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Playtime Measurement with Survival Analysis
Markus Viljanen, Antti Airola, Jukka Heikkonen, Tapio Pahikkala

Abstract—Maximizing product use is a central goal of many
businesses, which makes retention and monetization two central
analytics metrics in games. Player retention may refer to various
duration variables quantifying product use: total playtime or
session playtime are popular research targets, and active playtime
is well-suited for subscription games. Such research often has
the goal of increasing player retention or conversely decreasing
player churn. Survival analysis is a framework of powerful tools
well suited for retention type data. This paper contributes new
methods to game analytics on how playtime can be measured
using survival analysis. These methods include visualizations,
metrics and an AB-test based on the survival curve. All these
methods work on censored data and enable computation of
confidence intervals. This is especially important in time and
sample limited data which occurs during game development.
Throughout this paper, we illustrate the application of these
methods to the development of the Hipster Sheep mobile game.

Index Terms—game analytics, survival analysis, playtime, re-
tention.

I. PLAYTIME IN GAMES

GAME analytics is becoming increasingly important in
understanding player behavior [1]. Widespread adoption

of games, Internet connectivity and new business models have
resulted in data gathering in an unprecedented scale. With
increasing availability of data, academia and industry alike are
motivated to gain insight into the data through game analytics.

Focal point of analytics is player retention and churn [2].
Retention has been used in connection with many related
measures and methods aiming to increase the length of prod-
uct use [3]–[12]. Better retention simply means players are
engaged with the game for longer. Player churn [13]–[20],
meaning players quitting the game either momentarily or
definitely, decreases product use and is therefore a counterpart
of retention. Retention metrics are popular because they are
thought to reflect player enjoyment, and increased product
use provides increased possibilities for monetization in free-
to-play and subscription based games. Game success may be
attributed to the process of acquiring new users and retaining
these users with effective monetization [2].

In this paper we study what kind of methods can be used
to analyze player retention and churn in a timely and effective
manner. We describe survival analysis methods that allow
analyzing player retention as a duration variable. Survival
analysis is well-suited for retention analysis, because it has
been developed specifically for duration data which may be
censored and highly non-normal. We limit our investigation to
understanding, measuring and comparing total playtime. This
restriction to playtime allows increased brevity and clarity,
however these tools directly extend to any duration data, such
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as sessions, level progression or subscription time. In addition,
survival analysis also accommodates several regression for-
mulations, of which the Cox proportional hazards regression
has been the most popular both in games [21], [22] and
in standard survival analysis [23]. The research data comes
from Tribeflame Ltd.’ free-to-play mobile game named Hipster
Sheep. The findings of our research enable game developers,
managers and publishers to better benchmark their games.

The rest of the paper is structured as follows. Section II
reviews literature introducing retention as a duration and the
survival analysis of durations. Section III introduces research
objectives and research data. Sections IV-VII provide the
research results and analysis. Finally, Section VIII concludes
our findings.

II. LITERATURE REVIEW

A. Retention as a Duration

User behavior in terms of measuring duration data has been
researched in game analytics [24], [25] and game network-
ing [26]–[33] as a topic of itself. Game analytics literature
attempts to understand user retention and how the game itself
contributes to it. Game networking often analyzes both active
and inactive durations. As a field it is principally concerned
with how network quality and related factors add to user
retention and how user activity on the other hand imposes a
load on servers which operator might try to mitigate. Total
playtime [21], [24], [25], session playtime [26]–[33] and
session inter-arrival time [26], [27], [29] or idle time, have
been popular measurements. Session is commonly defined as
a duration of continuous play [26]–[33] but has also been
used to refer to a completed match [3]–[8]. Popular retention
measurements in long-term games are subscription times [13]–
[15] or active periods over calendar time [16]–[20], possibly
combined [14]. Session counts [3], [4] and progression [9] are
also instances of user retention, which may be modeled as a
discrete duration variable.

Based on the literature, there are several candidate variables
for measuring retention as a duration:

1) Total playtime
2) Session playtime
3) Total progression
4) Total active or subscription time (MMORPGs etc.)

Total playtime is the total time spent playing the game, in
seconds for example. Session playtime corresponds to the
duration of continuous play. Total progression relies on a game
developer’s intuition of how game consumption is transformed
into a positive non-decreasing value, a natural example would
be levels completed. In games with open-ended goals and
long-term gameplay, one may analyze total time active as the
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calendar time player was engaged in the game world, or total
subscription periods such as months until cancellation.

Playtime has been an important focal point in many studies,
because it provides a straightforward aggregate metric of total
player engagement. A notable example of fitting a parametric
distribution is the study of total playtimes [25] in over 3000
Steam games totaling 6 million players which utilized the
Weibull distribution for archetype analysis. Other research
with parametric models has often investigated exponential
[26], [27], [34], Weibull [11], [12], [24], [25], [28], [29], [33],
Gamma [24], log-logistic [12], log-normal [21], [24], [33] and
Pareto-type [12], [26], [27], [32] distributions.

