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Abstract Multiobjective DC optimization problems arise naturally, for example, in data
classification and cluster analysis playing a crucial role in data mining. In this paper, we
propose a new multiobjective double bundle method designed for nonsmooth multiobjective
optimization problems having objective and constraint functions which can be presented as a
difference of two convex (DC) functions. The method is of the descent type and it generalizes
the ideas of the double bundlemethod formultiobjective and constrained problems.Weutilize
the special cutting plane model angled for the DC improvement function such that the convex
and the concave behaviour of the function is captured. The method is proved to be finitely
convergent to a weakly Pareto stationary point under mild assumptions. Finally, we consider
some numerical experiments and compare the solutions produced by our method with the
method designed for general nonconvex multiobjective problems. This is done in order to
validate the usage of the method aimed specially for DC objectives instead of a general
nonconvex method.
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1 Introduction

Multiobjective optimization problems arise naturally in the wide range of practical applica-
tions, since the objectives under the scope are usually simultaneously related to various goals.
Thus, compromises have to be made in order to obtain a solution being as good as possible
for every objective. Real-life applications for multiobjective optimization can be found, for
instance, in the fields of economics [34], engineering [31], and mechanics [32], to name
but a few. Along with multiobjective nature, many practical applications have nonsmooth
(i.e. nondifferentiable) characteristics.

This paper focuses on multiobjective nonsmooth optimization, and the particular interest
is in descent methods. The essential feature of a descent method is the ability to obtain a
better solution for each objective at every iteration. In the literature, there are some nonsmooth
descent methods for convex (see e.g. [4,5,19]) and for nonconvex (see e.g. [27,30,37,42])
multiobjective problems. A descent method can be used either by running it repeatedly from
different starting points and, therefore, obtaining an approximation of the set of optimal
solutions, or as a component of some interactive method [29,30,33].

Awide subclass of nonconvex functions is formed by the functions having special structure
such that they can be decomposed as a difference of two convex functions. These functions
are called DC functions. The benefit of the DC functions springs from the ability to utilize the
convex analysis and the fact that many functions can be expressed as a DC function. The DC
decomposition is not unique, and unfortunately, it might be hard to single out. In practice, the
problems with objectives in explicit DC form arise, for instance, in clustering [3], spherical
separability problems [10], production-transportation planning [13], wireless sensor network
planning [1], and data visualization [6]. All of these are solved as a single-objective problem
even if the nature of each problem is multiobjective, and they are mainly transformed into a
single-objective problem by adding objectives up. There exists a lot of studies dedicated to
the theory of the DC functions (see e.g. [11,12,41]) and to develop single-objective methods
for the DC objectives from the different bases (see e.g. [9,14,16,17,21,22,35,39]). However,
the DC functions as the objectives of the multiobjective optimization problem has attracted
significantly less attention. In [8,36,40], there are presented optimality conditions for the
multiobjective DC optimization problem. Additionally, few proximal point methods in [15]
have lately come to light.

The aim of this paper is to bring together two areas of optimization and to design a
new descent multiobjective method with DC objectives being able to handle DC constraints.
The new multiobjective double bundle method for DC optimization (MDBDC) utilizes the
DC structure of the objective and the constraint functions. The method is inspired by the
good numerical performance of the single-objective double bundle method for DC opti-
mization (DBDC) [17] and its ability to find global solutions although it is only a local
method.

The basic idea of MDBDC is to combine the main features of DBDC with the use of
the improvement function [19,42] as, for instance, in the multiobjective proximal bundle
method (MPB) [27,30]. Along with the sketch of the method, we prove the finite conver-
gence of MDBDC to the weakly Pareto stationary solution under mild assumptions. By the
authors’ best knowledge, there does not exist any other descent method, specially designed
for multiobjective DC optimization, such that weak Pareto stationarity of the solutions can
be ensured instead of Pareto criticality. We analyze the numerical performance of MDBDC,
and compare the results obtained by MDBDC with the ones obtained by MPB. MPB is used,
since it is a method for a problemwith general nonconvex objectives having a structure that is
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somehow similar to our method. The purpose of this comparison is to motivate the use of the
method designed specially for the DC objectives instead of the general nonconvex method.

The remainder of the paper is organized as follows. A brief summary of the relevant
material on multiobjective and DC optimization is given in Sect. 2. Section 3 is devoted to
derive the new MDBDC method and to prove its convergence. In Sect. 4, we investigate the
numerical properties of MDBDC. Finally, in Sect. 5 some concluding remarks are given.

2 Preliminaries

We consider a multiobjective DC optimization problem of the form

min
x∈X f1(x), . . . , fk(x), (1)

where X = {x ∈ R
n | gl(x) ≤ 0, l ∈ L} and L = {1, . . . ,m}. Additionally, the set I =

{1, . . . , k} denotes the indices of the objectives. The objectives fi : R
n → R, i ∈ I and

the constraints gl : Rn → R, l ∈ L are assumed to be DC functions. A function f is a DC
function if it can be decomposed as a difference of two convex functions p : Rn → R and
q : Rn → R such that f = p − q . This is called a DC decomposition of f , where p and q
are DC components.

The objectives and the constraints of the problem (1)maybenonsmooth. If aDC function is
nonsmooth, then at least one of the DC components is nonsmooth. Based on the DC structure,
DC functions are locally Lipschitz continuous (LLC) at x ∈ R

n [12] meaning that there exist
a Lipschitz constant K > 0 and ε > 0 such that | fi ( y) − fi (z)| ≤ K‖ y − z‖ for all y, z ∈
B(x; ε), where B(x; ε) is an open ball with a center x and a radius ε.

Next we briefly recall relevant results from nonsmooth, DC and multiobjective optimiza-
tion. For more details we refer to [2,7,12,25,29,41]. We begin with two useful properties of
DC functions. First, if f is of the form

f (x) = max
{
f j (x)

∣∣ j ∈ J ,J is finite and f j is a DC function
}
, (2)

then f is a DC function [12]. Second, for a DC function f , there exists the directional
derivative f ′(x; d) at x ∈ R

n in every direction d ∈ R
n [12] and

f ′(x; d) = lim
t↓0

f (x + td) − f (x)

t
.

Thus, a DC function is said to be directionally differentiable at any x.
The subdifferential of a convex function f at the point x ∈ R

n is the nonempty, convex
and compact set

∂c f (x) = {ξ ∈ R
n | f ( y) ≥ f (x) + ξ T ( y − x) for all y ∈ R

n}.
The element ξ ∈ ∂c f (x) is called a subgradient of f at x. Additionally, for a convex function
f and all d ∈ R

n at x (see e.g. [2])

f ′(x; d) = max {ξ T d | ξ ∈ ∂c f (x)}. (3)

We give the following two useful subdifferential calculus rules [2] for convex functions.
First, if f is the sum of convex functions f j , j ∈ J such that J is finite, or in other words,

f (x) =
∑

j∈J
f j (x) then ∂c f (x) =

∑

j∈J
∂c f j (x). (4)
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Second, we can obtain the subdifferential of f of the form (2) where the involved functions
f j are convex with

∂c f (x) = conv {∂c f j (x) | j ∈ J (x)}, (5)

where conv denotes the convex hull of the set and J (x) = { j ∈ J | f j (x) = f (x)}.
The generalized subdifferential of a LLC function f at x ∈ R

n is [7]

∂ f (x) = conv

{
lim
i→∞ ∇ f (xi ) | xi → x and ∇ f (xi ) exists

}
.

If f is convex, then ∂ f (x) coincides with ∂c f (x).
Next we consider the concept of optimality in constrained multiobjective optimization.

The solution x∗ ∈ X is a global Pareto optimum for the problem (1) if there does not exist
another solution x ∈ X such that fi (x) ≤ fi (x∗) for all i ∈ I and f j (x) < f j (x∗) for at
least one j ∈ I. The solution x∗ ∈ X is a global weak Pareto optimum for the problem
(1), if there does not exist another solution x ∈ X such that fi (x) < fi (x∗) for all i ∈ I .
Moreover, x∗ ∈ X is a local (weak) Pareto optimum if there exists δ > 0 such that x∗ ∈ X
is a global (weak) Pareto optimum on X ∩ B(x∗; δ). Based on the above definitions, every
Pareto optimum is a weak Pareto optimum.

In order to give an optimality condition for the constrained multiobjective problem, we
define some concepts related to cones of the set S ⊆ R

n [2]. First, a set S is a cone if λx ∈ S
for all λ ≥ 0 and x ∈ S. We denote by ray S = {λx | λ ≥ 0, x ∈ S} and cone S = ray conv S.
Furthermore, we define a contingent cone at x ∈ S and a polar cone, respectively,

KS(x) = {d ∈ R
n | there exist ti ↓ 0 and di → d with x + ti di ∈ S},

S≤ = {d ∈ R
n | xT d ≤ 0, for all x ∈ S}.

