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I. INTRODUCTION

A normalized positive operator valued measure (POVM) describes the statistics of the
outcomes of a quantum measurement and thus we call them as observables of a quantum
system. However, some observables can be considered better than the others according
to different criteria: The observable may be powerful enough to differentiate between any
given initial states of the system or it may be decisive enough to completely determine the
state after the measurement no matter how we measure this observable. The observable
may also be free from different types of noise either of classical or quantum nature or its
measurement cannot be reduced to a measurement of a more informational observable from
the measurement of which it can be obtained by modifying either the initial state or the

outcome statistics.

We study these various notions of optimality for quantum observables and investigate how
they are interrelated. An extensive review of optimal observables and new results especially
dealing with post- and pre-processing are given. In this introduction, we approach these
problems within a simple setting only considering discrete observables of finite-dimensional
quantum systems, formally define the optimality properties outlined above, and characterize
observables associated with these properties. In the rest of this paper, we give definitions of
optimality in the general case involving also ‘continuous’ observables of infinite-dimensional
systems and characterize the optimal observables. However, one can obtain valuable insight

in this general case first by looking at the mathematically simpler discussion as follows.

As advertised, let us first consider a POVM M with finitely many values (or outcomes)
Q ={x1, 2 ..., xy} on a finite-dimensional quantum system with the associated Hilbert
space ‘H (denote d = dimH < oo0). This means that we do not need to go into measure
theoretical or functional analytical details in this introduction. The POVM M can be viewed
as a collection (M1, My, ..., My) of positive semidefinite d x d-matrices M; such that ZZ]\LI M;,
is the identity matrix when (by fixing an orthonormal basis) we identify H with C? and the
bounded operators on H with elements of the matrix algebra My(C). A state of the system
is represented as a density matrix p, that is, a positive semidefinite matrix of trace 1, and the
number p; = tr [pM;] € [0, 1] is interpreted as the probability of getting an outcome x; when
a measurement of M is performed and the system is in the (initial or input) state p. Actually,

M is a map which assigns to each subset X of 2 a positive matrix M(X) = >__ _\ M; so



that tr [pM(X)] is the probability of getting an outcome belonging to the set X. Especially,
M({x;}) = M,.

We fix a POVM M as above and study its different optimality criteria (in the categories
of discrete POVMs in finite dimensions). For that we will need another discrete POVM
M’ or (M}, M}, ..., MA,), which acts in a d’-dimensional Hilbert space H' = C¥. Without
restricting generality, we will assume that the matrices M; and M’ are nonzero. Namely
if, for instance, M; = 0 then p; = 0 regardless of the state p so the outcome z; is never
obtained and we may replace 2 by Q \ {z;} and similarly remove all outcomes related to
zero matrices.

Write M; = >0 Nkl )il = Doty |die Y(dir] where the eigenvectors g, k =
1,..., m;, form an orthonormal set, the eigenvalues )\, are positive (and bounded by 1),
and diz = vAirpir. We say that m; is the multiplicity of the outcome z; or the rank of
M;, and M is of rank 1 if m; = 1 for all ¢ = 1,..., N. Recall that rank-1 observables have

3,21,32-35

many important properties . For example, their measurements break entanglement

completely between the system and its environment®®. One can define a (maximal) rank-1
refinement POVM M?! of M via M}, = |dy. ){(di|, i = 1,...,N, k = 1,...,m;. Now M!
has N' = SN m, outcomes and p; = tr[pM,] = Y7, tr[pML] (i.e. M is a relabeling of
M1) thus showing that any measurement of M can be viewed as a measurement of M, the
so-called complete measurement, since the value space of M1 ‘contains’ also the multiplicities

k < m,; of the measurement outcomes z; of M, see®*3® for further properties of complete

measurements.
Let then Hg4 be a Hilbert space spanned by an orthonormal basis e;; wheret =1,..., N
and k =1,...,m;. Obviously, dim Hg = N!. Define a discrete normalized projection valued

measure (PVM) P = (Py,...,Py) of Hg via P; = Y717 |ei ) (€| so that P;Hg is spanned
by the vectors e, k = 1,...,m;, and we may write (the direct sum) He = @, (PiHa).
Define an isometry J : H — He, J = Son, S0 |e ) dgg| for which J*P;J = M,. Hence,
(Ha, J,P) is a Naimark dilation of M. The dilation is minimal, i.e., the span of vectors
P, Jo,1=1,...,N, ¢ € H, is the whole Hg. Indeed, this follows immediately from equation
S Zf\il o (ein|v)en, = Zf\il S el ) A PiJdy, where ¢ € He. Note that one can
identify H with a (closed) subspace JH of Hg, equipped with the projection JJ* from Hg
onto JH, and we may briefly write He = H®H'. Especially, any state p of H can be viewed

as a state JpJ* of the bigger space Hg. By using this interpretation, any measurement of P

3



in the subsystem’s state can be viewed as a measurement of M via p; = tr [pM;] = tr [JpJ*P;].
Finally, we note that M is a PVM if and only if J is unitary (i.e. {d;x}ix is an orthonormal
basis of H). In this case one can identify Hq with H and P with M e.g. by setting e;, = dy.

Remark 1. Let (Hg, J,P) be a (minimal) Naimark dilation of the POVM M as above.
Without restricting generality, one can pick any orthonormal basis {e,}>%, of an infinite-
dimensional Hilbert space Ho, and choose e; = €; ® e, € Hoo ® Heoo S0 that He becomes
a (closed) subspace of Hoo ® Heo and P; = |e;){e;] @ > 12 ler )(ex] < Pi ® Ipy where
P, =le;)(eil, i =1,..., N, constitutes a rank-1 PVM P’ in an N-dimensional space Hy =
lin{e;|i=1,...,N} and Iy = 3o, |ex ){ex| is the identity operator of Hy = lin{e; |i =
1,..., M} where M = max;<y{m;}. In addition, J can be interpreted as an isometry

from # into Hy ® Ha by the same formula J = SN ST,

e; ® e ){dy| and we have
M; = J*(P; ® Iy)J = ®;(P,) where ®; is a (completely positive) Heisenberg channel,
®;(B) = J(B®Iy)J = .Y A*BA, where B is an N x N-matrix (i.e. B € My(C)).
Hence, (Hy ® H, J, P’ ® I)y) is a Naimark dilation of M, which is minimal if and only if
m; = M for alli =1,..., N. Note that the Kraus operators A; = Zfil le; ) (d;s| are linearly
independent, i.e. the Kraus decomposition of ®; is minimal. In addition, the corresponding
Schrédinger channel (@), transforms a d x d-state p to the N x N-state p' = S A,pA*
and p; = tr [pM;] = tr [p'P}] = (ei|p’|e;) holds.

Davies and Lewis!!' introduced the concept of instrument which turned out to be crucial
in developing quantum measurement theory since, besides measurement statistics, it also
describes the conditional state changes due to a quantum measuring process. For example, if
the measurement outcome set is finite, Q@ = {x;,...,2x}, then any (Schrédinger) instrument
7 describing a measurement of M (with the outcomes 2), can be viewed as a collection
(Z;)Y., of completely positive operations on My(C): for any ¢, Z;(p) = >, AispAl; (a Kraus
decomposition) and the dual (Heisenberg) operation is J;(B) = Z/(B) = Y, A}, BA;s where
B is any d x d-matrix Z;. Moreover SV | tr[Zi(p)] = 1 for any state p. Now Z transforms
an input state p to a (nonnormalized) output state Z;(p) if x; is obtained. In addition,
7 defines the measurement outcome probabilities p; and the corresponding POVM M via
pi = tr[Zi(p)] = tr[pM,], i.e., using the Kraus decompositions of the operations, M; =
S, ALA,,. Note that p — SN T;(p) is a (Schrédinger) channel which transforms any state

of the system to another state of the same system. More generally, a quantum channel is
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a completely positive trace-preserving (cptp) linear map between state spaces associated to

quantum systems (with possibly different Hilbert spaces H, H') so that channels transmit

quantum information between different systems. Similarly, with possibly different input and

output spaces H = C? and H' = C¥, one may also assume an initial state of  to transform

into conditional states of H’ as a result of the measurement prompting to describe the

measurement through an instrument Z with Schrodinger operations Z; : M4(C) — M4 (C).

Now we are ready to introduce the following six optimality criteria for M:

(1a)

(1b)

M determines the future of the system (completely) if each instrument Z implementing
M is nuclear (or preparatory), i.e., of the form Z;(p) = p;0; where o;’s are density
matrices (of any fixed output Hilbert space H') which do no depend on the input state
p. If the outcome x; is obtained with the nonzero probability p; = tr [pM;] then the
output system is in the p-independent state o; after the measurement. It can be shown
that M determines the future if and only if M is of rank 1, i.e. each M; is of the form
|d; }{ d;| where d; € H*32.

M is post-processing mazximal (post-processing clean) if the condition M; = Zjvzll PiM;
for all ¢ (where (p’;) is N x N-probability matrix and M" = (Mj, ..., M},) is a POVM
of the same Hilbert space H' = H) implies that M = Zf\il pijM; for all j where
(pi;) is N x N'-probability matrix. Recall that (p;;) is a probability (or stochastic or
Markov) matrix if p;; > 0 and ) by =1 for all 7. The numbers p;; are transition
probabilities and M’ is said to be a smearing of M if M, = > . pijM; holds. In this
case, M and M’ are jointly measurable, a joint observable being N;; = p;;M;. The
condition M; = > p;;M} yields p; = tr[pM,;] = >, pj;tr [pM’] thus showing that,
instead of measuring M, one can measure M’ in the same state p and then classically
post-process the data by using the matrix (pgj) Post-processing clean POVMs are
free from this type of classical noise and it is easy to show that M s post-processing

clean if and only if M is of rank 1*® (Theorem 3.4).

M determines the past of the system if it is informationally complete, i.e. the mea-
surement outcome statistics (p;)¥, determines the input state p, i.e. the condition
tr [pM;] = tr[p’M;] for all ¢ implies that p' = p. Clearly, M determines the past of
the system if and only if N > d* and any d x d-matriz B can be written as a linear

combination of matrices My, i = 1,..., N° (Prop. 18.1). We will construct later an in-
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(3b)

formationally complete (extreme) rank-1 POVM M with the minimum number N = d?
of outcomes. Generally, an informationally complete POVM need not be rank-1 but
if M is informationally complete then its rank-1 refinement M is also informationally

complete3?.

M is extreme if it is an extremal point of the convex set of all (discrete) POVMs of H,
ie. M= %I\/I’ + %M” implies M’ = M. Thus, extreme observables describe statistics of
the pure quantum measurements, free from any classical randomness due to fluctua-
tions in the measuring procedure (in the same way as pure states describe preparation
procedures without classical randomness). One can show that M is eztreme if and only
if the matrices |dy, ){dy|, i = 1,...,N, k,{ = 1,...,m;, are linearly independent®
(Theorem 2.4),° (Theorem 2). Especially, if M is rank-1, i.e. M; = |d; ){d;|, d; # 0,
then it is extreme if and only if the matrices M; are linearly independent. In this case,
it is informationally complete if and only if N = d2. Trivially, if M is extreme then its
rank-1 refinement M* is also extreme implying, since d*> = N' = S°N m; > N and
N > d? imply m; = 1 and N = d?, that any extreme informationally completely POVM

is necessarily of rank 1. Finally, we note that PVMs are automatically extreme.

M determines its values x; if each M; is of (operator) norm 1, i.e. M; has the eigenvalue
1 (with the unit eigenvector ¢;). In this case, for any outcome x; one can pick a state
p = |¢;)(p;| such that p; = tr[pM;] = §;; for all i, i.e. the observable M has the
value z; in the state p with probabilistic certainty. Note that this holds only in finite
dimensions. Generally, a norm-1 (effect) operator can have a fully continuous spectrum
(i.e. no eigenvalues at all). However, even in such a case, for each j and any € € (0, 1),
there is a state p = |¢; )( ;| such that tr[pM;] = 1 —e. Clearly, a rank-1 norm-1
POVM is a PVM and any PVM is of norm-1. This holds for discrete observables.
As a counterexample, consider the canonical phase observable which is rank-1 norm-1

‘continuous’ POVM but not projection valued.

M is pre-processing mazimal (pre-processing clean) if the condition M; = ®(M}) for all
i (where ® : My (C) — My(C) is a Heisenberg channel and M’ is a POVM on the
possibly different Hilbert space H' =2 C% with N’ = N outcomes) implies that M} =
O(M;) for all i where © : M;(C) — My (C) is some Heisenberg channel. The condition
M; = ®(M) can be written in the form p; = tr [pM;] = tr [p®(M})] = tr [D.(p)M]] so

3 (2
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that to get the probabilities p; one can equally well measure M’ in the state ®.(p), i.e.
M’ is ‘better’ measurement in this sense and M is obtained from it by adding quantum
noise in p (characterized by the channel ®). Hence, pre-processing clean observables
are free from this type of quantum noise. Since, using the Naimark dilation (Hg, P, J)
of M, M; = J*P,J = ®(P;), where ® is the (rank-1) isometry channel J*(-).J, to show
that M is pre-processing clean, one must find a channel © such that P; = ©(M;) holds
and thus, since 1 = [|P;|| = [|©(M)|| < [|O] [IM;|| = |[M;]| < 1 implies ||[M;|| = 1,
each M; is of norm 1, i.e. M determines its values. Actually, Remark 1 shows that
M; = @, (P) must be connected to a rank-1 PVM P’ via some channel. We will show
that, in finite dimensions, pre-processing clean POVMs are exactly norm-1 POVMs
and exactly of the form M; = E; @ F; where E is a PVM (E; # 0 for all ¢) and F a
POVM (O(F;) = 0 for all 7) acting on orthogonal subspaces of H. Hence, for any pre-
processing clean POVM M, there exists a projection (onto a subspace) such that the

projected POVM E is projection valued. Especially, PVMs are pre-processing clean®!.