B. Survival Analysis of Durations

Survival analysis is in the early stages of being applied to
game analytics. Some studies have used tools that are central in
survival analysis, such as the survival curve of playtimes or the
churn rate [28]–[31], where the use of Kaplan-Meier estimate
[30], [31] is notable to deal with censored session durations.
Studies focusing on survival analysis have researched mea-
suring difficulty with automated playtesting [34], modeling
the user process [11], and using the Cox regression extended
by time-varying covariates and coefficients [21] or survival
ensembles [22]. The first study [21] analyzes total playtime
and the second study [22] days active to churn.

The target of survival analysis is a positive duration variable,
which is the time to an event of interest. This may be
lifetime in demography [35], the time to machine failure in
reliability engineering [36] or the time to disease recurrence
in medicine [23]. The duration variable may also be discrete,
such as lifespan in years or repetitions to failure. The primary
reason for the de facto status of survival analysis in many
fields is that survival analysis excels with non-normal and
censored data, and does not necessitate parametric approaches
[23]. Retention exhibits non-normal characteristics: duration
is positive, heavily skewed towards zero and often has a
long tail. Since in the industry it is often unfeasible to wait
until all users have churned to obtain their total playtime,
censoring is also present. Furthermore, user retention may not
always follow popular parametric models [12], [24], making
model-free approaches attractive. The widespread recognition
of survival analysis in fields with similar data and the demand
for scientific analytics suggests that game analytics will benefit
from this approach.

C. Churn and Censoring

Censoring is very common in survival analysis type data.
For example, in medical studies patients may drop out of the
study before experiencing the event of interest or the study
may have a limited follow-up time which terminates the study
before every patient has had the event of interest [23]. Such
subject is called censored and the data is in this case subject to
right censoring. These subjects contribute information, since
the time to failure must be greater than the time to censoring.

In successful games with very long playtimes, censoring is
often unavoidable because game developers wish to perform

analytics before every user churns. A second important chal-
lenge exists in games which is not found in survival analysis:
we can always observe if a person contracted a disease or a
machine failed, but it is not possible in principle to know if a
player has churned definitely. The player may always return to
the game; it is only with the passing of time that we increase
the confidence this will not happen. This problem manifests
in quits without notification because it is sometimes difficult
to say whether the user comes back. The problem does not
exist if the event is observable. Examples of such events are
session end, level failure and subscription cancellation.

The challenge of detecting churn related to total playtime
has been dealt with in the literature using various rules to
impute churned and non-churned players: assuming players
have churned [24], [25] or defining a window of inactivity
which implies churn [16]–[19]. Once trained, churn prediction
algorithms and user process models could also be used to
predict the censoring label [11], [16]–[19]. Nevertheless, none
of the current solutions seem perfectly satisfactory as they
may add bias depending on the method. Player churn is an
extended topic and we further assume that a simple method
to impute churn is available. This enables us to focus on the
standard methods which are universally applicable [36].

III. RESEARCH OBJECTIVES AND DATA

A. Research Focus

In this paper we describe how survival analysis can con-
tribute to playtime analysis. We introduce the following fun-
damental analyses a game analyst can carry out on data con-
sisting of observed playtimes, using standard survival analysis
software such as R [37], SAS and Stata [23], among others.

1) Survival and hazard curves: these two foundational con-
cepts of survival analysis allow studying both visually
and analytically the rates at which players churn from
the game at different time points. They enable the
analyst to better understand the overall quality, including
the strong and the weak points of a game.

2) Mean and median provide singular metrics for character-
izing the expected and the typical playtime. They allow
the analyst to aggregate the data to a single informative
number together with confidence intervals.

3) The log-rank test provides a scientific AB-test by com-
paring the survival curves of different groups (e.g. the
players of different versions of a game). This allows the
analyst to deduce whether the groups are different to a
given degree of confidence.

We chose to use the total playtimes of an in-development
mobile game to illustrate every method with a real world
survival analysis application. All the presented methods are
accompanied with examples from Tribeflame Ltd.’s mobile
game named Hipster Sheep. We have further utilized a small
sample of 10 of these users to pedagogically demonstrate how
each estimate is computed. Following [16], [17], we decided
that players playing 14 days within collection time are not
churned, leading to censored playtimes.
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Fig. 1. Hipster Sheep promotional material also displayed in Google Play,
used with the permission of Tribeflame Ltd.

B. Research Data - Playtime Data Set

Hipster Sheep is a commercial grade puzzle game being
developed by Tribeflame Ltd. Figure 1 displays promotional
material that depicts the game. The game is targeted at young
adult females and has an artistic theme of making light
fun of hipsters through self-irony. The goal is to guide an
anthropomorphic sheep through labyrinths on her or his quest
for the next big thing. The game is free-to-play, level-based
and uses in-game purchase monetization. Energy mechanics
are used to limit the possibility for unlimited free play. Levels
combine skill with a hefty dose of luck, as is common in
modern free-to-play games.

During the development, there were three significant user
acquisition campaigns for versions 1.11, 1.15 and 1.18. Users
were purchased through random sampling by advertising in
social networks. The purpose was to test the game’s appeal
in-between successive development cycles. Figure 2 displays
daily new users (DNU) and the resulting daily active users
(DAU) for these versions. In version 1.11 there were a total
of 970 users acquired in early June 2015, in version 1.15 a
total of 1246 users were acquired early September 2015 and
in version 1.18 a total of 1537 new players arrive, mostly mid-
October. The three versions hold 3753 players in total. This
excludes those players with only one extremely brief session,
since this was deduced to be part of ’acquisition phenomena’
rather than gameplay; the game takes a dozen seconds to load.