Throughout the paper, we denote by

F(x) =
⋃

i∈I
∂ fi (x) and G(x) =

⋃

l∈L(x)

∂gl(x),

where L(x) = {l ∈ L | gl(x) = 0}. In the following, we state a necessary condition for local
weak Pareto optimality.

Theorem 1 [26] If x∗ ∈ X is a local weak Pareto optimum for the problem (1), and the
constraint qualification G≤(x∗) ⊆ KX (x∗) holds, then

0 ∈ conv F(x∗) + cl cone G(x∗), (6)

where cl is a closure of the set.

If the point x∗ satisfies the condition (6), then it is called weakly Pareto stationary.
The well-known necessary local optimality condition for unconstrained single-objective

optimization with a LLC objective f at x∗ ∈ R
n is that 0 ∈ ∂ f (x∗). The point x∗ is called

Clarke stationary if this condition holds. Moreover, if f is convex, then the condition ensures
global optimality. For the unconstrained single-objective DC problem with the objective
f = p − q , if x∗ ∈ R

n is a local optimum, then ∂q(x∗) ⊆ ∂p(x∗) [41]. However, this
condition is hard to verify in practice, since we usually do not know, or cannot calculate,
the whole subdifferentials of DC components. Therefore, many methods for single-objective
DC optimization stop after finding a critical point x′ ∈ R

n satisfying [41]

∂p(x′) ∩ ∂q(x′) �= ∅. (7)

123



J Glob Optim (2018) 72:403–429 407

Whenever x′ is critical, then 0 ∈ ∂p(x′) − ∂q(x′). However, the subdifferential calculus [7]
only implies

∂ f (x′) ⊆ ∂p(x′) − ∂q(x′), (8)

where the equality holds if either p or q is differentiable at x′. Hence, we might end up with
a solution such that 0 ∈ ∂p(x′) − ∂q(x′) but 0 /∈ ∂ f (x′). Due to this, x′ might not be a
local optimum or even a saddle point. Therefore, criticality is a weaker condition for a local
optimum x∗ ∈ R

n than Clarke stationarity 0 ∈ ∂ f (x∗), which is often obtained in nonconvex
optimization. Nevertheless, Clarke stationarity implies criticality.

This kind of observation can bemade in multiobjective optimization as well by comparing
weak Pareto stationarity (6) with the multiobjective Pareto criticality condition given in [15]:
in the unconstrained case, the solution x′ ∈ R

n is called Pareto critical if

0 ∈ conv {∂pi (x′) − ∂qi (x′) | i ∈ I }. (9)

Indeed, it is easy to see that a weakly Pareto stationary point x∗ satisfies

0 ∈ conv {∂ fi (x∗) | i ∈ I } ⊆ conv {∂pi (x∗) − ∂qi (x∗) | i ∈ I },
by applying (8) to the condition (6). Thus, weak Pareto stationarity implies Pareto criticality.

However, the inverse does not necessarily hold. Consider the unconstrained case of the
problem (1) with two objectives having DC components as follows: p1(x) = max{−x, 2x},
q1(x) = max{−2x, x}, p2(x) = max{x2, x}, and q2(x) = max{0.5x2,−x}, where x ∈ R.
In order to verify the condition (9), we consider the point x ′ = 0 and check whether the
intersection

λ∂p1(x
′) + (1 − λ)∂p2(x

′) ∩ λ∂q1(x
′) + (1 − λ)∂q2(x

′)

is an empty set or not. With λ = 1, the intersection is [−1, 2] ∩ [−2, 1] = [−1, 1].
This set is nonempty, and thus, the point x ′ is Pareto critical. On the other hand, 0 /∈
conv {∂ f1(x ′), ∂ f2(x ′)} = {1}, and thus x ′ is not weakly Pareto stationary.

3 Multiobjective double bundle method for DC optimization

In this section, we describe with details the new multiobjective double bundle method
(MDBDC) solving multiobjective optimization problems (1) with DC functions as objec-
tives and constraints. The method is of the descent type, since it improves all the objectives
simultaneously at every iteration.

The basic idea of MDBDC is to use the same framework as the multiobjective proximal
bundle method (MPB) [27,30]. We use the strategy for handling several objectives and
constraints which is based on the techniques in [19,27,42]. With this strategy, we transform
the constrained multiobjective problem to an unconstrained single-objective one. After that,
we employ a new cutting plane model similar to the one used in the proximal bundle method
for DC optimization (PBDC) [16]. This model uses explicitly the DC decomposition of
the new objective in order to capture both the convex and the concave behaviour of it.
Finally, we modify the double bundle method for DC optimization (DBDC) [17] to solve the
single-objective problem and to obtain the weakly Pareto stationary solution for the original
multiobjective problem (1).
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3.1 Cutting plane model for DC functions and direction finding

We define the improvement function H : Rn × R
n → R [19,42] by

H(x, y) = max{ fi (x) − fi ( y), gl(x) | i ∈ I , l ∈ L}. (10)

Since H( · , y) is a maximum of DC functions, it is a DC function and its DC decomposition
can be obtained as in [12]. Let the DC decompositions of fi and gl be fi = pi − qi for all
i ∈ I and gl = rl − sl for all l ∈ L . The functions fi and gl can be rewritten as

fi (x) = pi (x) +
∑

j∈I
j �=i

q j (x) +
∑

t∈L
st (x) −

∑

j∈I
q j (x) −

∑

t∈L
st (x)

gl(x) = rl(x) +
∑

t∈L
t �=l

st (x) +
∑

j∈I
q j (x) −

∑

j∈I
q j (x) −

∑

t∈L
st (x).

In order to simplify the notations, we denote

Ai (x, y) = pi (x) +
∑

j∈I
j �=i

q j (x) +
∑

t∈L
st (x) − fi ( y) and

Bl(x) = rl(x) +
∑

t∈L
t �=l

st (x) +
∑

j∈I
q j (x). (11)

Now the DC decomposition of H( · , y) can be written as

H(x, y) = H1(x, y) − H2(x),

where

H1(x, y) = max{Ai (x, y), Bl(x) | i ∈ I , l ∈ L} and

H2(x) =
∑

j∈I
q j (x) +

∑

t∈L
st (x) (12)

and both H1( · , y) and H2 are convex with respect to x. Throughout the paper, the vector
y in (10)–(12) is treated as a constant. Therefore, for instance, ∂H(x, y) is calculated with
respect to x.

The improvement function H( · , y) has three elementary properties justifying the use of
it.

Theorem 2 [27,42] The improvement function H( · , y) (10) has the following properties:

(i) If H(x, y) < H( y, y), x ∈ R
n, y ∈ X then fi (x) < fi ( y) for all i ∈ I and gl(x) < 0

for all l ∈ L.
(ii) If the solution x∗ ∈ X is a global weak Pareto optimum of the problem (1), then

x∗ = argmin
x∈Rn

H(x, x∗).

(iii) If 0 ∈ ∂H(x∗, x∗), then the solution x∗ ∈ X of the problem (1) is weakly Pareto
stationary.
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Proof (i) The claim follows immediately from the definition of H( · , y).
(ii) Assume that x∗ ∈ X is a global weak Pareto optimum of the problem (1) and
thus, gl(x∗) ≤ 0 for all l ∈ L . Hence, H(x∗, x∗) = 0. Suppose then, that x∗ �=
argminx∈Rn H(x, x∗). Now there exists y∗ ∈ R

n such that H( y∗, x∗) < H(x∗, x∗) = 0.
Based on (i), fi ( y∗) < fi (x∗) for all i ∈ I and gl( y∗) < 0 for all l ∈ L meaning that y∗ ∈ X
contradicts the assumption of global weak Pareto optimality of x∗.
(iii) By Theorem 3.23 in [2] and Lemma 2.10 in [25], we obtain

0 ∈ ∂H(x∗, x∗) ⊆ conv
{
F(x∗) ∪ G(x∗)

}

⊆ conv
{
conv F(x∗) ∪ convG(x∗)

}

= {
λ conv F(x∗) + (1 − λ) convG(x∗) | λ ∈ [0, 1]}.

Thus, there exists λ∗ ∈ [0, 1] such that 0 ∈ conv F(x∗) + cl coneG(x∗). Indeed, if λ∗ ∈
(0, 1], then

0 ∈ conv F(x∗) + 1 − λ∗

λ∗ convG(x∗)

⊆ conv F(x∗) + ray convG(x∗)
⊆ conv F(x∗) + cl coneG(x∗).

