to make the protocol fast enough for industrial use cases, we as-
sume that the client is willing to reveal a small prefix of x. Let us assume
that x is a string of 160 bits and C reveals a 4-bit prefix of that to S . The
only information S obtains is that x belongs to a subset of size 1 =16 of
the database. On the other hand, this makes the database smaller and
reduces the amount of computation and communication significantly.
Table 2
Computation cost of the PIR phase of our protocol and the protocol of [6]. The
size of the two-dimensional database in Chang's protocol is h� h. We utilize b
matrices of size 2a � 2a in our protocol.

Protocol Computation on client-side Computation on server-side

Chang's Protocol 2h encryptions h2 þ h mod. exp.
Our Protocol 2 �2a encryptions bð22a þ 2 �2aÞ mod. exp.
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5.2. The protocol on N -dimensional approach

In this subsection we show that our protocol can be generalized in the
form that utilizes more than two dimensions to build the data structure.

For the sake of simplicity, we explain the 3-dimensional case in de-
tails. And at the end of this subsection, we explain how this approach can
be used with even higher dimensions.

As shown in the previous subsection, the 2-dimensional approach is
built on top of the 1-dimensional case, i.e., we consider each 2a � 2a

matrix as a data structure of 2a rows. We use the same logic to perform
PIR on a 3-dimensional data structure (a cube). Thus, each 2a �2a � 2a

cube consists of 2a matrices and each of those matrices consists of 2a

rows. This approach is detailed in the following subsection.
The server S divides X into 23a subsets, such that each holds the

elements of X that begin with the same prefix of 3a bits. If S uses a
Bloom filter as the data structure,S it picks l hash functions for this filter;
otherwise, the server picks one hash function for a Cuckoo filter. Before
executing the protocol, the server S and the client C make an agree-
ment on the filter and its hash function(s). The server S picks a Bloom/
Cuckoo filter with a false positive rate of ε and stores each subset into this
filter. Each Bloom filter is an array of � n lnε

ðln 2Þ2 � 1
23a bits and each Cuckoo

filter is an array of ðdlog2ð1=εÞ þ 2e=αÞ �
�

n
23a

�
bits.

The server S constructs a 3-dimensional hypercube K and inserts
the filters intoK . In this 3-dimensional hypercube, each element Fi;j;k is a
filter that contains all elements of X that begin with the binary repre-
sentation of ijjjjjk.

The server S slices the 3-dimensional hypercube K into b 3-dimen-
sional hypercubes K 1;…;K b by dividing elements of K into smaller
pieces in such a way that the elements in these new 3-dimensional hy-
percubes can be read as integers smaller than N. Thus Fi;j;k ¼
F1
i;j;k

������F2
i;j;k

������⋯������Fb
i;j;k, where Fγ

i;j;k is an element of 3-dimensional hypercube

K γ.
The server S considers each element Fγ

i;j;k as a binary number.

Therefore, each filter Fi;j;k is interpreted as an ordered set of b integers.
The client C wants to privately search the server's database for an

item x. The client extracts a3a-bit prefix from x, divides the prefix into 3
parts and interprets these as integers i
, j
, k
. Then, C computes vectors
α, β, η as follows:

α ¼ ðEkðIð1; i
ÞÞ;…;EkðIð2a; i
ÞÞÞ;

β ¼ ðEkðIð1; j
ÞÞ;…;EkðIð2a; j
ÞÞÞ;

η ¼ ðEkðIð1; k
ÞÞ;…;EkðIð2a; k
ÞÞÞ;
where Iðt; t 'Þ ¼ 1, if t ¼ t ' ;and Iðt; t 'Þ ¼ 0 otherwise.
Now, the client C has 2a þ2a þ 2a encrypted values. The client C

sends vectors α, β and η and the public key k to the server.
The server S computes the PIR on the 3-dimensional hypercube by

considering the cube as 2a matrices, as follows:

1. The server S first computes a matrix σγ for each cube K γ, such that

the elements of the matrix σγ are σγi;j ¼
Q2a

t¼1ðηtÞF
γ
i;j;t .

2. For each element σγi;j of σ
γ , the server computes ai;j;e;…; ai;j;0 2 P such

that σγi;j ¼ ai;j;eNe þ ai;j;e�1Ne�1 þ …þ ai;j;0N0.

3. S computes vectors τγi ¼ ðτγi;0;…; τγi;eÞ, where τγi;j ¼
Q2a

t¼1ðβtÞai;t;j and
0� j � e.

