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Hibernation, a period where bats have suppressed immunity and

low body temperatures, provides the psychrophilic fungus

Pseudogymnoascus destructans the opportunity to colonise bat

skin, leading to severe disease in susceptible species. Innate

immunity, which requires less energy and may remain more active

during torpor, can control infections with local inflammation in some

bat species that are resistant to infection. If infection is not controlled

before emergence from hibernation, ineffective adaptive immune

mechanisms are activated, including incomplete Th1, ineffective

Th2, and variable Th17 responses. The Th17 and neutrophil

responses,normallybeneficialantifungalmechanisms,appeartobe

sources of immunopathology for susceptible bat species, because

they are hyperactivated after return to homeothermy. Non-

susceptible species show both well-balanced and suppressed

immune responses both during and after hibernation.
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Introduction
Mammalian immunity displays a specialised response to

fungi over bacteria and viruses [1]. The antifungal response

strikes a careful balance between allowing colonisation and

limiting growth in a way that minimises both harm to the

host and energy usage [2]. The host’s sophisticated innate
www.sciencedirect.com 
and adaptive immune systems, combined with high body

temperatures, constitute two important barriers for fungi,

preventing life-threatening diseases [3]. However, when

individuals are immuno-compromised, fungal infections

are not uncommon. The pathology associated with fungal

diseases can either be predominantly driven by the fungal

pathogen itself or by an overreaction of the host immune

system [4]. Heterothermic mammals such as bats present

unique characteristics regarding the interplay between

thermoregulatory behaviour and the operation of their

immune system. Many insectivorous bat species utilize

prolonged hibernation (e.g. several weeks or months [5,6]),

during which their immune system is mostly at a standstill

[7], exceptduringperiodic arousals, lasting some hours, that

interrupt their bouts of torpor. During torpor, the body

temperature of thebat falls drastically to match theambient

temperature of their hibernaculum (e.g. 5�10�C [8]).

These hibernating bats are prone to infection by the

psychrophilic fungus, Pseudogymnoascus destructans, which

causes white-nose disease (WND; the disease associated

with white-nose syndrome, WNS [9]). Thefungusgrows on

and into the exposed skin (i.e. wing) of hibernating bats but

is cleared during their active season [10,11].

The host responses, which occur during P. destructans infec-

tion, provide an intriguing scenario for investigation on how

thermoregulation modulates antifungal immunity in mam-

mals. Toaddfurther interest,P.destructans infects severalbat

species. Some species are severely affected with common

lethal outcomes (e.g. several Nearctic species, including

Myotis lucifugus) while others are largely unaffected by the

infection, such as species in the Palearctic (e.g.Myotis myotis),
which likely co-evolved with the fungus [12–14]. Here, we

review bat host responses to the fungal pathogen, and relate

these to responses in normothermic mammals.

Innate immune system responses to mycosis
Upon colonization of the skin and penetration of the

epithelial barrier, innate immune responses can be trig-

gered [15]. If the innate response is not sufficient to

restore a balanced host–microbe community, then the

innate inflammatory response is intimately connected to

the activation and amplification of adaptive immune

responses [16,17]. Constitutively expressed pattern-rec-

ognition receptors (PRRs) recognize pathogen-associated

molecular patterns (PAMPs), allowing the innate immune

system to respond quickly to invading pathogens. For
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Outcomes of immune responses in homeothermic and heterothermic
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immunopathology, depending on metabolic activity of the host.
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fungal infections, these PAMPs are cell-wall components,

recognized by PRRs such as Dectin and other members of

the C-type lectin receptor (CLR) family and toll-like

receptors (TLR) [18]. These receptors are expressed in

epithelial tissues by keratinocytes, innate immune cells,

and adaptive immune cells (Figures 1 and 2). The acti-

vation of these receptors, together with the sensing of

damage-associated molecular patterns, initiates an

inflammatory response that both limits the growth of

the fungal invader and triggers a complex cascade of

immune responses at both the local and systemic levels.

