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Abstract

First-episode psychosis (FEP) is associated with inflammatory and brain structural
changes, but few studies have investigated whether systemic inflammation associates with
brain structural changes in FEP. Thirty-seven FEP patients (median 27 days on antipsy-
chotic medication), and 19 matched controls were recruited. Serum levels of 38 chemokines
and cytokines, and cardiovascular risk markers were measured at baseline and 2 months
later. We collected T1- and diffusion-weighted MRIs with a 3 T scanner from the patients at
baseline. We analyzed the association of psychosis-related inflammatory markers with gray
and white matter (WM) volume using voxel-based morphometry and WM diffusion using
tract-based spatial statistics with whole-brain and region-of-interest (ROI) analyses. FEP
patients had higher CCL22 and lower TGFa, CXCL1, CCL7, IFN-a2 and ApoA-I than con-
trols. CCL22 decreased significantly between baseline and 2 months in patients but was
still higher than in controls. The association between inflammatory markers and FEP re-
mained significant after adjusting for age, sex, smoking and BMI. We did not observe a cor-
relation of inflammatory markers with any symptoms or duration of antipsychotic treatment.
Baseline CCL22 levels correlated negatively with WM volume and positively with mean dif-
fusivity and radial diffusivity bilaterally in the frontal lobes in ROl analyses. Decreased
serum level of ApoA-I was associated with smaller volume of the medial temporal WM. In
whole-brain analyses, CCL22 correlated positively with mean diffusivity and radial diffusivi-
ty, and CXCL1 associated negatively with fractional anisotropy and positively with mean dif-
fusivity and radial diffusivity in several brain regions. This is the first report to demonstrate
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an association between circulating chemokine levels and WM in FEP patients. Interestingly,
CCL22 has been previously implicated in autoimmune diseases associated with WM pa-
thology. The results suggest that an altered activation of innate immunity may contribute to
WM damage in psychotic disorders.

Introduction

Psychotic disorders are associated with immunological changes, some of which persist beyond
remission of psychotic symptoms [1]. These changes include elevations of inflammatory cyto-
kines and chemokines in blood and cerebrospinal fluid (CSF), alterations in monocyte and T-
cell activation, and increased gene expression of pro-inflammatory genes in peripheral blood
cells, CSF as well as in post-mortem brain tissue [1-9]. Many of these alterations are evident al-
ready in first-episode psychosis (FEP) [1,10,11]. Several studies suggest that cells of the mono-
nuclear phagocyte system, i.e. monocytes, dendritic cells and macrophages, might be especially
relevant in the etiology of psychosis [2,3,6]. The balance between different T-cell populations
also seems to be altered [9]. The largest genome-wide association study of schizophrenia to
date shows further support for the role of immunological factors in the pathogenesis of symp-
toms: genes expressed in the immune cells, such as STAT6 and TCF4, were overrepresented in
the genetic loci associated with schizophrenia [12]. In addition, some non-steroidal anti-in-
flammatory drugs are effective as adjuvant therapy in treating psychotic symptoms in patients
with schizophrenia [13]. However, peripheral immunological alterations may reflect several
factors associating with psychotic disorders [14,15], including weight gain [16], metabolic syn-
drome [17,18] and antipsychotic medication [19,20].

Schizophrenia is related to widespread structural brain changes and functional connectivity
deficits [21-25]. Meta-analyses of voxel-based morphometry studies in psychotic disorders
show pervasive gray matter (GM) changes [26-30]. In the white matter (WM), meta-analyses
of diffusion tensor imaging (DTI) studies indicate differences particularly in the medial frontal
lobes, including the cingulum bundle and the interhemispheric connections through the cor-
pus callosum, and temporal lobes, and these differences are already seen after the first psychotic
episode [31-33]. Factors contributing to these changes in psychosis are largely unknown. How-
ever, in other neuropsychiatric and neurodegenerative diseases as well as in cognitive decline
related to aging, both peripheral immunological alterations and microglia activation seem to
contribute to brain structural changes [34-38].

Converging evidence suggests that neuroinflammation is important in schizophrenia
[39,40]. According to a recent systematic review, this is supported by neuropathological studies
finding higher microglial density in subjects with schizophrenia than in controls in several
brain areas, particularly in the WM [40]. Also, positron emission tomography imaging studies
have found increased microglial activation in schizophrenia [41-43]. Moreover, one DTI study
implicated that neuroinflammation could explain changes in WM diftusion in first-episode
schizophrenic patients [44].

The role of peripheral inflammation in WM pathology is, however, not known. Peripheral
cytokines and chemokines can affect the central nervous system in several ways: via the hypo-
thalamic-pituitary-adrenal axis, the autonomic nervous system, and even directly by crossing
the blood-CSF barrier via the choroid plexus [14,45-50]. Furthermore, elevations in peripheral
cytokines or other immunological markers have been shown to be correlated with WM changes
in multiple sclerosis [51], in age-related cognitive decline [38], and in late-life depression

PLOS ONE | DOI:10.1371/journal.pone.0125112 May 13,2015

2/21



@’PLOS ‘ ONE

Chemokines, White Matter and Psychosis

associated with cognitive impairment [52]. Some recent studies suggest that systemic inflam-
mation may contribute to brain structural changes also in psychotic disorders. A study con-
ducted in FEP patients found that increased interleukin-6 (IL-6) gene expression in leukocytes
correlated with smaller left hippocampal volume [53], while another study conducted in young
adults with schizophrenia found a correlation between peripheral IL-6 and C-reactive protein
(CRP) levels and WM diffusion [54]. In addition, an aggregate measure of pro-inflammatory
cytokines predicted progressive right prefrontal cortex gray matter thinning in individuals at
clinical high risk for psychosis, particularly in those who transitioned to psychosis during fol-
low-up [55]. However, previous studies have not, to our knowledge, investigated associations
between peripheral inflammatory markers and brain volumetric and diffusion measures in
FEP.