4 For each element τγi;j, the server computes a'i;j;e;…; a'i;j;0 2 P such that

τγi;j ¼ a'i;j;eN
e þ a'i;j;e�1N

e�1 þ …þ a'i;j;0N
0

5. S computes vector Uγ ¼ ðUγ
0;0;…;Uγ

e;eÞ, where each component of

vector Uγ is calculated as Uγ
i;j ¼

Q2a
t¼1ðαtÞa't;i;j , where 0� i; j � e and

1� γ � b.
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The server S repeats steps 1–5 for every cubeK γ and sendsU ¼ fU1;

…;Ubg to the client.
For every Uγ in U, the client computes:

Dsk

�
Dsk

�
Dsk

�
Uγ

e;e

	
�Ne þ Dsk

�
Uγ

e�1;e

	
�Ne�1 þ…þ

Dsk

�
Uγ

0;e

	
�N0
	

Dsk

�
Uγ

0;0

	
�N0
	
�N0
	
¼ Fγ

i* ;j* ;k*

(15)

The clientC calculates the binary representation of Fγ
i
 ;j
 ;k
 for 1� γ �

b, concatenates them together, and gets a smaller Bloom/Cuckoo filter to
perform the query on by himself/herself.

Now, we use the same logic to show how our protocol can be
formalized using an N - dimensional data structure.

The server S performs PIR on the N -dimensional hypercube in a
recursive manner, such that each N -dimensional 2N a hypercube consists
of 2a (N -1)-dimensional hypercubes, each of those (N �1)-dimensional
hypercubes consists of 2a (N -2)-dimensional hypercubes, etc. Therefore,
each N -dimensional 2N a hypercube consists of 2N a�2 matrices.

The communication complexity of our protocol on an N -dimensional
database is as follows:

� The clientC sends the encrypted values α1, α2,…, αN of the total size
N � 2a � lC to the server.

� The server S generates ðeþ 1ÞN �1 encrypted values of size lC per
data structure and there are b smaller data structures. Therefore, S
sends b � lC � ðeþ 1ÞN �1 bits of information to the client.

Section 7 presents the implementations of our protocol on 2-dimen-
sional, 3-dimensional and 4-dimensional approaches.

6. Complexity analysis

In this section, we analyse the computation and communication
complexities of our protocol. In our computations, we first assume that b,
which is the number of hypercubes, is equal to 1. This is done because the
same amount of computation and communication happen for each hy-
percube. Then, we can simply multiply the results with b to get the for-
mulas in the general case.

In our analysis, we use Paillier cryptosystem in the PIR phase of our
protocol. This means that e ¼ 1 and cryptotexts are twice the size of the
plaintexts. We assume that the size of the Bloom/Cuckoo filter is 2c and it
is inserted into an N -dimensional data structure. If the size of the public
key N in Paillier is 211 (as mentioned earlier, this is an appropriate size
according to the current state of art), then the capacity of the data
structure in N -dimensional approach is 211þaN . In the following anal-
ysis, we find the optimal choices of N and a in order to minimize the
communication complexity and the computation complexity.

In order to optimize both computation and communication com-
plexities, the parameters a and N should be chosen in such a way that
there is no emptiness in the data structure. This means 211þaN � 2c, and
therefore 11 þ aN � c;also 11þ ða� 1ÞN < c and 11þ aðN � 1Þ < c,
because otherwise we could fit the filter into a data structure with smaller
dimensions.

The value of parameter b is 1, if c� 11þ aN ;and b ¼ 2c�ð11þaN Þ

otherwise.

6.1. Computation complexity

In order to calculate the computation costs of our protocol, it is
enough if we only count the number of modular exponentiations because
their cost is dominant in our computations.

We claim that the number of modular exponentiations on the server
side can be obtained by the following formula:
6

Cs
comp ¼ b 2N a þ 2 � 2ðN �1Þa þ 22 � 2ðN �2Þaþ� (16)
�
23 � 2ðN �3Þa þ…þ 2ðN �1Þ � 2a

Let us first assume that b ¼ 1. For that case, we next prove the above
equation by induction.

Base case: We show that Equation (16) holds for N ¼ 2. Assum N ¼
2, the server needs to perform 22a modular exponentiations to compute
vector σ1, then 2a modular exponentiations to compute U1;0, and 2a

modular exponentiations to compute U1;1 (see section 5.1). Therefore,
the server needs to perform 22a þ2 �2a computations, and thus we
showed that the base case holds.

