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Abstract
1.	 Ecological communities and other complex systems can undergo abrupt and 

long-lasting reorganization, a regime shift, when deterministic or stochastic fac-
tors bring them to the vicinity of a tipping point between alternative states. Such 
changes can be large and often arise unexpectedly. However, theoretical and ex-
perimental analyses have shown that changes in correlation structure, variance, 
and other standard indicators of biomass, abundance, or other descriptive vari-
ables are often observed prior to a state shift, providing early warnings of an an-
ticipated transition. Natural systems manifest unknown mixtures of ecological and 
environmental processes, hampered by noise and limited observations. As data 
quality often cannot be improved, it is important to choose the best modeling 
tools available for the analysis.

2.	 We investigate three autoregressive models and analyze their theoretical differ-
ences and practical performance. We formulate a novel probabilistic method for 
early warning signal detection and demonstrate performance improvements com-
pared to nonprobabilistic alternatives based on simulation and publicly available 
experimental time series.

3.	 The probabilistic formulation provides a novel approach to early warning signal 
detection and analysis, with enhanced robustness and treatment of uncertainties. 
In real experimental time series, the new probabilistic method produces results 
that are consistent with previously reported findings.

4.	 Robustness to uncertainties is instrumental in the common scenario where 
mechanistic understanding of the complex system dynamics is not available. The 
probabilistic approach provides a new family of robust methods for early warning 
signal detection that can be naturally extended to incorporate variable modeling 
assumptions and prior knowledge.
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1  | INTRODUC TION

Ecosystems often respond to environmental drivers in a gradual 
fashion; small changes in external conditions lead to small changes 
in the system (Scheffer et al., 2001). However, even stable and re-
silient systems may unnoticeably drift toward a critical threshold—a 
tipping point where an abrupt shift to an alternative stable state may 
occur (Arani et al., 2021; Lenton, 2020; Scheffer et al., 2001, 2009). 
Whereas such sudden changes have been reported for instance in 
the context of deforestation (Scheffer et al., 2001), loss of vegeta-
tion in shallow lakes (Scheffer & Nes, 2007), in human gut microbi-
ome in connection to western lifestyle (O’Keefe et  al.,  2015), and 
collapsing fish populations (Pedersen et al., 2017), critical transitions 
are notoriously difficult to predict. As the anthropogenic impact is 
potentially driving ecosystems, the climate, and our bodies closer 
to such tipping points with possibly irreversible consequences, our 
ability to anticipate critical transitions in complex natural and social 
systems has become perhaps more important than ever.

Despite the difficulties in predicting such critical transitions 
(Clements & Ozgul, 2018; Hastings & Wysham, 2010), generic early 
warning signals (EWS) have been identified and reported in both 
theoretical and real dynamical systems in various different fields 
(Dakos, Carpenter, et  al.,  2012; Scheffer et  al.,  2009). In ecology, 
EWS have been shown to precede population collapses and ecosys-
tem state shifts (Carpenter et al., 2011; Drake & Griffen, 2010; Wang 
et al., 2012). These warning signals are statistical indicators that typ-
ically target critical slowing (CSD), a symptom of a system close to 
a tipping point (van Nes & Scheffer, 2007), in biomass, population 
size, or some other measurable aspect of the system. CSD refers to 
reduced ability to recover from perturbations, and it has been mea-
sured with various statistics that quantify the system state and its 
observed changes over time.

Broadly speaking, EWS detection methods have been categorized 
into model-based and metric-based indicators (Dakos, Carpenter, 
et  al.,  2012). Metric-based methods measure the dynamical prop-
erties of a time series without using an explicit model. Decreasing 
recovery rate, or increasing of its reciprocal lag-1 autocorrelation 
(Ives, 1995), is one of the most utilized ones and is computed simply 
as the correlation between consecutive observations of the variable 
of interest. Other metric-based indicators include increasing vari-
ance, skewness, kurtosis, and changes in spectral properties (Dakos, 
Carpenter, et al., 2012).

Model-based indicators look for EWS by fitting some model to 
the data and investigating the output. Lag-1 autocorrelation, for 
instance, can be estimated with autoregressive AR(p) processes, as 
one of the model parameters directly measures it. Extendability of 
models is the key advantage with the model-based approach and 
several variants of the standard AR(1) process have been studied in 
EWS context. With lags p > 1, it is possible to model longer term 
memory effects which may also improve the model fit if the data are 
non-Markovian (Ives & Dakos,  2012). The time-varying AR(p) pro-
cess is a further generalization that allows time-varying coefficients 
and has been shown to provide enhanced performance in certain 

applications (Ives & Dakos, 2012). In this work, we provide a new 
probabilistic formulation of the time-varying AR(1) process and com-
pare its performance against two previously suggested autoregres-
sive models.

Despite the wealth of available indicators, it is understood that 
EWS detection is challenging, especially in real data. A sufficiently 
large sample size and observation density at relevant time scales are 
needed to recover a robust signal (Arkilanian et al., 2020; Clements 
et al., 2015; Dakos, Carpenter, et al., 2012). Often real data do not 
match these criteria and can include some additional complicating 
factors, such as high and nonstationary levels of noise, nonuniform 
observations, and unknown changes in data-generating mecha-
nisms. Moreover, while the perspective of critical slowing down due 
to changing potential wells (see Figure 1) is theoretically appealing 
and guiding intuition, it is has been reported that variable behaviors 
of real systems can be observed at the vicinity of a tipping point. 
Thus, real systems may display some, but not necessarily all, EWS. 
Furthermore, there is no one-size-fits-all model, or even way of ap-
plying a chosen model, as certain modeling choices may have large 
effects on the qualitative nature of the results (Dakos, Carpenter, 
et al., 2012). For these reasons, it is apparent that any EWS analysis 
of a real system should be interpreted cautiously.