Our hypothesis was that peripheral immunological and metabolic alterations associate with
changes in brain morphology in FEP patients. To map immunological and metabolic alter-
ations in FEP, we used a comprehensive set of 38 cytokines and chemokines as well as cardio-
metabolic markers. Then, we investigated whether changes in the systemic inflammatory and
metabolic markers in FEP associate with brain morphology. We hypothesized that the serum
markers that were higher in the patient group than in the control group would correlate nega-
tively with GM volume, WM volume and fractional anisotropy measures and positively with
mean diffusivity and radial diffusivity measures, while the markers that were lower in the pa-
tient group would have the opposite effect.

Materials and Methods

Clinical study protocol

The ongoing study started on November 2010. Patients aged 18 to 40 years with first contact
with psychiatric care for psychosis were recruited from the area of the Hospital District of Hel-
sinki and Uusimaa. Psychosis was defined as receiving a score of at least 4 in the items assessing
delusions or hallucinations in the Brief Psychiatric Rating Scale (BPRS). All patients with pri-
mary psychotic disorders were included. Patients with FEP were assessed three times. The base-
line assessment was conducted as soon as the patient had entered treatment and was able to
give informed consent, and the follow-ups were conducted at 2 and 12 months. The methods
used in the clinical assessment are described in detail in S1 Table. Briefly, the severity of posi-
tive and negative psychotic symptoms (current and worst period) [56], current symptoms of
mania [57], depression [58], anxiety [59], obsessive-compulsivity [60], and harmful alcohol use
[61] were evaluated. Diagnostic assessment was done at 2 months and 1-year follow-up based
on the Research Version of The Structured Clinical Interview for DSM-IV Axis I Disorders
(SCID-I)-interview and all information from medical records, and the diagnosis was done by a
senior psychiatrist (JS) together with the interviewer. In case of uncertainty, a consensus diag-
nosis between the senior psychiatrists (JS, OM, TK) was made. Data were also gathered on
sociodemographic factors, functioning, family history of psychiatric disorders, medication,
substance use, physical activity, diet and smoking, and the interviewer measured weight,
height, blood pressure and waist circumference (See Table 1).

Controls, matched by age, sex and region of residence, were identified from the Population
Register Center and assessed with the same protocol as the patients. The exclusion criteria for
the controls were a lifetime history of psychotic disorder, any chronic neurological, endocrino-
logical, or cardiovascular disease, and any condition that prevents Magnetic Resonance Imag-
ing (MRI).

From this analysis, we excluded people with diagnosed diabetes (n = 3).
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Table 1. Baseline sociodemographic and clinical characteristics of the sample including cases (n = 37) and controls (n = 19).

Age

Male

Living with parents

No vocational or higher education
Employed, military or student

BMI

Current smoking

Lifetime smoking

No substance use lifetime®
Active in sports min. 1h weekly
Family history of psychiatric disorders
AUDIT

SOFAS

GAF

BDI

BAI

OCI-R

MDQ screen positive

FEP patients®

n (%), or median (25%, 75%)
26.1 (21.9, 28.0)

21/37 (56.8%)

10/37 (27.0%)

22/37 (59.6%)

17/37 (45.9%)
22.2(21.1,24.4)

11/29 (37.9%)

18/30 (48.6%
26/37 (70.3%

)
)
27/30 (90.0%)
)

Controls

n (%), or median (25%, 75%)
27.0 (23.7, 33.9)
10/19 (52.6%)
1/19 (5.3%)

2/19 (10.5%)
18/19 (94.7%)
23.5 (20.9-25.3)
2/19 (10.5%)
6/19 (31.6%)
18/19 (94.7%)
18/19 (94.7%)

0.11

0.77

0.052

0.001 (Fisher)
0.04 (Fisher)
0.50

0.049 (Fisher)
0.053

0.043 (Fisher)
0.18 (Fisher)

22/35 (62.9% 2/17 (11.8%) 0.001 (Fisher)
5.8 (2, 12.5) 6 (3, 12) 0.65

40 (35, 40) 90 (85, 90) <0.001

32 (30, 38) 90 (85, 90) <0.001

10.5 (0-43) 0 (0-31) <0.001

16 (0-49) 2 (0-14) <0.001

13 (0-42) 3 (0-16) <0.001

7/30 (18.9%) 1/19 (5.3%) 0.03 (Fisher)

& Diagnosis Schizophrenia (n = 19), Schizophreniform disorder (n = 4), BD with psychotic features (n = 3), MDD with psychotic features (n = 1), Psychotic
disorder NOS (n = 1), Schizoaffective disorder (n = 2), Substance-induced psychotic disorder (n = 1, Magnetic resonance images were not available from

this participant), Delusional disorder (n = 1).

P Substance use does not include alcohol, nicotine or caffeine.
Abbreviations: AUDIT, the alcohol use disorders identification test; BAl, Beck anxiety inventory; BDI, Beck depression inventory; BMI, body mass index;
GAF, global assessment of functioning scale; MDQ, mood disorder questionnaire; OCI-R, obsessive-compulsive inventory revised; SOFAS, social and

occupational functioning assessment scale.

doi:10.1371/journal.pone.0125112.t001

Ethics statement

The study protocol was approved by the Ethics Committee of the Hospital District of Helsinki
and Uusimaa (257/12/03/03/2009) and by the institutional review boards of the National Insti-
tute for Health and Welfare, Helsinki, Finland, and the University of Helsinki, and all partici-
pants gave a written informed consent. Patient’s capacity to give informed consent was
assessed by the treating psychiatrist.