Inductive step: We show that if Equation (16) holds for N ¼ k, then it
holds for N ¼ kþ 1. We assume that the server needs to perform

2ka þ 2 � 2ðk�1Þa þ 22 � 2ðk�2Þa þ 23 � 2ðk�3Þa þ…þ 2ðk�1Þ � 2a

computations to compute one k-dimensional hypercube. As we
explained in section 5.2, each ðkþ 1Þ-dimensional hypercube consists of
2a k-dimensional hypercubes. For each of these 2a hypercubes, the server
needs to perform

2a � �2ka þ 2 � 2ðk�1Þa þ 22 � 2ðk�2Þa þ 23 � 2ðk�3Þa þ…þ 2ðk�1Þ � 2a�
computations.

The server gets 2k�1 encrypted values from recursively processing the
2a k-dimensional hypercubes, each of the size of the modulus N2 (and
therefore each encrypted value has 212 bits). The server computes U1;0

and U1;1 for each encrypted value and therefore obtains 2 � 2k�1 values.
Then, the server performs 2a computations for each of these values, as
explained in step 5 of section 5.2. Therefore, the server performs

2a
�
2ka þ 2 � 2ðk�1Þa þ 22 � 2ðk�2Þa þ…þ 2ðk�1Þ � 2a�þ 2 � 2k�1 � 2a

modular exponentiations to compute a ðkþ 1Þ-dimensional hyper-
cube. So, the Equation (16) holds in the case b ¼ 1. The Equation (16)
also holds for an arbitrary value of b, because in that case the computa-
tion contains b different parts, each of which has the cost equal to the cost
of the case of b ¼ 1. Therefore, the Equation (16) is proven.

The value in the parenthesis on the right side of Equation (16) is a
geometric series. Therefore, we can simplify Equation (16). The common
ratio is q ¼ 2a�1 and the first term of the series is a0 ¼ 2ðN �1Þ � 2a.
Therefore, the sum of this geometric series is:

Cs
comp ¼ 2N a þ 2 � 2ðN �1Þa þ 22 � 2ðN �2Þa þ 23 � 2ðN �3Þa þ…þ 2ðN �1Þ � 2a

¼ 2ðN �1Þ � 2a � 2
N a�N � 1
2a�1 � 1

The server repeats the above number of computations b times. Thus,
in the general case, where b ¼ 2c�ð11þaN Þ, the computation complexity on
the server side is:

Cs
comp ¼ 2c�ð11þaN Þ � 2ðN �1Þ � 2a � 2

N a�N � 1
2a�1 � 1

¼
�
2N a�N � 1

��
2c�11�ða�1ÞðN �1Þ�

2a�1 � 1
:

(17)

Moreover, the computation cost on the client side is N 2a. This is
because of the fact that the client computes 2a encrypted values for each
dimension. The computation complexity of the protocol, which is
measured by the number of modular exponentiations, is:

Ccomp ¼
�
2N a�N � 1

��
2c�11�ða�1ÞðN �1Þ�

2a�1 � 1
þ N 2a: (18)

6.2. Communication complexity

We measure the communication complexity by the number of
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encrypted values. This is justified because all communication between
the server and the client is encrypted. To get the communication
complexity in bits, we need to multiply the number of encrypted values
by 212 (size of the modulus N2).

The client sends 2a encrypted values for each dimension to the server.
This means the communication complexity of the protocol from the client
side is N 2a. Let us again assume that b ¼ 1. We claim that the
communication complexity from the server side is 2N �1.

Proof by induction:
Base case: The statement holds for N ¼ 2, because the server gen-

erates 2 encrypted values for a matrix and therefore sends 2 encrypted
values to the client.

Inductive step: We assume that the server generates 2k�1 encrypted
values for a k-dimensional data structure. We know that a ðkþ
1Þ-dimensional data structure consists of 2a k-dimensional data struc-
tures. The server S computes U1;0 and U1;1 for each encrypted value and
therefore generates 2� 2k�1 values. Thus, the statement holds.

The server generates the above number of encrypted values b times.
Thus, in the general case where b ¼ 2c�ð11þaN Þ, the communication
complexity of the protocol measured by the number of encrypted values
is:

Ccomm ¼ 2c�ð11þaN Þ � 2N �1 þ N 2a: (19)

6.3. Further discussion on relevant special cases

As it is explained above, 11 þ aN � c, and therefore, aN � c� 11.
We have calculated the possible values for ðN ; aÞ when 15� c � 55.
These choices of c give us a realistic range for the size of the Bloom/
Cuckoo filter (from relatively small filters to large ones). For instance,
when c ¼ 15, the possible values for ðN ; aÞ are ð1;1Þ; ð1;2Þ; ð2;1Þ; ð1;3Þ;
ð3; 1Þ; ð1;4Þ; ð4; 1Þ and ð2; 2Þ. However, we assume that N � 2, because
N ¼ 1 leads to the biggest possible computation cost from the server
side. Therefore, we have omitted the pairs that have the value 1 for N
and computed the communication and computation costs of the protocol
with the remaining pairs. In other words, we numerically found the
optimal values for ðN ; aÞ when 15� c � 55. Our calculations show that
always when N ¼ 2 and a is the maximum possible value among all
possibilities explained above, the protocol has the minimal computation
costs. We can calculate the maximal a by using the following equation:
Fig. 2. In this plot, we present the values N and a when c 2 f15;16;…;55g to ac
dimensions in the data structure, 2a is the number of entries per dimension in a hyper
such that the communication complexity is minimal.
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c� 11
2