To the best of our knowledge, all EWS methods published 
thus far have been developed within the frequentist framework. 
Probabilistic Bayesian frameworks for EWS detection and analysis 
could therefore complement the existing literature and potentially 
offer some benefits over previously proposed techniques for in-
stance in parameter inference, uncertainty quantification, and in-
corporation of prior knowledge (Gelman et al., 2013). For instance, 
in the frequentist framework, the degree of statistical certainty 
of EWS is often quantified with surrogate data analysis methods. 
These require specification of a null model for the data, which un-
necessarily increases the complexity and uncertainties in the EWS 
detection scheme. As we show here, uncertainty quantification is 
naturally built into the probabilistic equivalent. Furthermore, in ap-
plied settings, there is often at least some prior information available 
about the system under investigation. The probabilistic framework 
provides interesting opportunities for incorporating such prior infor-
mation in the models.

2  | METHODS

This work introduces a probabilistic approach to early warning signal 
detection. We will first show how the standard autoregressive pro-
cess has been used in early warning signal detection, then describe 
its time-varying extension, and finally present a probabilistic formu-
lation of such time-varying model. We will then discuss the specific 
aspects and shortcomings of each model and show that the proba-
bilistic formulation exhibits some attractive properties compared to 
the alternatives. We use simulation experiments to benchmark the 
new approach and also display its performance on experimental data 
from real case studies.
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2.1 | Standard autoregressive AR(1) process as an 
early warning signal

The autoregressive AR(1) process has been reported to have good 
overall performance as an early warning signal (Dakos et  al.,  2008, 
2012b). Let us first provide an overview of this process and its applica-
tion as an early warning signal (Dakos, Carpenter, et al., 2012; Scheffer 
et al., 2009). The AR(1) process is defined with the recursion.

where Xt is the state variable at time t, � the process mean, � the au-
toregressive coefficient, and �t a Gaussian random variable with mean 
zero and standard deviation �. The process can be used to model sto-
chastic dynamics of a property, such as biomass or abundance, around 
a single stable state � with a mean-reversion tendency, or drift, whose 
strength and characteristics are determined by �. When � is close to 
zero any stochastic events and perturbations are suppressed rapidly, 
whereas values approaching one result in a weaker pull toward the at-
tractor �. If � = 1, the process becomes Brownian motion, and if 𝜙 > 1 , 
the mean level � becomes a repeller. Observing an increasing � sug-
gests that the mean-reverting tendency is decreasing and provides a 
quantitative method to observe slowing dynamics. This critical slowing 

down has been reported to precede catastrophic transitions and is a 
theoretically justified EWS (Scheffer et al., 2009).

A practical shortcoming in fitting the AR(1) process to the ob-
served data is that it yields only a single value for �, whereas changes 
in this term over time need to be observed in order to use it as an 
EWS. The standard solution is to use the sliding window approach 
that divides the time series into overlapping segments (Dakos, 
Carpenter, et  al.,  2012). The AR(1) process is then fit to each of 
these windows, providing a trajectory � that can be used to assess 
changes in the system dynamics. This approach treats the windows 
separately, meaning that any potential continuity or momentum of 
parameters is not modeled. Moreover, the estimated trajectory re-
flects average changes in the windows and cannot be used to pin-
point exact locations in the data where potential sudden dynamical 
changes occurred.

As a preprocessing step, the data are often detrended and the 
model fitted to the residuals, which helps to avoid spurious ef-
fects of nonstationary trends unrelated to the intrinsic stability 
of the system (Dakos, Carpenter, et al., 2012). We used Gaussian 
kernel smoothing (utilizing R function stats::ksmooth) to detrend 
the raw time series data. We then fitted the AR(1) process to the 
residuals with ordinary least squares optimization (stats::ar.ols 
function).

(1)Xt+1 = � + �
(
Xt − �

)
+ �t

F I G U R E  1   Illustration of increasing lag-1 autocorrelation prior to a state shift in a complex dynamical system. (a) When the dynamical 
system is far from a tipping point, the underlying potential landscape has a relatively clear minimum which strongly attracts the system state, 
represented by the black ball. (b) Close to the tipping point, the potential minimum has become shallow and the attraction is weaker. (c) Time 
series simulated far from the tipping point resembles white noise whereas closer to it the dynamics have slowed down (d). (e, f) System state 
mapped against successive time points shows changes in lag-1 autocorrelation. (g) Time series simulated from an ecological model where a 
state shift can be observed at the dashed vertical line. (h) The model parameter c (black) is a bifurcation parameter that drives the system 
toward a tipping point when increased. Lag-1 autocorrelation estimated from the example time series (green) increases prior to the state 
shift and signals a heightened risk for transitioning

0 4 8 12
X

Po
te

nt
ia

l
Far from tipping point, c = 1.2(a)

7

8

9

10

11

Time (t)

X

(c)

Pearson = 0.42

6

8

10

12

6 8 10 12
Xt

X t
+1

(e)

0.0 2.5 5.0 7.5
X

Po
te

nt
ia

l

Close to tipping point, c = 2.6(b)

3

4

5

6

7

8

0 100 200 300 400 500
Time (t)

X

(d)

Pearson = 0.78

3

6

9

3 6 9
Xt

X t
+1

(f)

0

5

10

2

3

051001050
Time (t)

St
at

e 
Va

ria
bl

e 
(X

)

(g)

0

1

2

3

0.5

1.0

051001050
Time

c

Lag-1 autocorrelation

(h)

0 100 200 300 400 500



14104  |     LAITINEN et al.

There is no generally accepted way to set the kernel smoothing 
bandwidth or sliding window length in the early warning context. 
Here, except where otherwise indicated, we set the sliding window 
length to 50%, a figure often encountered in EWS literature, and 
chose the time series smoothing bandwidth bw with "Scott's rule":

where �̂ is the standard deviation, IQR the interquartile range of data, 
and n the sample size.