Laboratory analytical methods

A fasting blood sample was collected in the next morning after the interview at 8 to 10 am.
Serum and plasma samples were immediately aliquoted and stored at -80°C. Serum total cho-
lesterol, high-density lipoprotein (HDL) cholesterol, triglycerides, apolipoprotein A-I
(ApoA-I) and B (ApoB) and plasma glucose were measured with enzymatic by Abbott Archi-
tect ci8200 analyzer (Abbott Laboratories, Abbott Park, IL, USA) in the laboratory of the Dis-
ease Risk Unit at National Institute for Health and Welfare. Apolipoprotein A-I (ApoA-I) and
B were determined with immunoturbimetric assays (Abbott) and hs-CRP with latex turbido-
metric immunoassay (Sentinel, Milan, Italy). Insulin and C-peptide were measured with
chemiluminescent microparticle immunoassays (Abbott). Low-density lipoprotein (LDL) cho-
lesterol was calculated by the Friedewald formula. The mean inter-assay coefficient of
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variations (CVs) for cholesterol, HDL cholesterol, triglycerides, and glucose were 1.0%, 2.2%,
1.5%, and 1.4%. The mean CV%s for ApoA-I, ApoB, hs-CRP, insulin, and C-peptide were
1.8%, 2.0%, 4.3%, 2.4%, and 2.5%, respectively.

The levels of serum inflammatory markers were studied at baseline and at 2 months using
the Milliplex MAP Kit (HCYTMAG-60K-PX38, Millipore Corp., Billerica, MA) including 38
cytokines and chemokines listed in Table 2. Quantification of the inflammatory markers was
carried out with Magpix instrument and xPONENT 4.2 software (Luminex Corp., Austin, TX).
Concentration of each marker was determined from an 8-point dilution standard curve using
five parameter logistic regression. Samples with concentration below the minimum detectable
concentration (MinDC) were given a value equal to MinDC, which was determined for each
marker individually as the lowest concentration on the standard curve’s linear phase (52
Table).

Brain imaging

We collected structural T1-weighted MRI and DTI at baseline first using a Signa VH/i 3 T
scanner (GE Healthcare, Chalfont St Giles, UK) with a 16-channel coil, and then, due to update
of the scanner in the research centre, using Magnetom Skyra 3 T system and a 32-channel head
coil (Siemens AG, Erlangen, Germany) at Aalto AMI Centre, Aalto NeuroImaging, Aalto Uni-
versity School of Science. Established sequences were used, and the detailed parameters are de-
scribed in Table 3. With the GE scanner, we used a spoiled-gradient-echo sequence to acquire
the T1-weighted images in 180 slices with 1.02x1.02x1 mm voxels. With the Siemens scanner, a
magnetization-prepared rapid gradient echo sequence was used for 176 sagittal/192 transversal
slices with 1x1x1 mm voxels. DTT data were acquired during the same imaging session. With
the GE scanner, diffusion sensitizing gradients (b = 1000 s/mm?) were used to image 60 non-
collinear directions and 4 non-diffusion weighted images (b = 0 s/mm?) in 56 axial slices with-
out gaps and with voxel size of 1.88x1.88x3 mm. With the Siemens scanner, the same b-values
were used in a 2-dimensional spin-echo EPI sequence. Sixty-four noncollinear directions and 1
non-diffusion weighted image were gathered in 58 axial slices without gaps; voxel size was
1.88x1.88x3 mm.

Preprocessing of structural MRI data

The T1-weighted MRIs were analysed with the SPM8 software (http://www.fil.ion.ucl.ac.uk/
spm/software/spm8/), and VBMS toolbox (http://dbm.neuro.uni-jena.de/vbma8/) for voxel-
based morphometry [62]. The images were reoriented manually and bias corrected for intensi-
ty non-uniformities. An adaptive maximum a posteriori-method was used for segmentation of
the images to GM, WM, and CSF, followed by partial volume estimation and denoising. The
segmented images were normalized to MNI-space using high-dimensional nonlinear DARTEL
normalization [63], and smoothed with a Gaussian kernel (full width at half maximum = 8
mm). In order to estimate regional brain volume, nonlinear modulation was applied to the im-
ages after normalization (http://dbm.neuro.uni-jenade/vbm/segmentation/modulation/) [64].

Preprocessing of DT| data

Brain WM diffusion was studied with DTI. Fractional anisotropy is the most used indicator of
WM integrity [65] and refers to the directionality of diffusion, while radial diffusivity, which
refers to diffusion perpendicular to the main diffusion direction, may be more sensitive to de-
myelination [66]. Mean diffusivity reflects the total level of diffusion in a particular voxel or re-
gion. Decreased fractional anisotropy [65], and increased radial diffusivity [66] or mean
diffusivity [67] reflect WM pathology. The DTI images were preprocessed with FMRIB
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Table 2. Differences between cases (n = 37) and controls (n = 19) in metabolic and inflammatory factors.