¼ a: (20)


 �

Equation (20) holds because by replacing N ¼ 2 in Equation (18), we
get the following function for variable a:

CcompðaÞ¼ 2c�11 þ 2c�a�10 þ 2aþ1:

In order to find the optimal value for a, we should solve:

dCcompðaÞ
da

¼ 0þ lnð2Þð�1Þ2c�a�10 þ lnð2Þ2aþ1 ¼ 0:

We get 2aþ1 ¼ 2c�a�10, and therefore, c�11
2 ¼ a. As a is always an

integer, and a� 1 should be smaller than ðc� 11Þ =2, it follows that

c�11
2

�
¼ a.

Similarly to what we've explained above, the optimum value for the
communication complexity of the protocol can also be found numeri-
cally. Fig. 2 shows the optimum values for N and a to achieve the lowest
bandwidth usage, when c 2 f15;16;…;55g. We notice from Fig. 2 that
when c increases, both N and a increase as well. The optimum point is
where the dimension N is roughly 50% bigger than a. If N and a could
be any real numbers, then the "optimal" line would be a � 2=3N . Fig. 2
shows this optimal line.

We also studied the optimal values for N and a, when c 2 f15;16;…;

55g, with regards to the computation complexity. The result was that we
always achieve the optimal computation complexity when N ¼ 2.

7. Implementation

In Sect. 5, we have presented a protocol to solve the problem of PMT.
In this section we'll implement our protocol based on a realistic scenario.
We assume that the server S has a database of 221 (more than two
million) malware samples. In order to prevent the malware from
spreading,S computes the SHA-1 values of the database items and stores
them in a set X. Each SHA-1 value has 160 bits, therefore the size of X is
40MB. A client C has a file with SHA-1 value x and C wants to check
whether the file is malicious or not.

As explained before, the client C wants to be sure that his/her file is
clean, and therefore a false negative (meaning the file contains malware
but the result of the query shows that the file is clean) is considered to be
hieve the minimal communication complexity. Parameter N is the number of
cube, and 2c is the size of the Bloom/Cuckoo filter. For each c, we found N and a
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unsafe in our setting. On the other hand, false positives are not as
dangerous as false negatives. This asymmetry is due to the fact that, as
explained earlier, in the case of positive response, the client sends the
fingerprint of the file to the server. This means false positives would be
noticed in this follow-up phase. The only harm is the loss of privacy with
respect to the files that lead to false positives. Our proposed protocol has
a small false positive rate but zero false negative rate. Therefore, among
other reasons, utilizing our protocol is suitable for on-line malware
checking.

We assume that revealing a small part of the database to C is
acceptable to S . Moreover, in order to make the protocol faster, in this
section, we assume that the client reveals the first 4 bits of his/her SHA-1
value to the server. However, in the general case, the client does not need
to reveal any bits of his/her SHA-1 value to the server.
Table 3
Summary of time complexities using different filters on a 2-dimensional data-
base. The size of the database is 217. We performed our protocol on a 23 � 23

matrix.

Protocol on a 2-dimensional
database

Preprocessing
by C

Query
for S

Query
for C

Our Protocol with Bloom Filter 1.8 s 0.9 s �5 s
Our Protocol with Cuckoo Filter 1.8 s 0.75 s �1 s

Table 4
Summary of time complexities using different filters on a 3-dimensional data-
base. The size of the database is 217. We performed our protocol on a 23 �23 � 23

cube.

Protocol on a 3-dimensional
database

Preprocessing
by C

Query
for S

Query
for C

Our Protocol with Bloom Filter 2.7 s 0.95 s �12 s
Our Protocol with Cuckoo Filter 2.7 s 0.8 s �2.5 s
7.1. Implementation on 2-dimensional approach

We implement the protocol as follows:

1. The client C reveals the first 4 bits of his/her SHA-1 value to the
server.

2. The client C generates two distinct 210bit prime numbers p and q
based on the setting of Paillier cryptosystem. Therefore, modulus N ¼
pq has 211 bits. C picks g (for instance g ¼ Nþ 1) and then defines
Egðc; dÞ and DgðwÞ respectively as encryption and decryption
functions.