On the other hand, if λ∗ = 0, we observe

0 ⊆ convG(x∗) ⊆ coneG(x∗) ⊆ conv F(x∗) + cl coneG(x∗).

Thus, x∗ satisfies the condition (6) implying weak Pareto stationarity of x∗. ��

In the following, the index h relates to the h-th iteration and the current iteration point
is denoted by xh ∈ R

n . We assume that, at each auxiliary point y j ∈ R
n from the previous

iterations,we can evaluate pi ( y j ),qi ( y j ), rl( y j ), and sl( y j ) and arbitrary ξp,i ( y j ) ∈ ∂pi ( y j ),
ξq,i ( y j ) ∈ ∂qi ( y j ), ξr,l( y j ) ∈ ∂rl( y j ), and ξs,l( y j ) ∈ ∂sl( y j ) for all i ∈ I and l ∈ L . From
these, Ai ( y j , xh), Bl( y j ), H1( y j , xh), and H2( y j ) can be composed by using (11) and (12).
Due to the convexity, their subgradients ai , bl , h1, and h2, respectively, are obtained by using
the subdifferential calculus rules (4) and (5).

We collect information from the previous iterations into separate bundles. The bundles
corresponding to Ai ( · , xh) and Bl are

Bh
A,i =

{
( y j , Ai ( y j , xh), ai, j ) | j ∈ J h1

}
and

Bh
B,l =

{
( y j , Bl( y j ), bl, j ) | j ∈ J h1

}
(13)

for all i ∈ I , l ∈ L , where ai, j ∈ ∂Ai ( y j , xh) and bl, j ∈ ∂Bl( y j ) are the subgradients and
J h1 is the set of indices. Moreover, we define bundles

Bh
A =

⋃

i∈I
Bh
A,i , Bh

B =
⋃

l∈L
Bh
B,l , and Bh

1 = Bh
A

⋃
Bh
B .

For every j ∈ J h1 , we have one element in Bh
1 related to ( y j , H1( y j , xh), h1, j ), where

h1, j ∈ ∂H1( y j , xh). The bundle related to H2 is

Bh
2 =

{
( y j , H2( y j ), h2, j ) | j ∈ J h2

}
, (14)
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where h2, j ∈ ∂H2( y j ) and J h2 is the set of indices. Note that the only restriction for the
bundles Bh

1 and Bh
2 is that they must contain the triplets related to the current iteration point

xh .
In the spirit of Theorem 2, we derive a method producing solutions x∗ ∈ X such that

0 ∈ ∂H(x∗, x∗). First, our aim is to find a search direction dh ∈ R
n by solving the problem

min
d∈Rn

H(xh + d, xh). (15)

In order to approximate the problem (15), we utilize the cutting plane model which is based
on the one presented in [16]. With this new model, we can take into account both the convex
and the concave behaviour of H( · , xh) by linearizing its DC components separately.

The convex DC components of H( · , xh) can be linearized by using the classical cutting
plane model [20,28,38]. We linearize all the components Ai ( · , xh) and Bl of the first DC
component H1( · , xh):

Âh
i (x) = max

j∈Jh1

{
Ai (xh, xh) + aTi, j (x − xh) − αA

i, j

}
and

B̂h
l (x) = max

j∈Jh1

{
Bl(xh) + bTl, j (x − xh) − αB

l, j

}
,

where ai, j ∈ ∂Ai ( y j , xh) and bl, j ∈ ∂Bl( y j ) for j ∈ J h1 . The linearization errors evaluated
at xh for all j ∈ J h1 are

αA
i, j = αA

i (xh, y j ) = Ai (xh, xh) − Ai ( y j , xh) − aTi, j (xh − y j ) for all i ∈ I

αB
l, j = αB

l (xh, y j ) = Bl(xh) − Bl( y j ) − bTl, j (xh − y j ) for all l ∈ L.

Additionally, for each j ∈ J h1 we denote by αH
1, j the linearization error associated with

the triplet ( y j , H1( y j , xh), h1, j ) ∈ Bh
1 . Thus, the linearization of the first DC component

H1( · , xh) is
Ĥ h
1 (x) = max

{
Âh
i (x), B̂h

l (x) | i ∈ I , l ∈ L
}

. (16)

Similarly, we can linearize the second DC component H2 by

Ĥ h
2 (x) = max

j∈Jh2

{
H2(xh) + hT2, j (x − xh) − αH

2, j

}
, (17)

where h2, j ∈ ∂H2( y j ) for j ∈ J h2 and the linearization error evaluated at xh for all j ∈ J h2
is

αH
2, j = αH

2 (xh, y j ) = H2(xh) − H2( y j ) − hT2, j (xh − y j ).

Furthermore, all the linearization errors are nonnegative [20].
Finally, we approximate H( · , xh) by combining the convex cutting planemodels of itsDC

components. Thus, we obtain the following piecewise linear, nonconvex DC approximation
of H( · , xh):

Ĥ h(x) = Ĥ h
1 (x) − Ĥ h

2 (x).

The problem (15) is now estimated with the nonsmooth nonconvex DC problem

min
d∈Rn

Ph(d) = Ĥ h
1 (xh + d) − Ĥ h

2 (xh + d) + 1

2t
‖d‖2, (18)
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where t > 0 is a proximity parameter used widely at bundle methods while the convex
stabilizing term 1

2t ‖d‖2 keeps the approximation local enough and ensures the existence
of the search direction. The search direction obtained as a solution of the problem (18) is
denoted by dht .

We give the following propertiesmaking it legitimate to apply the new cutting planemodel
Ĥ h .

Lemma 1 The following properties hold:

(i) Ĥ h
1 (xh + d) ≤ H1(xh + d, xh) and Ĥh

2 (xh + d) ≤ H2(xh + d).

(ii) For any t > 0, we have Ĥh(xh + dht ) − H(xh, xh) ≤ − 1
2t ‖dht ‖2 ≤ 0.

Proof (i) These follow immediately from the definition of the cutting plane model.
(ii) For the feasible solution d ′ = 0 of (18), Ĥ h

1 (xh + 0) ≤ H1(xh, xh) and

Ĥ h
2 (xh + 0) = max

j∈Jh2

{
H2(xh) − αH

2, j

}
= H2(xh),

since xh is included in Bh
2 implying that there exists at least one j ∈ J h2 such that αH

2, j = 0.
Thus,

Ĥ h(xh + d ′) + 1

2t
‖d ′‖2 = Ĥ h

1 (xh + 0) − Ĥ h
2 (xh + 0)

≤ H1(xh, xh) − H2(xh) = H(xh, xh),

and for the global solution dht of the problem (18), we obtain

Ĥ h
(
xh + dht

)
+ 1

2t
‖dht ‖2 ≤ Ĥ h(xh + d ′) + 1

2t
‖d ′‖2 ≤ H(xh, xh). ��

The solution dht of the problem (18) can be shown to be always bounded.

Lemma 2 For any proximity parameter t > 0, it holds that

‖dht ‖ ≤ 2t
(‖h1(xh)‖ + ‖h2,max‖

)
,

where h1(xh) ∈ ∂H1(xh, xh) and ‖h2,max‖ = max j∈Jh2
{‖h2, j‖}.

Proof Our proof begins with the following observation which is based on (17):

Ĥ h
2 (xh + d) ≤ H2(xh) + max

j∈Jh2

{
hT2, j d

} ≤ H2(xh) + ‖h2,max‖‖d‖. (19)

Now the triplet (xh, H1(xh, xh), h1(xh)), where h1(xh) ∈ ∂H1(xh, xh), belongs to Bh
1 , and

from (16) it follows that for all d ∈ R
n

Ĥ h
1 (xh + d) ≥ H1(xh, xh) + h1(xh)T d − αH

1 = H1(xh, xh) + h1(xh)T d, (20)

whereαH
1 , equalling to zero, is the linearization error associated to the triplet (xh, H1(xh, xh),

h1(xh)).
We establish the claim by combining (19), (20) and Lemma 1 (ii). Thus,

− 1

2t
‖dht ‖2 ≥ Ĥ h(xh + dht ) − H(xh, xh) ≥ −

(
‖h1(xh)‖ + ‖h2,max‖

)
‖dht ‖. ��
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In order to solve globally the direction finding problem (18), we notice that the DC
components of Ph are Ĥ h

1 (xh + d) + 1
2t ‖d‖2 and Ĥ h

2 (xh + d). Furthermore, the second DC

component Ĥ h
2 is polyhedral convex meaning that Ĥ h

2 is of the formmax{uTk x−vk | k ∈ K},
where uk ∈ R

n , vk ∈ R, and K is finite. Thus, we employ the solution approach presented
in [21,22,35] to obtain the global solution of the problem (18).