The total of n playtimes Ti and censoring indicators δi form
a data set ((T1, δ1), . . . , (Tn, δn)). If δi = 1, the player has not
churned and the playtime is greater or equal to Ti, and δi = 0
implies that the churn event occurred at Ti. In Table I, we have
randomly sampled a subset of 10 players from version 1.18
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Fig. 2. User acquisition in versions 1.11, 1.15 and 1.18. The DNU is
highlighted in dark color and the DAU in transparent color. Each acquisition
spans few days, with the resulting user activity diminishing over time.
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Fig. 3. A random sample of 10 players from Hipster Sheep version 1.18 for
Android. Player with identifier ’gp 6’ had been playing very recently and was
determined to be active, whereas others had churned with a high likelihood.

for Android, where every player has a playtime duration and a
censoring indicator. Figure 3 visualizes this data. We see that
there is significant early churn, with 40% churning before 1
hour of gameplay, and a heavy tail with one 12 hour gameplay
observation. Other players seem to have more typical 1-6 hour
playtimes. One player happened to be censored.

Survival analysis is commonly formulated using a sequence
of strictly increasing distinct playtimes t1 < . . . < tm. At
every distinct playtime ti we count the number of observed
playtimes di =

∑n
j=1 I (Tj = ti ∧ δj = 0) and the number

of censored playtimes ci =
∑n
j=1 I (Tj = ti ∧ δj = 1). The

number of surviving non-censored ’at risk’ players is denoted
by ni =

∑n
j=1 I (Tj ≥ ti).

IV. SURVIVAL ANALYSIS

Survival analysis helps to understand playtime data. In this
section, two foundational concepts in survival analysis are
introduced: the survival curve and the hazard. These concepts
enable the analyst to analyze the playtime data both visually
and computationally. The survival curve is a natural way to
visualize the proportion surviving of a given population and
the hazard function is often motivated as the cause for a given
survival curve, which enables simpler analysis.
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TABLE I
HIPSTER SHEEP: 10 PLAYERS

Player Playtime Censored Playtime (hours)
gp0 00:22:51 False 0.38
gp1 05:55:32 False 5.93
gp2 00:10:48 False 0.18
gp3 00:00:13 False 0.00
gp4 01:50:59 False 1.85
gp5 02:21:48 False 2.36
gp6 00:47:27 True 0.79
gp7 04:45:25 False 4.76
gp8 11:55:22 False 11.92
gp9 00:01:53 False 0.03

A. The Survival Function

Statistically speaking, the playtimes Ti are a sample of a
random variable T > 0 of the population playtimes and based
on the sample we seek to analyze the distribution of T . In
the discrete case, where T is for example playtime rounded
to hours, we use a probability mass function (PMF), or the
probability of failure at t: f(t) = P[T = t]. If T is continuous,
we define a probability density function (PDF) instead:

f(t) = lim
∆t→0

P[t ≤ T < t+ ∆t]

∆t
. (1)

Regardless whether we used the PMF or the PDF, a cumulative
density function (CDF) is used to describe the accumulated
probability of playtime less or equal to t. In survival analysis,
we often analyze a survival function (SF) [36] instead, which
gives the probability of having playtime greater than t:

F (t) =

∫ t

0

f(u)du = P[T ≤ t]

S(t) = 1− F (t) = P[T > t].

(2)

As a complement to the cumulative density function, the
survival function is a monotonously decreasing function and
has the property that S(0) = 1 and S(t)→ 0 as t→∞.

B. The Hazard Function

Survival analysis distributions are often easiest to under-
stand in terms of geometric decay of players. Since churned
players are no longer at risk of churn, it is useful to con-
template constant churn rate acting on the remaining players.
We might also have churn rates with high initial churn, and
thereon simple constant churn. For example, in Table II, 50%
of players play more than one session, but after the second
session 80% survive to play session 3, of those 80% survive
to play session 4, etc. Churn in this case refers to the number
of players who after session i do not play the next session
i + 1 and survival quantifies the number of players playing
more than the ith session.

This is formalized in the concept of a hazard function
[36]. For the discrete case, the hazard function quantifies the
proportion of the remaining players who churn:

h (t) = P [T = t | T ≥ t] =
f (t)

S (t− 1)
. (3)

TABLE II
1000 PLAYERS CHURN EXAMPLE

Function Session 1 Session 2 Session 3 Session 4 . . .
Retention rate r(t) 50% 80% 80% 80% . . .
Churn rate h(t) 50% 20% 20% 20% . . .
# Failing f(t) 500 100 80 64 . . .
# Surviving S(t) 1000 500 400 320 . . .

For the continuous case, the hazard is the instantaneous failure
rate in the remaining player base, motivated as the limit:

h (t) = lim
∆t→0

P [t ≤ T < t+ ∆t | T ≥ t]
∆t

=
f (t)

S (t)
. (4)

An important point to note is that the continuous hazard is not
the probability of failure at time t, it can be greater than 1. An
approximation in a small interval for the probability of failure
is P [t ≤ T < t+ ∆t | T ≥ t] ≈ h (t) ∆t. The relationship of
proportional failure probability and rate is analogous to that
of the PMF and the PDF. These two settings can actually be
treated together with the Riemann-Stieltjes integral, for more
information we refer the reader to [36], [38].

