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Simple Summary: The small ubiquitin-like modifier (SUMO) pathway regulates the hallmark prop-
erties of cancer cells. Moreover, alterations in activity and in levels of SUMO machinery components
have been observed in human cancer. Due to the reversible nature of this post-translational protein
modification, the balance between SUMOylation and the removal of SUMO is critical. Early-phase
clinical trials are currently evaluating the safety and efficacy of SUMO pathway inhibition in cancer
patients. In this comprehensive review, we critically discuss the potential of targeting the SUMO
pathway as a therapeutic option for cancer.

Abstract: SUMOylation is a dynamic and reversible post-translational modification, characterized
more than 20 years ago, that regulates protein function at multiple levels. Key oncoproteins and
tumor suppressors are SUMO substrates. In addition to alterations in SUMO pathway activity due to
conditions typically present in cancer, such as hypoxia, the SUMO machinery components are deregu-
lated at the genomic level in cancer. The delicate balance between SUMOylation and deSUMOylation
is regulated by SENP enzymes possessing SUMO-deconjugation activity. Dysregulation of SUMO
machinery components can disrupt the balance of SUMOylation, contributing to the tumorigenesis
and drug resistance of various cancers in a context-dependent manner. Many molecular mechanisms
relevant to the pathogenesis of specific cancers involve SUMO, highlighting the potential relevance
of SUMO machinery components as therapeutic targets. Recent advances in the development of
inhibitors targeting SUMOylation and deSUMOylation permit evaluation of the therapeutic potential
of targeting the SUMO pathway in cancer. Finally, the first drug inhibiting SUMO pathway, TAK-981,
is currently also being evaluated in clinical trials in cancer patients. Intriguingly, the inhibition of
SUMOylation may also have the potential to activate the anti-tumor immune response. Here, we
comprehensively and systematically review the recent developments in understanding the role of
SUMOylation in cancer and specifically focus on elaborating the scientific rationale of targeting the
SUMO pathway in different cancers.

Keywords: cancer; post-translational modification (PTM); small ubiquitin-like modifier (SUMO);
protein inhibitor of activated STAT (PIAS); sentrin-specific protease (SENP)
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1. Introduction

Cancer is consistently ranked among the leading causes of death worldwide [1].
Hallmarks of cancer cells include uncontrolled proliferation, inhibition of apoptosis and
differentiation, immune evasion, and the potential to metastasize [2]. Cellular homeostasis
and responses to various stimuli are regulated by a wide array of post-translational modifi-
cations (PTM), including phosphorylation, acetylation, hydroxylation, glycosylation, and
methylation as well as small protein modifications, such as ubiquitination [3,4]. Dysregula-
tion of PTMs is frequent in cancer and plays a significant role in the pathogenesis of the
disease [5,6]. Ubiquitination and its analogous modifications neddylation and SUMOyla-
tion are increasingly viewed as key regulators of tumorigenesis of various cancers [7–9]. In
this review, we discuss SUMOylation’s contribution to the malignant phenotype and the
pathway’s role as a potential therapeutic target in cancers originating from different cell
types and organs.

2. Basic Principles of SUMOylation and Its Role in Physiology

Small ubiquitin-like modifiers (SUMOs) are a group of ubiquitin-like small proteins
that are attached to substrate proteins in a reversible post-translational modification termed
SUMOylation that is highly conserved in eukaryotes [9,10]. The SUMO pathway is involved
in several central cellular processes. Modification by SUMO mediates the protein–protein
interactions of target substrates, and influences their subcellular localization, stability, and
enzymatic function [9,11]. SUMOylation can simultaneously target several members of
a protein group to modulate the activity of a specific pathway [12]. The SUMO pathway
shares some structural and functional similarities with the ubiquitin pathway [11]. The
global molecular structure of SUMO is similar to ubiquitin, and both have a ββαββαβ

fold structure and a conserved position of a diglycine (GG) motif required for isopeptide
bond formation [13,14].

To date, five isoforms of SUMO (SUMO1, 2, 3, 4, and 5) have been identified in the
human genome [9]. SUMO1, SUMO2, and SUMO3 are ubiquitously expressed in tissues,
while the expression of SUMO4 and SUMO5 is restricted only to specific tissues [9,15–18].
SUMO1, SUMO2, and SUMO3 account for most of SUMO modifications, whereas the
functional roles of SUMO4 and SUMO5 are more unclear [15,18]. SUMO2 and SUMO3
both share 97% sequence identity, but share only 50% sequence similarity with SUMO1 [19].
Expression levels of SUMOs are dynamic and fluctuate between different developmental
stages [17]. SUMOs can be covalently attached to a single lysine residue (monoSUMOyla-
tion) or to multiple lysine residues (multiSUMOylation) of the substrate (Figure 1). SUMO
is preferentially attached to SUMO consensus ΨKxE motifs of substrates, in which Ψ de-
notes a hydrophobic amino acid, K is lysine, x is any amino acid and E is glutamic acid,
although some substrates are also SUMOylated at lysines in non-consensus sites [10,20,21].
SUMO itself may also be SUMOylated (polySUMOylation) to form polymeric SUMO
chains, which are restricted to SUMO2 and SUMO3 [22]. SUMO1 does not form chains effi-
ciently and is predominantly associated with monoSUMOylation [22]. However, SUMO1
can be attached to SUMO2/3 chains, resulting in the termination of chain elongation [23].
Non-covalent attachment of SUMO is regulated through the SUMO interaction motif (SIM)
of binding partners [24,25].

The enzymatic cascade regulating SUMOylation comprises SUMO E1-activating,
E2-conjugating, E3 ligase and deconjugating enzymes (Figure 1) [9]. Maturation and de-
conjugation (deSUMOylation) of SUMO is regulated by the family of cysteine proteases,
sentrin-specific proteases (SENP1, 2, 3, 5, 6, 7, and 8) [26]. SENP1–7 have specific, vary-
ing subcellular localizations and regulate SUMO processing, whereas SENP8 displays
substrate specificity only for ubiquitin-like protein NEDD8 [26–28]. SUMO E1-activating
enzyme (SAE1/2) activates mature SUMO and transfers it to the only known mammalian
E2-conjugating enzyme, Ubc9 (encoded by UBE2I) [29–31]. Ubc9 alone is capable of conju-
gating SUMO to substrates in vitro. However, E3 ligase enzymes are required for specificity
and efficiency of SUMOylation. The family of protein inhibitors of activated STAT (PIAS)
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is the major class of SUMO E3 ligases, and the human genome has four PIAS genes (PIAS1,
2, 3, and 4) that encode seven protein products, PIAS1, PIAS2a (PIASxα), PIAS2b (PIASxβ),
PIAS3, PIAS3L, PIAS4 (PIASy), and PIASyE6− [32,33]. Other classes of SUMO E3 ligases
include the well-characterized Ran-binding protein 2 (RanBP2), and few other E3 ligases,
such as ZNF451, polycomb protein PC2 (also known as CBX4), and some members of the
tripartite motif (TRIM) protein family [34–38].
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deconjugate SUMO from the substrate. 
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Figure 1. The enzymatic SUMO cascade. (A) SENPs cleave off amino acids from precursor SUMO
to produce a mature SUMO. (B) SAE1/SAE2 forms of a thioester bond between SUMO’s GG and
catalytic cysteine residue of SAE1/2. (C) Thioester bond is formed between SUMO’s GG and catalytic
cysteine residue of Ubc9. (D) Ubc9 catalyzes formation of an isopeptide bond between GG and target
substrate’s lysine residue often with assistance of an E3 ligase. (E) SENPs deconjugate SUMO from
the substrate.

The SUMO pathway undergoes constant cross talk with other post-translational modi-
fications, including phosphorylation and methylation [39–41]. For instance, phosphoryla-
tion can influence SUMOylation of substrates containing the conserved phosphorylation-
dependent SUMOylation motif (PDSM), which mediates phosphorylation-dependent
SUMOylation of various transcriptional regulators [39]. In addition, lysine methylation
of the KKxE motif can create a motif resembling the SUMO consensus site in substrates
containing the KKxE motif [40]. HMGA2 SUMOylation is dependent on its methylation at
K66 and K67 of KKAE motif by methyltransferase SET7/9. The KKxE motif is present in
several other proteins, including the polyhomeotic complex 1 (PHC1), which also requires
methylation for its complete SUMOylation.

The importance of SUMOylation in physiology is apparent from early development.
A functional SUMO pathway is essential for embryogenesis. Loss of Ubc9 leads to severe
defects of chromosome condensation and segregation, as well as disruption of nuclear orga-
nization, resulting in death at early embryonic development in mice [42]. SUMO1 knockout
mice are viable, as SUMO2/3 can compensate for most functions of SUMO1 [17,43]. In-
terestingly, SUMO3−/− mice are also viable, but the knockout of SUMO2 leads to severe
developmental defects and early death before adulthood, indicating that SUMO2 is es-
sential for the development. Balance of SUMOylation and deSUMOylation is critical
for embryonic development, as knockout of SENP1, SENP2, or SENP3 results in em-
bryonic lethality in mice, suggesting non-redundancy and substrate specificity among
SENPs [44–46]. SENP1−/− mice have severe fetal anemia and SENP2−/− mice display
defects in trophoblast development, whereas conditional knockout Senp3+/− mice have
impaired cytokine and inflammatory signaling. PIAS1−/− and PIAS4−/− knockout mice
are produced at a lower frequency than the expected Mendelian ratio due to increased peri-
natal lethality, and both knockouts display defects in cytokine signaling [47,48]. Surviving
PIAS1−/− mice are runts compared to their wild-type counterparts, whereas PIAS4−/−
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mice show no obvious phenotype. PIAS2−/− knockout mice have reduced testis weight
and sperm count but remain viable and fertile [49]. PIAS3−/− mice are viable and show no
overt phenotype but have an impaired visual response of medium wavelength cones [50].