We have seen that ‘optimal observables’ must be of rank 1, see (1a) and (1b) above. More-
over, observables satisfying (2a) or (2b) can be maximally refined into rank-1 observables
which share the same optimality criteria as the original POVMs. If M is rank-1 then the
map CN 3 (c1,...,¢) = Yo, ;M is surjective iff (2a) holds and injective iff (2b) holds.
We will construct a POVM for which all conditions (1a), (1b), (2a), and (2b) hold. PVMs
are optimal observables in the sense of (3a) and (3b). In addition, the rank-1 refinement of
a PVM is also projection valued (and of norm-1). However, it is easy to construct a norm-1
POVM whose rank-1 refinement is not of norm 1. For example, in C? (with the basis |0), |1),
2)), one can define 2-valued norm-1 POVM M; = [1)( 1] + £[0)( 0], My = [2)(2[ + 2]0)(0|
whose refinement M* has an effect M}, = £/0)(0| of norm . Note that M; = E; & F; where
By = [1)(1], E; = |2)(2| constitutes a PVM in a 2-dimensional space, and F; = $|0)(0],
Fo = %’O><O|

To conclude, there are essentially two sorts of optimal observables: rank-1 PVMs and
extreme informationally complete POVMs. Since they are extreme (2b) and rank-1, i.e. post
processing clean (1b), they are free from classical noise due to the mixing of measurement
schemes or data processing. Moreover, they determine the future of the system (1a). Since
a pre-processing clean POVM has at most N = d outcomes and an informationally complete

POVM has at least N = d? outcomes, a pre-processing clean POVM (e.g. a PVM) cannot be
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informationally complete and vice versa, i.e. an informationally complete POVM is never free
from quantum noise. Moreover, the determination of the past (2a) and the values (3a) are
complementary properties. However, when one assumes that only a restricted class of states
(related to a subspace H C Hg) can be determined completely then these complementary
properties can be combined as follows:

One can pick a d*-outcome extreme informationally complete rank-1 POVM M; =
|d; Y{d;|,i=1,...,d?% and its minimal Naimark dilation with the rank-1 PVM P; = |e; ) (&]
acting in a d*dimensional space Hg = H @& H* with the orthogonal basis {e; ;il (recall
that d = dimH). Now, for any subsystem’s state p, one gets p; = (d;|p|d;) = (e;|JpJ*|e;)
and P; is informationally complete only within the set of states of the subspace H. Instead
of measuring M one can prepare a state of H = JH and then perform a measurement of
P to get probabilities p; and posterior states o; (see item (la) above) since the nuclear
instrument Z;(p) = (d;|p|d;)o; implementing M can be trivially extended to an instrument
T of P via Z;(p) = (ei|p|ei)o; where p is a state of He. Below we study sequential and joint
measurements of optimal POVMs with other observables.

Let M = (M;)¥, and M’ = (M;)j\il be POVMs as in the beginning of this introduction,
and let Z = (Z;) be an instrument implementing M (i.e. any Z; : My(C) — My (C) is
of the form Z;(p) = > AispAf; and M; = > A7 A;). Suppose then that one measures
first M in the state p (described by Z) and then M’ in the transformed (conditional) state
p; "Zi(p) if the outcome ; is obtained (with the probability p; > 0) in the first measurement
of M. This sequential measurement can be described by a joint POVM J = (J;;) where
Jij = I;(M)) since the conditional probability is tr [pJ;;] = tr [p; 'Z;(p)M}] p;. Hence, a

J

sequential measurement of M and M’ can be interpreted as a joint measurement of M and
the disturbed POVM M”, M7 = . J;; = ®(M}) of the same Hilbert space (here ® = 7
is the total Heisenberg channel of 7).

Indeed, any POVMs M = (M;) and M"” = (M) (of the same Hilbert space H" = H) are
jointly measurable if there exists a POVM N = (N;;) such that M and M” are the margins
of N, i.e., M; = 32V Nyj and M7 = S Nyj. If (Hg, J,P) is a (minimal) Naimark dilation
of M, since N;; < ij:/ll N;; = J*P;J implies the existence of P;; < P; (m; x m;-identity
matrix), it follows that N;; = J*P;;J where P;; is a (unique) positive semidefinite m; x m;—
matrix such that Zj Pi;; = P;. Hence, for each ¢« < N, the map j — P;; is a POVM acting

in the subspace P;Hs with N” values so that there is a channel ®; such that <I>Z-(P;-) = Py,
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see Remark 1. Here P’ = (P;)é-vzﬁl is a fixed rank-1 PVM acting in a minimal N”-dimensional
Hilbert space Hy» = CN”. Indeed if, say, M{ = 0 then N;; < 25:1 N;x = MY yields Ny = 0
and thus P, = 0 for all ¢ < N. Hence, P, = 0 and N” is the number of nonzero effects
MY since usually we assume that M7 # 0 for all j = 1,..., N”. Define an instrument Z by
I} (B) = J*®4(B)J, B € Myu(C). Clearly, Ny; = Z;(P’;) and, thus, any joint measurement
of M and M" can be interpreted as a sequential measurement of M followed by a rank-1 PVM
P’. Note that M} = ®'(P}) where ®'(B) = J* ), ®;(B)J.

In conlusion, a sequential measurement of M and M’ defines a joint obsevable J with
the margins M and M” = ®(M’). If we put N = J above, we see that this measurement
of J can be interpreted as a new sequential measurement of M and a rank-1 PVM P’. In
addition, M” = ®'(P’). Thus, the latter observable in a sequential set-up can be assumed
to be very optimal: free from both classical and quantum noise. Next we study how the
optimality criteria (1a)—(3b) affect the joint measurability of an optimal observable with

other observables.

1. If Misrank-1 (m; = 1) then any P;; is a 1 x 1-matrix, i.e. a number p;;, and N;; = p;;M;
is rank-1 (and a post-processing of M). Since (p;;) is a probability matrix, also M” is a
smearing (post-processing) of M, i.e. M7 = > p;;M;, see item (1b) above. Moreover,
the M-compatible instrument Z is nuclear (la) and N;; = J;; = tr [aiM;} M, from
where one can read the transition probabilities p;; = tr [JZ-M;-] (where the states o;
determine Z completely) showing that, if one gets x; in the first M-measurement, then
the instrument ‘prepares’ the post-measurement state o; which is the input state for
the second M’-measurement giving the probability distribution p;;, j =1,..., N’, and
tr [pJi;] = pipi; where p; = tr [pM;]. Hence, after a measurement of a rank-1 POVM
there is no need to perform any extra measurements to get more information. It should
be stressed that, even if M7 = ®'(P’), the channel ®" adds so much quantum noise to
the rank-1 PVM P’ that it becomes the fuzzy version M” of M32. We easily see that
® is entanglement braking since it is associated with a nuclear instrument Z’ of M:
Since P = |e; )( ;] one can define states o} = >, pijle; ) e;] and a nuclear instrument
Ti(p) = tr[pM] o] (or Z'(B) = tr[Boj] M;) such that Z"(P}) = p;M; = Ny and
®'(B) = Y. I/"(B) = > ;tr[Boi]M;. Hence, in this sequential measurement, the

latter observable M”| which arises as the second marginal of the joint observable J,



is obtained both through adding classical noise to the observable M first measured
(ie., as a post-processing M7 = > . p;;M;) and through adding quantum noise to the
observable M’ actually measured after M in the form of the pre-processing M7 =
O(M)) =3 tr [aiMﬂ M;. The same results naturally apply in the situation where we
modify the measurement of the first observable M and measure some rank-1 PVM P’
after it to obtain M” as the second marginal. In this case M” is a classical smearing

of the rank-1 M and a quantum smearing of the rank-1 PVM P’.

. If M is informationally complete (2a) then N = J is also informationally complete:
having access to probabilities tr [pN,;], one can solve p from the probabilities p; =
tr [pM;] = E;\f:”l tr [pN;;]. Hence, trivially, if already M determines the past, then its
subsequent measurements cannot increase the (already maximal) state distinguishing
power. Suppose now that N;; = Ji; = Z;(M’) for some instrument Z measuring the
informationally complete M and some subsequently measured M’ giving rise to the
second marginal M7 = ®(M’) for the total channel ® = ), 7. If we also assume that
M” is informationally complete, i.e., we jointly measure two informationally complete
observables in a sequential setting, then the Heisenberg channel ® is surjective (in
this finite-dimensional case) and the corresponding Schrodinger channel @, = ). 7,
is injective. Indeed, since M” is informationally complete, the map M,4(C) > p —
(tr [pMﬂ ); is injective, and, since this map is the composition of the maps @, and

o (tr [O’M;] ), as the first of these maps, ®. has to be injective.

If M is extreme (2b) then N is the unique joint POVM which has the margins M
and M”. This is proven as follows: Since, for N;; = J*P;;J and Nj; = J*P}.J, the
condition M} = SVON =3, N;; can be written in the form J*D;J = 0 where
D; =&Y (P — Pi;). If M is extreme then D; =0, i.e. Pj; = P}, and N = N. If; in
addition, M is rank-1 then Nj; = p;;M; and M7 = >;pijM; and we have the chain of

bijections: N — M” — (p;;) — N.

.If M = PisaPVM, ie PyP;, = 6xPx, (and thus Hg = H and J is the identity
map) then N;; = P;; where each map j — P;; is a (subnormalized) POVM which
commutes with P, i.e. P;;P, = PyP;;, since P;; < P,. Thus, any M” compatible with
a PVM P commutes with P. If, moreover, P is of rank-1 then P;; = p;;P;,. Note
that N (or M”) needs not to be a PVM or even of norm 1 (e.g. consider Py = |1)(1],
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Py =[2)(2] = Py, P11 = P1p = 3[1)(1] = M5, M{ = 3|1)(1] +]2)(2[ in C?).

In this paper, we generalize the above results to the case of arbitrary observables (with
sufficiently ‘nice’ value spaces) acting in separable Hilbert spaces. For example, consider the
single-mode optical field with the Hilbert space ‘H spanned by the photon number states
In), n =0,1,2,..., associated with the number operator N = a*a = Y .~ n|n)(n| where
a=3"",vn+1n){n+1|. Define the position and momentum operators @) = \%(a* + a)
and P = \/Lﬁ(a* — a) which, in the position representation, are the usual multiplication and
differentiation operators, (Qu)(x) = z¢(x) and (Py)(x) = —idy(x)/dz (we set h = 1).
Define the Weyl operator (or the displacement operator of the complex plane) D(z) =
e*® %2~ € C. Recall that Weyl operators are associated to a unitary representation of the
Heisenberg group H, or to a projective representation of the additive group C = R2. Let

¢, p € Rand 2 = (¢ +ip)/v/2. Then

D(q,p) _ D(z) — PQ—igP _ —iap/2,ipQ o —igP _ eiqp/Qe*iquin
L., for all ¢ € H = LA(R), (€729) () = ePy(x), (¢17)(x) = ¥(z + ), and

(D(q,p)¢) () = e~ P22 — q).

One can measure the following physically relevant POV Ms:

e Rotated quadrature operators @y = (cos0)Q + (sinf)P where 6 € [0,27) so that
Qo = @ and Q2 = P. In the position representation, the spectral measure of @) is
the canonical spectral measure, [Q(X)Y](z) = x, (z)¥(x), X TR (Borel set), so that
the spectral measure (rank-1 PVM) of Qy is Qo(X) = R(0)Q(X)R(0)* where R(f) =
eN =57 em|n)(n| is the (unitary) rotation operator. Rotated quadaratures can
be measured by a balanced homodyne detector where the phase shift 6 is caused by
a phase shifter. A single Qp cannot be informationally complete (as a PVM) but the
whole measurement assemblage {Qq(X >}9§[2’{£) forms an informationally complete set
of effects. Actually, a rank-1 POVM G (©x X) = £ [ Qo(X)df) determines the input
state completely (optical homodyne tomography, OHT). Note that ||Gn(© x X)|| <

1 [,d0 <1if © C[0,7) is not of ‘length’ m.

e The number operator N = >"° n|n)(n| whose spectral measure (rank-1 PVM) is

n+— N, = |n){n| (an ideal photon detector with the 100 % efficiency).

11



e An unsharp (rank-co) number observable (POVM)

2Ny = 3 (M) o

(a nonideal photon detector with quantum efficiency € € [0,1)). Now N€¢ is neither of

norm-1 nor informationally complete, since it is commutative?, and lim.,; NS = N,

(by 0° =1).
e Covariant phase space observables (POVMS)
/D )SD(z == D(q p)SD(q,p)*dgdp,  Z CC,

where S is (essentially) the reference state of an eight-port (or double) homodyne
detector. In practice Gg can be viewed as a joint measurement of unsharp rotated
quadratures (e.g., unsharp position and momentum). Moreover, Gg is rank-1 if and
only if S = [¢))(¢| where ¢ is a unit vector. Note that ||Gg(Z)|| < £ [,d?z <1 when

the area of the set Z is small enough.

e Covariant phase observables (POVMs)

1 de
- — i(n—m)0 C
d-(0) 27T/@R(Q) )*do = E C’nm/ 27T| n)(m|, © C[0,2m),

n,m=0
where C'= 37" Cpn|n)(m] is a positive sesquilinear form with the unit diagonal
(Cpn = 1), i.e. a phase matrix. If C,,,, = 1 we get the canonical phase observable ®.,,,

D ( Z/ “”""ede n)(m|,  ©C0,2n),

n,m=0

whereas the angle margin of Gg is called a phase space phase observable. Both can be
measured by double homodyne detection®®. Any phase observable is never projection
valued and is a preprocessed version of the canonical phase given by a (Schur type)
quantum channel. Note that ®.,, is not informationally complete (consider number
states) but it is norm-1. However, ®,, is not pre-processing clean since its nontrivial

effects cannot have eigenvalues® (Theorem 8.2).

A. Definitions and mathematical background

In this paper, N = {1, 2,...}, i.e., 0 is not included in the set of natural numbers. We

define an empty sum Z?:1<‘ -+) to be equal to zero. When H is a Hilbert space, we denote
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by L(H) the algebra of bounded linear operators on H and by I3 the unit element of this
algebra (the identity operator on H); by ‘Hilbert space’ we always mean a complex Hilbert
space. The inner product of any Hilbert space will be simply denoted by (-|-) since the
Hilbert space in question should always be clear from the context, and the inner product
is chosen to be linear in the second argument. By P(H), we denote the set of projections
of H, i.e., operators P € L(H) such that P = P* = P?. An operator E € L(H) is called
effect if 0 < E < Iy holds. Especially, any projection is an effect, the so-called sharp
effect. We let T (H) stand for the set of trace-class operators on H, i.e., tr[|T|] < oo for all
T € T(H). We denote the set of positive trace-1 operators in 7 (H) by S(H); in quantum
physics, these normalized positive states of L(H) are identified with the physical states of
the system described by #H. Note that P(H) N S(H) consists of rank-1 projections |1 ) (|

(where ¢ € H is a unit vector).