C. Connection of Hazard and Survival

Given the hazard or the survival function, one can derive
the other. In practical applications the hazard is often analyzed
for simpler interpretations and the survival curve derived as a
function of the hazard. For the discrete case it is easy to see
that a product formulation is possible: at point t, the survival
is the product of the fractions remaining after churn events
at u = 1, 2 . . . , t. For example, in Table II the survival after
session three is: S (3) = (1− 50%) (1− 20%) (1− 20%) =
32%, i.e. 320 players.

S (t) =

t∏
u=1

[1− h (u)]. (5)

In the continuous case, we take a product integral which works
like the Riemann integral in partitioning the domain. Instead
of a sum, the result is the limit of a product of terms over
the partition, consisting of surviving fractions 1−h (t) ∆t. In
fact, the less well-known product integral may be written in
terms of the Riemann integral by taking the logarithm [38]:

S (t) =
∏
(0,t]

[1− h (u) du] = exp

[
−
∫ t

0

h (u) du

]
. (6)

The integral of the hazard is the cumulative hazard function
[36]. Its utility is explained in how a proportional change
in S(t) corresponds to a linear change in H(t). Taking the
logarithm gives the cumulative hazard in terms of the survival
function:

H (t) =

∫ t

0

h (u) du = − log [S (t)]. (7)

In the simplest case, the hazard h (t) = λ is homogeneous
implying that the churn rate is constant over time. This hazard
can be used to derive two well-known distributions: geometric
distribution for the discrete case and exponential distribution
for the continuous case. Of the common survival distributions



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 5

listed in Table IV, Weibull is one of the most popular [39],
and it also has wide applicability in games [11], [12], [25].

V. PLAYTIME SURVIVAL

In this section, the survival and the hazard function are uti-
lized to measure game goodness. First the theory is introduced
using the 10 player sample and then the methods are applied
to the game data set. In distribution fitting one has the problem
of choosing a parametric model. However, in survival analysis
it is not actually necessary to guess distributions; the data over
the follow-up time can be used to make model free estimates.
These are called nonparametric methods [38].

A. Fitting a Parametric Survival Model

Suppose that one has a reason to believe that data follows
a parametric model and the hazard or the survival is speci-
fied. What next? Fitting a distribution is often done utilizing
the maximum likelihood (ML) theory [39]. Specifically, for
duration observations T1, . . . , Tn and censoring indicators
δ1, . . . , δn, a PDF/PMF f(t | θ) parametrized by θ is fitted
by assuming the observations i.i.d. and finding the parameters
θ∗ which maximize the likelihood L(D, θ) of observed data:

L (D, θ) =

n∏
i=1

f(Ti | θ)1−δiS(Ti | θ)δi (8)

θ∗ = argmax
θ

l(D, θ). (9)

The logarithm of the likelihood l(D, θ) = log[L(D, θ)] is taken
in practice to avoid numerical errors associated with extremely
small quantities. The ML estimate may be found iteratively
using optimization algorithms such as Newton-Raphson [38].

For example, to fit the exponential distribution in Figure 4.
one minimizes the likelihood in terms of the objective

L(D, θ) =

n∏
i=1

(λe−λTi)1−δi(e−λTi)δi = λde−λR, (10)

where we have defined the number of observed churns d =∑n
i=1(1 − δi) and the total time at risk of churning R =∑n
i=1 Ti. The log-likelihood is maximized when the derivative

is zero. In this case we can directly find the ML estimate:

l′(D,λ∗) =
d

λ∗
−R = 0⇒ λ∗ =

d

R
. (11)

Given the survival times in Table I, there are 10 players
with d = 9 churning. The total time at risk is the sum of
accumulated playtimes: R = 0.38+5.93+0.18+0.00+1.85+
2.36+0.79++4.76+11.92+0.03 = 28.21 (hours). Therefore,
we obtain a failure rate or hazard, of λ = 9 churns

28.21 h = 0.32
churns/h.

95% confidence intervals (C.I.) for the parameter λ∗ may be
obtained using the normal approximation X ± 1.96

√
Var[X]

where 1.96 is the value of standard normal distribution such
that P[−z ≤ Z ≤ z] = 0.95. To estimate confidence
intervals for an asymptotically normally distributed quantity
one therefore needs an estimate for its variance.

The variance estimate can be obtained by substituting the
maximum likelihood parameter into the inverse of the negative
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Fig. 4. Exponential fit (green) λ = 0.32 to the sample of 10 players, with
confidence intervals (green, dashed). Contrasted to the KM baseline (black),
the early observations may not fit the simple model.

TABLE III
SAMPLE: KM COMPUTATION

Time At Churn Haz. Cum. Surv. CI.l. CI.u.
(h) risk di

di
ni

Haz. (KM) 95% 95%
ni (NA)

0.00 10 1 0.10 0.10 0.90 0.47 0.99
0.03 9 1 0.11 0.21 0.80 0.41 0.95
0.18 8 1 0.13 0.34 0.70 0.33 0.89
0.38 7 1 0.14 0.48 0.60 0.25 0.83
1.85 5 1 0.20 0.68 0.48 0.16 0.75
2.36 4 1 0.25 0.93 0.36 0.09 0.65
4.76 3 1 0.33 1.26 0.24 0.04 0.54
5.93 2 1 0.50 1.76 0.12 0.01 0.41
11.92 1 1 1.00 2.76 0.00

Hessian [37], which in the single parameter case equals the
second derivative l′′(D, λ) = −d/λ2:

Var[λ] =
(
−(−d/λ∗2)

)−1
= d/R2. (12)

The failure rate estimate with confidence intervals therefore
is λ = 0.32± 0.21 churns/h.