3. Altered Expression and Prognostic Significance of SUMO Pathway in Cancer

Dysregulated mRNA and protein levels of the SUMO machinery components have
been reported in tissue samples of cancer patients with potential prognostic associations
(Table S1 and Table 1). In the majority of the published reports, the expression levels of
SUMO pathway components are upregulated in cancer and are associated with a higher
histological grade, higher stage, presence of metastases and poor prognosis. Interestingly,
genome-wide analyses have identified concurrently increased levels of multiple SUMO
machinery components in certain cancer types [51]. However, high expression has been
associated with better prognosis in some cancer types. Downregulated expression levels
in cancer tissues have consistently been reported for SENP2 [52–57] and PIAS2 [58–60].
The prognostic value of a single SUMO machinery component can also vary between
cancer (sub)types, and, e.g., the value for PC2 [61,62] and PIAS4 [63,64] as prognostic
biomarkers in breast cancer and for PIAS3 [65,66] in mesothelioma remains ambiguous
(Table 1). Bioinformatic analyses of the SUMO machinery protein and mRNA levels, and
their association with prognosis, utilizing datasets from various databases are generally
well in line with the other published analyses of often smaller sample sizes [67–69] (and
Supplementary Table S1). Mass spectrometry-based methods might decrease variability
in protein level analyses caused by the use of different antibodies, whereas IHC allows
analysis of the subcellular localization of a protein, which might be crucial for the prognostic
significance of the SUMO machinery components in particular [63,70,71].

Regulation of SUMO Machinery Expression and Activity in Cancer

Dysregulation of SUMO pathway components in cancer tissues is often detectable
already at the mRNA level (Supplementary Table S1). The expression of SUMO machinery
components can be epigenetically altered by DNA methylation. For instance, promoter
hypomethylation of SENP6 induces expression of SENP6 in hepatocellular carcinoma
(HCC) tissues, and elevated SENP6 mRNA and protein levels are associated with promo-
tion of HCC tumorigenesis [72,73]. At the post-transcriptional level, numerous miRNAs
are implicated in SUMO regulation, and inverse expression levels of SUMO components
and their miRNA-regulators are found in several cancers [74–78]. For example, a low
expression of miR-145 is correlated with high expression of SENP1 in prostate cancer
cells, and introduction of miR-145 causes cell cycle arrest via inhibition of SENP1 [76].
Oncogenic miRNA-9 and miRNA-181a inhibit PIAS3 in IL-6high breast cancer to promote
expansion of early-stage myeloid-derived suppressor cells, resulting in suppression of
T-cell immunity [79].

Dysregulation of the expression of SUMO machinery components in protein level
can also occur in cancer. Post-translational regulation by, e.g., ubiquitin and subsequent
proteasomal degradation may be involved, resulting in alterations in expression levels
in cancer [80,81]. Moreover, reactive oxygen species (ROS) typically present in cancer
influence protein expression levels of SENPs [82,83]. For instance, the ROS-induced increase
in SENP3 level can drive carcinogenesis of head and neck cancer via deSUMOylation and
subsequent hyperphosphorylation of STAT3 [83].

In addition to changes in expression levels, catalytic activity of select SUMO pathway
components can directly be regulated by conditions typical in cancer, such as hypoxia [84,85].
Hypoxia induces a rapid and reversible inhibition of catalytic activity of SENP1 and SENP3,
resulting in altered SUMOylation of a subset of proteins, such as the co-repressor BHLHE40
that is implicated in metabolic reprogramming upon hypoxia.
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Table 1. Prognostic value of SUMO pathway components. More comprehensive list of studies with prognostic and
expression data and all references are in Supplementary Table S1.

High Expression Associates with
Poor Prognosis

High Expression Associates with
Good Prognosis

Cancer Type Protein(s) Cancer Type Protein(s)

adrenocortical
PIAS3, PIAS4, SAE1, SAE2,

SENP1, SENP3, SUMO1,
SUMO2, SUMO4

bladder Ubc9

breast

PC2, PIAS3, PIAS4, SAE1,
SAE2, SENP5, SENP7L,

SUMO1, SUMO2, SUMO3,
Ubc9

breast PC2, PIAS1, PIAS4

colorectal SAE2, SENP1, SUMO1 cervical PIAS3

gastric PC2, PIAS2, SAE2, SUMO3,
Ubc9 colorectal PC2

glioma SAE1, Ubc9 gastric PIAS1, PIAS4

hepatocellular
PC2, PIAS2, PIAS3, PIAS4,

SAE1, SAE2, SENP1, SENP3,
SENP5, SENP6, SUMO2, Ubc9

glioma PIAS3

leukemia SAE1, SUMO3 leukemia PIAS2, SENP5, SENP7

lung PC2, SAE1, SAE2, SENP1,
SUMO2/3, SUMO4, Ubc9 lung PIAS3

melanoma (cutaneous) SAE1 melanoma (cutaneous) PIAS1, SENP5, SENP7

melanoma (uveal) SAE1, SAE2, SUMO3 melanoma (uveal) SENP2, Ubc9

mesothelioma PIAS3, PIAS4, SAE1, SAE2,
SENP1 mesothelioma PC2, PIAS3, SENP2

multiple myeloma Ubc9 ovarian PIAS2

osteosarcoma PC2, SENP3 pancreatic SENP3

ovarian SENP3, SENP5 pheochromocytoma and
paraganglioma Ubc9

pancreatic SENP2, (SUMO1 and
SUMO2/3 together), Ubc9 renal PIAS1, PIAS2

prostate PIAS1, SAE1, SENP1, SENP5,
SUMO1, SUMO2 testicular germ cell PIAS2

renal
PC2, PIAS3, RSUME, SAE1,

SENP1, SENP3, SENP5,
SUMO1, SUMO2, Ubc9

thymoma PIAS4, SAE1, SAE2, SENP1,
Ubc9

sarcoma PC2, PIAS2, PIAS3, SENP6,
SENP7

thyroid PIAS2, SAE1

uterine corpus endometrial PC2, SAE2, SENP2, SENP5,
SUMO4

4. Genetic Changes Targeting SUMO Machinery in Cancer
4.1. Germline Variants

In breast cancer patients, genetic variation of UBE2I can influence the characteristics of
tumors [86,87]. Single nucleotide polymorphisms (SNPs) rs7187167, rs11248866, rs8052688,
and rs8063 are associated with low-grade (grade 1) tumors, with the strongest tumor grade
association displayed by rs7187167 found to be an independent predictor of tumor grade.
Moreover, SNP variant rs17354559 of PIAS3 may be of functional relevance in breast cancer,
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although the variant was not evaluated experimentally [87]. Furthermore, the genetic
variability of SENP1 and SENP2 may play a role in the occurrence of breast cancer [88]. The
rs12297820 variant of SENP1 is associated with metastatic status in breast cancer. Women
carrying allele C and genotype C/C in the rs12297820 polymorphic site have an increased
risk of metastases, while allele T is associated with reduced risk of metastases. Genetic
variability of SENP2 may influence the risk and subtype of breast cancer, as allele C and
genotype C/C in rs6762208 site correlates with reduced risk, and the A/A genotype is
associated with the lack of an estrogen receptor.

Studies performed in a Chinese population indicate that genetic variation of PC2 may
influence the occurrence of gastric cancer [89]. Polymorphism rs77447679 is significantly
associated with the risk of gastric cancer, as patients carrying the C/A genotype have
approximately a 1.7 times higher risk of gastric cancer when compared to the baseline CC
genotype, but its mode of action as a potential promoter of tumorigenesis in the context of
gastric cancer is still unclear.

Microphthalmia-associated transcription factor (MITF) is a target for a germline mis-
sense substitution Mi-E318K at the SUMO consensus motif of MITF (IKQE -> IKQK)
required for covalent SUMO binding, leading to the impairment of MITF SUMOyla-
tion [90,91]. The prevalence of Mi-E318K mutation is approximately five times higher
in patients affected by melanoma, renal cell carcinoma (RCC), or both cancers compared
with healthy controls. Overall, the data indicates that mutation of MITF generates a genetic
predisposition for the development of melanoma and RCC. MITF plays a critical role in
melanocyte development and melanoma carcinogenesis by controlling the expression of
several melanoma-associated genes that regulate proliferation and invasion, including
MET5 and CDKN2A/p16INK4A5 [92]. MITF also enhances the transcriptional activity of
HIF1α, which is a critical target for kidney cancer susceptibility genes [93,94]. The SUMOy-
lation of MITF represses its transcriptional activity, and accordingly the SUMO-deficient
Mi-E318K displays significantly increased overall transcriptional activity when compared
to its wild-type counterpart [91]. Interestingly, Mi-E318K and wild-type MITF show similar
transcriptional activity on promoters of MET and CDKN2A, while the activity of HIF1α
is promoted more efficiently by Mi-E318K. A specific Mi-E318K signature comprising
32 genes mostly associated with cell growth, proliferation, and inflammation has been
identified in RCC cells, implicating that Mi-E318K can alter the transcription of its target
genes. Mi-E318K also enhances the invasion, migration, and colony-forming potential of
melanoma and RCC cells but does not significantly increase their proliferation rate.