When p and v are positive measures on a measurable space (€2, YX) (where Q # () is a set
and ¥ is a o-algebra of subsets of {2) we say that u is absolutely continuous with respect to
v and denote p < v if pu(X) = 0 whenever v(X) = 0. When both 4 < v and v < pu, we

denote p ~ v and say that p and v are equivalent.

Let (€2, %) be a measurable space and #H be a Hilbert space. A map M : ¥ — L(#H) is said
to be a normalized positive-operator-valued measure (POVM) if, for all p € S(H), the set
function X — tr [pM(X)], denoted hereafter by p,’}", is a probability measure or, equivalently,
M(X) > 0forall X € ¥, M(Q2) = I3, and, for any pairwise disjoint sequence X, Xs,... € X,
one has M(U; X;) = > . M(Xj) (ultra)weakly. Denote the set of POVMs from ¥ to L(H) by
Obs(X,H). When P(X) € P(H) for all X € X foraPOVM P : ¥ — L(#H), we say that P is a
normalized projection-valued measure (PVM) or a spectral measure. We extend the notions
of absolute continuity and equivalence introduced above for scalar measures in the obvious
way and thus may write, e.g., for a POVM M € Obs(3, H) and a measure u : ¥ — [0, 0o,
M < p if M(X) = 0 whenever u(X) = 0 and, for another POVM N : ¥ — £(K), where K
is some Hilbert space, M < N if N(X) = 0 implies M(X) = 0. We say that M is discrete if
there exist distinct points {z;}¥; C Q, N € NU{oo}, and effects {M;}; C £L(H) such that
M= Zf\il M;d,, where J, is a Dirac (point) measure concentrated on z. Now M < Zfil O, -
A discrete observable M can naturally be identified with the effects M; and we will use the
notation (M;)Y, for M if the outcomes x € € are not relevant. Note that, if H is separable,

and M € Obs(X, H), picking any state p € S(H) which is faithful, i.e., tr [pA] = 0 implies
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A = 0 for any positive A € L(H) (or, equivalently, the kernel of p is {0}), we have M ~ pM.

In quantum physics, POV Ms are associated in a one-to-one fashion with observables of the
system. The observables associated with PVMs are called sharp. In this view, the number
P (X) = tr[pM(X)] € [0,1] is the probability of obtaining a value within the outcome set
X € ¥ when measuring M € Obs(X, H) and the system being measured is in the quantum
state p € S(H). In realistic physical experiments, we measure only discrete observables
which in many cases can be thought as discretizations of continuous observables, i.e. for any
M € Obs(X,H) one can choose pairwise disjoint sets X; € ¥ whose union is the whole ()
and define a discrete POVM by M; = M(X;) (with the outcome set {1,..., N} or N). In
this case, one can replace X with the sub-o-algebra generated by the sets X;.

Let A and B be C*-algebras. We say that a linear map ® : A — B is n-positive (n € N)
if the map

Ma(A) 3 (ai3)i =1 = (P(ai))i o € Mn(B)

defined between the n x n-matrix algebras over the input and output algebras is positive.
If ¢ is n-positive for all n € N, ® is said to be completely positive. Suppose that A and
B are unital (with units 14 and 1z) in which case ® is called unital if (14) = 1. For
any unital 2-positive map ® : A — B one has the Schwarz inequality, ®(a)*®(a) < ®(a*a)
for all @ € A. Suppose that A and B are von Neumann algebras. We say that a positive
map ¢ : A — B is normal, if for any increasing (equivalently, decreasing) net (ay), C A of

self-adjoint operators, one has

sup ®(ay) = ¢ ( sup a,\>,
A By

where sup by is the supremum (ultraweak limit) of the increasing net (equivalently, with sup
replaced by inf, the infimum, in the case of a decreasing net).

Fix a C*-algebra A and a Hilbert space H. For any completely positive map ® : A —
L(H), there is a Hilbert space M, a unital *-representation 7 : A — £L(M), and an isometry
J : H — M such that ®(a) = J*w(a)J for all a € A and the linear hull of vectors 7(a)Jyp,
a € A, ¢ € H, forms a dense subspace of M. Such a triple (M, x, J) is called as a minimal
Stinespring dilation for ® and it is unique up to unitary equivalence, i.e., if (M’ 7', J')
is another minimal dilation, then there is a unitary operator U : M — M/’ such that

Ur(a) =7'(a)U for alla € Aand UJ = J'.
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Let H and K be Hilbert spaces. We call normal completely positive maps ® : L(K) —
L(H) satistying ®(Ix) < I3 as operations. When @ is in addition unital, i.e., ®(Ix) = Iy, we
call ® as a channel. For a channel ® : L(K) — L(H) one always has a minimal Stinespring
dilation (K', V') where K’ is a Hilbert space (which is separable if H and K are separable)
and V : H — K ® K’ is an isometry such that ®(B) = V*(B® Ix/)V for any B € L(K) and
vectors (B ® I )V, B € L(K), ¢ € H, span a dense subspace of K ® K'. For any normal
linear map @ : L(K) — L(H) there exists a (unique) predual map @, : T(H) — T (K) such
that

tr [D.(T)A] = tr [TP(A)], TeT(H), AecL(K).

The version ® : L(K) — L(H) is said to be in the Heisenberg picture and the version
O, : T(H) — T(K) is said to be in the Schridinger picture. For a channel @, the Schrédinger
channel ®,, when restricted onto S(#), describes how the system associated with H trans-
forms under ® into another system associated with /C.

Let (2,%) be a measurable space and H and K Hilbert spaces. We say that a map
J LK) x ¥ — L(H) is a (Heisenberg) instrument if

(i) J(,X): LK) — L(H) is an operation for all X € 3,
(ii) J(-,9) is a channel, and

(ili) for any pairwise disjoint sequence X, Xo,... € ¥ and any A € L(K), J(A,U;X;) =
> J (A, X;) (ultra)weakly.

For any instrument J : L(K) x ¥ — L(H), we define the predual (Scrédinger) instrument
T : T(H) x X — T(K),

J(T, X)) =[T(-, X)(T), TeT(H), XeX.

Note that, for an instrument J, the map J(Ix, ) : ¥ — L(H) is a POVM. On the
other hand, for any M € Obs(X,H) and a Hilbert space K there is an instrument J :
LK) x ¥ — L(H) such that M(X) = J (I, X) for all X € ¥, ie, p) = tr[Z(p,-)];
we call J an M-instrument. In a measurement of an observable associated with a POVM
M, the system transforms conditioned by registering an outcome x € X. This conditional
state transformation is given by the operation J.(-, X)) where J is an M-instrument. The

operator J,(p, X) is a subnormalized state whose trace coincides with the probability pz/'(X )
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of registering an outcome in X. If pM(X) > 0 then [p)(X)]"'T.(p, X) is the corresponding

conditional state.

II. GENERAL STRUCTURE OF A QUANTUM OBSERVABLE

In this section, we analyse the structure of an observable with a general value space on a
system described by a separable Hilbert space. We will refer to the results reviewed in this
section several times on the course of this paper.

Suppose that H is a separable Hilbert space and let h = {h,}4m" be an orthonormal
(ON) basis of ‘H and

Vi = ling{h, |1 <n < dim#H + 1}.

Note that V4, is dense in H. Let Vi be the algebraic antidual of the vector space V},, that is,
V. is the linear space consisting of all antilinear functions ¢ : V;, — C (antilinearity means

that c(a + By) = ac(y) + Be(y) for all a, B € C and 9, ¢ € V4,). By denoting ¢, = c(hy,)

dim H
1m Cnh/

one sees that V. can be identified with the linear space of formal series ¢ = > '™

where ¢,’s are arbitrary complex numbers. Hence, V}, € H C Vi*. Denote the dual pairing
(le) = c(p) = " (| hy)e, and (c|y) == (¥]c) for all ¢ € Vi, and ¢ € V. Especially,
Cn = (hy|c). We say that a mapping ¢ : Q — Vi, z = % ¢ (2)h,, is (weak*-)measurable
if its components z — ¢,(x) are measurable®®. Note that, if ¢ : Q — H C V. is weak*-
measurable then the maps = — (¥|c(x)) are measurable for all ) € H.

Let (€2,3) be a measurable space and Hg denote a direct integral féB H(z)dp(z) of
separable Hilbert spaces H(z) such that dim H(x) = m(x) € NU{0, co}; here u is a o-finite

12 Note that p can be a probability measure everywhere

nonnegative measure on (€2, )
in this paper; any o-finite measure is equivalent with a probability measure. For each
f € L>®(u), we denote briefly by f the multiplicative (i.e. diagonalizable) bounded operator
(fi)(z) == f(x)¢(z) on He. Especially, one has the canonical spectral measure ¥ 3 X
Pe(X) := X, € L(Hs) (Where x, is the characteristic function of X € ¥). We say that
an operator D € L(Hg) is decomposable if there is a weakly p-measurable field of operators
Q> xw— D(z) € L(H(x)) such that (Dy)(x) = D(x)y(z) for all » € He and p-a.a x €
it is often denoted

D= /:9 D(x)du(x).

We have the following theorem proved in%33!:
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Theorem 1. Let M : ¥ — L(H) be a POVM and p: ¥ — [0,00] a o-finite measure such
that M < . Let h be an ON basis of H. There exists a direct integral Hg = fQ x)dp(x)
(with m(z) < dim#H ) such that, for all X € 3,

(i) M(X) = JiPg(X)Jg where Jg : H — Hg is a linear isometry such that the set of
linear combinations of vectors Po(X')Jgp, X' € X, ¢ € H, is dense in He.

(i) There are measurable maps dy : Q — Vi° such that, for all x € S, the vectors

dp(x) #0, k < m(x)+ 1, are linearly independent, and

(M)} = | S (@) )0 due), 0 0 € Vi

k=1

(a minimal diagonalization of M). In addition, there exist measurable maps 2 > x +—

ge(x) € Vi such that {di(x)|ge(x)) = 0xe (the Kronecker delta).

(11i) M is a spectral measure if and only if Js is a unitary operator and thus He can be

identified with H.

A minimal Stinespring dilation for a POVM M : ¥ — L(H) (viewed as a completely
positive map L>(u) — L(H), f — [ fdM, where p is a probability measure such that
M < p) is called as a minimal Naimark dilation and it consists of a Hilbert space M, an
isometry J : H — M, and a spectral measure P : ¥ — £(M) such that M(X) = J*P(X)J
and the vectors P(X)Jp, X € ¥, ¢ € H, span a dense subspace of M. The above theorem
tells that, whenever # is separable, one can choose M = Hg = f;f H(z)du(x) and P to be

the canonical spectral measure Pg.

A. Physical outcome spaces

It is reasonable to assume that a physically relevant outcome space (€2, 33) of an observable
is regular or ‘nice’ enough. One can often suppose that ¥ is countably generated, i.e. there
exists a countable S C X such that X is the smallest o-algebra of €2 containing S. We
will always consider any topological space T as a measurable space (7, B(T")) where B(T)
is the Borel o-algebra of T. Furthermore, we equip any subset S of T" with its subspace
topology and the corresponding Borel o-algebra B(S) = B(T) N S. We have the following
proposition®” (Proposition 3.2):
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Proposition 1. A measurable space (2, %) is countably generated if and only if there exists

a map f: Q — R such that
(i) for allY € B(R) the preimage f~1(Y) € ¥ (measurability) and
(ii) for all X € ¥ there is Y € B(R) such that f~1(YV) = X.

Recall that f satisfying (i) and (ii) is called exactly measurable. If (€2,3) is countably
generated and j any o-finite positive measure on Y then L?(u) and He = fSB H(z) dp(x)
are separable.

We say that (€,Y) is nice if it is countably generated and f : © — R of the above

proposition meets the additional condition

(i) £(Q) € B(R).

In3", nice spaces correspond to type B-spaces (where B refers to the notational conventions
of the reference). Note that in this case actually f(X) € B(R) for all X € 237 (Lemma
4.1). If, in addition, f is injective then the nice space (€2,%) is a standard Borel space
showing that nice spaces are generalizations of standard Borel spaces. Any Borel subset
of a separable complete metric space is a standard Borel space and, indeed, any standard
Borel space is o-isomorphic to such a set or even to some compact metric space. Usually in
physics, outcome spaces are finite-dimensional second countable Hausdorff manifolds which
are (as locally compact spaces) standard Borel.

One can think of nice spaces as standard Borel spaces without the separability property
(recall that ¥ is separable if {z} € ¥ for all x € 2). For any = € §2 one can define an atom
A, =X € 2|z e X} = f1({f(2)})*" (Lemma 3.1) so that a nice space is standard
Borel if and only if A, = {z} for all x € Q. Hence, atoms of nice spaces may have an ‘inner
structure’ (compare to the case of real world atoms).

Suppose that (£2,X) is nice with an f satisfying (i)-(iii). Hence, f(Q2) € B(R) is a
standard Borel space and, since two standard Borel spaces are o-isomorphic if and only if

they have the same cardinality, without restricting generality, we can assume that
o f()={1,2,....,N}, Ne N, or f(2) =N (discrete case), or

e f(2) =R (continuous case).
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In the discrete case, we say that (2,%) is discrete and denote X; = f~1({i}) = A,,, i =
1,2,..., so that X; N X; = 0, ¢ # j, thus showing that ¥ is the set of all unions of sets X

and the empty set (). Moreover, any observable M : ¥ — L(H) is discrete and, as earlier,
can be identified with (M;)¥, where M; = M(Xj).

III. JOINT MEASURABILITY AND SEQUENTIAL MEASUREMENTS

If quantum devices can be applied simultaneously on the same system, we say that they
are compatible. Simultaneously measurable observables are called jointly measurable. Let

us give formal definitions for these notions.

Definition 1. Observables M; : ¥; — L(H) with outcome spaces (£;,%;), i = 1,2, are
jointly measurable if they are margins of a joint observable N : 31 ® Y9 — H defined on the
product o-algebra ¥; ® ¥y (generated by sets X x Y, X € X1, Y € ¥y), i.e.,

Ml(X) = N(X X Qg), MQ(Y) = N(Ql X Y), X e 21, Y € ZQ.

Especially, M; and My are jointly measurable if (and only if) they are functions or relabel-
ings of a third observable M € Obs(3, H), i.e. for both i = 1,2 one has M;(X;) = M(f;, 1(X;))
for all X; € ¥; where f; : Q; — Q is a measurable function. Now a joint observable N is
defined by N(X x Y) = M(f; 1 (X)N f;1(Y)) for all X € &) and Y € 3. Note that, in this
case, all the three measurable spaces can be arbitrary® (Chapter 11). This implies that, in

particular, any observable is jointly measurable with its relabelings.