B. Fitting a Nonparametric Survival Model

Since a chosen parametric model may not always fit the
data, it is often desirable to use an empirical estimate as a base-
line. If there are no censored observations, it is straightforward
to compute the SF empirically as the fraction of playtimes
greater than t: Ŝ(t) = 1

n

∑n
i=1 I (Ti > t). However, if there are

censored observations we need to use a Kaplan-Meier (KM)
estimate [23] for an unbiased approximation of the SF:

ŜKM (t) =
∏
ti≤t

(
1− di

ni

)
. (13)

The estimator is easiest to describe with an example. Table III.
and Figure 4 show the estimate calculated for the 10 player
sample in Table I. At every event time ti, we compute the
remaining fraction 1 − di/ni and multiply it with the KM-
estimate of survival at the previous failure time ŜKM (ti−1) to
obtain the surviving population ŜKM (ti). Note how the one
censored event time at t = 0.79 is not in the table of event
times but reduces the risk set at t = 1.85.
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C. Estimating Playtime Cumulative Hazard

An alternative is the Nelson-Aalen (NA) [23] estimate of
the cumulative hazard given by the sum of fractions churning:

ĤNA (t) =
∑
ti≤t

di
ni
. (14)

A nonparametric hazard estimate [38] requires smoothing
the cumulative hazard step function estimate with kernels, for
example. Various kernels exists; popular choices are the uni-
form kernel, the Epanechnikov kernel and the Gaussian kernel.
Kernel K (t) is a mass of density concentrated around zero
with a total area of one, spread determined by its bandwidth
b. Kernel estimation gives a smooth hazard estimate:

ĥ (t) =
1

b

m∑
i=1

K

(
t− ti
b

)
di
ni
. (15)

Of course, using the KM-estimate we can derive a cumu-
lative hazard estimate by ĤKM (t) = − log[ŜKM (t)]. Equiva-
lently for the NA-estimate we have ŜNA(t) = exp [−ĤNA(t)].
Both estimators are utilized extensively in practice [38].

It is possible to compute confidence intervals for the KM.
The variance may be approximated with the delta method [38]:

Var[ŜKM (t)] = [ŜKM (t)]2
∏
ti≤t

(
di

ni(ni − di)

)
. (16)

These variance estimates may extend above and below zero,
which violates survival curve assumptions. A common fix [38]
which provides confidence intervals for NA estimate as well is
to estimate the variance of the log-log transformed estimate:

Var
[
g[ŜKM (t)]

]
=

[
1

log[ŜKM (t)]

]2 ∏
ti≤t

(
di

ni(ni − di)

)
,

(17)
where g(u) = log[− log[u]]. Transforming back with
g−1(u) = exp[− exp[u]] gives the KM C.I. in Table III.
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TABLE IV
SIMPLE SURVIVAL TYPE DISTRIBUTIONS

Function S(t) H(t) h(t)

Exponential e−λt λt λ

Weibull e−(λt)α (λt)α λα(λt)α−1

Log-Logistic
1

1 + (λt)α
log [1 + (λt)α]

λα(λt)α−1

1 + (λt)α

Log-Normala 1 − Φ (Z(t)) log

[
1

1 − Φ (Z(t))

]
φ(Z(t))

σt [1 − Φ (Z(t))]
a Z(t) =

ln(t)−µ
σ

D. Playtime Survival for Game Data

The Exponential, Weibull, Log-Normal and Log-logistic
distributions listed in Table IV are common parametric models
for survival data [36]. In Figure 6 we have fitted these four
models using ML to Hipster Sheep playtimes. We observe
three models with significant model deviations. The expo-
nential distribution overestimates early survival and underes-
timates late survival. The Log-Normal and Log-Logistic dis-
tributions fit short playtimes but have significantly longer tails
than observed in practice. The Weibull distribution appears to
have least model deviation, corroborating the finding that it
provides good approximations to multiple games [25].

Figure 6 demonstrates why the nonparametric Kaplan-Meier
and Nelson-Aalen estimates are popular. Parametric models
are more powerful wherever they describe the data, but when
they do not the results are incorrect. If the parametric form
is correctly specified, less data is required to approximate
the population distribution and they may be used to extrap-
olate outside the sample. Nonparametric methods are however
robust to model deviations, in other words they are often
the safe choice when the distribution is unknown. Even in
limited data sets they are often sufficient to describe quantities
of interest [23]. The confidence intervals provided for both
types of estimates are informative in data constrained industry
applications. Since user acquisition and software development
costs money, a manager might request a user test with a limited
data set or require statistical significance before committing to
a major change, which makes confidence intervals useful.
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Fig. 7. Smoothing the 10 player sample with 1 hour piecewise exponential
rates contrasted to Epanechnikov kernel with b = 9.6. These bins are too small
for this sample, and a higher degree of smoothing appears more informative.