4.2. Somatic Mutations

Mutations targeting SUMO machinery have been identified that may contribute to
development of cancer. Amplification of distal regions of chromosome 3q is a common
event in lung cancer [95]. A network of four genes, SENP2, DCUN1D1, DVL3, and UBXN7
was identified as a candidate driver of the 3q26-29 amplicon that occurs in 70–85% of
squamous cell carcinomas (SCCs) of the lung [96,97]. In addition to lung cancer, amplifica-
tions of 3q26 are also frequent in other epithelial cancers, including head and neck cancer,
cervical cancer, and ovarian cancer, which may indicate for SENP2 amplification [97]. As
another example, the SENP5-encompassing 3q27.2-q29 region is amplified in 11% of pe-
nile squamous cell carcinoma patients, which may indicate enhanced SENP5 activity [98].
Furthermore, the amplification of PIAS1 and/or focal adhesion kinase (FAK) occurs in 8%
of non-small-cell lung cancer (NSCLC) cell lines and in a small subset of patient-derived
primary NSCLCs and potentially drives lung carcinogenesis [99]. Only a few cases of
somatic mutations targeting SUMO pathway components resulting in the expression of
altered protein have been characterized. The t(12;15)(q13;q25) chromosomal translocation
was found to fuse SENP1 and the mesoderm development candidate 2 (MESDC2) in a
patient with infantile sacrococcygeal teratoma [100]. The reciprocal fusion genes encode
aberrant proteins that display deSUMOylation capacities similar compared with wild-type
SENP1. Another example is the fusion between SENP6 (also known as SUSP1) and T-cell
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lymphoma breakpoint associated target 1 (TCBA1) that creates a SENP6–TCBA1 chimeric
gene found in a T-cell lymphoblastic lymphoma cell line [101].

Somatic lysine mutations targeting the SUMO acceptor sites of substrate proteins
may also lead to the dysregulation of SUMOylation and alter protein function in cancer.
Interestingly, lysine mutations have been identified in cancer patients with potential func-
tional relevance, but the extent of lysine mutations leading to aberrant SUMOylation is
unknown [102,103].

5. SUMOylation Regulates Key Cancer Genes and Hallmark Properties of Cancer Cells
5.1. Substrates of SUMO Relevant for Cancer

Oncogenic signaling of growth promoting MYC in cancer cells is dependent on a
functional SUMO machinery, indicating that dynamic SUMOylation and deSUMOylation
are essential for the regulation of MYC [104]. However, the regulation is context-dependent,
and SUMOylation is reported to both upregulate and suppress MYC activity, depending
on the specific cell type [105–107]. SUMOylation has been suggested to be essential for
KRAS/RAF-driven tumorigenesis [108] and is involved in the regulation of major growth-
promoting intracellular signaling pathways and their downstream targets. SUMOylation
enhances growth-promoting activities of oncogenic AKT, and a mutant form of AKT ex-
pressed in several cancers displays elevated levels of SUMOylation [109]. PIAS4-mediated
SUMOylation of AMP-activated protein kinase (AMPK) in turn attenuates the inhibitory
effect of AMPK towards growth-promoting mTORC1 signaling [110]. SUMOylation of
hypoxia inducible factors 1 (HIF1) and 2 (HIF2) is essential for the regulation of several
key processes during hypoxia, including angiogenesis, glucose metabolism and erythro-
poiesis [44,82,85,111,112]. SUMO machinery also mediates NF-κB signaling upon genotoxic
stress through the regulation of the NF-κB essential modifier (NEMO) [113]. Furthermore,
SUMOylation regulates activation of Wnt/β-catenin signaling via SUMO modification of
transducin β-like protein TBL1-TBLR1 complex [114].

SUMOylation modulates several tumor suppressors, such as Rb, as well as p53 and its
negative regulator MDM2, regulating cell cycle progression and stress responses [115–120].
SUMOylation positively regulates the activity of tumor suppressor PTEN, which is a nega-
tive regulator of the oncogenic phosphatidylinositol-3 kinase (PI3K)-AKT pathway and
is involved in DNA damage response (DDR) [121]. SUMO machinery influences mem-
brane association and subcellular localization of PTEN, controlling its tumor-suppressive
functions in both cytoplasm and nucleus, suppressing tumor growth and, in contrast to
other reports, suggesting that SUMOylation is a positive regulator of the PI3K-AKT-mTOR
pathway [122–124].

5.2. SUMOylation in Cellular Processes Relevant for Cancer

The SUMO pathway regulates various essential cellular processes involved in tumorige-
nesis, including cell cycle progression, stress responses such as DDR, and response to hypoxia,
angiogenesis, invasion, stem-like cell properties, and immune responses [44,125–130]. For
example, PIAS1 and PIAS4 are promoters of double-strand break repair, and SENPs are
critical for mediating chromosome structure and homologous recombination as well as
nonhomologous end joining [125,131–133]. Moreover, SUMOylation influences DNA repli-
cation by targeting translesion polymerase eta (polη) to replication forks [134].

SUMO may be involved in the epigenetic regulation of gene expression in cancer.
SUMOylation of histones is involved in regulation of chromatin dynamics [135]. SUMOyla-
tion may also influence the activity of methyltransferases, such as DNMT1, MLL1/MML2
complex and G9a [136–138]. PIAS1 has been shown to control epigenetic silencing of spe-
cific gene sets in certain contexts [139,140]. During T-cell differentiation PIAS1 maintains
a repressive chromatin state of the FOXP3 promoter by recruitment of DNA methyl-
transferases and heterochromatin protein 1, which restricts the differentiation of natural
regulatory T-cells (Tregs) [139].
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The SUMO pathway regulates angiogenesis in response to hypoxia through modula-
tion of vascular endothelial growth factor (VEGF) expression levels [44,141,142]. Further-
more, SUMOylation is involved in cellular migration and epithelial mesenchymal transition
(EMT) via multiple mechanisms [143–148]. The SUMO pathway is also implicated in regu-
lation of stem-like cell properties of cancer cells e.g., via PIAS3 and STAT3 [129,149].

SUMO machinery is a critical regulator of innate immune responses via the mod-
ulation of type I interferon (IFN) and NF-κB signaling [130,150]. The SUMO pathway
regulates the production and activity of IFNs by inhibiting or stimulating the transcrip-
tion of IFN regulatory transcription factors (IRFs), such as IRF3 and IRF7 [151–154]. The
SUMOylation of IRFs represses the transactivating capacity of IRFs, resulting in diminished
transcription of type I IFN genes and attenuation of immune response activation [152,155].
SUMO also impacts IFN production via the modulation of GMP–AMP synthase (cGAS)
and the stimulator of interferon genes (STING) [156,157]. SUMO also influences the
activity of NF-κB signaling regulators, NEMO and IκBα, affecting immune response
activation [158–162]. SENP3-mediated deSUMOylation regulates antitumor immune re-
sponse functions of Tregs, macrophages, and dendritic cells [163–165]. The loss of SENP3
deSUMOylase activity in Tregs results in dysregulation T-cell homeostasis and SENP3
deficiency in macrophages facilitates macrophage polarization towards the pro-tumor M2
subtype. Overall, SUMOylation is considered to have a net inhibitory effect on immune
response activation [150,166,167]. Depletion of Ubc9 or SAE1/2 induces a strong inflam-
matory response and enhances protection of viral infections in hematological xenograft
mouse models.

6. SUMOylation in Hematologic Malignancies and Solid Tumors

The SUMO pathway contributes to the tumorigenesis of various cancer types in a
context-dependent manner. Here, we discuss the best-characterized examples of the role of
the SUMO pathway in the tumorigenesis of hematological malignancies and solid tumors.