We can reformulate the objective function Ph of the problem (18) by recalling (17) in the
form

Ph(d) = min
j∈Jh2

{
Ph
j (d) = Ĥ h

1 (xh + d) − H2(xh) − hT2, j d + αH
2, j + 1

2t
‖d‖2}.

Therefore, we obtain

min
d∈Rn

min
j∈Jh2

{
Ph
j (d)

} = min
j∈Jh2

min
d∈Rn

{
Ph
j (d)

}
,

and for this reason, the order of the minimization can be changed in the problem (18). Thus,
due to the size of the bundle Bh

2 , we solve |J h2 | convex, nonsmooth subproblems

min
d∈Rn

Ph
j (d) = Ĥ h

1 (xh + d) − H2(xh) − hT2, j d + αH
2, j + 1

2t
‖d‖2, (21)

where j ∈ J h2 and the solution of the subproblem j ∈ J h2 is denoted by dht ( j). Moreover,
the overall global solution dht of the problem (18) is dht = dht ( j∗), where the index j∗ =
argmin

{
Ph
j

(
dht ( j)

) | j ∈ J h2
}
. In practice, the size of Bh

2 can be freely chosen such that

|J h2 | ≥ 1, and thus, we can control the amount of computation. The solution process can be
eased by rewriting (21) as a smooth problem and solving its dual.

3.2 Guaranteeing weak Pareto stationarity

In order to avoid the bad behaviour of Pareto critical points discussed in Sect. 2, we ensure
approximate weak Pareto stationarity in MDBDC. By Theorem 2 (iii), x∗ ∈ R

n is weakly
Pareto stationary, if x∗ is Clarke stationary for H( · , x∗). Thus, it is sufficient to consider
the single-objective DC problem (15). Since we use only the DC structure of this problem, a
natural approach would be to verify the criticality condition (7). However, Clarke stationarity
is harder to obtain, and to achieve this, we apply the escaping procedure presented in [17].
The beauty of this procedure lies in its ability to ensure that ξ1 − ξ2 such that ξ1 ∈ ∂p(x),
ξ2 ∈ ∂q(x) belongs to the subdifferential of f = p − q at x ∈ R

n . Moreover, if a point is
not Clarke stationary, then the procedure generates a descent direction.

We describe here only the most essential parts of this procedure, and all the results pre-
sented regarding this procedure are valid for any DC function even if we give them here for
H( · , y) = H1( · , y) − H2. For more details we refer to [17]. The escaping procedure needs
one mild assumption holding in nearly all practical applications:

A1 : The subdifferentials ∂H1(x, y) and ∂H2(x) are polytopes for each x ∈ R
n .

Recall that the directional derivative of a convex function can be written like (3). Now
we denote the directional derivatives of H1(x, y) and H2(x) with respect to x ∈ R

n in the
direction d ∈ R

n by

H ′
1(x; d) = max {wT d | w ∈ ∂H1(x, y)} and

H ′
2(x; d) = max {wT d | w ∈ ∂H2(x)}.
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For any d ∈ R
n , d �= 0, we define the sets

σ1(x, y; d) = {ξ ∈ ∂H1(x, y) | ξ T d = H ′
1(x; d)} and

σ2(x; d) =
{
ξ ∈ ∂H2(x) | ξ T d = H ′

2(x; d)
}

.

Furthermore, let TDC be a set of full measure at the point x ∈ R
n such that σ1(x, y; d) and

σ2(x; d) are singletons for any d ∈ TDC .

Theorem 3 [17] Let x, y ∈ R
n, d ∈ TDC , σ1(x, y; d) = {ξ1} and σ2(x; d) = {ξ2}. Then

ξ1 − ξ2 ∈ ∂H(x, y).

Based on this result, in order to compute ξ ∈ ∂H(x, y) utilizing the DC components, we
need to find for any d ∈ R

n a direction d̄ ∈ TDC such that ‖d − d̄‖ < δ for any sufficiently
small δ ∈ (0, 1).

The escaping procedure bases on the following result:

Theorem 4 [17] Let x ∈ R
n, d ∈ R

n be any direction such that d �= 0 and the assumption
A1 be valid. Then for a given v ∈ V , where V = {v ∈ R

n | v = (v1, . . . , vn), |vi | = 1, i =
1, . . . , n}, there exists α0 ∈ (0, 1] such that for all α ∈ (0, α0]:
(i) d̄(α) = d + en(α) ∈ TDC , where en(α) = (αv1, α

2v2, . . . , α
nvn).

(ii) σ1(x, y; d̄(α)) ⊂ σ1(x, y; d) ⊆ ∂H1(x, y) and σ2(x; d̄(α)) ⊂ σ2(x; d) ⊆ ∂H2(x) for
all y ∈ R

n.
(iii) ξ1 − ξ2 ∈ ∂H(x, y) for ξ1 ∈ σ1(x, y; d̄(α)), ξ2 ∈ σ2(x; d̄(α)), and all y ∈ R

n.

In order to estimate the subdifferential ∂H(x, y), we briefly introduce the Goldstein ε-
subdifferential for the improvement function H( · , y) [28]:

∂Gε H(x, y) = cl conv{∂H(z, y) | z ∈ B(x; ε)}.
Thus ∂H(x, y) ⊆ ∂Gε H(x, y) for each ε ≥ 0 and the smaller the parameter ε is, the better
estimate we get. In Algorithm 1, D1 = {d ∈ R

n | ‖d‖ = 1} is a unit sphere in Rn and the set
Uj is an approximation of ∂Gε H(x, y) such that Uj ⊂ ∂Gε H(x, y) for all iterations j ≥ 0.

3.3 Algorithm

In this section, we combine the above presented subsections and give a detailed description of
MDBDC. In order to guarantee the convergence of MDBDC, we suppose thatA1 is satisfied
along with the following assumption for the level set at the starting point x0 ∈ X :

A2 : The level set F0 = {x ∈ X | fi (x) ≤ fi (x0), for all i ∈ I } is compact.

To simplify the presentation, we divide MDBDC into four algorithms. Algorithm 2 gives
the outline of the whole method while Algorithm 3 describes the main iteration of MDBDC
being the heart of the method by producing new iteration points. Additionally, we use Algo-
rithm 1 presented in Sect. 3.2 to ensure weak Pareto stationarity and the scaling procedure
Algorithm 4 described later in this section. The scaling procedure is applied in order to avoid
numerical difficulties.

The proximity parameter t is updated in two places: during the execution of the main
iteration and between two main iterations. In the latter case, the updating procedure in Step
2 of Algorithm 2 is inspired by the weighting update method given in [20], and t may either
increase or decrease. In Step 5 of Algorithm 3, t may only decrease.
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Algorithm 1 Escaping procedure
Data: The point x ∈ R

n under consideration, the descent parameter m1 ∈ (0, 1), the stopping tolerance
δ ∈ (0, 1), and the proximity measure ε > 0.

Step 0. (Initialization) Select the direction d0 ∈ D1 and find d̄0(α) ∈ TDC at x using d0. Compute
ξ1 ∈ σ1(x, x; d̄0(α)) and ξ2 ∈ σ2(x; d̄0(α)). Set U0 = {ξ1 − ξ2}, x̃ = x and j = 0.

Step 1. (Clarke stationarity) Find ū j as the solution of the problem

min
u∈U j

1

2
‖u‖2.

If ‖ū j‖ ≤ δ, then approximate Clarke stationarity is obtained and EXIT with x+ = x.
Step 2. (Search direction) Compute the search direction d j+1 = −ū j /‖ū j‖.
Step 3. (New subgradient) Find d̄ j+1(α) ∈ TDC at x̃ using d j+1. Compute ξ1 ∈ σ1(x̃, x̃; d̄ j+1(α)) and

ξ2 ∈ σ2(x̃; d̄ j+1(α)). Set ξ̄ j+1 = ξ1 − ξ2. If x �= x̃, then go to Step 5.

Step 4. (Descent test) If (ξ̄ j+1)
T d j+1 ≤ −m1‖ū j‖, then go to Step 6.

Step 5. (Update) Set Uj+1 = conv {Uj
⋃{ξ̄ j+1}}, x̃ = x and j = j + 1. Go to Step 1.

Step 6. (Step-length) Calculate

β∗ = argmax{β > 0 | H(x + βd j+1, x) − H(x, x) ≤ −m1β‖ū j‖}.

If β∗ > ε, then x+ = x + β∗d j+1, and EXIT. Otherwise, x̃ = x + β∗d j+1 and go to Step 3.

Algorithm 2Multiobjective double bundle method for DC optimization (MDBDC)
Data: The stopping tolerance δ ∈ (0, 1), the proximity measure ε > 0, the enlargement parameter θ > 0,
the quality measure η ≥ 0, the decrease parameters r, c1, c2, c3 ∈ (0, 1), the increase parameter R > 1, the
descent parameters m1,m2 ∈ (0, 1) and m3 ∈ (m2, 1), and the threshold τmax > 0.