VI. PLAYTIME METRICS

In this section three important metrics are described to
benchmark the quality of a game. The metrics are motivated
by the survival curve: the hazard, the mean playtime and the
median playtime. These metrics are simple, easy to measure
and it is possible to assess their reliability with confidence
intervals.

A. Hazard as a Metric
In reliability engineering, the failure rate is a key measure of

product reliability [36]: it provides a profile of how reliability
evolves over time. Products may experience early failures due
to defective units, the rate may then stabilize to a constant for
the period of ’useful life’ and go up in the ’worn-out’ period.
The churn rate provides a similar funnel type visual estimate
for games and can be investigated in terms of the early, middle
and late-game hazards. In general, the hazard is an informative
time-dependent metric for the risk of the event in occurring.

In free-to-play games, it is often observed that the failure
rate is very high during initial sessions, and stabilizes or
steadily continues to decline as most dedicated players remain
[12]. In pay-to-play games with campaigns, one may observe
playtimes that are more clustered [21]. This analysis could
prove useful for game-design as well [34]. In terms of game
progression, good level design should have an approximately
uniform churn: unexpected increases in the churn rate signify
flaws and level specific decreases suggest underutilized im-
provements.

A major problem with small sample hazard estimation is
that the interpretation could depend on the method chosen.
This is illustrated with the 10 player sample in Figure 7.
The piecewise exponential method has a constant hazard,
or exponential distribution, within given pieces (bins) of the
domain. With 1 hour bins, there are d1h = 4 churns within
the first hour with total time at risk T1h = 0.38 + 1+ + 0.18 +
0.00 + 1+ + 1+ + 0.79+ + 1+ + 1+ + 0.03 = 6.38 h, making
the first 1 hour rate λ1h = 4/6.38 = 0.63 churns/h. In bins with
no churns the rate is 0.00, and in the last bin there is 1 churn
with a single player at risk for time T12h = 0.92 h, implying
λ12h = 1.09 churns/h.

TABLE V
SAMPLE: KM-BASED AREA COMPUTATION

Time At risk Length Survival Add Area Tail Area
ti ni ti − ti− Si−1 Ai Bi
0 NA NA NA NA 3.28
0.00 10 0.00 1.00 0.00 3.27
0.03 9 0.03 0.90 0.03 3.25
0.18 8 0.15 0.80 0.12 3.13
0.38 7 0.20 0.70 0.14 2.99
1.85 5 1.47 0.60 0.88 2.11
2.36 4 0.51 0.48 0.25 1.86
4.76 3 2.39 0.36 0.86 1.00
5.93 2 1.17 0.24 0.28 0.72
11.92 1 6.00 0.12 0.72 NA

B. Mean Playtime as a Metric
The hazard function is not a single measure, but a set of

measures, one for every point in time. Often a single measure
is required to benchmark the game. If we assume monetization
is roughly proportional to retention it is desirable to use the
expected playtime as a singular metric to predict the total user
value. For a playtime distribution the mean playtime is defined:

E [T ] =

∫ ∞
t=0

tf (t) dt. (18)

The mean playtime has a surprising connection to the playtime
survival: it is the area under the curve (AUC) [36]:

E [T ] =

∫ ∞
t=0

S (t) dt. (19)

Therefore, to compare two survival curves using a single
metric one may compare the area underneath each. This
is quite remarkable, since we then have a singular statistic
quantifying the goodness of a game. The comparison is well-
defined even in cases where the survival curves cross and the
relative ranking is time-dependent. The metric quantifies how
much better in additional mean playtime one survival curve is.
Visually the shape of the survival curve describes where the
additional playtime has been accumulated from: one may have
achieved it by decreasing initial churn or increasing long-term
retention. In a trade-off situation, the survival curve with a
larger area is better relative to this metric.

The method of deriving an estimate for the mean through
the area under the survival curve is beneficial because it works
with censored observations. Simply ignoring the censored
observations would lead to a downward bias in the estimate.
Furthermore, confidence intervals for the mean can be derived
utilizing the area. In Table V. we have computed intervals
ti − ti−1 between churn events and highlighted how much
each interval adds to the total area Ai = Si−1 (ti − ti−1).
The tail area Bi =

∑m
k=i+1Ak, denotes the area remaining in

the tail after all areas have been accounted up to i. The total
area A = B0 =

∑m
i=1Ai, which is the expected playtime, can

be computed as 3.28 hours in this example.
95% confidence intervals using the normal approximation

are obtained with A± 1.96
√

Var [A], in this case 3.28± 2.47
hours. The variance estimate for A can be derived [35]:

Var [A] =

m∑
i=1

B2
i

ni (ni − 1)
. (20)
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area under the curve (AUC) whereas the curve drops below 0.5 at Median[T]
with confidence intervals necessitated by the KM confidence intervals in blue.