Definition 2. Similarly, we say that an observable M : ¥ — L(#) and a channel & :
L(K) — L(H) are compatible if there exists a joint instrument J : LK) x ¥ — L(H) such
that

M(X) = T (I, X), ®B)=J(B,Q), Xe¥ BeclLK).

In this case, we also say that ® is an M-channel and J is an M-instrument.

The above means, when M and ® are compatible, there exists a measurement of M
such that &, is the unconditioned state transformation induced by the measurement. The

following result is a direct consequence of the results of, e.g.,':

Theorem 2. Let (2;,%;), i =1, 2, and (2, %) be measurable spaces and H and K separable
Hilbert spaces.
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(i) Suppose that M; : 3; — L(H), i = 1,2, are jointly measurable observables in H. Let
(M, P, J) be any minimal Naimark dilation for My. Fiz a joint observable N for M,
and My. There is a unique POVM F : 35 — L(M) such that P(X)F(Y) = F(Y)P(X)
forall X € ¥y and Y € Yy and

N(X xY)=JPX)FY), Xe%, Ye,.

(ii) Suppose that an observable M : ¥ — L(H) and a channel ® : L(K) — L(H) are
compatible and fix a joint instrument J : LK) x X — L(H) for M and @, any minimal
Naimark dilation (M, P, J) for M, and any minimal Stinespring dilation (K', V') for
®. There is a unique channel T : L(K) — L(M) and a unique POVM E : ¥ — L(K')
such that T(B)P(X) = P(X)T(B) for all B € L(K) and X € X and

J(B,X)=JT(B)P(X)J] =V (BREX))V, Be LK), Xe.
When we combine item (ii) of the above theorem with Theorem 1, we obtain the following
result; see also®? (Theorem 1)

Theorem 3. Let (2,%) be a measurable space, H a separable Hilbert space, and M : ¥ —
L(H) an observable. Pick the minimal Naimark dilation (He, Pg, Jo) of Theorem 1 for M.
Let J : LK) x ¥ — L(H) be an M-instrument. There is a unique channel T : L(K) —
L(Ha) defined by a (weakly p-measurable) field x — T, of channels T, : LK) — L(H(x)),
©
7(5) = [ TAB) duta).
i.e., (T(B)Y)(x) =T, (B)Y(z) for all B € L(IK), ¥ € Hg, and p-a.a. x € Q, such that

J(B,X) = JLT(B)Ps(X)Jy, BeL(K), XeX.

A. Connection between joint and sequential measurements

A special case of joint observables is sequential measurements where an initial observable
M: ¥ — L(H) is first measured yielding some M-instrument J : L(K) x ¥ — L(H) with
output Hilbert space K. Then some observable M’ : ¥/ — L(K) is measured. The conditional
probability for obtaining an outcome within Y € ¥’ in the second measurement, conditioned

by the first measurement observing a value in X € ¥, is
tr [Ji(p, X)M'(Y)] = tr [pT (M'(Y), X)]
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when the system is initially in the state p € S(H). For all spaces (2,%) and (£2,%),
the positive operator bimeasure (X,Y) — J(M'(Y), X) extends into a POVM on ¥ ®
¥/2838  In this case, the extension J : ¥ ® X' — L(H) is a joint observable for the initial
observable M and a distorted version M” = J(M'(-),) of the second observable. As
shown in Section I, any joint measurement of discrete observables can be implemented as
a sequential measurement; see also'® for this fact and its generalizations in the case of
discrete observables. Next we show that joint and sequential measurements are, in this
sense, equivalent in a very general case. Whenever (2, Y) is a measurable space and p is a
probability measure on ¥, we denote by P, the canonical spectral measure on L*(p), i.e.,
(Pu(X)¥)(2) = x ()¢ (x) for all X € 3, ¢ € L*(p), and p-a.a. 2 € Q. When K is a Hilbert
space we naturally identify L?(u) ® K with the L2-space of functions Q — K.

Proposition 2. Suppose that (€0;,%;), i = 1,2, are countably generated measurable spaces
and H is a separable Hilbert space. Assume that M; : ¥, — L(H), ¢ = 1,2, are jointly
measurable observables with a joint observable N. There is a separable Hilbert space K, an

M, -instrument J : LK) x 1 — L(H), and a POVM M’ : ¥y — L(K) such that
NX xY)=TJ(M(Y),X), Xex, YeI,. (1)

Proof. Choose probability measures p; : ¥ — [0,1] such that M; < pu;, ¢ = 1,2. Pick a

minimal Naimark dilation (Hg, Pg, Jg) of Theorem 1 for M; where

Moo= [ HE
is a direct integral space which is separable since (£21, ¥;) is countably generated. According
to Theorem 2, there is a POVM F : 35 — L(Hg) such that Pg(X)F(Y) = F(Y)Pg(X) and
N(X xY) = JiPo(X)F(Y)Jg for all X € 31 and Y € 5. Let (M, Q, K) be a minimal
Naimark dilation for F. Again, M is separable since Hg is separable and >, is countably
generated.

Fix X € ¥; and define Fx : ¥y — L(Hg) by Fx(Y) = Pg(X)F(Y). Now Fx(Y) <
F(Y) for all Y € %5, so that one can define a unique P(X) € £(M) by P(X)Q(Y)K¢ =
Q(Y)KP4(X)Y, Y € Xy and ¢ € Hg (see, e.g., a similar proof of'® (Proposition 2.1)).
Clearly, P(X)? = P(X), P(X)Q(Y) = Q(Y)P(X), and Fx(Y) = K*P(X)Q(Y)K for all
Y € %y Hence, X — P(X) is a PVM.
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For all X € ¥, and Y € ¥, define the projection R(X,Y) = P(X)Q(Y) € £(M). Since
N is a POVM, for any @1, ¢ € H, X1, X5 € ¥, and Y], Y5 € 35, the complex bimeasure

(X,Y) = (Q(Y1)KPg(X1)Jop1 |R(X, Y)Q(Y2) KPg(X2) Jgp2)
= (@1 IN((X x Y) N (X1 x Y1) N (X x Y3))2).

extends into a complex measure on ¥, ®3,. Using the minimality of the subsequent dilations,
one finds that (X,Y) — (£|R(X,Y)¢) extends into a measure for all £ € M. Thus (X,Y) —
P(X)Q(Y) extends into a PVM which we shall also denote by R.

Since M is separable, we may diagonalize R and thus identify M with the direct integral

space
®

MEB = M(l’,y) d(“l X N2)(9Cay),

Ql XQQ
where R operates as the canonical spectral measure. From now on, let us fix a separable

infinite-dimensional Hilbert space M, so that we may define a decomposable isometry

W M — M= L (i X pia) @ Moo = L (111) @ [L?(p2) ® Moo,
®

W = W (z,y)d(uy x p2)(z,y),
Q1><QQ

where W(z,y) : M(x,y) - M are isometries. One may also define the decomposable
isometry Wy : He — M, W = fﬁl Wi (x) dpy (), where Wi(z) : H(z) — L*(12) ® My are
isometries, and K := WKW} € L(M).

Define the canonical spectral measure R := P, «,, ® Iy, of M with the margin P :
¥ = LM), P(X) = R(X x Q) = P, (X) ® I12(4y) ® Ip.. It is simple to check that
R(Z)W = WR(Z) and Pg(X)W; = WiP(X) for all Z € £, ® ¥ and X € ¥;. This means
that

P(X)K = Wﬁ’(X)KWl* =WKPg(X)W] = FE(X)
for all X € ;. Thus, K = fgal K (x)dp () where K(z) € L(L*(us) ® My). Define the
isometry K == WK = KW, = fé’i K (x)dp(z) with the isometries K(z) = K (z)Wi(x) :
H(x) — L (o) @ M.

For pi-a.a. z € €); define the channel

T, : L(L*(u2)) — L(H(x)), B Tu(B):= K(x)"(B® Iy, )K(z).

Since the field z + K (z) of isometries is measurable, one may define the channel

T: L(L*(m)) = L(Hs), B T(B) = /j T,(B) du(z).
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Using the intertwining properties of the various isometries and POVMs we have, for all

QOGH,XEEl,aDdYEEQ,

{(Jo|Ps(X)T(P, (V) Jap) = /X((J@SO)(QI)\Tx(PM(Y))(J@SO)(SC))dul(:v)

- /X (K (2)(Jo0)@)| (P (V) © L) K (2) (o) (2)) din ()
= <I~(J@SO|§(X X Y)KJ@@ = (KJop|R(X x Y)KJgp)
= (Jo@|Pa(X)F(Y)Jap) = (pIN(X X Y)yp).

Hence, N(X xY) = JZPo(X)T(Pu,(Y))Jg for all X € 3y and Y € %,.
Define the instrument J : L(L*(p2)) x ¥4 — L(H) by J(B,X) = J:Ps(X)T(B)Ja,
see’? (Theorem 1). The choices K := L*(us) and M" := P, yield Equation (1). O

IV. OBSERVABLES DETERMINING THE FUTURE

We now turn our attention to those observables which have the property that, no
matter how we measure them, registering an outcome unequivocally determines the post-
measurement state of the system under study. Let us first introduce a special class of

observables.

Definition 3. Let an M € Obs(X, H) be associated with the Naimark dilation (Hg, Pg, Ja)
of Theorem 1. If dim#H(x) = 1 for p-a.a. x € €2, we say that M is of rank 1. In this case,
He = L*(p) and Pg, = P,,.

Let the observable M of Theorem 1 be of rank 1. Also assume that J : L(K) x X — L(H)
is an M-instrument defined by the pointwise channels T, : L(K) — L(H(x)) of Theorem 3.
Because of the rank-1 assumption, there are states o, € S(K) such that T,.(B) = tr [0, B],
x €, Be L(K). It follows that J is of the following type:

Definition 4. Let H and K be Hilbert spaces and (£2,%) a measurable space. We say
that an instrument J : L(K) x ¥ — L(H) is nuclear if there is a weakly pu-measurable
field Q@ 3 z +— 0, € S(K) of states (meaning that all maps © — trlo,B], B € L(K), are
p-measurable) such that

J(B,X) = / trjo,B] dM(z), X eX, Be L(K).
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The term nuclear follows the terminology of Cycon and Hellwig®. The above definition

means that, in the Schrodinger picture, a nuclear instrument J has the form
TAp.X) = [ odffla)  pest), Xex
X

where the integral is defined weakly. Physically this means that a nuclear instrument pre-
pares the quantum system into some post-measurement state which solely depends on the
outcome registered, not on the pre-measurement state of the system. This is why also the
name measure-and-prepare instrument could also be used. Thus, any measurement of a
rank-1 observable is described by a nuclear instrument and registering a value fully deter-
mines the post-measurement state. This is to say, rank-1 observables determine the future
of the system under measurement. In fact, also the contrary is true as the following result

from3? tells us.

Theorem 4. An observable M : ¥ — L(H) is rank-1 if and only if each M-instrument
J LK) x ¥ — L(H) is nuclear (where K is any Hilbert space).

The above result can be reformulated in the form that an observable determines the future
if and only if it is of rank 1. The channel J(-,) associated with a measurement of a rank-1
observable is also seen to be entanglement breaking??.

Let M € Obs(X, H) with vectors dy(z) of Theorem 1, Q! := N x Q, and let X! be the
product o-algebra of 2 and ¥. Let u! : 3! — [0, 0o] be the product measure of the counting
measure and p. Define d(k,z) = di(z) if k < m(z) + 1 and d(k,x) = 0 if & > m(z). Then

M) = [ (el )l (ko). g v e X e, ()

defines a rank-1 POVM M?! : ¥ — L(H); we say that M is a maximally refined version of
M.

Since M(X) = MY(f~1(X)) where f : Q' — Q is a measurable function defined by
f(k,z) = f(z) for all k € N and x € Q, M is a relabeling of M*. Note that the value
space of M! contains the multiplicities (k,z), k < m(z) + 1, of a measurement outcome x
of M. Moreover, M and M?! are jointly measurable and M! can be measured by performing
a sequential measurement of M and some discrete ‘multiplicity’ observable3*. We will see
that the maximally refined version of an observable possesses many of the same optimality
properties as the original observable meaning that we may freely assume the rank-1 property

for these observables.
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V. POST-PROCESSING AND POST-PROCESSING MAXIMALITY

Let us begin with a definition.

Definition 5. Let (21, %) and (22, ¥2) be measurable spaces. Also assume that p: 1 — R

is a positive measure. We say that a map 3 : ¥y x O — R is a p-weak Markov kerneP* if
(i) B(Y,+): Q; — R is p-measurable for all Y € 3,
(ii)) B(Y,x) >0 for all Y € ¥y and p-a.a. x € Oy,
(iii) B(Qq,z) =1 for pra.a. z € Qq, and

(iv) for all pairwise disjoint sequences Y7, Ya,... € X,
BV Yio) = ) B(Y;, @)
j=1
for p-a.a. x € Q.

If 5(-,x) is a probability measure for all x € ©; and the maps (Y, -) are measurable then [

is simply called a Markov kernel.

When 4 is a probability measure on (21, %1), g1 < p, and 5 : ¥o x ; — R is a p-weak

Markov kernel, then the set function
S x % 5 (X,Y) o B(X,Y) = / B(Y,2) dyn(z) € [0, 1]
X

is a probability bimeasure with the marginal probability measures X — B(X, ) = 1 (X)
and Y — B(Q,Y) =: 4?(Y). Recall that B : $; x ¥y — C is a bimeasure if B(X, -),
X € ¥y, and B(-,Y), Y € X5, are (complex) measures. As an immediate consequence
of Carathéodory’s extension theorem, one gets the well-know result stating that if £ is a
Markov kernel then B extends into probability measure B : ¥ xXy — [0,1], i.e., B(XxY) =
B(X,Y)forall X € ¥; and Y € ¥5. Note that ,uf can be interpreted as a result of (classical)
data processing represented by 5. We call this data processing scene post-processing since
the processing can be carried out after obtaining the data represented by the measure p;.

This data processing scheme generalizes to the case of POVMs in the following way.
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Definition 6. Let M; : 31 — L(H) be an observable operating in the Hilbert space H. We
assume that there is a (probability) measure p on (€2, ) such that M; < . We say that an
observable My : X9 — L(H) is a post-processing of My, if there is a u-weak Markov kernel
B : 35 x Q1 — R such that p)> = (pi'*)? for all p € S(H) or, equivalently,

My(Y) = i B(Y,z)dM;(x) (weakly)

for all Y € ¥,. We denote My = Mf.