Following typical practices in the EWS literature, we quantify the 
trend in the estimated trajectory of � with Kendall's rank correlation, 
�, between � and time t (Dakos, Carpenter, et  al.,  2012; Scheffer 
et  al.,  2009). This test statistic is defined in terms of rank orders: 
� = Nconcordantpairs − Ndisconcordantpairs∕Nallpairs, where N refers to the 
number of elements in the set denoted by the subscript. A pair of 
observations 

(
ti ,�i

)
,
(
tj ,�j

)
 is said to be concordant if ti < tj implies 

𝜙i < 𝜙j and disconcordant otherwise.
We estimated the statistical significance of a positive trend 

(𝜏 > 0) utilizing surrogate data analysis, following an approach used 
in Dakos, Carpenter, et al. (2012). The approach is to simulate N time 
series from an ARMA(p, q) model that best fits the original data (in 
terms of the Akaike information criterion; p, q = 1,…, 5), estimate � 
in each of these simulations and then compute the corresponding 
�’s. This results in an approximate sampling distribution T for the 
test statistic � that enables performing hypothesis testing. We used 
the one-tailed test, meaning that we considered the trend signifi-
cant at the level �, when the original estimate is at the 1 − � upper 
percentile of the sampling distribution T. We set the alpha level to 
� = 0.1 . Although this is somewhat higher than the typically used 
levels for statistical significance, we consider this useful in the EWS 
context where observing a warning of a potentially impending ca-
tastrophe may be more important than having a practical statistical 
certainty.

2.2 | Nonprobabilistic time-varying 
autoregressive process

A more agile variant of the standard AR(1) process can be formulated 
by letting the mean and autoregressive parameters � and � in Eq. 1 
vary in time. The time-varying AR(1) is denoted as TVAR(1) and de-
fined as the recursion (Ives & Dakos, 2012).

The TVAR(1) model is fitted once across the entire time series 
and removes the need to use sliding windows. This simplifies the 
analysis, as the conclusions are independent of the sliding window 
length selection. Moreover, there is no need to detrend the data be-
fore inference inference, as the time-varying mean parameter can 
learn any nonstationary mean level variations.

The model needs to be regularized, however, as the degrees of 
freedom is too large for the model to be identifiable. We achieve 
this by utilizing time-varying ordinary least squares kernel regres-
sion (with the Nadaraya–Watson estimator) as implemented in the 
tvReg::tvAR function (Casas & Fernandez-Casal, 2019). The kernel and 
its bandwidth control the level of smoothing by adjusting the weight 
that the neighboring time points have on estimates at t. We used the 
Gaussian kernel that is of the form K (x) = (1∕2�) exp

(
− x2∕2

)
, and 

unless otherwise noted, we chose the bandwidth value with leave-
one-out cross validation.

We determined the level of statistical significance of the param-
eter trends with surrogate data methods.

2.3 | The probabilistic formulation

Now, we propose a probabilistic variant of the TVAR(1) process, de-
noted pTVAR(1), as an alternative method for detecting early warn-
ing signals.

The motivations for investigating the probabilistic alternative in-
clude enhanced capabilities to regularize and extend the models and 
to include prior assumptions of the system (Gelman et al., 2013). A 
notable practical advantage is that the probabilistic model readily 
allows the estimation of statistical significance in the early warning 
indicator trend without resorting to surrogate data analysis methods 
that add an unnecessary level of complexity on the analysis.

The probabilistic formulation is based on the time-varying au-
toregressive process of order 1 in Eq. 2. The likelihood of the TVAR(1) 
parameters, given the observations Xt is obtained as follows:

where the notation N
(
�, �2

)
 refers to the normal distribution with 

mean � and variance �2.
To complement the likelihood functions, we add Gaussian pro-

cess (GP) priors for the trajectories of �t and �t. A Gaussian process 
GP (M,Σ) is a collection of random variables, any finite subset of 
which is multivariate normally distributed with mean M and covari-
ance Σ and provides a means for nonparametric regression 
(Rasmussen & Williams, 2006). We use the Matèrn-3/2 covariance 
function that defines the covariance between two random variables 

Xi and Xj as k3∕2 (�, �) = �2
�
1 +

�√
3r∕l

��
exp

�
−
�√

3r∕l
��

, where 

�2 is the process variance, � the length scale and r = |||Xi − Xj
||| 

(Rasmussen & Williams, 2006; Stein, 1999). This choice constrains 
the parameter trajectories over time to be continuous and differen-
tiable, providing a natural assumption that we impose to regularize 
the model fit (Scheffer et al., 2009). The length scale controls the 
range at which inference for different time points are affected and 
the overall dependency between consecutive time points and, in ef-
fect, smoothens the posterior trajectories. The parameter �2 deter-
mines the average distance from the mean parameter M.

bw = 1.06 ⋅min

(
�̂,

IQR

1.34

)
⋅ n−1∕5,

(2)Xt+1 = �t + �t

(
Xt − �t

)
+ �t .

L
(
�t ,�t , �|Xt

)
=

N−1∏

t=1

N
(
Xt+1|�t + �t

(
Xt − �t

)
, �2

)
,
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In general, Matèrn covariance functions form a larger class of 
covariance structures characterized by a parameter � that controls 
the smoothness of the sample trajectories. Here, we use � = 3∕2 
which results in once differentiable trajectories. The rationale be-
hind the choice is that � = 1∕2 produces unnecessarily rough func-
tions, whereas values of 𝜈 > 5∕2 would be unrealistically smooth, 
see Rasmussen and Williams  (2006) and Stein  (1999) for details. 
We also experimented with � = 5∕2 and recovered similar results 
as with � = 3∕2.

The full generative probabilistic model is.

Before fitting, we standardized the state variable X by subtract-
ing mean X and dividing by standard deviation SD (X). Standardization 
allows us to automatically set the hyperparameter values for �t to 
M� = 0 and �� = 1, respectively. We chose the same values for the 
autoregressive parameter's hyperparameters: M� = 0 and �� = 1. 
Unless otherwise denotes, we set length scale parameters �� and �� 
to the length of time series. This choice avoids overfitting and high-
lights the long-term trends in data, which is of the greatest interest 
in EWS context.