3. The serverS stores the 221 SHA-1 values in 16 different subsets based
on the first 4 bits of hash values. Therefore, each subset has approx-
imately 217 items. S knows which subset C is interested in.

4. S picks the value a ¼ 3, and therefore divides the subset into 64
segments, each with approximately 211 items.S inserts each segment
into a Bloom filter with 10 hash functions or a Cuckoo filter. The false
positive rate of the filters is 0.001. The value α ¼ 95:5% is picked for
the Cuckoo filter. The size of the Bloom and Cuckoo filter are 215 and
12:57� 211 bits, respectively.

5. S divides each filter into 16 parts (b ¼ 16). Each part of the Bloom
and Cuckoo filters has 211 ¼ 2048 and 1608 bits, respectively. S
arranges Mγ , where 1� γ � 16.

6. C calculates i
, j
, α and β, and sends N2, α and β to S .
7. For all matrices Mγ , S computes vectors σγ and Uγ .
8. The server S sends U and the hash functions of the filters to C .
9. The client C decrypts all the sixteen results utilizing Equation (15),

where e ¼ 1, computes the binary representation of the results and
concatenates them in the same order as the server has sent them and
performs membership test without the server.

Communication complexities of this protocol are as follows: C sends
23 þ 23 encryptions to the server. These encryptions are of the size of
modulus N2 and therefore are of the size of 4096 bits. This means C
sends 8 KB of data to S . S generates 16� 2 results, each of the size of
the modulus N2. Therefore, S sends 16 KB of data to C .

The execution time of this setting depends on the processor which has
been used to perform the computation. We used an x86-64 Intel Core i5
processor clocked at 2.7 GHz with a 4MB L3 cache to implement this
protocol. It takes 1.8 s for the client to encrypt 2� 23 indices. The
computation time on the server side depends on the filter which has been
used. The server that utilizes a Bloom/Cuckoo filter does the computa-
tion on one matrix in 1.8 s/1.5 s. In order to calculate all 16 matrices, it is
possible to run the protocol in parallel and keep the execution time as
1.8 s/1.5 s. If the server uses an Intel Xeon processor, the workload can be
done with 32 threads and the total time for generating the set of re-
sponses will be 0.75 s. We assume that C first calculates the positions of
the filter that correspond to value x and then decrypts just the responses
that contains those positions. Therefore, decrypting all responses is not
necessary for C . The client C needs 0.5 s to decrypt one response and at
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most 5 s/1 s to retrieve 10 indices/2 indices of the Bloom/Cuckoo filter.
Let us now consider a modification where the client C makes a query

for matrices Mγ one-by-one until he/she has enough information to
decide whether x 2 X. Then the communication and computation com-
plexities can be reduced on both sides in average. On the other hand, this
modification would increase the average number of needed round-trips.
In the best case, querying one matrix is enough to conclude that x 62 X.
This is the case for both Bloom and Cuckoo filters. For Bloom filters, the
worst case is where the client has to query for l matrices (where l is the
number of hash functions in the Bloom filter). For Cuckoo filters, the
client has to query at most two matrices. This modification gives, how-
ever, some extra information to S about x.

Actually, the communication complexity of our implemented proto-
col could be reduced in the case of the Cuckoo filter by storing the filter in
13 parts instead of 16 parts in step 5. This would imply similar reduction
in communication complexity. However, the computational complexity
would not be reduced significantly because bigger elements in the matrix
would imply longer exponents in Equation (9).

Time complexities of our implementation are summarized in Table 3.
If the client does not reveal the four bits of hash value, the processing
time for S needs to be multiplied by 16. In this case b ¼ 256.
7.2. Implementation on 3-dimensional approach

To implement the protocol on a 3-dimensional database, we use the
same parameters as explained in subsection 7.1. We assume that there are
221 malware samples in the database of the server. The client reveals the
first 4 bits of the hash value x. Now the server knows which subset the
client is interested in. There are approximately 217 samples in each
subset. The server picks the value a ¼ 3, divides the subset that the client
is interested in into 512 segments and inserts each segment into a Bloom/
Cuckoo filter. There are 4096 bits in each filter so the server gets 2 cubes
of the size 23 �23 � 23 when each filter is divided into 2 segments as
explained in section 5.

Communication complexities of this protocol on a 3-dimensional data
structure are as follows: C sends 23 þ23 þ 23 encryptions to the server.
These encryptions are of the size of the modulus N2, i.e., 4096 bits. This
means C sends 12 KB of data to S . The server S generates 4 results for
each cube and, a total of 2� 4 results, each of the size of the modulus N2.
Therefore, S sends 4 KB of data to C .