Step 0. (Initialization) Select x0 ∈ X and execute Algorithm 4 for scaling. Compute ai ∈ ∂Ai (x0, x0)
for all i ∈ I , bl ∈ ∂Bl (x0) for all l ∈ L , and h2 ∈ ∂H2(x0). Initialize B0

1 and B0
2 by setting J01 =

J02 = {1} and B0
A,i = {

(ai , 0)
}
for all i ∈ I , B0

B,l = {
(bl , 0)

}
for all l ∈ L , and B0

2 = {
(h2, 0)

}
.

Set t = tmin = tmax = 0. Initialize the counters h = 0 and τ = 0.
Step 1. (Main iteration) Find a new iteration point xh+1 by executing Algorithm 3. If xh+1 = xh , then

Clarke stationarity is achieved, and STOP with x∗ = xh as the final solution.
Step 2. (Parameter update) Initialize t̃ = t .

(a) If H(xh+1, xh) − H(xh , xh) ≤ m3
(
Ĥh(xh+1) − H(xh , xh)

)
and τ > 0, set

t̃ = 0.5t
Ĥ h(xh+1) − H(xh , xh)

Ĥh(xh+1) − H(xh+1, xh)

and go to Step 2(c).
(b) If τ > 3, then set t̃ = 2t .
(c) Set t+ = max

{
min{t̃, 10t, tmax}, tmin

}
and τ = max{1, τ + 1}. If t �= t+, then update

t = t+ and τ = 1.

Step 3. (Bundle update) Select the bundles Jh+1
1 ⊆ Jh1 and Jh+1

2 ⊆ Jh2 . Update the linearization errors

using (22) for all the elements in Bh+1
1 and Bh+1

2 . Compute ai ∈ ∂Ai (xh+1, xh+1) for all i ∈ I ,

bl ∈ ∂Bl (xh+1) for all l ∈ L , and h2 ∈ ∂H2(xh+1). Insert (ai , 0) and (bl , 0) into Bh+1
1 for all

i ∈ I , l ∈ L , and (h2, 0) into Bh+1
2 . Select an index j corresponding to these insertions and add j

into Jh+1
1 and Jh+1

2 . Set h = h + 1 and go to Step 1.
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We begin by discussing about Algorithm 2. First we notice that the linearization errors
can be updated by using the following formulas for all i ∈ I and l ∈ L

αA
i (xh+1, y j ) =αA

i (xh, y j ) + Ãi (xh+1) − Ãi (xh) − aTi, j (xh+1 − xh)

αB
l (xh+1, y j ) =αB

l (xh, y j ) + Bl(xh+1) − Bl(xh) − bTl, j (xh+1 − xh)

αH
2 (xh+1, y j ) =αH

2 (xh, y j ) + H2(xh+1) − H2(xh) − hT2, j (xh+1 − xh), (22)

where Ãi (x) = Ai (x, x) + fi (x). Thus, we store only elements (ξ , α) in Bh
1 and Bh

2 , where
ξ is a subgradient and α is the corresponding linearization error instead of the triplets in (13)
and (14).

In the beginning of Step 3, the bundles Bh+1
1 and Bh+1

2 can be freely chosen, and it is
possible to reset either the bundleBh+1

1 orBh+1
2 or even both. However, both of these bundles

must contain at least one element in Step 1. This is guaranteed, since at the end of Step 3,
we add elements corresponding to the new iteration point xh+1 into both bundles.

Algorithm 3Main iteration for MDBDC
Data: The stopping tolerance δ ∈ (0, 1), the enlargement parameter θ > 0, the quality measure η ≥ 0, the
decrease parameters r, c1, c2, c3 ∈ (0, 1), the increase parameter R > 1, the descent parameter m2 ∈ (0, 1),
the threshold τmax > 0, and the subgradients h1(xh) ∈ ∂H1(xh , xh) and h2(xh) ∈ ∂H2(xh).

Step 0. (Initialization) Set dt = 0. Calculate j∗ = argmax j∈J2 {‖h2, j‖} and set h2,max = h2, j∗ ,

tmin = r · θ

2(‖h1(xh)‖ + ‖h2,max‖) , (23)

and tmax = Rtmin. If t /∈ [tmin, tmax], then select t ∈ [tmin, tmax].
Step 1. (Criticality) If ‖h1(xh) − h2(xh)‖ < δ, then go to Step 3.
Step 2. (Search direction) Calculate the search direction dt as a solution of (18).
Step 3. (Clarke stationarity) If ‖dt‖ < δ or Ĥ(xh + dt ) − H(xh , xh) > −η, then execute Algorithm 1

for the point xh . Set xh+1 = x+ and τ = 0, and EXIT.
Step 4. (Descent test) Set y = xh + dt . If

H( y, xh) − H(xh , xh) ≤ m2
(
Ĥ

(
y) − H(xh , xh)

)
, (24)

then set xh+1 = y and EXIT.
Step 5. (Bundle update)Compute ai ∈ ∂Ai ( y, xh) andαA

i (xh , y) for all i ∈ I , bl ∈ ∂Bl ( y) andαB
l (xh , y)

for all l ∈ L , and h2 ∈ ∂H2( y) and αH
2 (xh , y).

(a) If y /∈ F0 and ‖dt‖ > θ , then set t = t − c1(t − tmin) and τ = 0. Go to Step 2.
(b) If τ ≥ −τmax, then t = t − c2(t − tmin). Otherwise, t = t − c3(t − tmin). Set τ =

min{−1, τ − 1}. Insert (ai , αA
i (xh , y)) and (bl , αB

l (xh , y)) into B1 for all i ∈ I , l ∈ L , and

(h2, αH
2 (xh , y)) into B2. Select a suitable index j corresponding to these insertions and add

j into J1 and J2.

Step 6. (Parameter update) If ‖h2‖ > ‖h2,max‖, then set h2,max = h2 and update tmin using (23). Go to
Step 2.

Next we discuss about the main iteration of MDBDC in Algorithm 3. Since the current
iteration point xh does not change during the execution of Algorithm 3, we omit the index
h, expect for xh , to simplify the algorithm. The execution of Algorithm 3 either yields a new
iteration point or ensures Clarke stationarity of our current solution.

In practice, the sizes of the bundles are limited. The size of B1 has to be large enough
to contain space for elements related to both BA and BB meaning that |J1| ≥ k + m. On
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the other hand, we can control the number of subproblems solved in Step 2 being the most
time-consuming part of Algorithm 3. The only restriction is that (h2(xh), 0)must be included
into B2, and therefore, |J2| ≥ 1.

Due to the DC decomposition of the improvement function, one objective may dominate
the others and hide their effect if the magnitudes of objective function values differ a lot.
To avoid this, MDBDC contains a scaling procedure presented in Algorithm 4. With this
procedure,weobtainmodifiedobjective functionsmaintaining the sameoptima as the original
objectives.

Algorithm 4 Scaling procedure

Step 1. Calculate i∗ = argmin
{ | fi (x0)|

∣∣ i ∈ I
}
.

Step 2. For each i ∈ I , search the value κi such that 10κi−1 ≤ | fi (x0)| ≤ 10κi . If κi < 0, then κi = 0.
Step 3. For each i ∈ I , set νi = κi∗ − κi . If νi ≤ −2, then νi = νi + 1. Set ωi = 10νi and fi = ωi fi

being the scaled objective function.

3.4 Convergence

We devote this section to prove the convergence of MDBDC. This convergence analysis is
divided as follows: Lemmas 4 and 5 are auxiliary results and Lemmas 3 and 6 are summarized
by saying that there does not exists any infinite cycle in Algorithm 3. Finally, in Theorem
5 we state that MDBDC stops after a finite number of iterations and Theorem 6 considers
weak Pareto stationarity of the solution. Throughout the convergence analysis, we assume
that A1 and A2 are valid. Additionally, for θ > 0 we define Fθ = {x ∈ R

n | d(x,F0) ≤ θ},
where d(x,F0) = inf {‖x − z‖ | z ∈ F0}.

We begin recalling Theorem 4.9 in [17] asserting a finite upper bound for the number of
iterations of Algorithm 1.

Lemma 3 [17] Let the assumption A1 be valid and the level set F = {z ∈ R
n | H(z, x) ≤

H(x, x)} be compact for x ∈ R
n. Algorithm 1 terminates after at most

⎡

⎢⎢⎢

ln( δ2

K 2 )

ln(1 − (1−m1)2δ2

8K 2 )

⎤

⎥⎥⎥

iterations, where �·� is a ceiling of the number, m1 ∈ (0, 1), and K > δ > 0 is the Lipschitz
constant of H( · , y) at the point x ∈ R

n, when y = x.