Case Control

Measure Median? 25% and 75% Median? 25% and 75% P
hs-CRP mg/| 0.61 0.29,2.6 0.93 0.38,2.5 0.72
Glucose mmol/l M 4.26 3.96, 4.51 4.32 3.92, 4.56 1.00
Insulin mU/Il 8.1 5.9, 16.9 7.2 4.2,9.7 0.08
C-peptide nmol/l 549.0 433.5,871.5 458.0 463.0, 621.0 0.06
ApoA-I| gl 1.32 1.21,1.40 1.38 1.33, 1.66 0.023
ApoB g/l M0.79 0.62, 0.89 0.67 0.55, 0.85 0.22
Cholesterol mmol/l 4.46 4.08, 5.25 4.49 3.81,5.70 0.92
HDL-C mmol/l 1.33 1.11, 1.50 1.37 1.30, 1.60 0.11
LDL-C mmol/l 2.79 2.38, 3.30 2.52 2.09, 3.18 0.36
Triglycerides mmol/l 1.1 0.77,1.4 0.85 0.68, 1.1 0.11
Innate immune system cytokines
IFN-02 pg/ml 24.8 16.7, 40.2 37.8 24.8,67.7 0.027
IL-1a pg/ml 32.4 3.2,85.6 42.7 3.2,117.8 0.78
IL-1ra pg/ml 24.4 15.5, 44 1 271 14.5,61.4 0.61
IL-18 pg/ml 15 08,124 2.8 0.8, 12.0 0.84
IL-6 pg/ml 2.3 1.3,10.7 7.2 1.3, 20.6 0.23
TNF-a pg/ml 10.3 7.2,13.8 10.4 7.5,12.6 0.91
Th1 cytokines
IFN-y pg/ml 17.6 7.4,57.5 21.1 12.3, 110.1 0.21
IL-12p40 pg/mi 24.3 7.4,56.3 21.7 7.4,79.5 0.79
IL-12p70 pg/ml 5.8 28,113 15.0 4.4,10.7 0.48
Th2 cytokines
IL-4 pg/mi 13.5 4.5,55.1 324 4.5,63.2 0.45
IL-5 pg/ml 1.3 13,15 1.4 1.3,3.3 0.19
IL-13 pg/ml 1.6 1.3,21.1 14.8 1.3, 40.6 0.24
Th17 cytokines
IL-17 pg/ml 7.8 1.6,17.2 7.4 2.6, 29.1 0.32
Regulatory T-cell cytokines
IL-10 pg/mi 8.1 1.5,25.3 18.8 1.3, 56.5 0.60
Other cytokines
IL-2 pg/ml 1.4 1,16.0 5.2 1,23.8 0.44
IL-3 pg/ml 1.3 13,24 3.6 1.3,35 0.37
IL-7 pg/mi 9.9 6.8,12.8 10.2 6.9, 14.2 0.62
IL-8 pg/ml 14.5 10.4, 19.4 10.2 6.9, 14.2 0.83
IL-9 pg/mi 1.2 1.2,6.3 3.5 1.2,11.6 0.32
IL-15 pg/ml 2.2 1.3,15.8 2.6 1.3,20.3 0.76
Chemokines
CCL2 pg/mi 422.8 352.6, 367.2 430.3 337.8,515.8 0.78
CCL3 pg/ml 9.3 4.0,14.8 8.8 2.9,14.9 0.80
CCL4 pg/ml 44.8 25.4, 60.0 421 28.0, 82.9 0.94
CCL7 pg/ml 13.1 5.8, 21.0 24.7 9.4, 76.1 0.010
CCL11 pg/ml 166.1 137.7,221.7 137.5 113.5, 164.8 0.052
CCL22 pg/ml 1864.8 1467.3, 2244.7 1210.8 1119.1, 1498.9 0.0011
CXCL1 pg/ml 571.6 474.4, 693.9 768.6 619.5, 988.3 0.0016
CX3CL1 pg/ml 74.7 46.4, 136.8 95.5 49.2,179.1 0.29
CXCL10 pg/ml 292.4 2245, 382.8 322.7 224.5,383.8 0.22

(Continued)
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Table 2. (Continued)

Measure

Other inflammation related markers

TGFa pg/ml
EGF pg/ml
FGF-2 pg/ml
FLT-3L pg/ml
G-CSF pg/ml
GM-CSF pg/ml
TNF-B pg/ml
VEGF pg/ml
sCD40L pg/ml

Case Control
Median? 25% and 75% Median? 25% and 75% P
3.1 2.0,4.7 5.3 3.7,13.3 0.0042
113.8 64.2, 153.4 124.5 72.2,172.3 0.51
46.1 34.2, 68.6 46.3 37.8,70.0 0.62
54 54,11.2 7.5 5.4,26.0 0.24
55.0 40.5, 82.4 49.7 30.9, 76.8 0.55
20.4 14.9, 33.8 22.4 17.7, 46.7 0.14
5.6 15,247 14.5 1.5,46.8 0.31
161.8 84.0,213.7 148.5 99.4, 260.7 0.48
52087.2 26736.7,61768.8 49626.2 23785.0, 78774.1 0.91

2 If not indicated, we present medians for non-normally distributed continuous or ordinal variables; means as indicated by M and SD are presented for
normally distributed variables. Abbreviations: Apo, apolipoprotein; CCL, chemokine (C-C motif) ligand; CXCL, Chemokine (C-X-C motif) ligand; EGF,
epidermal growth factor; FGF, fibroblast growth factor; FLT-3L, Fms-related tyrosine kinase 3 ligand; G-CSF, Granulocyte-colony stimulating factor;
GM-CSF, granulocyte-macrophage colony-stimulating factor; HDL-C, high density lipoprotein cholesterol; hs-CRP, high sensitivity C-reactive protein; IFN,
interferon; IL, interleukin; LDL-C, Low Density Lipoprotein cholesterol; sCD40L, soluble CD40 Ligand; TGF, transforming growth factor; TNF, tumor

necrosis factor.

doi:10.1371/journal.pone.0125112.t002

Table 3. Brain imaging parameters.

Parameter

Sequence

TR (ms)

TE (ms)

flip angle (degrees)
matrix size

field of view (cm)

voxel dimensions (mm®)

Software Library’s (FSL, version 4.1.2 http://www.fmrib.ox.ac.uk/fsl) [68] FDT 2.0 [69]. The
DTI images were motion and eddy current corrected. BET [70] was used to produce a mask to
include only voxels inside the brain in the diffusion tensor fitting. The diffusion tensors were
calculated with DTIFIT. This resulted in images of fractional anisotropy, mean diffusivity, and
radial diffusivity (calculated as the mean of the second and third eigenvalues). These images
were then processed using Tract-based spatial statistics [71]. The fractional anisotropy images
were nonlinearly registered to the FMRIB58 fractional anisotropy standard space, followed by
an affine transform to the MNI152 space. They were merged into an average WM tract tem-
plate (i.e. a ‘skeleton’) with voxel size of 1x1x1 mm and a threshold value of 0.2. The individual
fractional anisotropy images were projected onto this skeleton. The same registration vectors
were then applied to the mean diffusivity and radial diffusivity images.