The time consumption of our implementations can be found in
Table 4.
7.3. Implementation on 4-dimensional approach

The implementation of our protocol on a 4-dimensional database is



Table 5
Summary of time complexities using different filters on a 4-dimensional
approach. The size of the database is 217. We performed our protocol on a
22 �22 � 22 � 22 4-hypercube.

Protocol on a 4-dimensional
database

Preprocessing
by C

Query
for S

Query
for C

Our Protocol with Bloom Filter 1.8 s 1.6 s �26 s
Our Protocol with Cuckoo Filter 1.8 s 1.4 s �5.3 s
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similar to the previous subsections. For simplicity, we use the same pa-
rameters as explained in Subsection 7.1. Here again, the client reveals the
first 4 bits of the hash value x and there are approximately 217 samples in
the subset that the client is interested in. The server arranges a 4-dimen-
sional hypercube of the size 22 � 22 � 22 � 22, divides the subset that the
client is interested in into 256 segments, and inserts each segment into a
Bloom/Cuckoo filter and then into four 4-dimensional hypercubes as
explained in Section 5.

Communication complexities of this protocol on the 4-dimensional
database are as follows: C sends 22 þ22 þ 22 þ 22 encryptions to the
server. These encryptions are of the size of the modulus N2 and therefore
are of the size of 4096 bits. This means C sends 8 KB data to S . The
server S computes 8 results per data structure, therefore, S generates
4� 8 results, each of the size of the modulus N2. Therefore, S sends
16 KB data to C .

Table 5 shows the efficiency of our implementations.
7.4. Performance evaluation

So far we assume that the size of the database is 221. In the malware
case, this database size is realistic. Moreover, we assume that the client
reveals the first four bits of his/her hash value to the server. This keeps
the execution time of the protocol (on the server side) less than 1 s. Now,
we repeat the same implementation for databases ofbigger sizes. Here-
Table 6
Sing different database sizes on 3 different dimensions when the value of a ¼ 3.

DB Size Dimensions b Preprocessing by C

221 2-dimensional 28 1.8 s
3-dimensional 25 2.7 s
4-dimensional 22 3.6 s

223 2-dimensional 210 1.8 s
3-dimensional 27 2.7 s
4-dimensional 24 3.6 s

225 2-dimensional 212 1.8 s
3-dimensional 29 2.7 s
4-dimensional 26 3.6 s

Table 7
Summary of complexities using different database sizes on 3 different dimensions wh

DB Size Dimensions b Preprocessing by C

221 2-dimensional 26 3.6 s
3-dimensional 22 5.4 s
4-dimensional 1 7.2 s

223 2-dimensional 28 3.6 s
3-dimensional 24 5.4 s
4-dimensional 1 7.2 s

225 2-dimensional 210 3.6 s
3-dimensional 26 5.4 s
4-dimensional 22 7.2 s
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after, we assume that the client does not reveal any bits of his/her hash
item.

In this part, we evaluate the performance of our protocol for 3
different database sizes on 3 different dimensions of the data structures.
We report the summary of complexities in Table 6 when a ¼ 3, and in
Table 7 when a ¼ 4. The size of modulus N is 2048 bits. The elements in
the matrix, cube etc. are of the size of 2048 bits, except when a ¼ 4, the
data structure is 4-dimensional and the database size is 221. In this case,
the entries of the 4-hypercube are of the size of 512 bits, because there
are 216 entries in this data structure and a total of 225 bits of data. Ta-
bles 6 and 7 are also illustrated in Fig. 3.

We assume that the server uses 32 threads to compute PIR on
hypercubes.

For simplicity, we assume in this paper that the database is inserted
into a symmetrically shaped data structure. In the more general case, the
data structure can also be a hyper-rectangle, i.e., the number of entries
for each dimension can be different. In other words, the choice of a could
be varied in each dimension, but we leave this for further study.

We analyse the performance of our protocol for databases of sizes 221,
223 and 225, and data structures of three different dimensions where the
value for parameter a is 3 or 4. Next we explain how we choose pa-
rameters for the performance analysis. It can be seen from Fig. 2 that the
optimal parameter combinations with respect to communication
complexity are as follows: For database size 225, we have c ¼ 29 and the
optimum is reached when a ¼ 3, N ¼ 6. For database size 223, we have
c ¼ 27 and there are two optimal combinations: a ¼ 3, N ¼ 5 ;and a ¼
4, N ¼ 4. For database size 221, we have c ¼ 25 and there are, again,
two optimal combinations: a ¼ 3, N ¼ 4 ;and a ¼ 4, N ¼ 3. On the
other hand, from the point of view of computational complexity, the
optimal combinations are as follows:

� for database size 225, a ¼ 9, N ¼ 2;
� for database size 223, a ¼ 8, N ¼ 2;
Query for S Query for C Comm. Compl.