The following auxiliary result is proved similarly to Lemma 3 in [16].

Lemma 4 If the condition (24) in Step 4 of Algorithm 3 is not satisfied, then

ξ T1 dt − α1 > m2
(
Ĥ1( y) − H1(xh, xh)

) + (1 − m2)
(
Ĥ2( y) − H2(xh)

)
,

where y = xh + dt , ξ1 ∈ ∂H1( y, xh) and α1 = H1(xh, xh) − H1( y, xh) + ξ T1 dt .

Proof If (24) does not hold, then by Lemma 1 (i)

H1( y, xh) − H1(xh, xh) > m2(Ĥ( y) − H(xh, xh)
) + Ĥ2( y) − H2(xh),
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when we use the DC decomposition of H( · , xh). We obtain the result by noticing that
H1( y, xh) − H1(xh, xh) = ξ T1 dt − α1, when ξ1 ∈ ∂H1( y, xh) and α1 = H1(xh, xh) −
H1( y, xh) + ξ T1 dt . ��
Before stating the finite convergence of Algorithm 3, we collect some crucial observations.

Lemma 5 Let the assumption A2 be valid. During each execution of Algorithm 3

(i) xh ∈ Fθ and y j ∈ Fθ for all j ∈ J1 ∪ J2.
(ii) there exists C > 0 such that ‖xh − y j‖ < C for every y j ∈ B1 ∪ B2.
(iii) ai, j ∈ ∂Ai ( y j , xh) and bl, j ∈ Bl( y j ) and αA

i, j and αB
l, j for all i ∈ I , l ∈ L, and j ∈ J1

are bounded.
(iv) h2, j ∈ ∂H2( y j ) and αH

2, j for all j ∈ J2 are bounded.
(v) tmin is bounded from below with a positive threshold and tmax is bounded from above.

Proof (i) The points y j on B1 and B2 are ensured to belong to Fθ by Step 5 of Algorithm 3.
In addition, xh is on Fθ , since each iteration point decreases the value of the objectives.
(ii) The set Fθ is compact by A2, and together with (i), this implies the claim.
(iii) Every Ai ( · , xh) and Bl for all i ∈ I and l ∈ L are LLC. Thus, there exists a Lipschitz
constant for each of these functions on Fθ . Fix K1 > 0 overestimating these constants. Now
‖ai, j‖ ≤ K1 and ‖bl, j‖ ≤ K1 for all i ∈ I , l ∈ L and j ∈ J1 by (i). Combining (ii) with the
above observations,

|αA
i, j | ≤ |Ai (xh, xh) − Ai ( y j , xh)| + ‖ai, j‖‖xh − y j‖

≤ K1‖xh − y j‖ + K1C ≤ 2K1C

for all i ∈ I and j ∈ J1. Similarly, we can show that |αB
l, j | ≤ 2K1C for every l ∈ L and

j ∈ J1.
(iv) The proof is similar to (iii), since H2 is LLC with a Lipschitz constant K2 > 0 on Fθ .
(v) From (iii) and (iv) we can derive that tmin ≥ t̄min = rθ

2(K1+K2)
> 0 yielding the positive

lower bound for tmin. If the condition in Step 1 of Algorithm 3 is not satisfied, then

δ ≤ ‖h1(xh) − h2(xh)‖ ≤ ‖h1(xh)‖ + ‖h2(xh)‖ ≤ ‖h1(xh)‖ + ‖h2,max‖.
The upper bound for tmax is obtained, since

tmax ≤ t̄max = Rrθ

2δ
< ∞. (25)

��
Nextwe are in a position to show the same kind of a result as Lemma 5 in [16] guaranteeing

that we do not have an infinite loop in Algorithm 3.

Lemma 6 Let the assumption A2 be valid. For any δ ∈ (0, 1), Algorithm 3 cannot pass
infinitely through the sequence of Steps from 2 to 6.

Proof Suppose that Steps from 2 to 6 are executed infinitely.We index by i ∈ I the quantities
related to the i-th passage. Now ‖dit ‖ ≥ δ for each i ∈ I, sinceAlgorithm1 cannot be entered.

Assume that Step 5(a) is passed infinitely. In Step 5, the proximity parameter t decreases
at each pass and converges to tmin, since tmin is monotonically decreasing and by Lemma 5
(v), it is bounded from below. In addition, tmin is always smaller than the threshold

ρ = θ

2
(‖h1(xh)‖ + ‖hi2,max‖

) ,
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and therefore, after a finite number of passes t < ρ. This yields a contradiction, since
‖dit ‖ ≤ θ by Lemma 2 and Step 5(a) can no longer be executed.

Due to Lemma 2, the parameter selection rule t ∈ [tmin, tmax], and Lemma 5 (iii)–(v),
the sequence {dit }i∈I is bounded. Thus, there exists a convergent subsequence {dit }i∈I′⊆I .
Additionally, by combining Lemma 5 (iii) and (iv), the sequences {Ĥ1( yi )}i∈I′⊆I and
{Ĥ2( yi )}i∈I′⊆I are bounded. Hence, these sequences have the convergent subsequences
for i ∈ I ′′ ⊆ I ′ and their limits are denoted by Ĥ∗

1 and Ĥ∗
2 , respectively. From Lemma 1 (ii)

and ‖dit ‖ ≥ δ, we obtain for all i ∈ I

Ĥ1( yi ) − Ĥ2( yi ) − H(xh, xh) ≤ − 1

2ti
‖dit ‖2 ≤ − δ2

2ti
< 0. (26)

Let t∗ = limi→∞ ti . Now t∗ > 0 exists, since the sequence {ti }i∈I is nonincreasing and
bounded from below with a positive threshold by Lemma 5 (v), and t ∈ [tmin, tmax]. Finally,
passing to the limit in (26) yields

Ĥ∗
1 − Ĥ∗

2 − H(xh, xh) ≤ − δ2

2t∗
< 0. (27)

To obtain a contradiction, we consider two successive indices v and w in I ′′ and let
α1,v = H1(xh, xh) − H1( yv, xh) + ξ Ti,vd

v
t , where ξi,v ∈ ∂H1( yv, xh). Now Lemma 4 gives

ξ T1,vd
v
t − α1,v > m2

(
Ĥ1( yv) − H1(xh, xh)

) + (1 − m2)
(
Ĥ2( yv) − H2(xh)

)

and by the definition of Ĥ1, we get Ĥ1
(
yw

) − H1(xh, xh) ≥ ξ T1,vd
w
t − αi,v. By combining

these two inequalities, we conclude

ξ T1,v
(
dv
t − dw

t

)
>m2 Ĥ1

(
yv

) − Ĥ1
(
yw

) + (1 − m2)
(
Ĥ2

(
yv

) + H(xh, xh)
)
.

A passage to the limit yields (m2 − 1)
(
Ĥ∗
1 − Ĥ∗

2 − H(xh, xh)
)

< 0, but since m2 ∈ (0, 1),
the property (27) cannot hold. ��
Summarizing, we have now considered all the possibilities where the infinite cycle may hap-
pen in Algorithm 3. We have thus led to the following theorem stating the finite convergence
of MDBDC.

Theorem 5 Let the assumptions A1 and A2 be valid. For any δ ∈ (0, 1) and ε > 0, the
execution of Algorithm 2 stops after a finite number of iterations at the point x∗ satisfying
the approximate Clarke stationary condition ‖ξ∗‖ ≤ δ, where ξ∗ ∈ ∂Gε H(x∗, x∗).

Proof The execution of Algorithm 2 can stop only if the Clarke stationary point x∗ is found in
Step 1. This means that the stopping condition is satisfied in Step 1 of Algorithm 1. Assume,
that Algorithm 2 is executed infinitely and this stopping condition is not satisfied.

By Lemmas 3 and 6, the new iteration point xh+1 is obtained after a finite number of
iterations in Step 3 or 4 of Algorithm 3. If the new iteration point xh+1 is found in Step 3,
then we have found a direction with a sufficient descent and a step length β∗ > ε such that

H(xh+1, xh) − H(xh, xh) < −m1εδ < 0.

Otherwise, the new iteration point xh+1 is found in Step 4 of Algorithm 3 and

H(xh+1, xh) − H(xh, xh) ≤ m2(Ĥ(xh + dt ) − H(xh, xh)).
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Therefore, from (25) and (26), we can deduce that

H(xh+1, xh) − H(xh, xh) ≤ −m2δ
2

2t̄max
< 0.