Scanner

GE Siemens

T1 DTI T1 DTI

10 10,000 2530 9500

3 100 3.3-3.75 81

15 90 7 90

256x256 128x128 256x256 128x128

26 24 25.6 24
1.02x1.02x1 1.88x1.88x3 1x1x1 1.88x1.88x3

Abbreviations: DT, diffusion tensor imaging; TE, echo time; TR, repetition time.

doi:10.1371/journal.pone.0125112.t003
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Statistical analyses

We compared the levels of inflammatory and metabolic markers between cases and controls
with Mann-Whitney U-test; a nonparametric test was used because most of the markers had
skewed distributions. Comparisons in sociodemographic and clinical variables were done with
the Mann-Whitney U-test for continuous variables, and with Pearson’s % test, or Fisher’s
exact test for categorical variables. For calculating correlations between inflammatory, meta-
bolic and clinical variables, Spearman’s rank order correlation was used for correlations be-
tween two continuous variables and Kendall’s Tau for correlations between continuous and
binary variables. Paired samples t-test was used to compare serum marker levels at baseline
and at 2 months. For descriptive purposes, we present all p-values significant at the <.05 level.
For differences in inflammatory and metabolic markers between cases and controls, also Bon-
ferroni-corrected results are presented. Effect sizes for the between-group differences in serum
marker levels were calculated using Hedges’ g with 95% confidence intervals.

To further evaluate the specificity of the associations between serum marker levels and FEP,
we made general linear models with the following independent variables, selected on the basis
of an analysis of correlations and previous literature: case vs. control status, sex, body mass
index (BMI) and current smoking. The analyses were performed using the SAS 9.3 for Win-
dows Software.

The associations of FEP-related inflammatory markers with GM and WM volume were
analysed within the patient group with multiple regression analysis within the general linear
model framework, where the effects of age, sex and scanner were controlled for. Statistical tests
for the volumetric measures were corrected for multiple comparisons according to family-wise
error rate (FWE) in SPM8 at single-voxel or cluster level. Associations between GM decrease
and the blood measures were corrected for multiple comparisons in the whole brain volume
due to numerous loci of GM changes in recent meta-analyses [29,30]. For the WM volume, we
corrected findings for multiple comparisons in the whole brain volume and in the volume of
four regions of interest (ROIs) that were defined on the basis of a meta-analysis [31]. The ROIs
were modelled as spheres with 20 mm radius that were centered at the coordinates of the most
frequently reported fractional anisotropy changes and at the corresponding coordinates of the
contralateral hemisphere: x =-12/12, y = 34, z= 10 and x = -30/30, y = -32, z = -2. To restrict
the amount of DTI analyses, we focused, in addition to the whole-brain search, only on the
ROIs where significant associations with WM morphology were found in the volumetric analy-
ses. For the statistical analyses of DTI images, FSL was used and the diffusion values as well as
the variables entered into the design matrix, that is, the serum marker level with age, sex and
scanner controlled for, were demeaned and threshold-free cluster enhancement-based [72]
method with 5000 permutations was used to correct for multiple comparisons. The results of
DTI analyses were localized according to the Johns Hopkins University ICBM-DTI-81 WM la-
bels atlas [73] included in FSL.

Quality analysis of combining data from two scanners

A quality analysis was conducted to assess the reliability of combining data from two separate
scanners. For this purpose, we analysed all results separately for the scanners and calculated
ROI-specific voxel-wise coefficients of variation (CV), i.e. the ratio of the standard deviation to
the mean, as well as voxel-wise intra-class correlation coefficients (ICC) [74] between the scan-
ners, using data from seven healthy controls who had been scanned with both scanners. The
ICCs concerning the WM volume between scanners were high (left frontal: 0.90 + 0.07; right
frontal: 0.84 + 0.11; left temporal: 0.66 + 0.2; right temporal: 0.76 + 0.15), which justifies the
combination of the data sets from different scanners. The mean CV for WM volume within left
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frontal ROI was 9.5%, right frontal ROI was 8.4%, left temporal was 14.3% and right temporal
ROI was 10.9%.

The CV is a commonly used measure of DT reproducibility [75]. Therefore, mean CVs of
skeletonized fractional anisotropy, mean diffusivity and radial diffusivity maps within both
frontal ROIs were computed. The mean CV for fractional anisotropy within left and right fron-
tal ROIs, for radial diffusivity within left and right frontal ROIs and for mean diffusivity within
left and right frontal ROIs were: 8.0%, 7.6%, 7.6%, 7.1%, 15.2%, and 14.0%, respectively. It was
thus concluded that the DTI signals were variable within the ROIs between scanners and there-
fore we report the DTT analysis separately for the Siemens scanner (with a larger subsample;

n = 18) in addition to pooled data from both scanners.

Results
Characteristics of the participants

By February 2013, 37 cases and 19 controls had given a blood sample and were included (see
description in Table 1). Of them, T1 images for 36 and DTI images for 34 cases were available.
The cases and controls were similar in terms of potential confounding factors of age, sex, BMI,
self-reported physical activity, and AUDIT score but differed significantly in current smoking,
substance abuse as well as in several variables describing functioning and symptoms (Table 1).
Hospitalization during the acute phase was needed for 30/37 (81.1%) of the patients. The ma-
jority of patients had had antipsychotic medication at baseline assessment, with a median dura-
tion of 27 days (from 8 to 68 days). Three patients had had small dose antipsychotic
medication for 122, 293, and 717 days, with indications other than psychotic symptoms. The
treatment was naturalistic and included switches and combinations of medications. The used
antipsychotics were: risperidone (n = 10), quetiapine (n = 8), olanzapine (n = 13), aripiprazole
(n =2), chlorpromazine (n = 1), sertindole (n = 1), haloperidol (n = 1), ziprasidone (n = 1), per-
phenazine (n = 2) and chlorprotixene (n = 1). Sum score of positive psychotic symptoms dur-
ing the last week at baseline was median 7 (range 0 to 15), and of negative symptoms median 7
(range 0 to 13). Worst episode BPRS score of positive symptoms was median 11 (range 5 to
17).