C. Median Playtime as a Metric

The mean playtime is quite informative in many cases, but it
may not quantify typical player experience due to many early
failures or the presence of a long tail. The median on the other
hand attempts to quantify the ’typical’ playtime. It is defined
as the point to which half of the players survived:

Median [T ] = min {t | S (t) ≤ 0.5}. (21)

In general, one can define arbitrary quantiles for the survival
curve. Specifically, the quantiles are defined:

p’th quantile [T ] = min {t | S (t) ≤ 1− p}. (22)

To compare two survival curves, one may compare the
points at which half of players are lost. The game with
the greater time to lose half of the players is then said to
be better, relative to the median. This benchmark may be
extended by creating quantile measures, such as a sequence of
times {t10%, t20%, . . . , t100%} at which 10%, 20%, . . . , 100%
of players are lost for each game. These measures give an
unequivocal benchmark of short term and long term retention.

The median playtime can be read from the survival curve
by finding the earliest t at which the survival drops to equal to
or below 0.5. Furthermore, confidence intervals for the median
can also be directly read from the pointwise KM-estimate
confidence intervals: one draws a vertical line from the median
and reads the left (lower) and right (upper) T value at x-axis
where the line meets the KM C.I. Specifically, we seek lowest
and highest value of t such that the following inequality with
the log-log transform g (u) = log [− log [u]] is satisfied [37]:

−zα/2 ≤
g
(
Ŝ (t)

)
− g (0.5)√

Var
[
g
(
Ŝ (t)

)] ≤ zα/2. (23)

where Var
[
g
(
Ŝ (t)

)]
was estimated previously to obtain the

log-log transformed KM confidence intervals. The normal
approximation based value is zα/2 = 1.96 for 95% C.I.
The p’th quantile confidence interval may be estimated by
substituting g (0.5)→ g(p) in the inequality. In this case, we
obtain a highly uncertain estimate 1.85 [0.00↔ 5.93] ( h ).
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Fig. 9. The version hazard estimates computed with Epanechnikov-kernels
using a high degree of smoothing b = 9.6 and left continuity correction. First
version seems uniformly worse, whereas other two appear indistinguishable.

TABLE VI
HIPSTER SHEEP: PLAYTIME METRICS

Version Mean CI.l. CI.u. Median CI.l. CI.u.
95% 95% 95% 95%

1.11 1.55 1.37 1.73 0.60 0.55 0.68
1.15 2.21 2.00 2.42 0.77 0.66 0.87
1.18 2.41 2.18 2.64 0.77 0.66 0.86

D. Playtime Metrics for Game Data

The churn rate provides a very useful time-dependent metric
of game quality. As explained previously, it can be used as a
funnel to quantify strong and weak points of the game. In
games with long-term consumption patterns, a simple hazard
enables reliable player lifetime forecasts.

In Figure 9. we used Epanechnikov-kernels to obtain a
hazard estimate for the three versions in the data set. Since
the playtime is terminated by a churn event, this is a smooth
estimate of the churn rate. We see that version 1.18 churn
is quite high initially at about 0.6 churns/h, and halves to 0.3
churns/h during the first 4 hours, designated as early gameplay.
A steady decline continues as most dedicated players remain
in the game and the rate appears to reach near constant 0.2
churns/h from 10 hours onwards.

For the singular metrics that summarize the survival curve,
Table VI. computes the mean and the median with confidence
intervals for the three game versions in the data set. One should
note that the mean confidence interval of 1.11 contrasted
to either 1.15 or 1.18 does not overlap, which implies the
difference is statistically significant. However, between 1.15
and 1.18 either confidence interval is wide enough to contain
the other mean estimate. The quantile metrics, including the
median, may be read with confidence intervals from the KM
estimates for the versions in Figure 10.

The difference between the mean and median as metrics
is clearly visible; whereas the players in 1.18 typically quit
after 0.77 hours, the expected playtime extracted out of these
players is three times larger at 2.41 hours. The presence of both
fickle and dedicated players produces effects which make both
metrics informative from different managerial perspectives.
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Fig. 10. Kaplan-Meier estimator for the entire population in Hipster Sheep
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recent version. Based on the plot, one might think that the early version 1.11
is the worst, but the improvement from 1.15 to 1.18 is harder to deduce.

VII. PLAYTIME COMPARISON

A. Comparing Cohort Survival

Given two survival curves, a test of their difference is often
asked for. Statistical tests can be used for this purpose. These
tests assume that the samples are identically distributed under a
null hypothesis, and we obtain evidence which may reject this
conclusion within a given degree of confidence. For example,
we can have two game versions and survival curves produced
by two cohorts consisting of players for each game version.
We then assume the changes had no effect, that the survival is
equal, and the evidence given by players provides a test which
may reject this assumption, leading us to conclude that indeed
the changes affected the game.

While several statistical tests exist, it is useful to be able
to compare two survival curves in their entirety. Instead of
comparing the means AUC [S1 (t)] = AUC [S2 (t)] or the
possibility that one is strictly better S1 (t) < S2(t), we
present the log-rank test [23] which tests the assumption
that S1(t) = S2(t) under censored observations and allows
one to use the survival curve to ascertain the difference. For
simplicity we call one of the cohorts a control cohort and the
other a test cohort.