C → S S → C

14.4 s 0.5 s 8 256
20.6 s 1.2 s 12 64
22.2 s 2.6 s 16 16

57.6 s 0.5 s 8 1024
82.4 s 1.2 s 12 256
88.8 s 2.6 s 16 64

230.4 s 0.5 s 8 4096
329.6 s 1.2 s 12 1024
355.2 s 2.6 s 16 256

en the value of a ¼ 4.

Query for S Query for C Comm. Compl.

C → S S → C

13 s 0.5 s 16 64
15.8 s 1.2 s 24 8
20 s 2.6 s 32 4

52 s 0.5 s 16 256
63.2 s 1.2 s 24 32
64.8 s 2.6 s 32 4

208 s 0.5 s 16 1024
252.8 s 1.2 s 24 128
259.2 s 2.6 s 32 16



Fig. 3. In each line, for each of the six cases, there are
three data points and from left to right. They represent
databases of the sizes of 221, 223 and 225. The x-axis
shows the time complexity of the protocol in seconds,
and the y-axis shows the communication complexity of
the protocol in KB. The blue lines present the 2-dimen-
sional hypercubes, the green lines present the 3-
dimensional hypercubes and the red ones present the
4-dimensional hypercubes. The open dots are used
when the value of parameter a is equal to and the
closed dots correspond to the value 4 for parameter a.

Table 8
Comparison of performances between our protocol and the previous arts, when the set size is 221 and the time complexity is approximated for an Intel processor. Here
the communication complexity of the protocol by Pinkas et al. is obtained from Table 7 of [16], where n1 ¼ 221 and n2 ¼ 1. In this table, perfect privacy and no privacy
are respectively denoted byþþ and � . Moreover, revealing a few bits of extra information to the other party is shown by þ , andþ� shows that the client obtains even
more information.

Protocol Privacy Privacy Communication Time Complexity

for Client for Server Complexity Pre-process On-line

Pinkas et al. [16] þ þ þ þ 80MB 0 sec
Meskanen et al. [19] þ þ þ 4MB hours ms
Trivial Solution þ þ � 4MB 0 minimal
Our Protocol on 2-d database þ þ � 24 KB sec sec
Our Protocol on 3-d database þ þ � 16 KB sec sec
Our Protocol on 4-d database þ þ � 24 KB sec sec
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� for database size 221, a ¼ 7, N ¼ 2.

We have chosen values a ¼ 3 and a ¼ 4 because of the low commu-
nication complexity, whereas low dimension values N ¼ 2, N ¼ 3 and
N ¼ 4 are chosen because of the low computational complexity225.

Fig. 3 shows that 2-dimensional data structures are the best choices
from the point of view of time complexity, and 4-dimensional data
structures are the worst. From the point of viewof communication
complexity, the performances are in the opposite order for databases of
sizes 223 and 225.

One observation for databases of sizes 223 and 225 is that a ¼ 4 has
better performance than a ¼ 3. The 2-dimensional data structure when
a ¼ 3 always has the worst communication complexity, the 2-dimen-
sional structure with a ¼ 4 and the 3-dimensional structure with a ¼ 3
are the next. The choice of a 4-dimensional structure with a ¼ 4 gives a
significantly smaller communication complexity than the 2-dimensional
data structures. For the database size 221, the order of different parameter
combinations is not the same as those for databases of bigger sizes.

8. Security and privacy analysis

In this section we present security and privacy analyse of the protocol.
We analyse the main protocol against the semi-honest client, the mali-
cious client, the semi-honest server and the malicious server.

Theorem 1. Any server, semi-honest or malicious, does not learn anything
about the client's hash value nor the result of the membership test.

Proof. The client encrypts the position of x in theN -dimensional hypercube
M utilizing Paillier cryptosystem. Only information that S gets from C is in
the first message of the protocol. The message contains encrypted zeros and
10
ones that provide information about x. But to get even partial information, S
would need to break the semantic security of the Paillier cryptosystem. □

In our practical case, the client reveals which 1/16th of the database his/
her element belongs to, before the protocol starts. Therefore, the server learns
this information about x. We remark that if there is a significant correlation
between the queries of two different clients, the server can guess that these two
clients are in possession of common files.

It is not possible to reach a similar result for the secrecy of database. But the
following theorem gives an upper bound for the amount of information that is
leaked during the protocol.