Differences in inflammatory and metabolic markers

Serum level of CCL22 was statistically significantly higher in cases than controls and the levels
of TGFa, CXCL1, CCL7, IFN-02 and ApoA-I were lower in cases (Table 2). The significantly
increased CCL22 levels in cases were also seen after Bonferroni correction for multiple testing
for inflammatory markers (38 tests, corrected o level 0.0013). Other differences in immunolog-
ical markers or metabolic markers (10 tests, corrected o level 0.005) did not remain significant
after Bonferroni correction. The effect sizes (Hegdes’ g) for group differences in markers with
approximately normal distribution were 0.92 (95% CI 0.35-1.50) for CCL22, -1.05 (95% CI
-1.63--0.46) for CXCL1 and -0.78 (95% CI -1.35- -0.21) for ApoA-I. While CCL22 levels did
not correlate significantly with the other markers, CXCL1 correlated significantly with TGFo
(Spearman’s rho = .43, p <. 001) and ApoA-I (rho = .27, p = .047), CCL7 with IFN-a2

(rho =0.73, p <. 001) and TGFa (rho = 0.49, p <. 001) and IFN-02 with TGFa (rho = 0.34, p =
.01). In addition, CCL22 was higher in men, CXCL1 was lower in current smokers, and TGFo.
correlated positively with BMI (S3 Table).

In patients, TGFo correlated with BMI (rho = .35, p = .037), and CCL22 with waist circum-
ference (rho = .37, p =.04) and BMI (rtho = .34, p = .045). No statistically significant correlation
with inflammatory markers was seen for any symptom scores (S4 Table). Duration of antipsy-
chotic treatment did not correlate with any of the inflammatory or metabolic measures.
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In general linear models including case vs. control status, age, sex, smoking and BMI as ex-
planatory variables, case vs. control status remained a significant predictor for CCL22, CXCL1
and ApoA-I. We could not do similar analysis for IFN-a2, TGFa, and CCL7 because of their
skewed distribution and the presence of several marked outliers. Instead, we did logistic regres-
sion analyses using the same dependent variables and grouping the values of the cyto/chemo-
kines based on the median of the control group as above the median of the control group vs.
lower. In these analyses, case-control status did not remain a significant predictor. See S1 Re-
sults for a detailed description of the results.

Changes in inflammatory markers from baseline to 2 months follow-up

Among the inflammatory markers associated with FEP, the level of CCL22 was the only marker
that showed a significant change from baseline to 2 months follow-up. The level of CCL22 de-
creased during follow-up (paired samples t-test t = -2.2, df = 25 p = .04), although it was still
higher in cases at 2 months than in controls at baseline (mean cases at 2 months vs. controls at
baseline 1787.5, SD = 514.3 vs. 1346.9, SD = 398.4, t = 3.1, df = 43, p = .03). Patients had higher
BMI (mean 24.4, SD = 4.8); paired samples t-test t = 3.1, df = 25 p = .005) and waist circumfer-
ence (90.0 cm, SD = 2.3; paired samples t-test t = -4.3, df = 28 p <. 001) at 2 months follow-up
than at the baseline. No other statistically significant changes were detected in metabolic
measures.

The association of psychosis-related inflammatory and metabolic
markers with brain measures in patients

We then investigated whether the serum levels of markers CCL22, CXCL1, and ApoA-I corre-
lated with brain volume and diffusion measures in FEP patients. The results of these analyses
are presented in Table 4. In the ROI analyses of volumetric measures, CCL22 was negatively
correlated with WM volume in the left and right frontal lobes (Fig 1A). Decreased serum levels
of ApoA-I in patients associated with smaller volume of the medial temporal WM (Fig 2). No
statistically significant associations were found between any of these measures and

GM volume.

In the whole-brain DTT analysis, CCL22 level was associated with mean diffusivity and radi-
al diffusivity in frontal, parietal, temporal, and occipital lobes. In the ROI analysis of DTI data,
CCL22 level correlated positively with mean diffusivity and radial diffusivity bilaterally in the
frontal lobes (Fig 1B and 1C). The association of CCL22 and mean diffusivity in the whole-
brain analysis, as well as the associations in the ROI analyses, appeared to be robust because
they were not affected by the scanner used; the associations were found both in the whole pa-
tient group scanned with two different scanners and also in the subgroup of patients (n = 18)
scanned with the newer Siemens scanner (S5 Table; see also S2 Results).

In the whole-brain analysis, CXCL1 levels associated negatively with fractional anisotropy
and positively with mean diffusivity and radial diffusivity, contrary to our hypothesis. These re-
sults were reproduced within the subgroup scanned with the Siemens scanner (S5 Table).

Discussion

The most interesting findings in our study related to the role of chemokine CCL22 in FEP. Cir-
culating CCL22 level was higher in FEP patients than in controls. Furthermore, in FEP pa-
tients, a higher level of CCL22 associated with reduced frontal WM volume, as well as diffusion
measures previously linked to demyelination [66] and WM pathology [67]. The associations
with diffusion measures were mainly located in the genu of corpus callosum and bilateral
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Table 4. White matter volume and DTI measures within the patient group associating with inflammatory measures.