The response to fungal infection begins at the local site of

infection, continues at a regional lymph node, and ulti-

mately generates systemic responses. In a WND-suscep-

tible species such as M. lucifugus, localized changes in

gene expression indicate a robust innate inflammatory

response to infection, but only once bats have aroused

from torpor [19]. These local changes in gene expression

include increased expression of inflammatory cytokines

(such as IL1B and IL6), chemokines (like CCL2), and

enzymes (like PTSG2), and also several CLRs and TLRs

that would increase the ability to detect PAMPs. Corre-

sponding effects are seen on both the regional [20] and

systemic level [21]; aroused M. lucifugus with severe

infection appear to have increased the expression of

numerous cytokines, including interleukins and chemo-

kines. However, a similar pattern of local gene expression

changes is not triggered in M. myotis [22�], a Palearctic bat
Current Opinion in Microbiology 2021, 62:61–67 
species that does not exhibit wide-spread mortality due to

P. destructans infection [23]. Together, these studies of

gene expression suggest the anti-fungal immune response

triggered during P. destructans infection in severely

affected species is similar to other mammals [24], but

the effector mechanisms may be delayed by hibernation.

However, more work is needed to understand innate

mechanisms for anti-fungal immune responses and how

they are affected by heterothermy, seeing as they may

play a big part in evolution towards tolerance or resistance

towards the pathogen [25,26�].

Adaptive immune system responses to
mycosis
In normothermic mammals, peptide antigens from extra-

cellular pathogens, such as P. destructans, are presented by

MHC class-II molecules [27]. The response is then

mediated by T-helper cells (Th-cells), which influence

the specific adaptive immunity pathway taken, depend-

ing on the antigen of the invading pathogen and the

cytokine environment presented by the innate immunity

system [28]. Not all pathways can counter a fungal infec-

tion (Figure 1). The cellular Th1 pathway enhances the

ability of macrophages and cytotoxic T cells against

intracellular pathogens, whereas the humoral Th2 path-

way advances an antibody response, stimulating mast

cells, histamines, and eosinophils in response to extracel-

lular pathogens [28]. The expression of IL-17 by innate

pathways and the adaptive cellular Th17 pathway adds to

the cascade of inflammatory responses leading to the

activation of neutrophils [29]; the combined effector

actions of Th17 cells and neutrophils lead to an effective

response to fungal infections [1], at least in normothermic

mammals. However, many of these adaptive pathways are

energetically costly [30] and suppressed during torpor to

conserve energy [7]. These response pathways have been

investigated in association with P. destructans infection.

The Th1 response
The initial forays into investigating Th1-responses used

proxies to deduce the involvement of the pathway during

infection. For instance, the lower antioxidative ability

measured in the blood of infected M. lucifugus [31] were

associated with the function of the Th1 cytokine IFN-g,
which can trigger the release of oxidative free radicals to

damage internal pathogens [32]. This is often reflected as

lack of antioxidant ability [31], a response recently echoed

in M. myotis [26�]. The involvement of this pathway was

further enforced by the higher bactericidal ability seen in

infected M. lucifugus blood [33] suggesting a Th1

response, due to the associated increase in leukocyte

count [31].

Histopathology of infected wing tissue [34] and studies on

transcriptional and translational activity in the wing tissue

transcripts of M. lucifugus [19,21] showed that the Th1

response was incomplete. Despite the required
www.sciencedirect.com
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IL-17 response pathway in M. lucifugus leading to immunopathology by the end of the hibernation period. Created with BioRender.com.
chemokines being present, leukocytes are not recruited to

the site of infection until after bats emerge from hiber-

nation and shift to homeothermy, due to the severe

reduction in their concentration during hibernation

[19,34,35]. Furthermore, there is no evidence of an

increase in translation of proteins that mitigate oxidative

stress in infected M. lucifugus [36�]. The absence of a

complete Th1 response [19] has been suggested to be due

to the reduced energy availability that is a characteristic of

hibernation [30] and also the absence of circulating leu-

kocytes [37]. Heterothermy may modulate activating

signals to effector phagocytes and the resulting inflam-

matory responses leading to adaptive immunity. For

instance, a vaccine using highly immunogenic fungal

antigens was found to provide some protection against

P. destructans infection, but this protection was not

strongly associated with either a Th1 (IFN-g) or a

Th17 (IL-17) response [38�]. Notably, this immunization

was performed on bats housed at 21–24�C, where they

would be expected to exhibit some heterothermy but

would have been unable to fully enter torpor for energy

conservation. Further study is needed to determine if this

vaccine strategy would be more or less effective during

the hibernation period or in fully homeothermic bats (i.e.