Theorem 2. The client, semi-honest or malicious, learns at most 2N �1b �
log2ðN2Þ bits of information about X, where b is the number of matrices that M
has been divided into, N2 is the modulus in Paillier, and N is the number of
dimensions in the data structure.

Proof. During the protocol, the server sends 2N �1 Paillier cryptotexts of
length log2ðN2Þ bits for each small hypercube. There are b small N -dimen-
sional hypercubes, so S sends 2N �1b � log2ðN2Þ bits to the client. Therefore,
the maximum amount of information that any client can learn from one round
of the protocol is 2N �1b � log2ðN2Þ bits.

The client who follows the protocol will retrieve one element of M, that is
ðn=22aÞ �K bits, where value K is the number of bits required per element in the
filter and can be computed using Table 1. In our case, the most amount of
information that the malicious client may learn is 217 bits, which is four times
the amount of information that the honest client may learn, that is 215 bits of
the Bloom/Cuckoo filter. Thus the amount of information that malicious C
may learn is not much more than what the honest C learns.

In our application scenario, we assume that the client who gets a positive
result for the PMTreveals x to the server to handle the potential malware. In the
case of a true positive, this is fine. But in the case of a false positive, the server



Table 9
Summary of notations.

Notation Description Notation Description

a 2a entries per dimension in a hypercube b Number of hypercubes
b Num. of entries per bucket in Cuckoo filter c 2c is the size of Bloom/Cuckoo filter
c Plaintext in Paillier cryptosystem C Average bits per item in Cuckoo filter
C Ciphertext space C Client
Dsk Decryption function Ek Encryption function
e Integer e is such that Ne < maxðCÞ � Nðeþ1Þ K Key space
k Public key K Hypercube
l Number of hash functions of Bloom filter lC Length of Ciphertext
lP Length of Plaintext m Number of bits in Bloom filter
M Matrix m' Number of buckets in Cuckoo filter
N Public key in Paillier cryptosystem n Number of items in the database
N Number of dimensions OT Oblivious Transfer
P Plaintext space PIR Private information retrieval
PMT Private membership test PSI Private Set Intersection
S Server sk Secret key
U A set of encrypted values generated by S x Client’s search item
X Server’s database α Encrypted vector generated by client
β Encrypted vector generated by client η Encrypted vector generated by client
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learns the hash value of the client’s file.We assume that this is acceptable when
the probability of false positive is small. There is always the possibility that a
malicious server changes the filters in such a way that the probability of false
positives is greater, at least for certain elements. This kind of cheating could
only be detected in the long run if the frequency of false positives is detected to
be too large.

In Table 8, we compare the privacy and complexity aspects of our protocol
with those of the protocols of [16,19], and with the trivial solution where the
server just sends the whole Bloom/Cuckoo filter to the client, who then makes
the query by himself/herself. In this table, þþ means the best performance
from the point of view of privacy, and � means the worst one.

9. Conclusion

In this paper, we propose a practical protocol for privacy-preserving
database queries. We utilize Bloom filters or Cuckoo filters to find out
whether a certain item is in the database. This implies we allow a small
number of false positive outcomes but, on the other hand, rule out false
negatives completely.

As another building block in our protocol, homomorphic encryption
is used. We utilize the scheme of Chang [6] to make a search in the
Bloom/Cuckoo filter in such a way that the server who holds the database
does not learn anything else about the query than what happened.

Our protocol has a much lower communication complexity than prior
schemes and its computation complexity is also low enough for practical
use cases.

We measure the performance of our protocol in a realistic scenario: A
server S has a database of 221 malware samples and an anti-malware
client wants to check a file against this database in a privacy preser-
ving manner. Note that in this scenario, false positives are much less
serious errors than false negatives. Our implementation shows that the
proposed protocol can be used in real-world applications, for example, in
Android apps or website reputation services.

Utilizing the Cuckoo filter rather than the Bloom filter makes the
protocol slightly faster and more space-efficient. Moreover, the Cuckoo
filter has richer functionality because it supports also the deletion of
items from the database.

We use the Paillier cryptosystem for homomorphic encryption. Future
work could try to find better performance with some other cryptosys-
tems. Another direction for future work is to apply our protocol for a
wider selection of use cases.

We evaluate the performance of our protocol for databases with 221,
223 and 225 items, and data structures with 2, 3 and 4 dimensions. Fig. 3
shows the results of this evaluation. One possible direction for future
work is to evaluate the performance of our protocol, utilizing hyper-
11
rectangles, i.e., matching the number of entries different for each
dimension.

In order to evaluate the communication and computation costs of the
protocol, one can utilize Equations (16) and (17). We numerically find
the optimal values for parameters a and N that result in the lowest
possible computation and communication costs.

A table of notations is shown in Table 9.
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