C

Marker  Measure® Peak MNI Extent® (mm®) p Tracts overlapping with significant clusters (the size of overlap in mm?3)®

Coordinates

X y z
CCL22 WMV (left) 20 27 -5 1168 0.044
WMV (right) 16 40 15 2298 0.008
MD (whole) -26 31 11 31221 0.009  Multiple tracts®
RD (whole) 24 32 16 15522 0.015  Multiple tracts®
-48 -39 12 4578 0.035
31 -62 36 19 0.049
MD (left) 26 31 11 2069 0.003 Genu of CC (656.00), body of CC (12.00), left anterior CR (760.00)
RD (left) 24 26 11 1874 0.003 Genu of CC (557.00), body of CC (5.00), left anterior CR (756.00)
MD (right) -5 30 6 1145 0.015  Genu of CC (604.44), anterior limb of right IC (2.13), right anterior CR (409.17)
27 29 17 157 0.042
RD (right) -5 30 6 638 0.022  Genu of CC (581.78), right anterior CR (379.59)
27 33 10 404 0.021
CXCL1  FA (whole) 20 21 42 5053 0.027  Multiple tracts®
MD (whole) 12 20 21 12287 0.029  Multiple tracts®
-6 -15 34 9488 0.018
RD (whole) 20 -17 37 22729 0.008  Multiple tracts®
3 -8 11 413 0.041
43 24 -2 407 0.041
21 13 -16 211 0.048
23 18 12 132 0.048
ApoA-l WMV (right) 18 42 7 884 0.037

3In the Measure column, left and right refer to the side of the region of interest. Analyses indicated as “whole” are corrected for family-wise error rate for
the whole WM tract skeleton volume.

®In the case of white matter volume (WMV), extent refers to contiguous voxels with p < 0.005, uncorrected, while with the DTl measures, extent refers to
clusters defined as in [72].

°The results are corrected for family-wise error rate for the whole brain for CCL22 and CXCL1, and for a sphere with a radius of 20 mm for CCL22 (cluster
level with a primary threshold of p < 0.005) and ApoA-I (peak level). In the DTI analyses, the reported p-level is the minimum p-level within a cluster.
9The tracts and the sizes of overlap are based on the Johns Hopkins University ICBM-DTI-81 WM labels atlas [73] and are a combination of the clusters
concerning particular marker and measure. Notice that the sizes of the overlap do not equal the summed extent due to unspecified areas in the atlas.
®See S3 Results for full listings of these tracts.

Abbreviations: ApoA-|, apolipoprotein A-l; CC, corpus callosum; CCL, chemokine (C-C motif) ligand; CR, corona radiata; CXCL, Chemokine (C-X-C motif)
ligand; FA, fractional anisotropy; IC, internal capsule; MD, mean diffusivity; MNI, Montreal Neurological Institute; RD, radial diffusivity; WMV, white

matter volume.

doi:10.1371/journal.pone.0125112.t004

anterior corona radiata; however, in a whole-brain DTI analysis, CCL22 had more widespread
associations in addition to frontal areas.

CCL22, or macrophage-derived chemokine (MDC), acts as a chemo-attractant for chemo-
kine receptor 4 expressing monocytes, dendritic cells, NK cells, B-cells, and T-cell subsets, par-
ticularly Th2 cells and regulatory T-cells [76-78]. Previous studies have found that serum level
of CCL22 is elevated in chronic schizophrenia [79], predicts relapse in schizophrenia [80], and
differentiates schizophrenia from major depressive disorder [81]. In chronic bipolar patients,
decreased CCL22 mRNA expression in lymphocytes has been found in comparison to patients
with chronic schizophrenia [82]. CCL22 has also been associated with non-psychotic neuro-
psychiatric diseases, including temporal epilepsy [83], autism [84], several forms of
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<0.001

0.05

Fig 1. The associations of serum CCL22 levels with white matter volume (WMV) and diffusion measures within the patient group. (A) CCL22 level
correlated negatively with WMV within the frontal regions of interest (ROls) (see main text for ROI definitions) bilaterally. Voxels with p < 0.005 (uncorrected,
for visualization only; see corrected p-values in Table 4) within frontal ROls are shown in hot colors on an SPM’s canonical single subject T1 image. Color bar
for the t-values depicted in (A) is shown on the right. In (B—C), the FMRIB58 FA mean skeleton is shown in green on a T1 template image. (B) Mean diffusivity
and (C) radial diffusivity were positively correlated with CCL22 levels; clusters with p < 0.05 TFCE-corrected for family-wise error rate within unilateral ROls
are shown. On the right of (B) and (C), a color bar shows the corrected p-level for these images. Crosshair in all the images is atx =-12, y = 34, z=10. In the
images, left hemisphere is on the left.

doi:10.1371/journal.pone.0125112.9001

encephalitis [85,86], and multiple sclerosis [87]. In experimental autoimmune encephalomyeli-
tis (EAE), an animal model of multiple sclerosis caused by immunization of animals with
whole myelin or myelin products, CCL22 has a key role in disease progression. CCL22 contrib-
utes to immune-cell recruitment across the blood-brain barrier, and in the disease remission
the increased levels are normalized [86,88,89].

In contrast to CCL22, the levels of CXCL1 and CCL7, produced largely by the same cell
types as CCL22, were decreased in FEP. Some earlier reports support an association of CXCL1
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Fig 2. A positive correlation with serum levels of apolipoprotein A-l and white matter volume in right
temporal ROl was observed within patients. Voxels with p < 0.005 (uncorrected, for visualization only; see
corrected p-values in Table 4) within the ROI are shown in hot colors on an SPM’s canonical single subject
T1-image. Depicted are the sagittal, coronal, and axial views at x = 18, y = -42, z = 7. At the bottom right, a
color plate shows the t-value. Left hemisphere is on the left.

doi:10.1371/journal.pone.0125112.9002

and CCL7 with psychotic disorders, although in previous reports their serum level or gene ex-
pression has been elevated in patients with schizophrenia [79,80,90,91].