The above means that by measuring My, we obtain all the information obtainable by
measuring My; we just have to process the data given by M; classically with the fixed
kernel #. Thus, M; can give us at least the same amount of information on the quantum
system as My modulo classical data processing. Note that if My is a relabeling of My, i.e.

My (Y) = My (f~1(Y)), then My = M? where 5(Y, z) = () is a Markov kernel.

Xp-1(y)

We may thus set up an information-content ‘order’ among observables®329 M, <

post My
if there is a p-weak Markov kernel 5 : 35 x €; — R (where M; < ) such that My = Mf.
We may also say that M; and My are post-processing equivalent if there are weak Markov
kernels $ and 7 such that My = Mf and M; = MJ. Recall that the ‘order’ <post here may
not actually be a partial order (because of the failure of transitivity); for situations where
this problem can be overcome and identification of canonical representatives of the resulting

27 An observable M is post-processing mazimal or post-processing

equivalence classes, see
clean if, for any observable M’ such that M </, M’, one has M’ <,.x M. The maximal
observables have been characterized earlier in the case of discrete outcomes'® (Theorem 3.4).
We generalize this characterization for observables with nice outcome spaces. For that, we

need the following results.

Proposition 3. Let (21, %) be nice, (9, 32) countably generated, and B : X1 x 3y — [0, 1]
a probability bimeasure. Denote py = B( -, ).

(i) There exists a probability measure B : ¥1®Yy — [0,1] such that B(X xY) = B(X,Y)
forall X € ¥ and Y € .

() There exists a Markov kernel 3 : X xQy — [0, 1] such that B(X,Y) = [ B(Y, x) du ()
forall X € X1 and Y € 3.
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Proof. First we note that (i) holds in the case where (€;,3;) and (€9, 3s) are standard
Borel spaces!® (Lemma 4.2.1) showing that Lemma 12.1 of3” holds even in the case where
probability measures on ¥;®¥, (i.e. joint probability measures) are replaced with probability
bimeasures on ¥; X X,. Manifestly the rest of the proof of Theorem 12.1 of?>” can be carried
out by replacing joint probability measures with probability bimeasures everywhere. This
proves item (ii). Item (i) follows from (ii) by recalling the well-known fact that any Markov

kernel defines a joint probability measure. O]

Remark 2. Let (21,%;) and (€,35) be as in Proposition 3, M; € Obs(%;, H), i = 1,2,
M; ~ p1, and My = M’f where [ is a u;-weak Markov kernel, i.e. My is a post-processing
of M;. Since 3 defines a probability bimeasure, we immediately get from Proposition 3 the

following results:

e There is a Markov kernel & such that My = MY and B(Y,z) = #/(Y,z) for all Y € 3,

and pq-a.a. x € €.

e The POVMs M; and M, are jointly measurable, a joint observable N € Obs(X;®Y,, H)
being defined through N(X xY) := [, B(Y,2)dM;(z). Note also that the joint POVM

N is a post-processing of My, i.e. N = M] where the (weak) Markov kernel 7 is defined
by (X xY,z) := x, (2)B(Y,2), X € £y, Y € By, v € (.

For the remainder of this section, let us fix measurable spaces (€;,%;), i = 1, 2, a prob-
ability measure p; : 1 — [0,1] and a Markov kernel 5 : X5 x ©Q; — [0,1]. Let us denote
o 1= uff and by p: ¥ ® X9 — [0, 1] the probability measure extended from the probability

bimeasure

S T 5 (X, V) /Xﬁ(m) () € [0,1].

Let Z € ¥, ® ¥y and, for each z € Oy, denote Z, := {y € Q| (z,y) € Z}. It is
immediate that Z, € ¥, for each = € ;. Moreover, the function Q; > x — ((Z,,z) € [0,1]
is measurable for all Z €
Sigma; ® Stgmas. This is easy to show by first showing this for 7 = X x Y, X € ¥,
Y € ¥y, and then proving that the family of sets Z € ¥; ® Y5 such that the above function
is measurable is a Dynkin class (a collection of sets containing €; x €5 and closed under

complementation and countable disjoint unions) and then using the Dynkin class theorem.
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We may now make an important observation: for any Z € ¥; ® 3,
wz) = g B(Ze, ) dpa (). (3)
1
From these considerations using standard techniques, one may prove the following (well-

known) generalized Tonelli theorem:

Theorem 5. Whenever h: Qy x Q5 — [0, 00] is measurable,

/ hp = / | / e )Bldy.a) dm ().

The following simple lemma is needed in Section V B.

Lemma 1. Let f € L™®(u1) and g € L™®(u2). Define the complex measure vy : 39 — [0, 1],
yV) = [ BYDf@)dm@), Ve,
1951
One has
/Q o T@gly) duz,y) = / 9(y) dvy(y).

Q2
Proof. The procedure is standard: First consider the case where f and g are simple functions.
This first step is easily proven. Let then f >0, ¢ > 0, and let f,, > 0 and g, > 0, n € N, be
simple functions such that f,, 1T f and g, 1 ¢ pointwisely and uniformly respectively in py
and in py. Fix e > 0 and let ng € N be such that (grace ¢ monotone convergence theorem)

/ F(@)g(y) du(z,y) / Fu(@)gu(y) du(z, ) < /3,
Q1%

Ql XQQ

f(x) — fu(z) < (3||g]lec) e for pi-a.a. z € Q, and g(y) — gu(y) < (3| f]leo) ‘e for ps-a.a.
y € €y (hence also vj-a.e., as one easily checks) for every n > ny. We now have for every

n > ng

/WQ2 f(@)g(y) du(z, y) - /ngdf/f‘
<|[ @ty - [ o) ute)

+ /ngduf - /lem Jul@)gn(y) dp(z, )| < 8/3+/

Qo

(9 — gn)dvy + / gndvp_y, <€
Qo

using the fact that vy < || f|lcopto. This proves the second stage. The extension to complex-

valued functions is straight-forward. m
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A. Joint measurements of rank-1 observables

For the results of the rest of this section, it is useful, as an interlude, to now turn our
attention to joint-measurability issues of rank-1 observables. Let M; : ¥, — L(H), i = 1,2,
be jointly measurable observables where My is of rank 1. Let ‘H be separable and (Hg, Pa, Jo)
be the minimal (diagonal) Naimark dilation of M; introduced in Theorem 1 with the vector
field = +— d;i(x) =: d(x) so that, for all X € ¥,

(PM(X)0) = [ (eld(a)) )10 dpato) = [ TR sw) o) dpo)

where ¢, ¥ € V,, since H(z) = C implies Hg = L*(p1) and Pg = P,,,. According to Theo-
rem 2, there is a unique POVM F : ¥y — £(L*(p1)) such that P, (X)F(Y) = F(Y)P,,(X)
for all X € ¥ and Y € ¥, and My(Y) = JEF(Y)Jg for all Y € Xy, Hence, for any Y € 3,
there is a measurable function S(Y, ) : ©; — R such that (F(Y)n)(x) = B(Y,x)n(x) for
all n € LQ(,ul) and pi-a.a. x € €. It is simple to check that the map 8 : ¥y x 2 - R
satisfies the conditions (i)—(iv) of Definition 5 implying that /5 is a p-weak Markov kernel
and My = M?. Thus, we have3:

Theorem 6. Let M : X — L(H) be a rank-1 observable of a separable H. Any observable
M’ : ¥ — L(H) jointly measurable with M is a post-processing of M.

B. Post-processing clean observables

The general form of post-processing clean observables is claimed to have been solved
in2. There are, however, some problems in the definition of post-processing the paper uses:
Despite the author’s definition of post-processing involves, according to the terminology
used here, weak Markov kernels, a kernel 3 is treated assuming that (-, ) is a measure for
a.a. x. Moreover, we find the proofs of the main theorems dubious. That is why we provide
a new proof. We end up with the same characterization as in? though and use much of
the same machinery as in?. The next theorem is an essential part of the characterization of

post-processing clean observables given in Corollary 2.

Theorem 7. Let (2;,%;), ¢ = 1,2, be measurable spaces, H a separable Hilbert space,
M, € Obs(21,H), and 8 : By x Q1 — [0,1] a Markov kernel. If MY is of rank 1 then M is
of rank 1.
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Proof. Assume that pq is a probability measure on (£2,%) such that My < py. Clearly,
My = MY < iy == 1 (e, pp(Y = [o, B(Y,x)dpi(2)). For any Hilbert-Schmidt operator
ReL(H), ZeX,i=1,2, by the Radon-Nikodym property of the trace class,

R'Mi(Z)R = / mi(2) dpsi(2),
X
where m; : Q; — L(H) is a weakly p;-measurable positive trace-class-valued function (which
depends on R), see e.g.?®>. Requiring My to be rank-1 is equivalent with my(y) being at
most rank-1 almost everywhere. Fix now a Hilbert-Schmidt operator R and let m; be the
corresponding densities of R*M;( - )R with respect to p;. Let {¢;}; C H be an orthonormal

system whose closed linear span is the support of R*R. Now

R*M,(Y)R = / my(y) dua(y) = [ B, x)my(z) dp () (4)

Y M
forall Y € Y. Since 3 is a Markov kernel, the probability bimeasure (X,Y) — [, B(Y,z) dp ()

extends into a probability measure p : ¥ ® X9 — [0, 1].

Define the functions f;; € L>(m), fij(x) = (¥ilmi(2)y;), x € Q. From (4) it follows
that, using the notation of Lemma 1, vy, . = (Rv;|Ma(-)Rep;). Define, for all y € Q, P(y) as
the one-dimensional projection onto the support of my(y) and P(y)* = Iy, — P(y). Using the
generalized Tonelli theorem 5, the polarization identity, the monotone convergence theorem,

and Lemma 1, we obtain for every ¢ € H

/Q . (P(y)*olmi(z) P(y) o) du(z, y)
- Z/Q o <P(y)l90|wi><¢i’m1($)wj><7/}j|P<y)J‘gp> du(z,y)

1]

=5 [P0 I o 0
= 5 [ PO AP0 ) o) s

- / (P(y)* olma(y) P(y)* 0) dpaa(y) = 0.

Denote by Z% the set of those (x,y) € Q; x Qg such that (P(y)t¢|mi(z)P(y)*te) = 0;
clearly, Z% € ¥; ® ¥5. Suppose that {¢,}, C H is a countable dense subset and define
Z =Ny Z%". Easily one sees that, as p(Z9") = 1 for all n and also u(Z) = 1. Thus it follows
that P(y)tmy(z)P(y)* = 0 for all (z,y) € Z. Recalling the discussion before Theorem 5,

L=ul2)= | B(Zx)dm(w)
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implying that, for p-a.a. x € Qy, 8(Z,,x) = 1, so that, for py-a.a. v € Q, Z, # 0.
This means that, for pu;-a.a. © € Qy, there is y € Qy such that P(y)*my(2)P(y)* = 0
implying my(z) = P(y)mi(x)P(y), i.e., my(z) is at most rank-1. Since this holds for any
Hilbert-Schmidt operator R, we have that M; is rank-1. O

From Remark 2 and the theorem above we get:

Corollary 1. Suppose that (21,%1) (resp. (Qa,%2)) is a nice (resp. countably generated)
measurable space and H is a separable Hilbert space. Let M; @ ¥; — L(H), i = 1,2, be
observables such that My is of rank 1. If My is a post-processing of My then My is of rank 1

as well.

The next corollary gives an exhaustive characterization of post-processing clean observ-
ables with a nice value space. Especially, we find that such an observable is post-processing

maximal if and only if it determines the future of the system under study.

Corollary 2. Let (2,X) be a measurable space, H a separable Hilbert space, and M €
Obs(X,H). If M is of rank-1 then it is post-processing clean. The converse holds when
(Q, %) is nice.

Proof. Suppose first that M is rank-1 and p ~ M is a probability measure. Hence, according
to Theorem 1, M has a minimal Naimark dilation (L*(u), P, Jz). If M is a post-processing
of an M € Obs(2, ) on some measurable space (Q, ), i.e. M = M? where 3 is a ji-weak

Markov kernel and ji ~ |\7|, one can define a positive operator bimeasure
(Y [ B )aM) = JiPLF(Y)
Y

where now F is of the form (F(Y)n)(z) = B(Y,z)n(z) for all Y € ¥, 5 € L*(u) and p-a.a.
z €, and thus M = M?, see Section V A for details.

Assume now that M is post-processing clean. Let M! : X! — L£(#H) be the rank-1
refinement of M defined in (2) from which M can be post-processed. Since M is clean, M! is
also a post-processing of M. If (€2, X)) is nice then (2!, X!) is nice (thus countably generated)
and Corollary 1 implies that M is rank-1 as well (i.e., M and M?! coincide). O
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VI. OBSERVABLES DETERMINING THE PAST

In this section, we concentrate on observables that define the past of the system under
study, i.e., those observables whose measurement outcome statistics completely determine
the state of the system prior to the measurement.

Let H be a Hilbert space and (€2, %) a measurable space. Let M € Obs(X, H) and recall
our earlier definition p}' = tr [pM(-)] for all p € S(#). Note that the map p — p' is an affine
map which is continuous with respect to the trace norm on S(H) and the total variation
norm of probability measures. If this map is an injection, the natural conclusion is that
the observable M can separate all states; with different states of the system, the outcome
statistics will always differ. How one can actually determine the state of the system prior
to the measurement is not discussed here; the reader is redirected to?® for this issue.

This prompts the following definition: an observable M : ¥ — L(H) is informationally
complete if for p, o0 € S(H), p # o implies pi\)" # pM. This injectivity extends to the whole
of T(H), and thus informational completeness of M is equivalent with the following: for any
T € T(H), the condition tr [TM(X)] = 0 for all X € ¥ implies 7' = 0. From this we see that
the range ranM = {M(X) | X € £} of M has to be extensive enough to separate the trace
class T (H). Indeed, M is informationally complete if and only if the ultraweak closure of the
linear hull of ran M (which coincides with the double commutant (ranM)”) is the whole of
L(H)® (Proposition 18.1). We can make the following important immediate observations: If
M is informationally complete, its rank-1 refinement M1 is informationally complete as well,
and any joint measurement of an informationally complete observable with some observable
1s also informationally complete. More generally, if a post-processing of an observable is
informationally complete, then the post-processed observable is also informationally complete.