Thus, after each iteration H(xh+1, xh) − H(xh, xh) ≤ −σ < 0, where

σ = min
{
m1εδ,

m2δ
2

2t̄max

}
> 0.

By recalling the definition of H( · , xh) in (10), H(xh, xh) = 0. Thus, we obtain
H(xh+1, xh) ≤ −σ, and especially,

fi (xh+1) − fi (xh) < −σ < 0 for all i ∈ I .

After the h-th iteration,

fi (xh) − fi (x0) ≤ −hσ for all i ∈ I

and passing to the limit h → ∞ yields

lim
h→∞ fi (xh) − fi (x0) ≤ −∞ for all i ∈ I .

This yields a contradiction, since based on the assumptionA2 and Lipschitz continuity, every
fi , i ∈ I must be bounded from below. ��
Finally, we guarantee weak Pareto stationarity of the solution with a similar result than

Theorem 7 in [27].

Theorem 6 Let fi and gl be DC functions for all i ∈ I and l ∈ L. Suppose that the assump-
tions A1 and A2 are valid. Then, MDBDC stops after a finite number of iterations with the
solution x∗ being a weakly Pareto stationary point for the problem (1).

Proof Consider a single-objective unconstrained minimization problem with an improve-
ment function H( · , x) as its objective. According to Theorem 5, after a finite number of
iterations, MDBDC finds a solution x∗ ∈ R

n such that it is a Clarke stationary point for
H( · , x∗) yielding 0 ∈ ∂H(x∗, x∗). Thus, by Theorem 2 (iii) the solution x∗ is weakly
Pareto stationary for the problem (1). ��

4 Numerical experiments

In this section, we study the behaviour ofMDBDC.We have collected some academic single-
objective DC problems and combined those to obtain multiobjective DC problems. The
problems obtained are solved with MDBDC and MPB [27,30]. The aim of these numerical
tests is, on the one hand, to verify the usability of MDBDC in practice, and on the other hand,
to justify the use of the DC method instead of the general nonconvex method.

The implementation of MPB is done with Fortran 77 and it is described in [24]. MDBDC
is implemented with Fortran 95 and both implementations utilize the quadratic solver by
Lukšan described in [23]. Additionally, MPB applies an aggregation strategy [18,19]. The
implementation of MDBDC used can be downloaded from http://napsu.karmitsa.fi/mdbdc/.
The tests are performed under Linux Ubuntu system and f95 is used as a compiler. We
remark that in Step 6 of Algorithm 1 we update x̃ if the step-length β∗ < ε. However, in
practice, the implementation of MDBDC stops at this point and the final solution is x̃.
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The input parameters forMDBDCare chosen as follows: the stopping tolerance δ = 10−5,
the proximitymeasure ε = 10−4, the enlargement parameter θ = 5·10−5 the qualitymeasure
and the decrease parameters

η =

⎧
⎪⎨

⎪⎩

0, if n ≤ 100

10−5, if 100 < n ≤ 200

10−4, if n > 200

, r =

⎧
⎪⎨

⎪⎩

0.75, if n < 10
n

n+5 , if 10 ≤ n ≤ 300

0.99, if n > 300

,

c =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0.4, if n < 25

0.25, if 25 ≤ n < 100

0.1, if 100 ≤ n < 200

0.01, if 200 ≤ n < 300

0.001, if n ≥ 300

c1 = 0.5, c2 = min{0.5, c · (k − 1)} and c3 = 0.1, the increase parameter R = 1010, the
descent parameters m1 = m2 = 0.01 and m3 = 0.1, and the threshold τmax = 50. The
maximum size for the bundle B1 is selected to be min{(n + 5) · (k + m), 1000} and for the
bundle B2 it is 3. The size of Uj in Algorithm 1 is 2(n + 5). Note that MDBDC is quite
sensitive for the parameter selection, and by specifying the parameters for the problem, the
execution times of MDBDCmay improve a lot. The parameters selected for MPB are default
values [24].

The objective functions of the test problems are described in Table 1. The constraint
functions of the form g = r − s ≤ 0 are

C1 : r(x) = max
{
(x1 + 1.5)2 + (x1 − 1)2 + x22 + (x2 − 1)2 − 5, 0

}
,

s(x) = (x1 − 1)2 + (x2 − 1)2 − 1

C2 : r(x) = 0,

s(x) = max
{
x21 + x22 + x23 + x24 − 10, x1 + x2 + x3 + x4 − 5.5

}

C3 : r(x) = 0.5n,

s(x) =
n∑

i=1

(
xi + (−1)i+1 · 0.5)2

Note that C1 is a DC constraint and both C2 and C3 are concave. Finally, unconstrained
test problems for two and three objectives are described in Tables 2 and 3 respectively, and
constrained test problems are given in Table 4.

The results of the tests performed are reported in Tables 5, 6 and 7. In these tables, the
first column describes the problem solved and n is the dimension of the problem. In order

Table 1 Objective functions, O1−O7 from [16] and O8−O12 from [17]

Objective Function Objective Function Objective Function

O1 Problem 2 O5 Problem 7 O9 Problem 13

O2 Problem 3 O6 Problem 9 O10 Problem 14

O3 Problem 4 O7 Problem 10 O11 Problem 15

O4 Problem 6 O8 Problem 12 O12 Problem 16
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Table 2 Unconstrained testproblems with two objectives, i = 1, . . . , n

Problem f1 f2 x0 Problem f1 f2 x0

1. O1 O4 (− 1.2, 1) 6. O7 O9 xi0 = 0.1i

2. O1 O5 (− 0.5, 1) 7. O8 O9 xi0 = 2i

3. O1 O5 (− 1.2, 1) 8. O3 O7 xi0 = 0.1i

4. O4 O5 (− 2, 1) 9. O7 O8 xi0 = 2i

5. O2 O6 (4, 2, 4, 2) 10. O10 O11 xi0 = (−1)i+1

Table 3 Unconstrained
testproblems with three
objectives, i = 1, . . . , n

Problem f1 f2 f3 x0

11. O1 O4 O5 (− 1.2, 1)

12. O2 O3 O6 (1, 3, 3, 1)

13. O3 O7 O8 xi0 = 0.1i

14. O3 O7 O12 xi0 = 0.1i

15. O7 O10 O11 xi0 = 0.1i

Table 4 Testproblems with constraints, i = 1, . . . , n

Problem f1 f2 g1 x0 Problem f1 f2 f3 g1 x0

16. O1 O5 C1 (− 0.5, 1) 19. O1 O4 O5 C1 (− 1.2, 1)

17. O2 O6 C2 (4, 2, 4, 2) 20. O2 O3 O6 C2 (1,3,3,1)

18. O7 O8 C3 xi0 = 2i 21. O3 O7 O12 C3 xi0 = 0.1i

to compare the methods, we have given the number of function calls n f , the number of
subgradient evaluations nξ and the CPU time. Since for MPB n f = nξ , only nξ is reported
in addition to the CPU time. In practice, n f and nξ tell the number of function values
and subgradients evaluated for each objective and constraint. Lastly, the column f (x∗) =
( f1(x∗), . . . , fk(x∗)) describes the solution obtained.

Two example executions of MDBDC are illustrated in Fig. 1. In these figures, dashed
gray contours correspond to O1 and the gray contours correspond to O5. The optimum of
the objectiveO1 is at the point x∗ = (0.50, 0.50) marked with a gray disk, and the optimum
of the objective O5 is at the point x∗ = (1.00, 1.00) marked with a gray circle. The black
curve in Fig. 1b presents the constraintC1. In Fig. 1a, we obtain a solution x∗ = (0.50, 0.50)
such that f (x∗) = (0.50, 0.50) being an individual optimum of the objective O1 as well. In
Fig. 1b, we have added the constraint C1 such that neither of the optima of the individual
objectives is feasible. Now we get a solution x∗ = (0.29, 0.29) and f (x∗) = (0.71, 0.71).
This solution lies on the same line as where the individual optima are and the constraint is
active.

In Table 5, test problems 2 and 3 are the same problemwith different starting points. In test
problem 2, we notice that MDBDC finds a solution having better values for both objectives
than the solution obtained with MPB. However, if we change a starting point a little, like in
test problem 3, both methods find equally good solutions. In general, we say that one solution
is better than the other if it has better values for all the objectives. Even if both MDBDC and
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(a) (b)

Fig. 1 The performance of MDBDC in the decision space. a Test problem 2. b Test problem 16

MPB find a weakly Pareto stationary solution, one might find a better solution. Reason for
this is a nonconvex feasible set in the objective space, since both local and global optima
satisfy the Pareto stationarity condition (6). In the test problems performed, MDBDC obtains
a better solution in 16 cases, the solutions are equally good in 36 cases, and both methods
fail in test problem 10 with n = 500. The better solutions obtained are bolded in Tables 5, 6
and 7.