A convenient property of our probabilistic method is that each 
posterior point corresponds to a specific parameterization �t, �t (see 
Figure 2). The benefits are twofold. First, as �t represents the time-
varying mean levels of the data, the uncertainty in the posterior of 
�t softens the choice we make when setting ��. Thus, each posterior 
sample can be interpreted as a specific, semi-automatically deter-
mined smoothing function. Second, posterior variation of �t can be 
used to directly produce a posterior distribution of the Kendall �, 
by computing � for each posterior sample of �t. Analogously to the 
nonprobabilistic case, we required 100 ⋅ (1 − �) \% of the �� posterior 
evidence for 𝜏 > 0 with detection level � = 0.1.

See Table 1 for comparison of autoregressive model properties 
and Figure 2 for an illustration of the fitting procedure.

We used the probabilistic programming language Stan (Stan 
Development Team,  2020) to fit the pTVAR(1) process. Detailed 
fitting information is provided in the Appendix  1 and the source 
code is available in the online repository https://zenodo.org/recor​
d/4638525.

2.4 | Simulation model

We used simulated data to benchmark the alternative methods. 
We simulated data with state shifts using a well-studied ecological 
model that exhibits alternative stable states (May, 1977). The model 
consists of logistic growth limited by a carrying capacity, a harvest 

term that models removal of biomass, and state-dependent stochas-
tic variation levels. The model is defined by the stochastic differen-
tial equation.

where X is the state variable, r is the growth rate, K the carrying ca-
pacity, c the harvest rate, h the half-saturation constant, � the diffusion 
coefficient, and dWt the Wiener process.

In order to ensure robustness of results to variations in 
model parameters, including time series length T  , we gen-
erated 250 time series with randomly sampled parame-
ters at each replication using the following distributions: 
T ∼ Unif (50, 200) , r ∼ N (1, 0.1) ,K ∼ N (10, 1) , h ∼ N (1, 0.1) , � ∼ N (0.1, 0.01) 
and c ∼ GP

(
�c, kSE

(
�c, �c

))
, where �c ∼ Unif (0.05, 0.25) , 

�c ∼ Unif (10, 50), and kSE is the squared exponential kernel 
(Rasmussen & Williams, 2006). The sampling distributions are based 
on previous studies (Dakos, Carpenter, et al., 2012).

The system's equilibrium structure can be controlled with the 
harvest parameter c. For example, with r = 1, K = 10 and h = 1, the 
critical points are located at c1 ≈ 1.791 and c2 ≈ 2.604 and a bistable 
regime exists between these values. We sampled c from a Gaussian 
process with the mean parameter �c linearly grown along the sim-
ulation time range from 1 to 3.5, well above the critical threshold 
value. This produces random trajectories of c that fluctuate around 
the linearly increasing trend. We chose the sampling distributions 
for the other parameters so that simulations with realistic signal-to-
noise-ratios and sample sizes were achieved.

In order to measure ability of the models to separate true warn-
ing signals from random variations generated by stationary dynam-
ics, we also simulated data with approximately constant underlying 
conditions and no state shift. To this end, we removed the linear 
trend in �c, set it to a constant value of one and simulated 250 rep-
lications with same parameters and sample sizes as in the data with 
state shifts. The time series lengths were matched with the shifting 
data prior to the shift.

In addition, we simulated data with varying levels of observation 
error. We simulated error processes from N

(
0, �2

)
 with values of � 

of 0.2, 0.4, 0.6, 0.8, and 1. The error processes were added to the 
same realizations of state shifting and stationary data as above to 
achieve full comparability. We used the Euler–Maruyama discretiza-
tion simulation scheme with step size 0.01 and random initial values 
Xt=0 ∼ N

(
Ki , �i

)
 for each replication i = 1,…, 250. We assessed loca-

tions of the change points visually and used only the part before the 
shift in the analysis. The average sample size was 93.4 with standard 
deviation 37.7 and range 17–189.

2.5 | Model performance

We evaluated model performance based on true-positive rate (sensi-
tivity), true-negative rate (specificity), and F1 score in simulated data 

�t ∼GP
(
M�, k3∕2

(
��, ��

))

�t ∼GP
(
M� , k3∕2

(
�� , ��

))

�∼half−N (0, 1)

�t ∼N
(
0, �2

)

Xt+1=�t+�t

(
Xt−�t

)
+�t

dX=

(
rX

(
1−

X

K

)
−c

X2

X2+h2

)
dt+�XdWt ,

https://zenodo.org/record/4638525
https://zenodo.org/record/4638525
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(see Simulation model). We considered a positive trend (𝜏 > 0) at the 
selected � level as an EWS as described above and classified the sim-
ulated time series into two groups with and without observed EWS, 
respectively. Subsequently, we estimated the sensitivity, specificity, 
and overall accuracy in recovering EWS in simulated time series with 
a known state shift.

Moreover, we computed the mean squared error (MSE) between 
the autocorrelation estimated with models and a simulation approx-
imation. We computed the approximation by simulating a realization 
of the generative model in equation 4 at each time point using the 
same parameters as in the original simulation. We then computed 

the sample lag-1 autocorrelation for each of these realizations, thus 
generating an approximate "true" autocorrelation trajectory. This 
approximation method becomes unreliable in the bistable regime, 
as the simulations visit of both the alternative stable states and 
the computed autocorrelation reflects properties of both of these 
states. In order to get a realistic picture of the true autocorrelation, 
we smoothed the approximated trajectory with Gaussian kernel 
smoothing and then discarded the time points after the maximal 
value. We checked the robustness of results with two other error 
metrics, root mean squared error, and mean absolute error, and re-
covered qualitatively similar results.