To further quantify the informational content of an M € Obs(X%, H) in a Hilbert space H,
let us define for each p € S(H) the set [p]M C S(H) as the set of those states o € S(H) such
that p)! = p}'. It is evident that M is informationally complete if and only if [p|™ = {p} for
all p € S(#H). This definition can be generalized to the case of sets O of observables (in the
same Hilbert space H):

[]© == {0 e S(H)|p) =)}, YM € O}

One can say that a set O of observables is informationally complete if [p]° = {p} for all

p€SH).

32



An observable M : ¥ — L(#) is said to be commutative if M(X)M(Y) = M(Y)M(X) for
all X, Y € ¥. Let £ C L(H) be a set of selfadjoint operators. We call the set of vectors
¢ € H such that Ly---L,po = L)+ Ly for any Ly,..., L, € £, any permutation 7
of {1,...,n}, and any n € N as the commutation domain of £ and denote it by com L.
The following results concerning relationships between commutativity and sharpness with

informational completeness have been proven in*:

Whenever dim#H > 2 and M € Obs(X, H) is commutative, M is not informationally

complete.

A family of mutually commuting spectral measures is never informationally complete.

If P: ¥ — L£L(H) is a spectral measure and p € S(H), [p]" = {p} if and only if p is

pure (a rank-1 projection) and there is an X € 3 such that p = P(X).

If O is an informationally complete set of observables then dimcom £ < 1, where

L = Upeo ran M.

The following are examples on informationally complete observables and sets of observ-

ables:

o The set {Qg}ocpo,r) of the rotated quadratures introduced in Section I is informationally

complete® (Theorem 18.1)

e Equivalently with the above, the homodyne observable Gy : B([0,7) x R) — L(L*(R))
defined by Gy (© x X) = 77" [, Qp(X) df is informationally complete.

e The covariant phase space observable Gg introduced in Section I is informationally
complete if and only if the support of the function (¢,p) — tr[SD(q,p)], i.e., the
closure of the set of points (q,p) € R? such that tr [SD(q,p)] # 0, is R??,

A. Informational completeness within the set of pure states

Sometimes it is fruitful to consider informational completeness of an observable within a
restricted set P C S(H) of states; we are, e.g., already guaranteed that the pre-measurement

state p is within PP and it is enough to only be able to discern between states in P°. Thus we
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arrive at informational completeness of an M € Obs(X, H) within P meaning that, whenever
p, 0 € P, p+# o, then pg" # pM. When the set P consists of pure states, we identify it with
{lelle € H, )| € P}; here, for any ¢ € H, we denote [p] = {tp|t € T} and
T:={z e C||z| =1}. We get the following result for the case where we have to distinguish

a pure state from other pure states:

Proposition 4. Let (Hg,Pg, Jg) be the minimal Naimark dilation of Theorem 1 for an
M € Obs(X, H) in a separable Hilbert space H. The observable M is informationally complete
within the set {|@){(¢|le € H, |l¢l| = 1} of pure states if and only if Wigp ¢ JaH
whenever ¢ € H and W = fgs W(x)du(z) € L(Hg) is a decomposable isometry such that
Wlgp # tdep for allt € T.

Proof. Let ¢, ¢ € H be unit vectors. We have pl, = phl, ., if and only if || (Joyp)(2)| =
|(Jep)(2)|| for p-a.a. = € Q. One can construct measurable fields z +— {en(:z:)}nm:(? C H(x),
x5 {fu(2)}™) C H(x) of orthonormal bases such that

er(z) = 1(Jo@) (@) (Jop)(x), (Jop)(x) #0 |
n(@) otherwise

filz) = I (Jo0) (@) (Ja) (z), (Jotb)(x) # 0
n(z) otherwise

for p-a.a. x € Q, where x — n(x) € H(z) is a measurable field of unit vectors. Defining
W(z) == S | £.(2) ) en(z)| we may set up the decomposable isometry (even unitary)

n=1

W = féa W (z)dp(z) such that Jgp = Wige if pm>< = pmMM holds. In reverse, it is

@l
simple to check that, whenever W is a decomposable isometry such that Jov = WJgep,

then ||(Jow) ()| = [(Jo¥)(@)| for p-aa. z € Q, e, plly o = Py Thus, plly =
pme if and only if Jg1p = WJgp with a decomposable isometry W € L(Hg). The claim
immediately follows from this observation and by noting that |p)( | = |1 ){( 9| if and only
it Jou =tJgp for some t € T. O

The above proposition implies the well-known fact stated earlier: a PVM in a separable
Hilbert space cannot be informationally complete. In fact such a PVM P is not informa-
tionally complete even within the set of pure states. Indeed, the isometry Js in the dilation

of Theorem 1 for P is unitary, i.e., JoH = He.
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For another example, as well known, the canonical phase ®.,, introduced in Sec-
tion I is not informationally complete within the set of pure states. To see this using
Proposition 4, let us give the minimal Naimark dilation of Theorem 1 for ®.,, in the
form (L2([0,27), (27)7'd0), Peans Jean), Where P, is the canonmical spectral measure of

L3([0,27), (27r)~'df) and
Jean = Y _|n)(nl, n(0) =™, 0<6<2r, ne{0}UN
n=0

Let n € N. Since 1,,(0) = e=™y(0) for all § € [0, 27), defining the decomposable unitary
operator W, through (W,)(0) = e~ (0), v € L*([0,27), (27)~1d#), 0§ € [0,27), one has
Jean|n) = V¥, = Withg = WiJean|0) # tJean|0). This proves the claim.

Let M € Obs(X,H) be an observable in a separable Hilbert space ‘H with the minimal
Naimark dilation (Hg, Pe, Jg) of Theorem 1. Let us make a few observations and collect a
couple conditions that guarantee that M is not informationally complete within the set of

pure states and a necessary and sufficient condition for this.

o [f there exist nonzero vectors @, v € H such that ((Jae)(x)|(Ja)(x)) = 0 for u-
almost all x € Q) then M is not informationally complete within the set of pure states.
To see this, fix ¢ and 1) satisfying the above condition. Without restricting generality,
assume that [|g]| = 1 = ] Hence, (plu) = (Je@lJot) = 0 and s = 27V2(p + 1)
are unit vectors for which ¢ # tp_ for all t € T and ||(JgpL)(@)|| = |[(Jep-)(x)|| for

p-a.a. z € €2, that is, pm+><¢+| :Pm,x@,\-

Note, however, that the existence of vectors ¢ and ¢ of the above condition is not
necessary for an informationally incomplete observable, a counterexample being the
canonical phase: Assume that (Jeme)(0)(Jean®)(8) = 0 for df-a.a. 6 € [0,27). Then
either J..n1 or Jean is zero since any Hardy function vanishing on a set of positive

measure is identically zero.

o [f there are disjoint sets X; € 3 and nonzero vectors p; such that M(X;)e; = @i,
1 =1, 2, then M s not informationally complete within the set of pure states. Indeed,
let p; € H\ {0} and X;, i« = 1, 2 be as above. Thus, Pg(X;)Jap; = Jap; for all
1 = 1,2 implying that

[{(Jawr) (@) (Jewa) (@) < [[(Jawr) (@) [ (Jewa) ()] = O
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for p-almost all z € Q) so that M is not informationally complete within the set of pure

states.

For any decomposable isometry W = fga W(x)du(z) € L(Hg), define the operator
Zy = JEZWJg. The observable M is informationally complete within the set of pure
states if and only if, for any decomposable isometry W € L(Hg), the operator Zy,
strictly decreases the norm (i.e., || Zwel|| < ||¢l|) for any nonzero ¢ € H such that Jg
is not an eigenvector of W. (Recall that an isometry may not have any eigenvalues and
if eigenvalues exist they belong to T.) To see this, note that, when ¢ € H and W €
L(Hg) is a decomposable isometry, the vector W.Jgp # tJge is not in the subspace
JoH = H if and only if its norm genuinely decreases under the ‘projection’ Jg, i.e.,
|JEW gl < |l¢ll. Thus we obtain the above as a reformulation of Proposition 4.
Note that || Zw|| < 1 and, if WJgp = tJep, then Zyp = tep.

Suppose that w : Q — T is a p-measurable function and W = fga w(2) Iz dp(z).
Denote Z, := Zw = [, w(z) dM(x). For the informational completeness of M within
the set of pure states, it is necessary that Z,, be strictly norm decreasing in the way
defined above for any T-valued measurable function w. We see immediately that this
condition becomes also sufficient if M is of rank 1. Note that, if w is not a constant on
a set of positive measure, then the corresponding W does not have any eigenvalues.

For example, in the case of the canonical phase, W, (n # 0) does not have any

2T

eigenvalues and Zy, = |

e M Ad e, (0) = > |m + n)({m] is an isometry. Often
we are interested in the state determination power of the rank-1 refinement of an

observable which is why the rank-1 case is of particular importance.

Let us take a closer look at a couple of examples utilizing the observations made above.

Example 1. Consider a phase space observable Gg with some generating positive trace-1

operator S. Let us denote the closure of the range of S by K. The dilation of Theorem 1

is given by the Hilbert space L*(R?) ® K identified here with the corresponding L?-space of

(equivalence classes of) K-valued functions, the canonical spectral measure P : B(R?) —
L(LX(R*) @ K), (Pe(Z)n)(q,p) = X ,(a,p)n(g,p) for all Z € B(R?), n € L*(R*) ® K, and a.a.
(¢,p) € R?, and the isometry Jg : L*(R) — L*(R?) ® K,

(Jop)(q,p) = \/%SI/QD(%JJ)*% ¢ e L*(R), (¢,p) €R%
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It follows that Gg is informationally complete within the set of pure states if and only if,
whenever R? > (q,p) — W(q,p) € L(K) is a weakly measurable field of isometries, the

operator

1 *
Zw =5 D(q,p)S"*W (q,p)S"*D(q,p)*dqdp
RQ

strictly decreases the norm of any nonzero vector ¢ such that Jgp is not an eigenvector
of W. Especially, if w : R* — T is measurable then Z, fRQ (q,p) dGs(q, p) is strictly
norm decreasing in the above sense if Gg is informationally complete (within the set of pure
states). If S is of rank 1 (i.e., Gg is rank-1) then Gg is informationally complete within the
set of pure states if and only if the operators Z,, are strictly norm decreasing as above.

Let S = 35 5] ) (@3] be the spectral decomposition of S where ¢; € L*(R) is a unit
eigenvector associated to the eigenvalue s; € (0,1] (and (p;|p;) = &;;, tr[S] =D . s = 1).
Pick a representative R 3 x — ¢;(z) € C from each class @; such that S5 ], (x)|? < oo

for all z € R and define a positive semidefinite integral kernel Kg : R> — C by

rank S

Ks(z,y) = Z sipi(T)pi(y), (z,y) € R?.

=1

Indeed, |Kg(z,y)|* < Kg(z, 2)Kg(y,y) and [, Kg(x, z)dz = 1 by the monotone convergence
theorem. Now X, := {z € R| Kg(z,x) # 0} is essentially unique in the sense that, if Kg
is another integral kernel of S then Xy, and Xy differ in the set of Lebesgue measure zero.

For any ¢, ¥ € L*(R) and (g, p) € R? one gets

21((Jop) (4, P)|(Ja) (¢, p)) = (D(q,p)"»|SD(q, p) )
/X /X D(q,p)*¢)(x)S(z,y)(D(q, p)*¥)(y)dzdy

//Yq e oz + q) Ks(z,y)e ™y + q)dady

Sy,
where V¢, = Xgg X Xig N{z|p(r+q) # 0} x {y[|¢(y+q) # 0}. If there exists an R > 0
such that Xk, \ [~ R, R] is of measure zero (e.g. S = |X[071] ><X[0,1]D then it is easy to find ¢
and 1 such that Y; . 18 Zero measurable for all ¢ € R and, hence, Gg is not informationally
complete within the set of pure states by above observation.

To connect our analysis with earlier results, define a continuous square-integrable function

A

S: R* > R, (q,p) — S(q,p) :=tr[D(q,p)S] = elap/2 / " Kg(x,x + q)dz.
R
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If S is integrable, Kg(z,z + q) fR —iap/2 _“’xS(q p)dp for all ¢ € R and a.a. z € R.
If, additionally, Xr, \ [-R, R] is of measure zero for some R > 0, S(q,p) =0forallpeR
if |g > 2R but S need not be compactly supported (e.g. S = |X[0,1]><X[0,1]| for which
S(0,p) = i(1—e®)/p for all p # 0). Assume then that the support of S is compact and thus
contained in a rectangle [— Rg, Rg| X [—Ro, Ro]. Now S is integrable and S(z,x +q) =0 for
(almost) all  and ¢ such that |q| > Ry. Immediately one finds unit vectors ¢, 1 € L*(R)
such that ((Jae)(q,p)|(Ja)(q,p)) = 0 for all (¢,p) € R? thus showing that Gg is not
informationally complete within the set of pure states. Hence, we have obtained Proposition

20(c) of® as a special case.

Example 2. Let M : 22 — £(#H) be an observable with an at most countably infinite value
space §2 = {1, X9, ...}, and denote M; := M({z;}) for all i = 1,2,.... Denote the closure of
the range of M; by K; for each ¢ and define the Hilbert space K := @, K; which is equipped
with the canonical spectral measure P : 2% — L(K) defined by P({z:}) @, ¢; := ¢; for all i
and all @j ¢; € K. Moreover, define the isometry J : H — IC, ¢ — Jo = P, M;ﬂgo. The

triple (I, P, J) is a minimal Naimark dilation for M like the one presented in Theorem 1.

The observable M is informationally complete within the set of pure states if and only
if, for any isometries W; € L£(K;) and any ¢ € H such that there is no ¢t € T such that
WiM, %o = tM}%¢ for all 4, one has ||Zwe| < ||| where Zy = 32, MI?W;M}/?. This
is a direct consequence of our earlier observations by noting that, when W; € L(K;) are
isometries and W := €, W, then WJyp = tJp for some ¢ € H and t € T if and only
it I/VZ-MZVQQO = tMil/Qcp for all 7. If M is of rank 1, this condition can be simplified: M is
informationally complete within the set of pure states if and only if, for any (nonconstant)
function i — w; € T and any nonzero ¢ € H (such that w;M,;" "¢ # tMl/ ¢ for all i), one
has || Z,¢| < |||, where Z,, = >, w;M;.