6.1. Acute Promyelocytic Leukemia

Acute promyelocytic leukemia (APL) was one of the first clinical links between SUMO
modification and cellular transformation (Figure 2A). APL is a subtype of acute myeloid
leukemia (AML) characterized by the reciprocal chromosome translocation t(15;17) that
creates the oncogenic fusion protein promyelocytic leukemia (PML)-retinoic acid receptor
α (RARα) [168–171]. The expression of PML-RARα disrupts the integrity of PML nuclear
bodies, which are known hotspots for SUMOylation [172–174]. RARα is a hormone-
regulated nuclear receptor that regulates transcription of differentiation-associated genes by
recruiting corepressors, such as SMRT and N-CoR, to repress cellular differentiation [171].
RARα-induced gene repression is counteracted upon the binding of its natural ligands,
such as all-trans-retinoic acid (ATRA) that alleviate RARα-maintained differentiation
repression [171,175]. The oncogenic fusion protein PML-RARα binds corepressors with
a higher affinity than its wild-type counterpart and physiological levels of ATRA in APL
patients are insufficient to release PML-RARα-maintained repression of differentiation
genes, resulting in a myeloid differentiation blockade [176]. The APL differentiation
block was initially attributed only to the formation of PML-RARα homodimers, and the
subsequent enhancement of corepressor binding and repression of target genes [177].
However, later studies revealed that the SUMOylation of PML-RARα plays a major role in
the pathogenesis of APL. The SUMOylation of PML at the SUMO site K160 is essential for
APL initiation and maintenance, and the inactivation of K160 impairs the differentiation
blockade and immortalization of APL cells [178] (Figure 2A). Mouse primary hematopoietic
progenitor cells transduced with SUMO-deficient (K160R) PML-RARα grow only for a
limited period, and its expression in mice induces myeloid hyperplasia that does not
progress to APL, indicating that APL cell immortalization and differentiation block is
SUMO-dependent.
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Differentiation therapy with ATRA in combination with arsenic trioxide (ATO) has
emerged as an effective therapeutic strategy for treatment of APL [171]. ATRA and ATO
synergize to induce differentiation and death of APL cells, in which ATRA alleviates the
repressive chromatin environment and induces degradation of the PML-RARα [179–181].
ATO enhances the binding of Ubc9 to both PML-RARα and wild-type PML, triggering their
SUMOylation and recruitment of ubiquitin E3 ligase ring finger protein 4 (RNF4) [182].
Mechanistically, ATO triggers SENP1-dependent exchange of SUMO1 to SUMO2 at Lys65
of PML, enhancing the formation of PML nuclear bodies and the conjugation of SUMO2 to
Lys160, which results in RNF4-mediated polyubiquination and proteasomal degradation
of PML-RARα in nuclear bodies [182,183]. Overall, the data indicate that SUMOylation
plays major roles in both APL development and its remedy.

6.2. Acute Myeloid Leukemias Other Than APL

While ATRA and ATO-based differentiation therapies are an effective treatment strat-
egy for APL, they have failed to show significant efficacy in clinical trials of non-APL
AML patients [184]. This has been attributed to differences in epigenetic and transcrip-
tional profiles of AML subtypes. SUMOylation has been shown to repress the expression
of various ATRA-responsive genes, indicating that the SUMO pathway restricts ATRA’s
ability to induce expression of genes associated with myeloid differentiation in non-APL
AMLs [185]. Combining ATRA treatment with pharmacological inhibitors of SUMOylation,
2-D08 (inhibitor of Ubc9), or anacardic acid (inhibitor of SAE1/2), results in enhanced
expression of various ATRA-responsive genes associated with myeloid differentiation,
including RARA, CEBPA, and TNSFS10 [185]. A similar increase in expression of ATRA-
responsive pro-differentiation genes is observed when SENP2 or SENP5 is overexpressed
in AML cells [185]. ATRA synergizes with SUMOylation inhibitors to induce morpholog-
ical changes of myeloid differentiation, including nuclear lobulation and appearance of
cytosolic granules in several non-APL AML cell lines and primary AML cells. A combina-
tion of 2-D08 and ATRA inhibits the proliferation of AML cell lines, reduces proliferation
of primary AML cells, and restricts tumor growth in immunodeficient mice subcuta-
neously xenografted with U937 cells. Moreover, 2-D08 induces mitochondrial-mediated
apoptosis through an accumulation of ROS that is likely triggered by deSUMOylation of
NOX2 [186]. Taken together, the inhibition of SUMOylation in combination with ATRA or
other differentiation agents may be an attractive novel therapeutic strategy for treatment of
non-APL AMLs.

Additionally, the SUMO pathway is critically involved in the regulation of DDR of
AML cells via nucleophosmin (NPM) and human coilin-interacting nuclear ATPase protein
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(hCINAP) [187]. NPM is the most frequently mutated gene in non-APL AMLs [188,189].
Generation of double-strand breaks triggers the SUMOylation of NPM, which is required
for its interaction with BRCA1 and accumulation of BRCA1 foci to damage sites in the early
stage of DDR [187]. During the later stages of DDR, hCINAP is recruited to damage sites
where it binds with SENP3, which enhances SENP3-mediated deSUMOylation of NPM
and decreases the recruitment of repair proteins to prevent excessive repair [187,190]. The
lower expression of hCINAP is associated with better prognosis in AML patients [187].
Depletion of hCINAP in patient-derived xenograft AML mice results in higher sensitivity
to chemotherapy, elevated levels of DNA damage and cell death, and mitigation of AML
progression. Thus, hCINAP expression levels affect DDR via the regulation of NPM
SUMOylation, making hCINAP a potential therapeutic target in AML patients.

6.3. Lymphomas

The SUMO pathway influences development of both B- and T-cell lymphomas [106,191,192].
The aberrant activation of the SUMOylation pathway is a hallmark of MYC-driven B-cell
lymphomas [106,191]. MYC expression induces the transactivation of several SUMO ma-
chinery components, including Ubc9 and PIAS1 to promote global hyper-SUMOylation
in P493-6 B lymphoma cells and several Burkitt’s lymphoma cell lines [191]. Further-
more, PIAS1-induced SUMOylation stabilizes MYC, and PIAS1 is implicated in facilitating
transactivation-associated phosphorylation of MYC in B-cell lymphomas [106]. The si-
lencing of SAE1, SAE2 or PIAS1 and pharmacological inhibition of SUMOylation with
anacardic acid or 2-D08 reduces proliferation and induces apoptosis in various MYC-driven
B lymphoma cell lines, and the silencing of SAE2 or PIAS1 significantly impairs B-cell lym-
phomagenesis in mouse xenograft models [106,191]. Moreover, SUMOylation contributes
to pathogenesis of T-cell lymphomas expressing the oncogenic NPM-anaplastic lymphoma
kinase (NPM-ALK) fusion protein via SUMO-dependent post-translational stabilization
of NPM-ALK [192]. SUMO1–3 levels are upregulated in NPM-ALK+ T-cell lymphoma
cell lines and ALK+ T-cell lymphoma patient tumors, whereas SENP1 levels are signifi-
cantly downregulated. The introduction of SENP1 expression induces deSUMOylation of
NPM-ALK, and the subsequent ubiquitination and proteasomal degradation of NPM-ALK,
decreasing the viability, proliferation and anchorage-independent colony formation in
NPM-ALK+ T-cell lymphoma cell lines. Thus, the inhibition of SUMOylation should be
explored as a therapeutic option for treatment of MYC-dependent B-cell lymphomas and
NPM-ALK+ T-cell lymphomas.

6.4. Multiple Myeloma

Multiple myeloma (MM) is a hematological malignancy characterized by the clonal
expansion of plasma cells that produce monoclonal immunoglobulin (Ig) and Ig fragments,
termed M-protein or paraprotein, which are detectable in the serum or urine [193]. The
SUMO pathway is often dysregulated in MM patients, and high SUMOylation is associated
with adverse patient outcome [194]. The overexpression of Ubc9, SENP1, PIAS1, and
SUMO-inducer p14ARF are frequently observed in MM patient samples and MM cell
lines [194,195]. While p14ARF is not traditionally considered as a part of the classical
SUMO machinery, it interacts with Ubc9 to trigger the SUMOylation of many of its binding
partners, such as NPM and MDM2 [118,196,197]. The induction of Ubc9 expression in MM
is associated with increased proliferation and apoptotic resistance, and enhanced adhesion
of MM cells to bone marrow stroma cells (BMSCs) [194]. The adhesion of MM cells to
BMSCs induces interleukin-6 (IL-6) secretion and activation of the NF-κB pathway, which
further stimulates proliferation of MM cells [194,198–200]. MM cells transfected with a
functionally inactive dominant-negative form of Ubc9 display a decreased proliferation
rate, are more sensitive to radiation-induced apoptosis, and have a weaker proliferative
response in the presence of BMSCs when compared to wild-type Ubc9-expressing MM
cells [194]. Aberrant IL-6 signaling upregulates expression of SENP1 at least partly through
the induction of the JAK-STAT-signaling pathway, and the treatment of MM cells with
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JAK-STAT inhibitor AG490 diminishes IL-6-mediated upregulation of SENP1 [195]. The
knockdown of SENP1 with shRNA results in significantly increased SUMO2 levels and
blocks the IL-6-induced activation of NF-κB family member p65, implicating that SENP1
positively regulates NF-κB signaling via SUMO modification of NF-κB family members.
Furthermore, the knockdown of SENP1 reduces viability, proliferation, and colony-forming
potential, as well as induces apoptosis in MM cells.

The downregulation of SENP2 in MM patients is associated with drug resistance
against bortezomib, which is a widely used proteasome inhibitor for treatment of MM [56].
In MM patients, low SENP2 expression levels result in aberrant activation of NF-κB
signaling [56]. The NF-κB pathway is normally regulated by a negative feedback mecha-
nism, where NF-κB activates expression of SENP2, which in turn inhibits NF-κB signaling.
However, the silencing of SENP2 in MM through yet-unknown mechanisms results in
enhanced SUMOylation of IκBα, activation of NF-κB signaling and development of borte-
zomib resistance in MM patients. Identifying SUMO ligases that regulate IκBα is important,
as they may serve as novel therapeutic targets in bortezomib-resistant MM. Overall, the
dysregulation of SUMO pathway is widespread in MM, which encourages further studies
to characterize which SUMO components or their regulatory targets have most therapeutic
or prognostic value. Pharmacological inhibition of SUMOylation and SENP1 may have
therapeutic potential for treatment of MM.