The enhanced production of CCL22 in the patients can be considered as a marker of the ac-
tivation of Th2 immunity. Th2 type cytokines, such as IL-4 and IL-13, up-regulate the produc-
tion of CCL22, whereas Th1 type cytokines, such as IFN-y, down-regulate it [92]. Production
of CCL22 is dependent on the phosphorylation of transcription factor STAT6 as shown in
STAT6 knock-out mouse model [93]. In contrast, the expression of several other chemokines,
such as CXCL1 and CCL7, was increased in STAT6 deficient mice, indicating that STAT6 acts
as a negative regulator of these chemokines [93]. Accordingly, decreased levels of CXCL1 and
CCL7 in FEP could be explained by the reciprocal effect of STAT6 on these two chemokines
versus CCL22. Altogether, the observed profile of systemic chemokines and cytokines in FEP,
such as increased CCL22 and decreased CXCL1, CCL7 and IFN-02, could reflect up-regulation
of IL-4 mediated STATS6 signaling [94]. Interestingly, STAT6 is among the immunological
genes that were significantly associated with schizophrenia in the largest genome-wide associa-
tion study of schizophrenia published to date [12]. Also some earlier studies in schizophrenia
[95,96] and in FEP [97] suggest activation of Th2 immunity. In FEP, Th2 immunity has been
reported to be attenuated after antipsychotic treatment [20]. Interestingly, we found that the
CCL22 levels decreased in the patients during the 2-month follow-up, although remained in-
creased compared to the controls.

We applied both volumetric and diffusion measures as indications of WM pathology. It has
been suggested that diffusion parameters are more sensitive to WM changes than volumetric
measures [98] but both provide information regarding the structural integrity of WM [99].
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Although conventional DTI parameters, such as fractional anisotropy and mean diffusivity, are
the most applied markers of WM structure and pathology in human neuroimaging [65], the
exact biological mechanism behind the neuropathology is not well known. These markers are
sensitive to myelination, axonal degeneration, local fiber count and orientation [100], as well as
changes in extracellular space which could be more indicative of neuroinflammation [44].
Studies that have modelled the extracellular volume and within-tissue fractional anisotropy
separately have suggested increase in extracellular volume (a sign of neuroinflammation) in
FEP [44]. However, our parameters do not enable the separation of these etiologies.

Peripheral inflammation has been associated with WM microstructural changes in some
earlier studies in healthy, middle-aged individuals [36-38] and with GM volume in mood dis-
orders [35]. Peripheral inflammation could contribute to changes in WM and/or GM by trig-
gering an inflammatory response in the microglia [101]. There is evidence of microglial
activation in schizophrenia, and it has been hypothesized that a prenatal infection may leave
subsets of microglia permanently in an activated state, and a subsequent immune challenge in
adulthood causes exaggerated response in the primed microglial cells [102,103]. CCL22 is po-
tentially an interesting biomarker for WM damage, since in the mouse EAE model it is linked
to progressive WM pathology [86,88,89]. Although EAE is used as an animal model for multi-
ple sclerosis, mice in the early stages of EAE show anxiety- and depression-like behavior, social
avoidance and memory impairment [104], features commonly seen in genetic mouse models
of schizophrenia [105]. However, while our findings are intriguing, more research is needed to
unravel the longitudinal process leading to WM damage in schizophrenia, and the role of dif-
ferent immunological mechanisms in it.

The only significant difference in metabolic markers was decreased concentration of
ApoA-I, the major structural protein of HDL-C, in FEP patients. A previous study found a con-
sistent decrease in ApoA-I levels in the serum, CSF and post-mortem brain and liver tissue in
schizophrenia; the decrease was not explained by confounding factors, such as the use of anti-
psychotics, and was thus suggested to be linked to the underlying disease mechanisms [106].
We observed an association of decreased serum ApoA-I and smaller volume of the medial tem-
poral WM in FEP patients. Previous studies in healthy adults have found no influence of
ApoA-I on WM microstructure [36,37], but an association between HDL-C and GM volume
[107]. However, in late-life depression, low ApoA-I is associated with mild cognitive im-
pairment and structural brain changes [52]. The role of ApoA-I may also be associated with in-
flammation because ApoA-I was shown to attenuate neuroinflammation in a mouse model of
Alzheimer’s disease [108].

Although CXCL1 was decreased in patients, higher CXCL1 in patients correlated with
changes in WM diffusion. Previously, CXCL1 has been associated with radiologically con-
firmed infarction after acute ischemic stroke [109] and MS [110].

The limitations of our study include a relatively small size of the sample, with heterogeneity
in medication and diagnosis, and multiple testing. In particular, it is possible that due to lack of
power we found no significant association between immune markers and GM, or differences in
some cytokines suggested as state or trait markers of psychosis [1]. However, the timing of the
sampling and the differences in the age of the patients may more likely explain these discrepant
findings. Patients with FEP in our study were relatively young and did not suffer from obesity
or metabolic comorbidities, which contribute to the peripheral inflammatory markers reported
in chronic patients with psychotic disorders [5,14].

A strength of our study was the population-based control group, namely controls matched
by age, sex and region of residence selected from the population registry. The selection of the
controls may affect the findings significantly. For example, in the study by Dimitrov et al. [79]
the same MILLIPLEX Kit as in our study was used and the serum levels of several cytokines
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and chemokines differ markedly between the control samples in our study and theirs, while the
differences in the patient groups are smaller. To avoid the storage-related changes or the effects
of circadian and postprandial variation in the chemokine and cytokine levels [111] we collected
fasting samples taken in the morning and stored immediately at -80°C. We also analyzed the
potential role of confounding factors in the differences found between FEP patients and con-
trols, most importantly physical activity, metabolic factors, duration of medication, and illegal
drug use. Furthermore, we present a careful analysis of the potential effect of the use of two
scanners, but, after careful quality check, the use of two scanners for brain imaging did not af-
fect the main results of serum markers associating with brain measures.

Conclusions

In our cohort, FEP patients showed an altered profile of systemic inflammatory markers pro-
duced by the innate immune system. The most striking finding was the elevated serum CCL22
level, which showed an association with WM volume and diffusion in WM tracts in FEP. To
our knowledge, this is the first study to report an association between peripheral inflammation
and WM volume and diffusion in WM tracts in FEP, while activation of the mononuclear
phagocyte system in psychosis [2] and alterations in WM regions in FEP and schizophrenia
have been demonstrated [30-32]. Our findings support the view that immunological factors
can contribute to white matter abnormalities in FEP [40].
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