Suppose that at time ti there are n0i players with d0i

churning in the control cohort and n1i players with d1i

churning in the test cohort. Denote ni = n0i+n1i total players
and di = d0i+d1i total churning. The log-rank test is based on
the observation that if the null hypothesis was true, the groups
were equal, then given n0i, n1i, and di, the number d0i is an
observation of a hypergeometric random variable D0i:

P (D0i = d0i | n0i, n1i, di) =

(
n0i

d0i

)(
n1i

d1i

)(
ni
di

) . (24)

The mean and the variance of this distribution are [35]:

E [D0i] =
n0idi
ni

Var [D0i] =
n0in1idi (ni − di)

n2
i (ni − 1)

. (25)

TABLE VII
STATISTICAL TEST OF SURVIVAL EQUIVALENCE

Test Ncontrol Ntest U2/Var [U ] p-value
S1.15 (t) = S1.11 (t) 1246 970 21.4 3.74e-06
S1.15 (t) = S1.18 (t) 1246 1537 0.4 0.534

Using these facts, it is possible to construct a linear test
statistic based on a score statistic obtained by summing the
differences between observed and expected event counts [35]:

U =

m∑
i=1

(d0i − E [D0i]) Var[U ] =

m∑
i=1

Var [D0i]. (26)

A chi-square test statistic allows one to obtain a p-value [35]:

U2

Var [U ]
∼ χ2

1. (27)

To apply this test in a real example, in Table VII we have
taken the version 1.15 as a control group and compared it to a
cohort with version 1.11 and then to 1.18, which were plotted
in Figure 10. The first test then answers the question whether
the version 1.15 was an improvement over 1.11 and the second
whether the version 1.18 further improved the game. The
difference between 1.11 and 1.15 is highly significant. How-
ever, the difference between 1.15 and 1.18 is completely non-
significant, implying that the visually difference in Figure 10
could be caused by sampling.

There are modifications to the log-rank test which empha-
size different aspects of the survival curve: one may want
to weight early or late failures more heavily. For example,
the weighted test statistics U =

∑m
i=1 wi (d0i − E [D0i]) and

Var [U ] =
∑m
i=1 w

2
iVar [D0i] are commonly used with the

weight wi = mŜ (ti)
ρ [37]. Setting ρ = 1 one obtains the

Prentice or Peto-Peto modification of the Gehan-Wilcoxon test
which places more emphasis on earlier survival differences. In
our case, this modification resulted in p-values 0.004 and 0.76
which have the same interpretation.

B. Stratification

The cohorts may not always be directly comparable. For
example, user acquisitions may be conducted with different
marketing campaigns or in different countries. Therefore, dif-
ferences between two versions might really reflect a different
underlying composition of players and not changes in behavior
due to the versions themselves.

To correct for such effects, one needs to adjust for the
covariate which is suspected to be an alternate cause for
the effects. This is equivalent to testing the null hypothesis
S1j (t) = S2j(t) across groups j = 1, . . . , G. The test is based
on computing score statistic Ug and variance Var[U ] for each
group separately and using the test [37]:(∑G

g=1 Ug

)2

∑G
g=1 Var [Ug]

∼ χ2
1 . (28)

In our case adjusting for the country of origin, we obtain p-
values 7.88e-06 and 0.608 which again does not change the
previous interpretation.
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TABLE VIII
APPLIED RESEARCH CHEATSHEET

Problem R function [37] R library
Fit a nonparametric survival model? survfit survival
Fit a parametric survival model? survreg survival
Fit a nonparametric hazard? muhaz/pehaz muhaz
Compute the mean or median? print(print.rmean=T/F) survival
Compute the log-rank test? survdiff survival

VIII. CONCLUSION

The purpose of this study was to investigate whether sur-
vival analysis methods contribute to the analysis of player
retention and churn. The findings suggests that survival anal-
ysis motivated functions, metrics and comparisons provide
multiple tools to utilize for retention measurement in game
development. Retention as user engagement can be quantified
with several duration variables such as playtimes, session
lengths, subscription times, and even game progression. In
this study, we focused on total playtime in the interest of it
providing a straightforward measure of total engagement.

From a practical point of view, the survival curve is a visual
funnel type metric and the associated statistics provide a set
of new metrics to game analytics. Since the metrics were
derived from the survival curve, they work for censored data
and the uncertainty can be estimated with confidence intervals.
The hazard describes the continuous churn rate and offers a
clear time-dependent game quality interpretation. The mean,
the median and the quantile estimates as playtime metrics can
be used to aggregate the survival data to a single statistic
to measure different aspects of the playtime phenomena. For
survival curve comparison, the log-rank is a test of the null
hypothesis that the survival curves are equal. The test may
be extended to stratify over covariates and compare multiple
survival curves. This method enables scientific AB-testing of
game version quality relative to a duration metric such as
the total playtime, and can be used to verify that a visually
observed difference is statistically significant.

These methods contribute towards scientific data analysis
by presenting new metrics to game analytics which are also
able to deal with censoring and utilize statistical significance
tests. The reader may take advantage of Table VIII to use
the methods for applications. It lists the methods we have
presented and the R software functions implementing them.

Naturally, we acknowledge that this research has some lim-
itations. These methods have an implicit challenge associated
with churn uncertainty, which is scarcely addressed within the
fields of survival analysis or game analytics. When a mea-
surement depends on user churn, impromptu rules currently
in use could lead to bias. Future research that assesses and
possibly mitigates this is called for. While our data is from
one game only and focused on total playtime, the methods
are directly transferable to any duration data. Further studies
could be done to investigate the kind of phenomena present in
different types of games. We think that survival analysis has
a large potential to contribute to scientific game analytics and
anticipate further research on this topic.
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