housed at their thermoneutral zone).
www.sciencedirect.com 
The Th2 response
In general, an antibody-mediated response promoted by

Th2 cells is not effective against fungal infections [2], and

the promotion of this pathway dampens protective Th1 or

Th17 responses. While M. lucifugus appears able to mount

an antibody response to P. destructans [39], at least once

they have emerged from hibernation, this response does

not protect the bat host from subsequent infection [20]. In

fact, it may actually prime the immune system for greater

pathology in subsequent hibernation seasons, which may

partially explain the higher observed mortality at hiber-

nation sites in the second winter after the detection of the

pathogen [40]. Thus, antibody-mediated immunity can-

not explain survival of Palearctic bats infected with P.
destructans and humoral responses are not a ubiquitous

response among Myotis bats infected by this fungal path-

ogen (Figure 1).

Th17 response: the good, the bad and the ugly
The Th17 response can be an effective antifungal mech-

anism. Deficiencies in the Th17-pathway predispose

humans and mice to fungal infections [41], and Dectin-

1, a CLR involved in immune regulation, has been

associated with this pathway [42]. However, a failure to

regulate the Th17 response can lead to chronic
Current Opinion in Microbiology 2021, 62:61–67
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An approximate overview in light of current knowledge on the effective

response and the level of immunopathology caused by P. destructans

infection in Nearctic E. fuscus and M. lucifugus, and in Palearctic M.

myotis. Created with BioRender.com.
inflammation and failure to resolve the infection [43,44].

In mammals, the mechanisms linking inflammation to

chronic infection have been associated with IL-17A,

which effectively promotes neutrophil recruitment to a

point where the inflammatory potential can no longer be

impeded [45], all while directly promoting fungal viru-

lence [46].

Infection by P. destructans initiates the Th17-pathway in

M. lucifugus [20]. The role of cytokines associated with the

pathway during the hibernation period have further been

confirmed in a number of studies using transcriptomics

[21,22�]. For instance, the upregulation of IL-23 is seen

both at the site of infection [21] and in another tissue

(lung) without infection [47]. IL-23 stimulates the matu-

ration of Th17 cells, but has also been linked to chronic

inflammation, and to intensifying the negative impact of a

fungal Aspergillus infection [48]. Further Th17-associated

cytokines IL-6 and IL-17C [49] were found to be upre-

gulated in infected M. lucifugus in three separate tran-

scriptomic studies [19,21,22�].

While the Th17 response can be beneficial, excessive

expression of associated cytokines has been implicated in

chronic inflammation [50]. Consistent with pathologic

inflammatory responses, WND-susceptible species show

very high levels of inflammatory cytokine transcripts,

including IL-6 [21,22�], and a potential febrile response

[51]. Torpor appears to limit the inflammatory effector

pathways normally activated by Th17 pathways [20],

setting up a pathological level of inflammation once bats

emerge from hibernation. Increased levels of Th17 cells

and the IL-6 cytokine have also been strongly associated

with immune reconstitution inflammatory syndrome

(IRIS) [52]. This syndrome is characterised by a rigorous

response after the restoration of immune function after a

period of suppressed immunity (e.g. during hibernation),

which can exacerbate symptoms [7,53]. Three weeks

after arousal and a return to elevated body temperature,

the wing pathology of some M. lucifugus bats begins to

increase [34,54�] and the metabolic rate remains elevated

[55]. The Th17 pathway may therefore be amplified from

an effective antifungal mechanism to a harmful immuno-

pathological response during the arousals occurring dur-

ing the hibernation period (Figure 2).