6.5. Breast Cancer

The SUMO pathway has a multifunctional role in the regulation of growth and
the invasion and metastasis of breast cancer cells [201–203]. In hormone receptor (HR)-
positive breast cancer, the SUMO pathway is an essential regulator of estrogen receptor
α (ERα) (Figure 2B) [204]. PIAS1 and PIAS3 modulate transactivation of ERα through
its direct SUMOylation that occurs strictly in the presence of the hormone, and via the
SUMOylation of ERα cofactors (Figure 2B). However, PIAS1, PIAS3, and Ubc9 also regulate
ERα transactivation in a SUMO-independent manner. The induction of SUMO-deficient
ERα to COS-7 cells reduces the transactivation of ERα, indicating that SUMOylation of
ERα may promote its transactivation. However, excessive SUMOylation of ERα is linked
to repression of ERα transactivation. Tumor suppressor MEL-18 regulates ERα activity
by suppressing the SUMOylation of ERα transactivators p53 and Sp1 to promote ERα
and progesterone receptor (PR) activity, and MEL-18 may be a prognostic marker and
predictor of response to antihormonal therapy in breast cancer [205]. SUMOylation is
also important for mechanisms of action of antiestrogens in the treatment of HR-positive
breast cancer [206]. Interestingly, the upregulation of PIAS1 is associated with epigenetic
silencing of breast cancer-associated genes, including ESR1 (ERα) [140]. Thus, PIAS1 can
both upregulate and downregulate ERα activity in breast cancer. PIAS1 also promotes the
SUMOylation of transcriptional regulator SnoN that suppresses TGFβ-induced EMT in
ER-positive MCF7 cell-derived organoids [148]. In contrast, PIAS3 stimulates proliferation
of ER-positive breast cancer cells, and PIAS3 acts as a co-activator to regulate NR2E3-
mediated activation of ESR1 (ERα) expression [207,208]. PIAS3 is involved in the regulation
of receptor tyrosine kinase ErbB4 [209,210]. ErbB4 can be proteolytically cleaved to release
an intracellular domain (ICD) that acts as a transcriptional co-regulator implicated in
the regulation of differentiation and proliferation of mammary epithelial cells [211–213].
PIAS3 interacts with ErbB4 ICD to induce its SUMOylation, which promotes its nuclear
accumulation and may facilitate autokinase activity of ErbB4 [209,210]. Interestingly,
nuclear ErbB4 immunoreactivity is associated with a poor survival of ER-positive patients
when compared to cell surface expression [213]. Thus, inhibition of PIAS3 may be an
attractive therapeutic target in HR-positive breast cancer, but although the targeting of
PIAS1 in breast cancers overexpressing PIAS1 could potentially relieve PIAS1-mediated
epigenetic repression, the role of PIAS1 as a repressor of invasion must be considered.

In triple-negative breast cancer (TNBC), PIAS1 promotes the SUMOylation of SnoN
that suppresses TGFβ-induced EMT in TNBC MDA-MB-231 cell-derived organoids simi-
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larly to HR-positive breast cancer models [148,214]. Moreover, the induced expression of
PIAS1 suppresses TGFβ-induced activation of invasion promoter matrix metalloproteinase
2 (MMP2) in MDA-MB-231 cells, and PIAS1 knockdown in TGFβ-treated MDA-MB-231
cell organoids results in morphological changes associated with invasion [214]. However,
PIAS1 is essential for viability of MYC-dependent breast cancer cells, as the silencing of
PIAS1 reduces the proliferation of MYC-dependent MDA-MB-231 cells, but not MYC-
independent MCF7 cells [106]. MYC signaling is elevated in TNBC, and the interaction
of PIAS1 with MYC drives its SUMOylation-dependent stabilization and upregulation of
MYC target gene transcription [104,106]. PIAS3 inhibits proliferation and EMT in MDA-
MB-231 TNBC cells in contrast to pro-proliferation effects observed in ER-positive breast
cancer [203,208]. PIAS3 enhances the SUMOylation of E3 ubiquitin ligase Smurf2, facil-
itating the degradation of TGFβ receptors, and subsequently suppressing the invasive
growth of MDA-MB-231 cells [203]. The knockdown of PIAS3 induces invasion-associated
morphological changes in MDA-MB-231 organoids, indicating that Smurf2′s ability to
limit EMT is SUMO-dependent. Overall, the contradictory observations of PIAS3 effects
in TNBC and HR-positive breast cancer may suggest that different effects of PIAS3 on
breast cancer cells may involve ER, whereas therapeutic targeting of SUMOylation and
PIAS1 may be an effective strategy for the treatment of MYC-dependent breast cancers.
In addition, the overexpression of PML is associated with high invasive tumor grade in
TNBC patients, suggesting PML as a putative therapeutic target in TNBC [215].

SENP1 and SENP5 are implicated in regulation of invasiveness of TNBC [202,216].
SENP1 expression is upregulated in TNBC tissues compared to normal breast tissues and
non-TNBC tissues [216]. Silencing of SENP1 reduces proliferation, invasion and colony
formation of TNBC cell lines and reduces tumor size and lung metastases in a TNBC mouse
xenograft model. High expression of the SENP5 gene is associated with poor prognosis in
breast cancer patients [202]. The silencing of SENP5 has a profound inhibitory effect on
the invasiveness of TNBC MDA-MB-231 and MDA-MB-436 cells, which is not observed
in less invasive ER-positive MCF7 and T47D cells. The knockdown of SENP5 in TNBC
cells significantly reduces the level of MMP9 and decreases levels of total, phosphorylated,
and SUMOylated TGFβRI, which is a stimulator of invasion at later stages of breast cancer.
However, the exact mechanism of how SENP5 regulates TGFβRI, and invasion remain
to be elucidated. Pharmacological inhibition of SENP1 and SENP5 may have therapeutic
potential for treatment of TNBCs overexpressing SENP1 or SENP5.

Lastly, expression of long splice variant of SENP7 (SENP7L) is associated with the
promotion of EMT in both ER-positive breast cancer and TNBC and its expression is
upregulated in breast cancer tissues compared to normal breast epithelia tissues [201].
SENP7L-induced deSUMOylation of epigenetic remodeler heterochromatin protein 1α
(HP1α) promotes EMT by maintaining HP1α at a hypo-SUMOylated state, relieving its
repression of mesenchymal promoting genes.

6.6. Prostate Cancer

PIAS family members promote prostate cancer (PCa) tumorigenesis through the inhi-
bition of CDK p21 levels and modulation of androgen receptor (AR) signaling, which is the
most important known growth promoting pathway in PCa (Figure 2C) [217–219]. PIAS1,
PIAS2, PIAS3, and PIAS4 are co-regulators that selectively enhance or repress transcription of
AR target genes via both SUMO-dependent and -independent mechanisms [217,218,220–223].
For instance, PIAS1- and PIAS2-induced SUMOylation of AR represses its transcriptional
activity. However, PIAS1 can also enhance AR-mediated upregulation of growth-promoting
genes independent of its SUMO-ligase activity to drive proliferation PCa cells, and high
PIAS1 expression is associated with poor survival. In contrast, PIAS3 represses the tran-
scriptional activity of STAT5 that is a regulator of growth and viability of PCa cells, and is
constitutively active in PCa and associated with high histological grade [224,225]. PIAS3-
mediated SUMOylation of STAT5 is reported to inhibit its activation-associated phosphory-
lation in COS-1 cells, which may indicate that PIAS3 mode of action on STAT5 repression
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is partially SUMO-dependent [226]. Interestingly, a subset of PCa cells express an N-
terminally cleaved form of STAT5 that cannot be targeted by PIAS3 [227]. However, the
extend of SUMOylation-dependent effects in PIAS-mediated outputs on PCa is not clear.

SUMO machinery can both repress and activate AR signaling in a target gene-selective
manner [228–230]. SUMO1-modification inhibits AR transactivation capacity, whereas
SUMO2 and SUMO3 are reported to stimulate AR activity in PCa cells, although likely inde-
pendent of direct AR SUMOylation [228,229]. Overall, the SUMOylation of AR is shown to
repress transcription of various AR target genes, while SENP1-induced deSUMOylation is
linked to the promotion of AR transactivation capacity [230] (Figure 2C). The expression of
SENP1 is frequently observed in PCa and precancerous prostatic intraepithelial neoplasia
(PIN) tissues, and the overexpression of SENP1 correlates with increased aggressiveness
and recurrence of PCa [142,231]. Elevation of SENP1 mRNA is selectively mediated through
the activation of AR in PCa cells [232]. SENP1 also enhances AR-dependent transcription
through the deSUMOylation of histone deacetylase 1 (HDAC1), diminishing its ability
to repress AR [233]. HDAC4 is another SUMO-dependent repressor of AR and may be
regulated by SENPs [234].