}dlmIC

Finally, we note that, if {y is an orthonormal basis of K; for each ¢ one

can define (linearly independent) vectors dy = I\/Il/ 2gpzk, k < dimK; + 1, such that
M = 3y o ) (eulM = Yop o) (dinl, J = 30, Yy lew)(din], and P; = P({z;}) =

>k leir ) (eir|, where e, := EB]. d;ipix; compare to Section I.
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VII. EXTREME OBSERVABLES

The relevant mathematical structures in quantum theory, sets of states, observables,
channels, and instruments, are convex. For example, for observables M, M" € Obs(X,H)
and p € [0, 1], one can determine a mixed observable, a convex combination pM + (1 — p)M'’
by

(PM + (1 = p)M)(X) = pM(X) + (1 - p)M'(X), X eX.

Such mixing of devices can be seen as classical noise produced by an imprecise implemen-
tation that produces a measurement of M with relative frequency p and something else
otherwise.

An element x € K in a convex set K set is called extreme if, for any y, 2 € K and
p € (0,1), z = py+ (1 — p)z implies © = y = z. Thus extreme quantum devices are free
of classical noise due to mixing. The extreme elements of the set of states S(#H) are the
rank-1 projections |p)(¢|, ¢ € H, ||¢|| = 1, called as pure states, whereas the extreme
effects are projections. The general characterizations of extremality for quantum devices
follow ultimately from the following result'. Below, we denote by CP(A;H) the set of
unital completely positive maps ® : A — L(H) where A is a unital C*-algebra and H is a
Hilbert space.

Theorem 8. Let & € CP(A;H) and pick a minimal Stinespring dilation (M, x,J) for ®.
The map ® is an extreme point of the convex set CP(A;H) if and only if the map

(ranw)' > D — J*DJ € L(H)
defined on the commutant of the range of ™ is an injection.

Suppose now that A is a von Neumann algebra and denote the set of normal maps
within CP(A;H) by NCP(A; H). The convex subset NCP(A; H) is a facet of CP(A; H)
meaning that, if & = t®; + (1 — t)®y, € NCP(A;H) for some ®;, ; € CP(A;H), then
Py, Py € NCP(A; H) as well. From this it follows that the extreme elements of NCP (A; H)
are characterized in exactly the same way as in Theorem 8.

We usually say shortly that an observable M : ¥ — L(H) is extreme if M is an extreme
element of Obs(X, H). We may elaborate the above extremality characterization in the case

of quantum observables®!.
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Theorem 9. Let (Hg, Pg, Jg) be the minimal Naimark dilation of Theorem 1 for an M €
Obs(X,H) in a separable Hilbert space H. The observable M is extreme if and only if, for
any decomposable operator D = fée D(z)du(z) € L(Hg), the condition J3DJg = 0 implies
D =0.

It is an immediate result of Theorem 9 that PVMs are extreme. This can also be proven
directly by using the fact that projections are the extreme elements of the set of effects. Also,
if (£2,%) is nice and dim#H < oo then an extreme observable M € Obs(X, #H) is discrete.
Indeed, using an exactly measurable function f : Q@ — R such that f(Q) € B(R), we now
obtain an extreme observable M o f=1 € Obs(B(R),H) which is supported on an at most
countable set {\;, Xg, ...} C R'® (Section 5); see also”. This means that M is supported by
the set |, f~1({\i}) where f~1({)\;}) are atoms of X. Below are some examples on extreme

observables which are not PVMs.

e One can show that the phase space observable Gg introduced in Section I is extreme if
and only if S is pure, S = |[¢ )( |, and (q,p) — (¥|D(q,p)) # 0 for all (q,p) € R??°,
Hence, if Gg is extreme then it is informationally complete (but the converse does not
hold). Especially, when S = |0)(0], i.e., the generating state is the vacuum state, then

we get the rank-1 informationally complete extreme observable Gjgy o

e The canonical phase ®,, introduced in Section I is extreme!®.

e Fix a number m > 0 and denote by ¢ the Fourier-Plancherel transformation of ¢ €

L*(R); if p € LY(R) N L*(R) we may write

~

b0 == [

The canonical time-of-arrival observable 7 : B(R) — L(L?(R)) for a free mass-m

fsz

dz, peR.

particle moving in R defined through

(el = 5o [ [ [ e Gy o)+ BT ) i A e

for any X € B(R) and any vectors ¢ and @ from the Schwartz space of rapidly

decreasing functions, is extreme!”.

We see from Theorem 9 that if M is extreme so is its rank-1 refinement M*32. The two

first examples given above are of rank 1. The third example, however, is of rank 2. The

40



rank-1 refinement of the canonical time observable is 7' : 2{12} @ B(R) — L(L*(R)),

(ol (% X0w) = o [ [ [ A0 ST (1) )i i e

for all X € B(R), k =1, 2, and all ¢ and 1 from the Schwartz space of rapidly decreasing

1

functions. Thus, 7' is extreme too.

Let us next consider an example where we show how to construct an observable in a
separable Hilbert space with all the optimality properties discussed this far, i.e., a post-

processing clean (rank-1) informationally complete extreme observable.

Example 3. Let N, := NU{oo} and N, := {1,2,...,d} foreach d € N. Let H4, d € N, be
a d-dimensional Hilbert space with H, having the orthonormal basis {|n)}2 ;. We assume
that Ha, C Hag, € Hoo whenever d; < dy so that, for any d € N, {|n)}¢_, is an orthonormal
basis for H,.

For all n, m € N| pick some numbers p,,,, > 0 for which

00
- anm<oo

n,m=1

Let n, m € N such that n < m. Define the following vectors:

fom =100y fam =) +m), fon = |n) —ifm),
so that

[ frm ) fam| = [ ) (0] + |n) (m| + [m) (0] + [m) (m],

| frnn ) CFomn| = [0} (0] + 20 ) (m] = ifm) (n] + jm ) (m]
and thus |n)(n| = [fon )( fonl,

2l ){ml = (Lfnm ) Frm| = fan )l = [Fmm ) Srnm])
= i(fonn ) Lol = [fon ) Fanl = [fomm ) C o),
2[m ) (nl = ([fam ) Fam| = [Fan ) CFanl = 1Frmm ) Frnml)
il Fon ) Il = [fon ) CFanl = | fom ) CFmm)-

Hence, for any d € N, the linearly independent set

Ba = {pnml| from ) fam| € L(Ha) |n, m < d+ 1}
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has d? elements and is a basis of £(H4). If d = oo then the linear span of By, is dense in
L(H) with respect to the weak operator topology.

For each Z C Ny x Ny (or Z C N x N if d = 00) we define a positive trace-class operator

SI = Z pnm|fnm><fnm|€£<Hd)

(n,m)ez

Indecd, [[Sy] < te[[5l] = tr[S7] = X0 e el ol < 2.

Let Z C Ny x Ny (or Z C Nx N if d= o), and let Zy C Z be such that the vectors
from € Ha, (n,m) € Iy, form a basis of the vector space lin{ f,, | (n,m) € T} C Hy whose
closure is the range of S7. Now the maximal number of linearly independent elements of

{fum | (n,m) € T} C Hyis #Zy < d. Hence, the rank of Sz (and Sz, < S7) is #Zy and

#Zo
Sr=)_ler ) erl,
k=1

where the eigenvectors pf € Hy form an orthogonal set and the eigenvalues [|pZ||*> > 0 are

such that 3277 [|0Z||?> = tr [S7] < co. Note that

or = il >Szer = 1k > Pum (fam|@k) fam € ran Sz = ran Sz, = lin{ fom [ (n, m) € I}
(n,m)eT

and S (0T 72| 9F Y @F| is the projection from Hg onto the #Zy-dimensional Hilbert
space ran Sz, .

We assume next that #Zy = d so that {fum|(n,m) € Zy} is a basis of Hy and Sz is
of full rank and thus invertible. An example of such a situation is, Z = N; x Ny and
Ty = {(n,n)|n € Ny} (if d < 00). Let 2% be the power set of Z and define the following
discrete rank-1 POVM M : 27 — L(H,):

Mnm = |\/pnmSI_1/2fnm >< vpnmSI_l/anm|’ (n7 m) € I'

Since, for any complex numbers ¢, such that sup{|c,,||(n,m) € T} < oo,

Z Cannm: Z Cnmpnm’851/2fnm><S£1/2fnm‘:O

(n,m)eT (n,m)eT

if and only if Y, ez ComPrml Fam Y Fam| = S 3 (1 ez ComPrml Sz 72 Fam WSz fum|S7* =
0 if and only if ¢,,,, = 0, the observable M is extreme with N = #7 > #7, = d elements.
Automatically, d < N < d? which must hold for any extreme rank-1 POVM. If Z = N, x Ny
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(or T =NxNifd=o00) then N = d* and By is a basis of £L(H,) showing that M is
also informationally complete. Note that, in the case N = d, we get a PVM M. When N
runs from d to d? the value determination ability weakens but state determination power

increases.

A. Joint measurements of extreme observables

We now concentrate on joint measurements involving extreme observables. Theorem 2
together with the extremality characterizations of theorems 8 and 9 imply that, if M is
an extreme observable and M’ is an observable jointly measurable with M and ® is an M-

channel, there is a unique joint observable for M and M’ and a unique joint instrument for

6

M and ®. As proven in'®, we obtain the following results:

Theorem 10. Let observables M : ¥ — L(H) and M’ : ' — L(H) be jointly measurable,
and let & : L(K) — L(H) be a channel compatible with M. If M is extreme then

(i) the M-instrument J : L(K) x ¥ — L(H) such that J(B,) = ®(B) for all B € L(K)

1 unique and
(i1) the joint observable N : ¥ ® X' — L(H) for M and M’ is unique.
Moreover, if M is a PVM,

(1)" M(X)®(B) = &(B)M(X) for all X € ¥ and all B € L(K) and the only M-instrument
J LK) x ¥ — L(H) such that T(-,Q) = ® is given by

J(B,X)=d(B)M(X) = M(X)20(BM(X)2,  BeL(K), Xe¥,
and

(1) M(X)M'(Y) = M (Y)M(X) for all X € ¥ and allY € ¥ and the only joint observable
N:YX®Y — L(H) for M and M’ is determined by

N(X xY)=MX)M(Y)=MX)V2MYMX)Y?,  Xex, YeX.

The above result essentially means that there is only one way in which an extreme ob-

servable can be measured if we fix the unconditioned state transformation associated with

43



the measurement. Similarly, there is only one observable incorporating an extreme marginal
observable and some other fixed observable. The corresponding conditions for joint mea-
surements involving PVMs, being from a special subclass of extreme observables, are even
more stringent: compatibility or joint measurability with a PVM requires that the other

measurement device (observable or channel) commutes with the PVM.

VIII. OBSERVABLES DETERMINING THEIR VALUES

We say that an observable M : 3 — L(H) determines its values if for any set of its
outcomes we may prepare the system into a state such that, in a measurement of M, the
values obtained are approximately localized within the given set. Formally, this means that,
for any X € ¥ such that M(X) # 0 and any ¢ € (0, 1], there is a state p € S(H) such that
(X)) >1—e

Suppose that M : ¥ — L£(#) determines its values and X € X is such that M(X) > 0.

We may evaluate for any € € (0, 1]

IMX)[ = sup tr[pM(X)] = sup pp'(X) >1~¢

peS(H) peS(H)
showing that [[M(X)|| = 1. Indeed, we see that this reasoning can easily be inverted: an
observable determines its values if and only if it has the norm-1 property, i.e., |[M(X)| =1

for all X € 3 such that M(X) # 0.

A more stringent condition than the norm-1 property is the eigenvalue-1 property: M €
Obs(X, H) is an eigenvalue-1 observable if and only if, whenever X € ¥ is such that M(X) #
0, then M(X) has the eigenvalue 1. This means that for any X € X such that M(X) # 0 there
is a state px € S(H) “localized” in X in the sense that pi\)"x (X) =1, i.e., the approximate
“e-localization” associated with norm-1 observables can be replaced with exact localization.
Of course, we may always assume that py above is pure. Clearly, PVMs are eigenvalue-1
observables and there exist norm-1 POVMs which have not eigenvalue-1 property, e.g. the
canonical phase ®.,,.

Consider then a norm-1 observable M € Obs(X, H) in a finite-dimensional Hilbert space.
Denote d = dim H. Since any effect has fully discrete spectrum in finite dimensions, M has
the eigenvalue-1 property. For i = 1, 2, let the sets X; € Y and unit vectors ¢; € ‘H be such
that M(X;)p; = ¢; and X;N Xy = () (we assume that M is not trivial). By using the minimal
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Naimark dilation for M, one gets {p1]|¢2) = 0. Hence, there exist at most d pairwise disjoint
sets X € ¥ such that M(X) # 0. If (©,Y) is, e.g., nice we may conclude that M is discrete,
i.e. there exist points x; € Q, i =1,...,N < d, so that M = sz\il M(A,;,)d,, where A,, is
the atom associated with x;. This result follows by using an exactly measurable function
f:Q — R such that f(©2) € B(R) and results of'® (Section 5).

Finally, let us recall that an eigenvalue-1 observable cannot be informationally complete
even within the set of pure states. Indeed, it is easy show that this holds in arbitrary (nonsep-
arable) Hilbert spaces. The question, whether a norm-1 observable can be informationally

complete, remains to be answered.

IX. PRE-PROCESSING AND PRE-PROCESSING MAXIMALITY
Let us start this section with a definition.

Definition 7. Let (£2,X) be a measurable space and H and H’ be Hilbert spaces. We say
that an observable M’ : ¥ — L(#') is a pre-processing of an observable M : ¥ — L(H) if
there is a channel ® : L(H) — L(H’') such that M'(X) = &(M(X)) for all X € 3.

The above definition means that pM = Py (o) forallo es (H’), that is, we may measure
M’ by first transforming the system with the channel ® and then measuring M. The predual
channel ®, is here seen as a form of quantum pre-processing that is used to process the
incoming state carrying quantum information before the measurement of M.

Pre-processing gives naturally rise to a partial order within the class of observables with
the fixed value space (€2, %) and varying system’s Hilbert space H*. We denote M" <. M if
M’ is a pre-processing of M by some channel. We may thus ask which are the pre-processing
maximal or clean observables. Maximality of an M € Obs(X,H) means that if M <,,, M’
with some observable M' : ¥ — L(H') such that M' ~ M (i.e. M'(X) = 0 exactly when
M(X) = 0) then M" <, M.