F I G U R E  2   Early warning signal detection with simulated data. (a, b, c) The observed system state X as a function of time (black curve). 
The system gradually approaches a tipping point before a state transition ultimately occurs around the dashed vertical line (T = 175). The 
colored lines correspond to the estimated time series trend based on the Gaussian kernel smoother applied on the data, the estimated 
TVAR(1), and the posterior samples of the pTVAR(1) mean parameter. Length of the sliding window was set to 50% of time series length 
prior to the transition. (d, e, f) Increasing autocorrelation can be observed prior to the state shift with all methods. The figure shows ordinary 
least squares estimates for autoregressive parameter for the standard (brown) and time-varying (green) autoregressive models, and the 
posterior samples and mean for the probabilistic method (purple). (g, h) approximate sampling distributions for the autoregressive parameter 
trends, ��, for AR(1) and TVAR(1) are obtained with surrogate data analysis. Kendall's �� quantifies the association strength between the 
early warning indicator �t and time. A significant positive correlation indicates increasing risk of a state shift. The dashed vertical line 
denotes the point estimate and the proportion of the sampling distribution above it provides the p-values .095 and .013 for the AR(1) and 
TVAR(1), respectively. (i) Posterior distribution of �� obtained with pTVAR(1). Altogether 99.95% of the posterior samples are positive, 
providing strong evidence for an increasing trend that is interpreted as an EWS. The probabilistic p value is the proportion of the � posterior 
that is not positive. Note that the posterior is not a sampling distribution, which explains the qualitatively different shape of the distribution, 
compared to g and h
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2.6 | Real data

In addition to the simulation benchmark, we analyzed three publicly 
available data sets with the presented autoregressive models.

The first data consist of 428 ocean sediment measurements of 
CaCo3 used as a proxy for the climate (Tripati et al., 2005). The mea-
surements range a period of approximately 39 to 32 million years 
ago and contain a state shift which has been attributed to the end 
of the so-called greenhouse Earth period. These data were analyzed 
from the EWS perspective in Dakos et al. (2008). The time points of 
these data are not precisely equidistant, but as reported in Dakos 
et al. (2008), the raw data give essentially similar results as the inter-
polated equidistant measurements.

The second data set consists of high-frequency measurements of 
an experimental cyanobacteria community. The experimental setup 
comprised of a chemostat with cyanobacteria evolving under gradually 
increasing, increasingly detrimental levels of light over 29 days until 
population collapse. The microcosm was perturbed every 4–5 days by 
removing approximately 10% of the biomass via dilution. The sample 
size of the data was 7,784, but we subsampled this by using every 15th 
observation in the analysis leaving 454 time points for EWS analysis.

The third data consist of 188 stool samples of a single subject 
(Subject B in the original work) over 318 days. The taxonomic profile 
of these samples was assessed with 16S rRNA amplicon sequenc-
ing. We aggregated the data to genus level and used the centered 
logarithm (CLR) transform to take into account the compositionality 
bias. We visually identified genera that experienced a state shift at 
time point 155 and chose the genus as an Akkermansia example case. 
There were 127 time points before the state shift with the average 
time between observation 1.2 days, indicating that a large majority 
of the samples were taken one day apart.

We chose the hyperparameters so that the fitted trend did not 
overfit or underfit the data and that at the same time longer term 
trends in the autoregressive parameter were highlighted. We used 
length scale parameters �� = 15, �� = 100; �� = 227, �� = 454; and 
�� = 32, �� = 127 for the climate, cyanobacteria, and gut microbi-
ome time series, respectively.

In all cases, we only used the data prior to the shift in the EWS 
analysis.

3  | RESULTS

This section provides a systematic benchmarking and comparison of 
the alternative methods presented in Methods.

3.1 | Simulation experiments

3.1.1 | Bandwidth scan

First, we examined how EWS detection depends on the level of 
smoothing incorporated in the models. We tested this on two 

representative example time series of equal length, one with an 
induced state shift (and slowing dynamics) and one with constant 
conditions. We varied the length scale in the probabilistic method 
and the smoothing bandwidth in comparison models and checked 
the dependence of EWS metrics and general fit on these parame-
ters. We used bandwidth and length scale values ranging from 0.05 
to 1 in increments of 0.05 times the time series length. Although 
these parameters are not strictly corresponsive, they are analogous 
in that they are responsible for smoothing the estimated parameter 
trajectories.

Whereas the comparison methods began to underfit at larger 
bandwidth values, the probabilistic model fitted accurately to the 
trend in the data for all used length scale values, see Figure  3. 
The model fit was assessed visually. The models produced similar 
and accurate fits on the data with constant conditions (data not 
shown).

All models were able detect EWS with statistical significance 
below the set � level. The TVAR(1) model p-values displayed some 
inconsistent behavior in terms of a sudden spike at bandwidth value 
of .35. In the data without EWS, TVAR(1) produced false positives 
with larger bandwidth values. With pTVAR(1), p-values remained 
consistently above .1, and the p-value for AR(1) was close to .1 at all 
bandwidth levels.

Finally, we computed the mean squared error (MAE) between 
the autocorrelation estimates and approximated autocorrelation 
(see Methods section for details). In the EWS data, TVAR(1) had a 
minimum at bw = 0.15 but increased drastically at larger bandwidths, 
whereas for pTVAR(1), the error decreased as a function of length 
scale. For AR(1), the error was the lowest apart from the smallest 
values of bw. In the data without EWS, the comparison methods 
achieved low MSE values at practically all bandwidth values, com-
pared to the probabilistic model.

3.1.2 | Multiple time series

As it is difficult to comprehensively assess and compare model per-
formance in a single, relatively short time series, we next tested EWS 
detection accuracy in a large collection of such time series.

In terms of true-positive rate, the proposed probabilistic model 
performed slightly worse than the comparison models (Figure 4). The 
AR(1) model performance was poorer compared to the time-varying 
variants. The finding was consistent in data with higher observation 
error levels and, expectedly, performance of all models decreased as 
a function of the noise level.