In addition to the regulation of AR transactivation capacity, SENP1 stimulates prolifer-
ation of PCa cells via an AR-independent induction of cyclin D expression, and the silencing
of SENP1 results in the downregulation of cyclin D and inhibition of cell growth [231].
During hypoxia, SENP1 deSUMOylates and stabilizes HIF1α, promoting angiogenesis and
invasion via the upregulated expression of MMP2, MMP9, and VEGF [44,141,142]. SENP1
expression in PCa patient samples positively correlates with the expression of MMP2
and MMP9 that are frequently overexpressed in prostate cancer [142]. SENP1 promotes
invasion also through the deSUMOylation of reptin, diminishing its repressive effect on
invasion and metastasis [235]. Furthermore, the SUMOylation status of reptin modulates
the invasive activity of cancer cells with metastatic potential.

The genetic silencing of SENP1 or pharmacological inhibition with momordin Ic or
triplotide reduces colony formation, migration, and invasion in PCa cell lines, as well
as suppresses tumor growth in mouse PCa xenograft models [142,236,237]. Interestingly,
SENP1 positively regulates the stability of tumor suppressor PTEN by blocking its SUMO-
dependent ubiquitylation and degradation [238]. PTEN is considered to serve as a barrier
for SENP1-induced PCa tumorigenesis, and the inhibition of SENP1 may be a therapeutic
option for treatment of aggressive PTEN-deficient PCa. SUMOylation controls the sub-
cellular localization of hexokinase 2 (HK2), which is a regulator of glycolysis and has
oncogenic potential when it binds to mitochondria [239]. SENP1-induced deSUMOyla-
tion stimulates HK2 binding with mitochondria to promote metabolic reprogramming,
supporting proliferation of PCa cells and protecting them from chemotherapy-mediated
apoptosis. The knockdown of Ubc9 increases the binding of HK2 to mitochondria, whereas
the knockdown of SENP1 reduces binding to mitochondria, indicating that SUMOylation
is necessary for protection against PCa tumorigenesis. High expression of both SENP1 and
HK2 is associated with poor prognosis and poor response to docetaxel-based chemotherapy
in PCa patients. Moreover, SENP1 regulates deSUMOylation of spliceosome factor USP39
that is implicated in PCa tumorigenesis [240]. The introduction of SUMO-deficient USP39
enhances its ability to promote proliferation of both androgen-dependent and -independent
PCa cells, suggesting that deSUMOylation can enhance its oncogenic activity. Taken to-
gether, pharmacologic inhibition of SENP1 may be an attractive option for the treatment of
PCa due to SENP1′s various oncogenic functions.

Lastly, androgen-dependent GTPase-activating protein-binding protein 2 (G3BP2)
interaction with RanBP2 mediates SUMOylation of p53 that induces its export to cytoplasm,
repressing tumor-suppressive functions of p53 [241]. Elevated cytoplasmic p53 localization
correlates with increased G3BP2 expression and is associated with disease progression
to the hormone-refractory state and poor prognosis. The silencing of RanBP2 inhibits
dihydrotestosterone (DHT) mediated nuclear export of p53, and the depletion of G3BP2
increases nuclear levels of p53 and reduces tumor growth in PCa mouse xenograft models.
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Thus, therapeutic targeting of RanBP2 or G3BP2 may offer therapeutic advantages in PCa
expressing high levels of cytoplasmic p53.

6.7. Kidney Cancer

Renal cell carcinomas (RCCs) are characterized by diminished activation of E3 ubiq-
uitin ligase VHL [94]. Prolyl 4-hydroxylases hydroxylate HIFs and facilitate the binding
of E3 ubiquitin ligase VHL to HIFs that promotes their ubiquitination and proteasomal
degradation in normoxia, but in hypoxic conditions HIFs are stabilized [242,243]. HIFs
regulate the expression of several genes involved in energy metabolism, angiogenesis, and
cell proliferation. In RCC, the stabilization of HIFs due to lack of VHL activity supports
tumor growth, and the HIF-VEGF axis is a target for therapeutics used in the treatment
of RCC patients [94]. SUMOylation-related deregulation of HIF1α and HIF2α transacti-
vation are strongly implicated in development of RCCs [44,244,245]. Regulatory axis of
VHL, SENP1, and SUMO-enhancer RSUME is essential for the modulation of HIF activ-
ity in response to hypoxia. Hypoxia induces SENP1-mediated deSUMOylation of HIFs,
promoting the stabilization and transactivation of both HIF1α and HIF2α by protecting
them from VHL-mediated proteasomal degradation [44,244]. Tissues from clear-cell RCC
(ccRCC) patients expressing high levels of SENP1 display increased expression of vari-
ous glycolytic enzymes, and high SENP1 expression is associated with poor prognosis in
ccRCC patients [245]. In addition, protein levels of HIF1α and HIF2α are upregulated in
ccRCC tumors when compared to normal tissues. The knockdown of SENP1 decreases
proliferation of RCC4/VHL cells in hypoxic conditions and reduces mRNA levels of key
glycolytic enzymes such as PGK1, PFK1, and ALDOA, and hypoxia-response genes VEGF
and MMP-9 more potently under hypoxia compared to normoxia. Mechanistically, SENP1
enhances aerobic glycolysis through deSUMOylation and stabilization of HIF1α, which
in turn upregulates transcription of glycolysis-related genes in ccRCC. Transfection of
RCC4/VHL cells with SUMO-defective HIF1α results in increased mRNA levels of HIF1α
transactivation target genes, supporting that deSUMOylation of HIF1α drives the upreg-
ulation of glycolytic enzymes and other downstream genes. Thus, increased SENP1 and
HIF1α activity promote RCC development at least in part by inducing a metabolic shift
towards aerobic glycolysis.

RSUME is reported to stabilize and enhance transactivation of HIF1α via induction
of HIF1α SUMOylation in response to hypoxia, which partially contradicts the model in
which HIF1α is activated by deSUMOylation [111,112]. However, later studies advocated
for an alternative mechanism for RSUME-mediated activation of HIF1α and HIF2α, in
which RSUME counteracts the negative regulator of HIF, E3 ubiquitin ligase VHL [246,247].
RSUME interacts with VHL, which promotes the SUMOylation of VHL and inhibits its
assembly, thus blocking the proteasomal degradation of HIF1/2α [246]. RSUME is also
suggested to potentiate VHL mutant phenotype [247]. Taken together, the targeting of the
SUMO pathway and SENP1/HIF1α axis with pharmacological inhibitors of SENP1 may
have therapeutic potential in treatment of RCC.

6.8. Lung Cancer

PIAS1-mediated SUMOylation induces autophosphorylation and activation of FAK,
which is a regulator of cytoskeleton remodeling, mitogenic signaling, and cell survival [248].
PIAS1 also regulates the subcellular localization of FAK [99]. Co-amplification PIAS1 and
FAK is reported in a subset of non-small-cell lung cancers (NSCLCs). PIAS1-mediated
nuclear recruitment of FAK promotes DNA damage repair, which may provide a survival
advantage to genomically unstable NSCLC tumors. Hypoxia-induced Ubc9- and PIAS4-
mediated SUMOylation of migration regulator Slug enhances its transcriptional repression
activity by recruitment of corepressors, decreasing expression of Slug downstream tar-
gets, such as E-cadherin [249]. SUMOylation of Slug promotes migration, invasion, and
metastasis in lung cancer cells. The overexpression of Ubc9 or Slug is associated with
poor prognosis in NSCLC patients, whereas a combined low expression level of Slug and
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Ubc9 is linked to better survival. PIAS3 in turn suppresses the proliferation of lung cancer
cells through SUMO-independent inhibition of STAT3 and PI3K/AKT signaling, as well
as via the promotion of apoptosis [250–253]. PIAS3 protein levels are often downregu-
lated, and low PIAS3 expression is associated with poor survival of squamous cell lung
cancer patients [80,254]. Induced overexpression of PIAS3 in NSCLC cell lines decreases
proliferation through suppression of AKT phosphorylation and reduced transactivation
of STAT3 [251,252]. PIAS3 overexpression promotes STAT3- and p53-independent apop-
tosis through activation of intrinsic apoptotic pathway in NSCLC cell lines [253]. PIAS3
overexpression also potentiates anti-proliferative effects of erlotinib, which is an EGFR
inhibitor used in NSCLC therapies [252]. Moreover, SENP2 is frequently overexpressed
in lung cancer due to the prevalence of the 3q26-29 amplicon [96,97]. The network of
SENP2, DCUN1D1, DVL2, and UBXN7 regulates proliferation of lung cancer cells that
carry the 3q26-29 amplicon, as knockdown of any of the four proteins leads to inhibition of
growth [96]. High expression of the three-gene signature of SENP2, DCUN1D1, and DVL3
may also predict benefit from adjuvant chemotherapy in SCC patients. Thus, amplified
PIAS1 and SENP2 are potential therapeutic targets in lung cancer, whereas the expression
level of PIAS3 may predict sensitivity towards select treatments.

6.9. Hepatocellular Carcinoma

SENP1 regulates hepatocellular carcinoma (HCC) carcinogenesis through deSUMOyla-
tion of ubiquitin-conjugating enzyme E2T (UBE2T) and HIF1α [255,256]. SENP1-mediated
deSUMOylation of UBE2T promotes HCC development through activation of the PI3K-
AKT pathway, and both SENP1 and UBE2T are overexpressed in most HCC tissues and
hepatoma cell lines. A positive feedback loop between SENP1 and HIF1α is implicated
to contribute to the maintenance of HCC cell stemness under hypoxia. The knockdown
of SENP1 decreases proliferation, colony formation, invasion, and stemness of HCC cells,
and reduces tumor growth in mouse xenograft models, indicating SENP1 as a potential
therapeutic target in HCC. PC2-mediated SUMOylation and transactivation of HIF1α
drives angiogenesis and HCC tumorigenesis via hypoxia-induced upregulation of VEGF
expression [68]. Moreover, SUMOylation of Shp2 promotes ERK-mediated promotion of
HCC cell and tumor growth [257]. Taken together, the inhibition of SUMOylation and
SENP1 may have therapeutic potential in HCC.