In the following subsections, we characterize the pre-processing maximal observables first
in the case of discrete outcomes and then for the general case. The reason for this division
is that we may formulate the maximality in a tighter fashion for discrete observables. Let

us first recall a result from3!:
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Theorem 11. Suppose that H and H' are separable Hilbert spaces, P : ¥ — L(H') is a sharp
observable (a PVM), and M : ¥ — L(H) is some observable such that M < P. There exists
a channel @ : L(H') — L(H) such that M(X) = ' (P(X)) for all X € ¥, i.e., M <, P.

A. Case of discrete observables

The theorem below characterizes pre-processing clean discrete observables.

Theorem 12. Suppose that  is a finite or a countably infinite set and M : 2% — L(H) is
an observable in a separable Hilbert space H. Then M is pre-processing clean if and only if

it has the eigenvalue-1 property.

Proof. We give the proof for the ‘only if’ part for an observable with a more general value
space (€2, X) where ¥ is countably generated, since this yields no extra complications. As-
sume that M € Obs(X, H) is pre-processing clean and p is a probability measure on (€2, )
such that M ~ p. Also define the PVM P, : ¥ — L(L*(n)), (P.(X)¥)(x) = x (2)(x)
for all X € ¥, all ¢ € L*(u), and p-a.a. x € 2. Hence, since L*(u) is separable, ac-
cording to Theorem 11, P,(X) = ®(M(X)) where ® : L(H) — L(L*(n)) is a channel
and thus, for all p € S(L*(u)), X € X, one has tr[pP,(X)] = tr[®.(p)M(X)]. We de-
fine py = pu(X)2x ) (xy] € SL3(u)) when u(X) > 0 (or M(X) # 0). Let ®.(px) =
S Anlen ) (nly An >0, 370 A =1, (©n]@m) = 0nm, be the spectral decomposition of
the state ®,(px). Now 1 = tr[pxP,(X)] = tr [P.(px)M(X)] = >0 _ Ml M(X)py,) im-
plying that (,|[M(X)p,) =1 and thus [[\/M(Q2\ X)@u || = (0 M(Q\ X)n) = (@nl[T2 —
M(X)]en) =0 or M(Q\ X)p, = VM(Q\ X)/M(Q\ X)p, =0 or M(X)p, =1, for all

n<r+1.

Let us prove the ‘if” part for a discrete observable M which we identify with the effects
M; = M({z;}) # 0 such that - M; = I;;, N € N, (without restricting generality, we
assume that Q = {z;}¥,). Suppose then that any M(X), X # 0, has the eigenvalue 1; denote
the projection onto the corresponding eigenspace by Px so that PxM(X) = Py = M(X)Px.
If ) # X C VY then (|M(X)) < (|M(Y))) for all v € H and M(X)p = ¢ implies
M(Y)p = ¢, that is, Px < Py. Similarly, if X N Y = (), then PxPy = 0. Let us pick,
for all i < N +1, ¢; € PaH, ||eill = 1, and define the projection R := SV o il
Using the above results, one immediately sees that RM;R = |p; }{¢;|. Define the channel
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U L(H) - L(RH), ¥(A) = RAR. Now W pre-processes M into the sharp observable
P:2% — L(RH) defined via P({z;}) := |p; ){@i|. If M was a pre-processing of another
observable M’ on 2¢ (automatically M’ ~ M ~ P) then P would also be a pre-processing of

M’. According to Theorem 11, M’ <, P and, thus, M’ <, M. O

Note that the first part of the proof above shows that, even in the case where the value
space (2, %) of a pre-processing maximal observable M is countably generated, M necessarily
possesses the eigenvalue-1 property. This tells us that pre-processing maximal observables
(with countably generated value spaces) determine their values and are not informationally

complete.

B. Case of general observables

For the characterization of pre-processing clean observables with more general (countably
generated) value spaces, we need first some auxiliary results. The proof of the following

lemma follows closely the one of® (Lemma 8.1).

Lemma 2. Let A € L(H), 0 < A < I, and R € P(H), where H is a Hilbert space. If
RAR € P(H) then A and R commute.

Proof. Suppose that RAR is a projection. We now have
0<((I—-R)AR)"((I — R)AR) = RA(I — R)AR < RAR— RARAR =0
implying that (I — R)AR =0, i.e., AR = RAR. We obtain
AR = RAR = (RAR)" = (AR)" = RA,
proving the claim. O]

Let H and K be Hilbert spaces and ® : L(H) — L(K) a channel. There is a minimal
projection R € P(H) such that ®(R) = I, i.e., if Q € P(H) is such that ®(Q) = I and
@ < R, then @ = R. Thus, R can be called the support of ® (indeed it is uniquely defined
by ®). Moreover, $(A) = P(RAR) for all A € L(H) and, whenever A € L(H) is an effect,
®(A) = 0 if and only if RAR = 0° (Section 10.8). We now easily obtain the following result.
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Lemma 3. Let H and K be Hilbert spaces and ® : L(H) — L(K) a channel with the support
projection R. If ®(A) is a projection for some effect A € L(H), then RAR is a projection,
RA= AR, and A = RAR + RAR".

Proof. Let A € L(H), 0 < A < [;; and assume that ®(RAR) is a projection. Using the

Schwartz inequality (applicable especially to unital completely positive maps),
®(RAR) = ®(RAR)* < ®(RARAR)

implying ®(RAR — RARAR) < 0. Since RAR > RARAR, one finds that ®(RAR —
RARAR) = 0. Since RAR — RARAR = R(A — ARA)R and 0 < A — ARA < Iy, the
properties of the support projection cited above imply that RAR = RARAR, i.e., RAR €
P(H). Lemma 2 yields AR = RA so that A = RAR + RAR* + R*AR + RYARt =
RAR + R+*AR*. O

Theorem 13. Suppose that the o-algebra 3 C 2% is countably generated and M : ¥ — L(H)
1s an observable operating in a separable Hilbert space H. Then M is pre-processing clean
if and only if there exist a closed subspace M C H, a PVM E : ¥ — L(M), and a POVM
F:¥ — LML) such that M ~ E and

M(X) =E(X)®F(X), Xe3 (5)

Proof. Suppose that M is pre-processing clean. Then M can be pre-processed with a channel
® : L(H) — L(L*(p)) into the observable P, of the first part of the proof of Theorem 12,
where 1 ~ M. We have by Lemma 3 that there is an R € P(H) such that ®(R) = I,
and M(X) = RM(X)R + R*M(X)R*, where RM(X)R is a projection, for all X € 3.
Suppose that RM(X)R = 0 for some X € X. Now P,(X) = ®(RM(X)R) = 0 implying that
u(X) = 0. Hence M < RM(-)R; the contrary is, of course, automatically satisfied. Thus,
we may choose M = RH and E(X) = RM(X)R and F(X) = R*M(X)R* for all X € X.
Assume then that the decomposition of M into E and F of the claim exists. Clearly,
E <pe M (with a rank-1 channel defined by the projection from # onto M). If M’ : ¥ —
L(H') is an observable such that M’ ~ M ~ E and M <[,c M’ then, according to Theorem
11, M <, E <pre M. O

As also seen in the proof of Theorem 12, for M € Obs(X, H) to be pre-processing clean, all
the nonzero effects M(X') must have the eigenvalue 1. This is clearly satisfied by the direct
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sum form (5) since E is a PVM and, whenever E(X) = 0, M(X) = 0 as well. However, the
contrary is problematic: if all nonzero M(X) have the eigenvalue 1, does it follow that we
have the decomposition (5) with a fixed subspace M? This would mean that Theorem 12
extends plainly to general observables. We leave this as an open question. Moreover, in the
finite-dimensional case, norm-1 observables also have the eigenvalue-1 property, which for
(discrete) POVMs implies post-processing maximality; recall that now norm-1 POVMs are
discrete if their outcome spaces are regular enough. An important infinite-dimensional and
continuous counter example is the canonical phase observable ®.,, which is of norm 1, but
none of its effects ®,,(O) # I3 has the eigenvalue 1. Especially, ®,, is not pre-processing
maximal.

A different analysis of pre-processing can result in remarkably different characterizations
of pre-processing clean observables. For instance, the authors of® concentrate on finite-
outcome observables on a fized finite-dimensional Hilbert space H. In this setting, an -
valued observable M in H is clean if for any N-valued observable M" in ‘H such that there
exists a channel ® : L(H) — L(H) with M; = &(M)), i = 1,..., N, there also exists a
channel ¥ : L(H) — L(H) such that M, = U(M;), i = 1,..., N. With this definition, the
set of clean observables within the set of N-valued observables in H are exactly those M such
that ||M;]] =1 for all ¢ = 1,..., N, in the case where N < dimH. However, now also the
case N > dim H is possible and, in general, any rank-1 observable is clean. The difference in
the definition of post-processing and clean observables of® and the corresponding definitions
of this paper is that, in® one is restricted to using a single system within which to carry out
pre-processing whereas in our analysis one is free to use any systems for pre-processing (no

limitation to dimensionality of the Hilbert space from which one pre-processes).

Remark 3. Norm-1 observables, and hence also pre-processing maximal observables as
eigenvalue-1 observables, are an example of so-called regular observables® (Section 11.3):
An effect E € L(H) is called regular if E £ Iy — E and Iy — E £ E or, equivalently, the
spectrum of F extends both above and below 1/2. For example, a rank-1 effect plp){¢|,
p € (0,1], ¢ € H, ||¢|| = 1, is regular if and only if p > % (if dimH > 1). An observable
M: Y — L(H) is regular if M(X) is regular whenever 0 # M(X) # I3. There exist regular
POVMs which are not of norm-1 (e.g. My = [1)(1| 4+ 2[2)(2|, My = 2[1)(1| + $|2)(2] is
regular but not norm-1).

It is simple to check that whenever M : ¥ — L(H) is regular, its range ran M equipped
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with the intersection A,anm,
M(X) Aranm M(Y) := inf{M(Z) |[M(Z) < M(X), M(Y)}, X, Y e,

and the complementation ' : M(X) — M(X) = Iy — M(X) is a Boolean algebra, i.e.,
especially M(X) Aranm M(X) = 0 for all X € ¥. In fact, the converse is true as well'*: if
M : ¥ — L(H) is an observable such that (ran M, Ajanm,’) described above is a Boolean
algebra, then M is regular. Hence, a regular POVM M preserves the ‘classical’ Boolean logic
between the Boolean algebras ¥ and ran M.

Whether a regular observable can be informationally complete remains to be seen. This
is not possible in the finite-dimensional case. To see this, let us consider an N-valued
observable M = (M;)Y | in a d-dimensional (d < oo) Hilbert space H. Taking the trace on
both sides of the equation I3 = Zfil M; and assuming that M is informationally complete
and regular, one arrives at d = S~ | tr [M,] > N/2 > d?/2, where the first inequality follows
from regularity and the second from informational completeness. This is possible only if
d=1.

The above no-go result can be alleviated by relaxing the requirement on informational
completeness within the set of all states. Let us consider an example in the two-dimensional
Hilbert space. Fix the Pauli matrices o,, 0y, and o, which in the eigenbasis of o, take the

form

01 0 —2 1 0

Oz = y Oy = y Oz =

10 1 0 0 —1
Also denote b - o := b0, + byo, + b0, for any b = (b;,b,,b.) € R3. We now define the
three-valued observable M = (M, My, M3) by M; = 37Y(I +a; - o), i =1, 2, 3, where
1 v3 1 3

V3 0), as = ( V3 o).

a1:<]~7070)7 a2:<_§777 a

27 27

It is easily checked that M is an extreme rank-1 observable and the non-zero eigenvalue of
M; is 2/3 for each i = 1, 2, 3. Thus, M is regular. Moreover, M is informationally complete
within the restricted set of states p such that tr[po.] = 0. Thus, M is ‘more informa-
tionally complete’ than any PVM can be in the two-dimensional case. Indeed, whenever
P = (|dy){dy|,|d2){ds]) is a PVM, the maximal subset of states where P is informationally
complete is the convex hull of the states |dy )(d;| and |dy){ds| parametrized by a single
parameter p € [0, 1] whereas one needs two parameters for the set of states p for which

tr [po.] = 0.
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X. CONCLUSIONS

In this paper we have identified some important optimality properties of a quantum
observable represented mathematically as a POVM M: Determination of the past (the pre-
measurement state of the system), i.e., informational completeness; freedom from depen-
dence on more informational measurements from which the output data of M may be pro-
cessed, i.e., post-processing maximality; freedom from interference of different measurement
schemes, i.e., extremality; determination of values, i.e., whether for any outcome set X one
can prepare the system in a state realizing a value from X with arbitrarily high accuracy;
determination of the future, i.e., any measurement of M also works as a state preparator; and
freedom from quantum noise, i.e., pre-processing maximality. We have investigated these
properties and generalized results known for discrete observables for more general observ-
ables. We have also found connections between these conditions: Pre-processing maximality
and determination of future are equivalent and both are characterized by the rank-1 property
of M. Moreover, using a refinement procedure, one can replace an informationally complete
(resp. extreme) M with an informationally complete (resp. extreme) rank-1 POVM M?.
Determination of values is equivalent with the norm-1 property (i.e. |[M(X)|| = 1 for all
outcome sets X, M(X) # Iy) and using our characterizations, we immediately see that,

when M is preprocessing clean, it automatically defines its values.

We may conclude that there are two major lines of optimality for quantum observables:
On one hand, an observable may be informationally complete, and, at the same time, such
an observable may also be free from all kinds of classical noise, i.e., it may be extreme and
post-processing clean simultaneously. On the other hand, an observable may define its val-
ues, i.e., have the norm-1 property; especially, the observable subtype may be pre-processing
clean. However, we are not aware of any norm-1 informationally complete observable; infor-
mational completeness requires properties that are strongly opposed to properties found in
typical norm-1 observables: unsharpness, noncommutativity, and nonlocalizability, namely
the inability to prepare systems into states yielding particular outcomes in the measurement
with certainty. Thus the two main optimality criteria, informational completeness (deter-
mination of past) and determination of values, at its strongest in eigenvalue-1 observables,
appear as complementary properties of a quantum observable. However, an observable may

be free from classical noise (extreme rank-1) as well as from quantum noise (pre-processing
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maximality) simultaneously, in which case the observable is forced to be a rank-1 PVM,
which automatically defines its values and the future of the quantum system (only measure-

ments of such observables are preparative) but fails to determine the past of the system.

We have also discussed and reviewed results concerning joint and sequential measurements
involving optimal observables. Especially, all the observables which are jointly measurable
with a rank-1 observable M are smearings (post-processings) of M, and for a jointly measur-
able pair (M, M) of observables, where either one of the observables is extreme, there exists

a unique joint observable giving M and M’ as its margins.
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