In specificity, we found that performance of TVAR(1) was consid-
erably worse than that of pTVAR(1) and the AR(1) models. This is in 
line with the results of the bandwidth scan as TVAR(1) seems to suf-
fer from high amount of falsely detected EWS. Sensitivity seemed to 
be unaffected by observation error as true-positive rates remained 
at the same level with all noise levels.

We also used the F1 score to get a view of the overall classi-
fication accuracy. Here, the probabilistic model achieved best 
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performance at most levels of observation error, with the differ-
ences becoming smaller at higher error levels.

In mean squared error between the approximated and inferred 
autocorrelation trajectories, we found no meaningful differences 
between the different models.

3.2 | Real scenarios

Next, in order to demonstrate the proposed method on real data, 
we re-analyzed data sets from three previous studies where shifts 
between alternative stable states were observed. Two of these, 
analyses of a paleoclimatic time series (Dakos et al., 2008) and an ex-
perimental cyanobacteria population (Veraart et al., 2012), reported 
increasing autocorrelations before a state shift. Here, we replicate 
the findings of these studies and then give first preliminary evidence 
that critical slowing may be detectable in gut microbial communities 
before a state shift.

In all cases, we detected increasing lag-1 autocorrelation with 
posterior evidence exceeding the level of statistical certainty (see 
Table 2).

In Figure 5, we present the fits of the proposed pTVAR(1) model. 
The model detects an EWS with statistical certainty in every data set 
and the time series trends are recovered with fidelity.

4  | DISCUSSION

Complex ecological and other systems can undergo an abrupt and 
long-lasting reorganization, a regime shift. Although such changes 
often arise unexpectedly, specific changes in the system oscillations 
can frequently be observed prior to such state shifts, providing early 
warnings of an anticipated transition. Despite the recent advances in 
developing early warning signals, practical challenges remain.

One of the key challenges for pragmatic application is the fine-
tuning and parameterizing the models for new data sets. Model 

F I G U R E  3   EWS detection accuracy depends on the smoothing bandwidth. (a) Fit for the observed trend for the probabilistic and 
comparison models in time series that include an EWS. The fit color indicates the bandwidth as a proportion of time series length, ranging 
from 0.05 to 1. Only the time points before the dashed vertical line were used in the inference. (b) EWS metrics as a function of bandwidth 
provide information of the expected true-positive rate. p-Values for the two TVAR(1)-based methods exhibit similar significant ranges 
although the nonprobabilistic model exhibits some volatility. Increasing autocorrelation trend measured with � is a standard EWS, here 
shown as a function of bandwidth. MSE is the mean squared error between the approximated autocorrelation trajectory and posterior mean 
autocorrelation (purple) or classical point estimates (green, brown) based on the simulation equation (see Methods). (c) EWS metrics for data 
without EWS provides information of the expected false-positive rate
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parameterization can influence model performance in a data set-
specific manner (Dakos, Carpenter, et  al.,  2012) and only limited 
prior information is typically available to guide the choice of the ideal 
parameter ranges. Hence, the models may not be able to extract the 
full information from the data, or even lead to inconclusive or incor-
rect inferences. New methods that provide tools to automate this 
process and utilize all information from the data in an optimal way 
would be valuable for practitioners.

We have proposed a novel probabilistic formulation that aims to 
fill this gap in the current methodology and examine its performance 
in the context of early warning signal detection. Benchmarking the 
new method with related alternative approaches highlights the 
generic trade-offs between robustness and sensitivity, and points 
to specific advantages that can be obtained with the probabilistic 
framework, thus informing the choice of the appropriate method in 
different application tasks. Our analysis focuses on autoregressive 

F I G U R E  4   Early warning detection performance in simulated data (with 500 replications) across varying observation error levels. 
True-positive rate (a), true-negative rate (b), and F1 score (c) show the impact of observation error standard deviation on classification 
performance of early warning signals. (d) Mean squared error between the estimated and approximate autocorrelation trajectories. The 
MSE are based on data with and without EWS. Outliers have been omitted from the figure for clarity. We computed the approximated 
autocorrelations using the simulation equations (see Methods)
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Climate AR(1) 0.616 .126

TVAR(1) 0.698 .018

pTVAR(1) 0.492 <.001

Cyanobacteria AR(1) 0.616 .118

TVAR(1) 0.698 .014

pTVAR(1) 0.332 .071

Gut microbiome (Akkermansia) AR(1) 0.947 <.001

TVAR(1) 0.008 .895

pTVAR(1) 0.823 <.001

Note: In all cases the proposed probabilistic pTVAR(1) model detects an EWS with statistical 
certainty below the selected level α = 1 . For the nonprobabilistic comparison models the results 
are mixed.

TA B L E  2   Comparison of EWS 
detection performance in publicly 
available case studies with different 
autoregressive models
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models, which have performed well in earlier studies (Dakos 
et al., 2008; Ives & Dakos., 2012; Veraart et al., 2012), and we have 
benchmarked three closely related statistical models that can be 
used to anticipate critical transitions in complex systems based on 
the analysis of time series autocorrelation structure. In the simula-
tion study, we used an often used ecological model as the genera-
tive process with relatively low sample sizes of some dozens (range 
17–189) as opposed to several hundreds in previous EWS studies 
(Carpenter & Brock,  2011; Dakos, Carpenter, et  al.,  2012; Dakos, 
Carpenter, et al., 2012).