Resistance, tolerance and coevolution
Interestingly, local cytokine-mediated responses seem to

be dampened in the apparently tolerant Palearctic spe-

cies, M. myotis, but not in the resistant Nearctic species,

Eptesicus fuscus (Figure 3). A comparison of the transcrip-

tomes of infected and non-infected tissues of M. lucifugus
and M. myotis revealed that the former had 1526 signifi-

cantly differentially expressed transcripts, whereas the

latter had a single downregulated transcript [22�]. This

suggests euthermic, recently aroused M. myotis does not

actively respond to the invasion of its tissues by P.
Current Opinion in Microbiology 2021, 62:61–67 
destructans [26�]. This transcriptomic effect was echoed

in a plasma proteome comparison between the same two

species, where 11 out of the 157 proteins show signifi-

cantly different abundance in infected M. lucifugus, com-

pared to no difference in abundance in M. myotis [36�].
However, the apparently resistant E. fuscus show robust

changes in gene expression in response to P. destructans
infection, including IL6, IL1B, IL20, IL-23A, IL-24, G-

CSF, CCL2, CCL20 and PTGS2, which are very similar

to those seen in M. lucifugus [19,56�], yet with no signs of

immunopathology [57]. Compared to the relatively unre-

sponsive M. myotis, the susceptibility seen in M. lucifugus is

suggested to be from an overstimulation of the immune

system at a local level, which is ultimately ineffective in

fighting off the infection. The difference between the

effective response shown by E. fuscus and the ineffective

response by M. lucifugus could be due to critical pathways

that are differentially regulated, the timing of the

responses, and/or the magnitude of the responses. Recent

studies on E. fuscus also suggest the microbiome and

cutaneous fatty acids could contribute to their resistance

[58,59], in addition to their active immune response.

Further investigation is needed for a better understand-

ing of the net effect of each component in the observed

resistance.

The differences in immune responses between the

Nearctic and Palearctic Myotis species may be down to

two factors: (1) whether the innate immune system can

keep the infection in check during hibernation and (2) the

strength and type of adaptive immune system pathways
www.sciencedirect.com
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activated after emergence. The most cromulent explana-

tion is whether the host attempts to resist or tolerate the

pathogen. If they are unsuccessful in resisting pathogen

colonization using innate mechanisms during hiberna-

tion, the resistance mechanisms meant to protect the

host can result in harm instead [60], once the bat emerges

from hibernation and hyper-inflammation is triggered.

Tolerance can be derived from the host counteracting

this immunopathology; in effect by not responding to the

invading pathogen [61]. The severe impact of the disease

on populations of M. lucifugus may be due to damage

caused by an attempted immune response, while the root

of tolerance in other species may be due to a combination

of effective innate control of the pathogen and suppres-

sion of a damaging response after emergence.

The extensive coevolution between the bat host and the

fungus in the Palearctic may have led to a commensal

relationship [25,62]. So far, only M. myotis has been

studied in detail with regards to P. destructans infection

in the Palearctic. However, a number of other Palearctic

species also show infection [10,12,63], that in some often

results in either no damage or clinically inapparent dam-

age to the host, fitting the description of commensalism

[64]. Although many factors can contribute to this, such as

hibernation site selection [65,66], hibernation behaviour

[67], and resistance via the microbiome [68], the ability of

the innate and adaptive immune system to recognize

commensal and pathogenic fungi deserves more attention

as a mechanism of tolerance [69].

Conclusions
Torpor allows bats to survive the winter, but allows

colonisation by the psychrophilic fungal pathogen, P.
destructans. In highly susceptible bat species, the recon-

stitution of the immune system upon emergence appears

to result in immunopathology via a hyperinflammatory

Th17 response. Two different strategies may allow sur-

vival of WND: a resistance strategy allowing an effective

(innate) immune response that avoids excessive inflam-

mation; or a tolerance strategy, where survival appears to

be aided by a lack of a costly immune response. Under-

standing how torpor modulates responses to P. destructans
infection is key to understanding disease severity. Fur-

ther study in different species, in both torpid and aroused

states, should be carried out to search for similarity in the

responses of susceptible and tolerant bat species, as well

as to understand the extent of the continuum leading to

commensalism between the bat host and fungal

pathogen.
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