6.10. Gliomas

Protein levels of SUMO1, SUMO2/3 and Ubc9 are upregulated in patient samples
derived from astrocytic tumors, with a moderate upregulation in low-grade astrocytoma
(grade 2) and anaplastic astrocytoma (grade 3), and a massive upregulation in glioblas-
toma multiforme (GBM; grade 4) [258]. Furthermore, high protein expression of SAE1
is associated with poor prognosis of glioma patients [67]. Silencing of SUMO1–3 re-
duces proliferation and clonogenic survival, and suppresses DNA repair and synthesis
in GBM cells [258]. Mechanistically, SUMO1-modification of CDK6 blocks its ubiquitin-
mediated proteosomal degradation to drive proliferation of GBM cells [259]. Moreover,
SAE1 enhances SUMO1-modification and activation-associated phosphorylation of AKT,
promoting the proliferation and migration of glioma cells [67]. Interestingly, SAE inhibitors
ginkgolic and anacardic acid fail to decrease global SUMOylation in GBM cell lines, which
may be due to especially high levels of SUMOylation in GBM [260]. Topotecan, an in-
hibitor of DNA topoisomerase I, can significantly reduce global SUMOylation in GBM
cell lines [260]. Topotecan suppresses cell cycle progression via CDK6 and alters HIF1α-
associated metabolic programming by the inhibition of pentose phosphate pathway and
glycolytic metabolism in GBM.

PIAS3 is implicated in the regulation of stem-like cell properties of GBM cells [129,149].
SMAD6 induces ubiquitin-mediated degradation of PIAS3 in GBM cells to enhance STAT3-
mediated proliferation and stem-like cell initiation, whereas TRIM8 represses PIAS3
through a similar mechanism to maintain STAT3-mediated stemness and self-renewal
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of GBM stem-like cells. PIAS3 is downregulated in GBM tissues, likely due to ubiquitin-
mediated proteosomal degradation [81]. Intriguingly, SUMO1, but not SUMO2/3, appears
to play a major role for maintenance of GBM stem-like cells, and PML is the major substrate
for SUMO1 in these cells, facilitating stabilization of c-Myc [261]. Overall, the inhibition of
SUMOylation may be an attractive strategy for treatment of GBM.

7. Therapeutic Targeting of the SUMO Pathway

The SUMO pathway is increasingly viewed as a potential therapeutic target in can-
cer [262], and several inhibitors of SUMO E1-activating, E2-conjugating and deconjugating
enzymes have been identified (Table 2).

7.1. SUMO E1 Inhibitors

Ginkgolic acid and its structural analog, anacardic acid, were the first compounds
identified to inhibit the SUMO pathway [263]. Ginkgolic acid inhibits SUMOylation by
binding to SAE and blocks the formation of E1-SUMO intermediates. Other natural prod-
ucts similarly targeting SUMO E1 activity include antibiotic kerriamycin B, ellagitannin
davidiin and tannic acid (Table 2) [264–266]. However, natural source-derived SAE in-
hibitors function mainly in micromolar range and can have several non-SUMO-related
effects in cells, which may complicate the interpretation of their anti-cancer mechanisms.
Recent advances in the development of synthetic inhibitors have enabled more specific and
efficient targeting of the SUMO pathway. Synthetic inhibitors of SAE include compound
9, compound 21, various pyrazole and thiazole urea-containing compounds, ML-792,
COH000, ML-93, several ginkgolic acid derivatives, and most recently, TAK-981 [267–275].
For example, compound 21 and COH000 act in a similar way as the natural SAE inhibitors.
In contrast, ML-93, ML-792, and its derivative TAK-981 inhibit SAE activity by forming a
covalent adduct with SUMO, which is catalyzed in an ATP-dependent manner by SAE1/2
itself. TAK-981 is an especially potent inhibitor of SUMOylation that can activate a strong
antitumor immune response [275–278]. TAK-981 reduces proliferation of HCT116 colon
cancer cells in vitro and significantly decreases tumor volumes in HCT-116 and OCI-Ly10
mouse xenograft models in vivo. TAK-981 treatment triggers the upregulation of type I
IFN signaling in immune cells, as well as IFN-dependent activation of macrophages, T-cells,
natural killer (NK) cells, and dendritic cells.

7.2. SUMO E2 Inhibitors

Pharmacological targeting of Ubc9 has generated much interest in cancer research,
as it is the sole E2-conjugating enzyme known in mammals. Several inhibitors of Ubc9
have been identified, including natural product spectomycin B1 and its structural relatives
chaetochromin A and viomellein, semisynthetic SUMO-based Ubc9 inhibitors (SUBINs), as
well as synthetic inhibitors GSK145A, compound 2 and 2-D08 (Table 2) [279–283]. Antibiotic
spectomycin B1 binds to Ubc9 blocking the formation of the E2-SUMO intermediates [279].
Spectomycin B1 treatment suppresses β-estradiol-dependent proliferation of MCF7 breast
cancer cells. SUBINs are high-affinity SUMO2 variants that bind to Ubc9 to inhibit poly-
SUMO chain formation [283]. GSK145A acts as a SUMO substrate mimic that is strongly
targeted for SUMOylation, resulting in the depletion of available SUMO-Ubc9, whereas
compound 2 directly binds to Ubc9 [280,282]. 2-D08 inhibits the transfer of SUMO proteins
from Ubc9 to target substrates [281]. 2-D08 displays antiproliferative activity in several
AML cell lines and bladder cancer T24 and 5637 cell lines, as well as suppresses migration
of K-Ras-mutated MiaPaCa-2 pancreatic cancer cells [185,284,285].

7.3. SENP Inhibitors

SUMO-deconjugation machinery is frequently dysregulated in cancer, and high ex-
pression of different SENP proteases is associated with tumorigenesis of several cancers
(Table 1 and Table S1), indicating SENPs as potential therapeutic targets [286]. Triplotide
and momordin Ic (Mc) are natural SENP1 inhibitors that have shown anticancer activity
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towards prostate cancer (Table 2) [236,237]. Triplotide and momordin Ic decrease the pro-
liferation of LNCaP and PC3 cell lines and inhibit tumor growth in PC3 xenograft mice
models. In addition, various synthetic inhibitors of SENP1 have been developed, including
compound 38, compound J5, compound 4 (GN6958), compound 13m, and compounds
6, 7, and 10 [287–291]. However, in vivo data of synthetic SENP1 inhibitors in cancer
models are lacking. To date, only a few specific SENP2 inhibitors have been discovered,
including compounds 69, 117, and ebselen [292,293]. URB597, a fatty acid amide hydrolase
inhibitor, indirectly inhibits SENP3 by decreasing levels of ROS in rats with chronic cerebral
hypoperfusion [294]. JCP666, VEA260, VEA499, compound 1, compound 3, and antibiotic
streptonigrin inhibit activities of both SENP1 and SENP2 simultaneously, whereas SI2 addi-
tionally inhibits SENP3 [240,295–299]. Various benzothiophene-2-carboxamide derivatives
simultaneously inhibit activities of SENP1, SENP2, and SENP5 [300]. Lastly, SPI-01 targets
SENP1, SENP2, and SENP7, while VEA561 inhibits SENP2, SENP6, and SENP7 [295,301].

Table 2. Preclinical development of inhibitors targeting SUMO pathway. IC50 = half maximal inhibitory concentration of
SUMOylation or deSUMOylation.

Target Inhibitor Product Type Activity IC50 (µM) Study

SAE1/2

Ginkgolic acid Natural In vivo and
in vitro 3.0 [263]

Anacardic acid Natural In vivo and
in vitro 2.2 [263]

Kerriamycin B Natural In vitro 11.7 [264]

SUMO-AMSN and
SUMO-AVSN Semisynthetic In vitro [302]

Compound 9 Synthetic In vitro 13.4 [267]

Compound 21 Synthetic In vitro 14.4 [268]

Pyrazole and
thiazole urea

containing
compounds

Synthetic In vitro 13.8–100 [269]

Davidiin Natural In vitro 0.15 [265]

Tannic acid Natural In vivo and
in vitro 12.8 [266]

ML-792 Synthetic In vitro 0.003 (SUMO1),
0.011 (SUMO2) [270]

COH000 Synthetic In vivo and
in vitro 0.2 [271,272]

ML-93 Synthetic In vitro 0.037 [273]

Ginkgolic acid
derivatives Synthetic In vitro 5–50 [274]

TAK-981 Synthetic In vivo and
in vitro nM range [275]

Ubc9

GSK145A Synthetic In vitro 12.5 [280]

2-D08 Synthetic In vitro 6.0 [281]

Spectomycin B1 Natural In vivo and
in vitro 4.4 [279]

SUBINs Semisynthetic In vitro 0.025 [283]

Compound 2 Synthetic In vitro 74 [282]
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Table 2. Cont.