The results from the probabilistic method are consistent with 
the available alternatives in real experimental data, while showing 
increased robustness to uncertainties regarding the data generating 
model structure and parameters. This is instrumental in the common 
scenario where the underlying mechanisms of the complex system 
dynamics are unknown. Moreover, the probabilistic approach is ex-
tendable and as such provides a new family of methods for early 
warning signal detection that can be used to naturally incorporate 
variable modeling assumptions and prior knowledge in the model as 
these become available. The smoothing bandwidth estimation dif-
fers among the methods but it in general reflects the amount of total 
information used at each time point. By systematically investigat-
ing a range of parameters, we can assess the model robustness with 
respect to bandwidth variation. The probabilistic formulation bene-
fits from a flexible time-varying parameterization and smooth reg-
ularization obtained through Gaussian process priors. Whereas the 
probabilistic method employs an adaptive smoothing scheme, the 
alternatives must resort to more indirect techniques, such as choos-
ing the TVAR(1) kernel regression bandwidth with leave-one-out 

cross-validation, or using a collection of bandwidth values to obtain 
a distribution of estimate of trend significance for a warning signal. 
While employing a collection of models with different hyperparame-
ters is possible with probabilistic methods as well, in general this ap-
proach may be problematic when incorporating poorly performing 
bandwidth ranges. However, as we show, the probabilistic variant 
has a comparatively good fit to the data at all levels of smoothing, 
whereas in our experiments, the nonprobabilistic models had the 
tendency to underfit at larger bandwidth values.

Although trend fitting is only a secondary target in EWS detec-
tion, discrepancies like this can hint at deeper problems in the cor-
relation structure estimation. Indeed, at larger bandwidth values, the 
TVAR(1) model produced essentially monotonous trajectories with 
an increasingly negative association with the true autocorrelation. 
Distinguishing true from false alarms is another important aspect of 
EWS detection. The TVAR(1) method claimed highly certain false-
positive early warnings. Whereas both time-varying models had 
similar true positive rates in our experiments than the AR(1) model 
and thus better detection performance, the probabilistic model had 
a lower rate of false negatives than its nonprobabilistic counterpart. 
Interestingly, the simpler AR(1) model also had a relatively low rate 
of false negatives, which could be partially attributed to its reduced 
flexibility that can increase robustness. When measuring the over-
all classification accuracy with F1 score, the probabilistic model 
achieved the best performance at most levels observation error. 
Together, these results point to the need to include the quantifica-
tion and analysis of false alarms when evaluating the performance 
of early warning indicators, which some studies have missed while 
focusing on the detection of true positives. Moreover, this highlights 

F I G U R E  5   Application of the probabilistic EWS to real time series. (a1) The climate data depict sediment CaCO3 levels which have 
been used as a proxy for the climate (Tripati et al., 2005). (b1) Experimental cyanobacteria data. Sudden relocations to lower abundance 
levels are due to experimental perturbations. (c1) An example of a gut microbiome time series that displays a state shift. CLR transformed 
abundance levels of the genus Akkermansia collapse at T = 128. The lag-1 autocorrelation posteriors in the corresponding lower panels (a2–
c2) provide evidence for rising trend at levels p < .001, p = .063 and p < .001 for the climate, cyanobacteria, and gut microbiome time series, 
respectively. In all figures, the black line displays the data and purple thin lines samples from a posterior, while the thicker line represents the 
posterior mean. Only the time series data preceding the observed state shift (dashed vertical line) was used in the analysis
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the problem of choosing the model hyperparameters. In realistic 
scenarios, it is not known whether or not the studied system is ap-
proaching a tipping point, or alternatively, a lot of data may be avail-
able and critical slowing down occurs at a relatively small proportion 
of the time series. In such cases, any predetermined hyperparameter 
values can lead to false findings, and one needs to be careful not to 
let any bias affect the modeling choices and not to try to optimize 
the models to get a desired result.

We also demonstrated the application of the compared methods 
on three public data sets, including earlier studies that reported in-
creasing autocorrelation for the climate (Dakos et al., 2008) and ex-
perimental cyanobacterial time series (Veraart et  al.,  2012), and an 
additional example from gut microbiome times series (Akkermansia 
genus) (David et al., 2014), where a slowing down in its abundance 
dynamics could be observed prior to a collapse. However, the collapse 
occurred simultaneously as an onset of diarrhea in the study subject 
due to food poisoning and the associations between this potential 
EWS and the effects of later food poisoning event remain unknown.

Our experiments show that the newly introduced probabilistic 
method can provide improvements in robustness over the alterna-
tives. The probabilistic models could potentially provide also other 
advantages. First, probabilistic models provide a principled way of 
assessing statistical significance as the autocorrelation posterior dis-
tributions can be readily used to compute the evidence for a positive 
trend without resorting to surrogate data analysis, thus providing 
conceptual simplification and computational advantages compared 
to the alternatives. Second, specific knowledge of the system can be 
incorporated through probabilistic priors, and a comprehensive in-
vestigation of this option would deserve its own study. We employed 
the GP priors mainly to regularize the statistical learning in order 
to avoid overfitting. This emphasizes long-term trends and reduces 
parameter sensitivity to large stochastic variations in the data. This 
comes at the cost of potentially missing real, rapidly occurring events 
but the continuity of the time-varying process is a natural assump-
tion in the context of EWS that often arise gradually under changing 
and constantly monitored conditions (Dakos & Bascompte,  2014). 
The EWS are typically concerned with more gradual trends as rapid 
changes are difficult to detect reliably in noisy and sparsely sampled 
data. In the simulation benchmarks, we used the length of the entire 
series as the length scale but also showed that this choice is not as 
sensitive as the bandwidth selection with the nonprobabilistic mod-
els. Real-world data may, however, exhibit relatively long periods 
of constant conditions before conditions begin to change or strong 
nonstationary variations requiring customized length scales. We 
encountered this when analyzing the real data sets. An important 
potential advantage of incorporating prior information in the proba-
bilistic models, for instance from previously collected time series of 
the same system, is that the prior can regularize the inference toward 
practically meaningful areas of the parameter space when only lim-
ited amount of data is available, potentially leading to more reliable 
and rapid inference. Hence, we expected the probabilistic pTVAR(1) 
model to outshine its nonprobabilistic comparison models on the 
shorter time series of the simulation benchmark. However, we found 

that the performance of pTVAR(1) decreased rapidly with very low 
sample sizes (Figure A1 in Appendix 1), which points to the need to 
study the role of the hyperparameters further. Third, the probabilis-
tic modeling framework could be naturally extended to handle more 
complex modeling scenarios (Gelman et al., 2013). The probabilistic 
formulation could allow, for instance, aggregation of parallel obser-
vations with a hierarchical model, or modifying the observation or 
noise structure. For instance, a Poisson observation model could be 
used when modeling certain types of one-dimensional count data. 
Explicit observation errors could be incorporated by separating the 
unobserved latent system state and the observation error process 
(Ives & Dakos, 2012), as in standard state space models that are typ-
ically fit with Kalman filters. These can, however, be challenging to 
implement and fit (Auger-Méthé et al., 2016), and their added value 
remains currently unknown. Overall, the advances in the probabilis-
tic formulation lead to conceptual simplifications in model interpre-
tation and can provide agility.

The aim of this work is to present a novel probabilistic approach 
for EWS detection, but we leave comprehensive testing of the pro-
posed model's properties for a later study. For instance, it would be 
valuable to test the model on noncritical transitions and in situations 
where increasingly sparse observations, or more observations far-
ther away from the tipping point are available. Several other direc-
tions for further development can be envisioned. We have restricted 
our analysis to the TVAR(p) model with the lag p = 1 . Models with 
higher lags could provide a better fit to the data but such increas-
ing model complexity could also lead to overfitting or problems 
in Bayesian posterior sampling, such as weak model identifiability 
when the sample sizes are limited (Luo et al., 2009). Another poten-
tially fertile direction would to study the effect of different types 
of priors. Here, we used GP priors with the Matérn structure for 
the time-varying parameters. While we experimented with other 
members of the Matérn kernel class, other alternatives might give 
better results. Ideally, domain knowledge about the system's dy-
namical properties should be used to guide such decisions (Gelman 
et al., 2013; Rasmussen & Williams, 2006). Prior distributions could 
also be used for the hyperparameters. By changing the length scale 
from a constant to a variable and giving it a prior, it would be pos-
sible to include sensitivity analysis in the fitting process and let the 
model give more weight to the "better" hyperparameter values. In 
our preliminary experiments, this approach encountered conver-
gence issues in the MCMC algorithm, implying a need for further 
theoretical investigations. In the simulation study, we set the length 
scale to length of the time series. While we show that this is a good 
choice in most situations, we acknowledge that the selection pro-
cess could be improved. Cross-validation and other model selection 
techniques could be used to enhance EWS detection accuracy and 
automate the process further. A limitation in many time series mod-
els, including the standard autoregressive processes, is that they as-
sume equidistant observations. Imputing or ignoring missing values 
in unevenly collected time points may be necessary in such cases, 
with potential information loss and distortions. The Bayesian frame-
work would also allow a natural framework for incorporating missing 
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data as random variables. Another potential solution would be to use 
time-varying Gaussian processes as the generative process for the 
state variable (Heinonen et al., 2016). The Ornstein–Uhlenbeck pro-
cess (an example of a GP) is the extension of the standard AR(1) pro-
cess to the continuous domain. By adding time dependence to the 
covariance structure, it would be possible to generalize the model 
presented in this paper another step further. In our preliminary ex-
periments, these models encountered convergence issues in the 
MCMC sampling and exhibited substantially higher computational 
costs. In general, a key drawback of using Gaussian processes is that 
the computation time scales in O

(
n3
)
 meaning that analysis of longer 

time series can quickly become prohibitive.
Anticipating critical transitions in complex systems is a noto-

riously challenging and a largely unresolved task despite the re-
cent progress in this area. Our current work focused on detecting 
changes in autocorrelation structure, a widely used and robust uni-
variate indicator (Clements et al., 2015; Dakos, van Nes, et al., 2012). 
However, related probabilistic extensions could be implemented 
also in the context of other commonly reported EWS, such as vari-
ance or change point detection in the context of flickering (Dakos, 
Carpenter, et al., 2012). Extending some other established univariate 
EWS indicators (e.g., skewness, kurtosis, and spectral properties) to 
the probabilistic framework might be less straightforward in prac-
tice, however, since formulation of the equivalent generative models 
could be less obvious than for the autoregressive case. The meth-
odological advances that we have proposed and investigated are 
generic, naturally extendable, and, as our experiments demonstrate, 
potentially applicable across a broad variety of application domains.
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APPENDIX 1

FIT TING INFORMATION
We implemented the Bayesian models in Stan (Stan Development 
Team, 2020) and sampled the posterior with the No-U-Turn Sampler 
(NUTS) variant of the Hamiltonian Monte Carlo algorithm.

The Gelman–Rubin statistic R̂ remained below the standard 1.1 
threshold (Gelman & Rubin,  1992), indicating model convergence. 
We encountered no divergent transitions in simulations. For each 
simulation, we used 2 chains with 2000 iterations and random initial-
izations. We discarded the first half of samples as warm-up and set 
the maximum tree-depth and step size parameters to 15 and 0.95, 
respectively. The AR(1) model was fit with ordinary least squares 

regression as implemented in the R function stats::ar.ols and the 
TVAR(1) model using the function tvReg::tvAR.

We used the latent variable formulation of Gaussian processes to 
achieve more efficient posterior sampling (Kuss & Rasmussen, 2005). 
This formulation models the process as a latent one-dimensional 
vector � that is mapped to the output space as � = L�, where L is the 
lower triangular matrix with positive diagonal from the Cholesky de-
composition k3∕2 = LL. Here, � corresponds to the parameters �t and 
�t. This parameterization reduces the dimensionality of the posterior 
distribution and this way speeds up the Markov chain Monte Carlo 
sampling process.

F I G U R E  A 1   Comparison of EWS detection performance between different autoregressive models as a function of time series length. 
AR(1) is the standard autoregressive model, TVAR(1) the time-varying autoregressive model, and pTVAR(1) the probabilistic time-varying 
model. The panels depict results for different performance metrics and levels of observation error. TPR, TNR, F1, and MSE correspond to 
true-positive rate, true-negative rate, F1 score, and mean squared error between approximated and inferred autocorrelation trajectories, 
respectively
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