Target Inhibitor Product Type Activity IC50 (µM) Study

SENP1

Compound 38 Synthetic In vitro 9.2 [287]

Triptolide Natural In vivo and
in vitro 0.071–0.076 [236]

Compound J5 Synthetic In vitro 2.385 [288]

Compound 4
(GN6958) Synthetic In vitro 29.6 [289]

Compound 13m Synthetic In vitro 3.5 [290]

Momordin Ic (Mc) Natural In vivo and
in vitro 15.37 [237]

Compounds 6, 7
and 10 Synthetic In vitro 3.7, 0.99, 7.5 [291]

SENP2

Compounds 69
and 117 Synthetic In vitro 5.9, 3.7 [292]

Ebselen Synthetic In vivo and
In vitro 2.0 [293]

SENP3 URB597 Synthetic [294]

SENP1/2/3/5/6/7

JCP666 Natural In vitro 13.8 (SENP1),
7.0 (SENP2) [295,296]

VEA260 Synthetic In vitro 7.1 (SENP1),
3.7 (SENP2) [295,296]

VEA499 Synthetic In vitro 3.6 (SENP1), 0.25
(SENP2) [295]

Compound 1 Synthetic In vitro 5–10 (SENP1),
5–10 (SENP2) [297]

Compound 3 Synthetic In vitro 3.55 (SENP1),
2.98 (SENP2) [298]

Streptonigrin Natural In vitro 0.518 (SENP1),
6.919 (SENP2) [299]

SI2 Synthetic In vitro
1.29 (SENP1),

unknown (SENP2),
unknown (SENP3)

[240]

Benzothiophene-2-
carboxamide
derivatives

Synthetic In vitro
0.76–35.8 (SENP1),
0.56–75.6 (SENP2),
2.4–100 (SENP5)

[300]

SPI-01 Synthetic In vitro
5.9 (SENP1), 2.9

(SENP2), 3.5
(SENP7)

[301]

VEA561 Synthetic In vitro
5.7 (SENP2), 4.2

(SENP6), 4.3
(SENP7)

[295]

7.4. Current Stage of Clinical Development of SUMO Pathway Inhibitors

Growing evidence from numerous preclinical studies indicates that pharmacological
targeting of the SUMO pathway may be an effective therapeutic strategy in certain cancers.
However, clinical data of SUMO inhibition are scarce. To date, the SAE inhibitor TAK-981
shows the most promise for clinical purposes and is currently the only compound directly
targeting SUMOylation that has progressed to clinical trials in patients (Table 3).
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Table 3. Ongoing clinical trials of SUMO E1 inhibitor TAK-981. Data collected from clinicaltrials.gov (2.8.2021). Abbrevia-
tions: NCT# national clinical trial identifier number.

Intervention Condition Status Estimated
Enrollment Phase NCT#

TAK-981 and
Pembrolizumab

Advanced or metastatic
solid tumors Recruiting 242 I/II NCT04381650

TAK-981 and
Mezagitamab and

Daratumumab/
hyaluronidase-fihj

Relapsed and/or
refractory multiple

myeloma
Recruiting 81 I/II NCT04776018

TAK-981 and
Rituximab Non-Hodgkin lymphoma Recruiting 130 I/II NCT04074330

TAK-981

Advanced or metastatic
solid tumors,

Relapsed/refractory
Non-Hodgkin lymphomas

Recruiting 202 I/II NCT03648372

TAK-981 and
Cetuximab and Avelumab Head and neck cancer Recruiting 12 0/I NCT04065555

A phase I/II study is evaluating the safety, tolerability, and preliminary efficacy of
TAK-981 in combination with the immunotherapy drug pembrolizumab, in patients with
advanced or metastatic solid tumors (ClinicalTrials.gov identifier: NCT04381650). Another
phase I/II study is determining the safety and efficacy of TAK-981 in combination with
anti-CD38 monoclonal antibodies, mezagitamab or daratumumab/hyaluronidase-fihj, for
the treatment of patients with relapsed or refractory multiple myeloma (NCT04776018).
The safety, tolerability, and efficacy of TAK-981 in combination with the anti-CD20 an-
tibody rituximab, is evaluated in a phase I/II study of participants with CD20-positive
non-Hodgkin lymphoma (NCT04074330). Furthermore, the safety, tolerability, and prelimi-
nary efficacy of TAK-981 as a monotherapy is evaluated a phase I/II study in participants
with advanced or metastatic solid tumors or relapsed/refractory non-Hodgkin lymphomas
(NCT03648372). In addition, an early phase I (phase 0) intratumoral microdosing study is
investigating TAK-981′s ability to activate innate immune effector cells within the tumor
microenvironment in patients with localized or metastatic tumors of the head and neck
(NCT04065555). The same study is also testing whether treatment with TAK-981 in combi-
nation with the immunotherapy drug avelumab or anti-EGFR antibody cetuximab, results
in enhanced localized immune responses when compared to either immunotherapy alone.

Unfortunately, no other direct inhibitors of SUMO pathway components have pro-
gressed to clinical testing in patients. However, SENP1 is investigated as a potential
therapeutic target in two observational ex vivo clinical trials. One study aims at determin-
ing the ability of a novel SENP1 inhibitor, senpPNA-R8, to silence SENP1 expression and
penetrate into organotypic osteosarcoma cultures prepared from freshly collected patient
samples (NCT03798587). Another prospective study is evaluating the expression levels
of SENP1 in bone metastatic and non-metastatic mammary carcinomas to determine its
potential use as a therapeutic target and prognostic marker in breast cancer (NCT04167605).

7.5. Potential Rational Combinations

Given the role of SUMO in anti-tumor immunity, TAK-981 is currently being eval-
uated in combination with immunotherapy drugs in clinical trials. Dysregulation of
SUMO pathway can also promote resistance towards several anti-cancer drugs, such as
the proteasome inhibitor bortezomib in MM, anti-estrogens in breast cancer and different
chemotherapeutics. Docetaxel resistance in PCa can be triggered via overexpression of
the SENP1-HK2 axis or overexpression of PIAS1, further emphasizing heterogeneity of
SUMO-dysregulation in cancer [239,303]. Hypoxia-induced SUMOylation of self-renewal
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and pluripotency regulator OCT4 decreases its level in embryonal carcinoma cells and
promotes cisplatin and bleomycin resistance that can be counteracted with the induction
of SENP1 overexpression [304]. Furthermore, SENP1-mediated deSUMOylation and the
activation of janus kinase 2 (JAK2) promotes platinum resistance in ovarian cancer, which
can be overcome by pharmacological inhibition of SENP1 that sensitizes cancer cells to
cisplatin [305]. Thus, the combining of SUMO pathway inhibitors with already-established
chemotherapy drugs and other anti-cancer agents may result in the improved targeting of
specific cancer types through drug synergism and combat resistance.

8. Conclusions and Future Perspectives

Accumulating evidence strongly implicates a central role for SUMOylation in some
cancer types as described earlier in detail. Intriguingly, the inhibition of SUMOylation
may also be a novel way to activate the immune response to fight cancer cells, making
the pharmacological inhibition of SUMOylation an attractive therapeutic strategy for the
treatment of cancer patients. In the future, more sophisticated preclinical models of different
contexts—also with an intact tumor microenvironment—are needed to fully characterize
the biological significance of the SUMO pathway in cancer and explore its full therapeutic
potential. Moreover, more individualized analyses of pathway activity in cancer patients
with different types of hematological malignancies and solid tumors are needed to reveal
potential therapeutic vulnerabilities and characterize potentially important new substrates.

Given the reversible nature of SUMO modification, it is important to deeply con-
sider the balance between the regulators of SUMOylation to understand the final net
contribution to malignant phenotypes in different cancers. Possible hurdles include the
SUMOylation-independent functions of E3 ligases or deSUMOylases that may complicate
the interpretation of the data. SENPs are essential for the balance of SUMOylation and
the deSUMOylation of substrates. Interestingly, the development of SENP inhibitors has
yielded encouraging results, as several SENP inhibitors have been identified to date and
show promising activity in preclinical experiments. However, no selective inhibitors of
SENPs other than SENP1 and SENP2 or SUMO E3 ligation enzymes are currently available
despite recent strides made in the development of SUMO pathway inhibitors, limiting the
identification and validation of novel therapeutic strategies towards SUMO-dysregulated
cancers. Thus, the development of selective novel SENP and SUMO E3 ligase inhibitors is
required to unravel the full potential of targeting SUMO machinery in cancer treatments
and would open many new avenues to be explored, for example by using patient-derived
ex vivo tumor models in combination with SUMO-pathway activity measurements. Fur-
thermore, bifunctional small molecules that induce proximity between target proteins may
be developed to trigger proteasomal degradation of SUMO machinery components or
SUMO modification of specific proteins [306].

More than 20 years of intensive basic research is finally beginning to bear fruit, as the
first clinical trials are investigating the safety and activity of SUMO pathway inhibition
in cancer patients. The results of the first clinical trials with SUMO pathway inhibition in
cancer patients are awaited with great interest, and they will help set new directions for
research in this field. Since its discovery, SUMO has now strongly moved to the forefront
of translational cancer research.
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