In the computational point of view, MDBDC is a good alternative for MPB when objec-
tives and constraints are DC functions, even if it may sometimes require more computational
efforts. For instance, in test problem 8, MDBDC uses more function and subgradient eval-
uations in the cases where n = 10 and n = 100. However, compared with MPB, the
solutions obtained with MDBDC are better in both of those cases. Another example about
this kind of behaviour is seen in Fig. 1. In both test problems 2 and 16, we obtain a solution
x∗ = (0.00, 0.00) and f (x∗) = (1.00, 1.00) with MPB. As we see, in both of those cases
MDBDC visits also this point but can still continue forward. Generally speaking about the
computational efforts of MDBDC in the test problems, we notice that MDBDC uses less
function and subgradient evaluations in 27 cases, the number of evaluations are on the same
magnitude in 6 cases, and MPB uses less evaluations in 19 cases. However, in these 19 test
problems, MDBDC finds a better solution in half of the cases.

In Tables 5, 6 and 7, the columns n f and nξ for MDBDC contain the evaluations used
in Algorithm 3 and Algorithm 1. These evaluations are analyzed in Tables 8 and 9. In some
cases, like in test problem 8 with n = 250, we use a relatively high number of function
evaluations in Algorithm 1 even if we obtain only a small improvement in the last digits.
However, Algorithm 1 is very crucial for instance in test problem 10 with all the values
of n, since without Algorithm 1, we would not be able to continue from the starting point.
To conclude, we might need a relatively high number of evaluations to be able to stop, but
the Algorithm 1 produces also a new descent direction if a Clarke stationary solution is not
obtained.

To summarize, MDBDC performs well in the test problems reported. Indeed, in the small
test problems (2 ≤ n ≤ 100), the average number of function calls is 238.81 and the average
number of subgradient evaluations is 221.32 for MDBDC while the average number of
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Table 8 Function and
subgradient evaluations in main
iteration and Algorithm 1 for
unconstrained test problems

Problem n Main iteration Algorithm 1 Total

n f nξ n f nξ n f nξ

1. 2 7 7 2 2 9 9

2. 2 118 90 4 4 122 94

3. 2 70 53 14 5 84 58

4. 2 7 7 2 2 9 9

5. 4 25 23 5 3 30 26

6. 10 189 185 21 12 210 197

7. 10 151 152 24 13 175 165

8. 10 100 94 24 13 124 107

50 127 125 31 31 158 156

100 100 101 22 4 122 105

250 183 195 124 16 289 207

500 150 154 42 6 192 160

9. 10 59 59 18 9 77 68

50 91 90 5 3 96 93

100 218 221 69 31 287 252

250 218 217 15 4 233 221

500 155 157 48 10 203 167

10. 10 104 88 33 15 137 103

50 139 121 110 81 249 202

100 463 443 202 182 665 625

250 382 359 371 351 753 710

500 fail

11. 2 7 7 2 2 9 9

12. 4 93 77 6 4 99 81

13. 10 140 138 64 35 204 173

50 176 174 14 12 190 186

100 104 104 31 29 135 133

250 29 27 5 3 34 30

500 51 48 5 3 56 51

14. 10 320 317 3 3 323 320

50 13 11 4 4 17 15

100 32 32 3 3 35 35

250 144 142 4 4 148 146

500 195 192 4 4 199 196

15. 10 1767 1794 458 186 2225 1980

50 2159 2149 9 7 2168 2156

100 255 256 72 61 327 317

250 174 171 9 7 183 178

500 1070 1022 7 5 1077 1027
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Table 9 Function and
subgradient evaluations in main
iteration and Algorithm 1 for
constrained test problems

Problem n Main iteration Algorithm 1 Total

n f nξ n f nξ n f nξ

16. 2 40 36 4 2 44 38

17. 4 142 131 5 5 147 136

18. 10 21 21 3 3 24 24

50 61 61 4 4 65 65

100 47 47 3 3 50 50

250 107 121 158 30 265 151

500 41 48 81 16 122 64

19. 2 9 9 3 3 12 12

20. 4 49 33 5 5 54 38

21. 10 18 16 4 4 22 20

50 7 7 48 48 55 55

100 45 45 32 32 77 77

250 14 16 30 10 44 26

500 17 18 22 13 39 31

evaluations for MPB is 305.43. In the larger test problems reported (n > 100), the average
number of function calls is 257.00 and the average number of subgradient evaluations is
224.60 for MDBDC while the average number of evaluations for MPB is even 5277.87.
Thus, MDBDC uses less evaluations on average in the test problems reported. Furthermore,
MDBDC uses significantly less evaluations and CPU time in test problems 13–15 and 18
with n ≥ 250 than MPB. Additionally, by utilizing some kind of aggregation in MDBDC, it
might be possible to decrease the number of evaluations needed even more.

5 Conclusions

We have proposed a new descent method for the multiobjective DC optimization (MDBDC)
producing weakly Pareto stationary solutions, and the method is proved to be finitely con-
vergent under mild assumptions. This method can be used by executing it several times with
different starting points to obtain an approximation of the set of local weak Pareto optima.
Other possibility is to use MDBDC as a part of some interactive method like in [29,30,33].
Additionally, it can be used to solve single-objective DC problems with DC constraints to
obtain a Clarke stationary solution.

The numerical experiments show the good performance of the method. The results
obtained by comparing MDBDC and the multiobjective proximal bundle method [27,30]
validate the use of the method specially designed for multiobjective DC optimization instead
of the method for general nonconvex multiobjective optimization. With more accurate model
capturing the convex and the concave behaviour, we can learn more about the objectives and
hence obtain better solutions. In future, the implementation of MDBDC could be improved
by adding some sort of aggregation strategy [18,19]. Moreover, MDBDC could be used in
some practical applications, like data classification or cluster analysis.

123



428 J Glob Optim (2018) 72:403–429

References

1. Astorino, A., Miglionico, G.: Optimizing sensor cover energy via DC programming. Optim. Lett. 10(2),
355–368 (2016)

2. Bagirov, A., Karmitsa, N., Mäkelä, M.M.: Introduction to Nonsmooth Optimization: Theory, Practice and
Software. Springer, Cham (2014)

3. Bagirov, A., Yearwood, J.: A new nonsmooth optimization algorithm for minimum sum-of-squares clus-
tering problems. Eur. J. Oper. Res. 170(2), 578–596 (2006)

4. Bello Cruz, J.Y., Iusem, A.N.: A strongly convergent method for nonsmooth convex minimization in
Hilbert spaces. Numer. Funct. Anal. Optim. 32(10), 1009–1018 (2011)

5. Bonnel, H., Iusem, A.N., Svaiter, B.F.: Proximal methods in vector optimization. SIAM J. Optim. 15(4),
953–970 (2005)

6. Carrizosa, E., Guerrero, V., RomeroMorales, D.: Visualizing data as objects by DC (difference of convex)
optimization. Math. Program. (2017). https://doi.org/10.1007/s10107-017-1156-1

7. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
8. Gadhi, N., Metrane, A.: Sufficient optimality condition for vector optimization problems under DC data.

J. Global Optim. 28(1), 55–66 (2004)
9. Gaudioso, M., Giallombardo, G., Miglionico, G., Bagirov, A.: Minimizing nonsmooth DC functions

via successive DC piecewise-affine approximations. J. Global Optim. (2017). https://doi.org/10.1007/
s10898-017-0568-z

10. Gaudioso, M., Gruzdeva, T.V., Strekalovsky, A.S.: On numerical solving the spherical separability prob-
lem. J. Global Optim. 66(1), 21–34 (2016)

11. Hartman, P.: On functions representable as a difference of convex functions. Pac. J. Math. 9(3), 707–713
(1959)

12. Hiriart-Urruty, J.B.: Generalized differentiability, duality and optimization for problems dealing with
differences of convex functions. Lect. Note Econ. Math. Syst. 256, 37–70 (1985)

13. Holmberg, K., Tuy, H.: A production-transportation problem with stochastic demand and concave pro-
duction costs. Math. Program. 85(1), 157–179 (1999)

14. Horst, R., Thoai, N.V.: DC programming: overview. J. Optim. Theory Appl. 103(1), 1–43 (1999)
15. Ji, Y., Goh,M., de Souza, R.: Proximal point algorithms for multi-criteria optimization with the difference

of convex objective functions. J. Optim. Theory Appl. 169(1), 280–289 (2016)
16. Joki, K., Bagirov, A., Karmitsa, N., Mäkelä, M.M.: A proximal bundle method for nonsmooth DC opti-

mization utilizing nonconvex cutting planes. J. Global Optim. 68(3), 501–535 (2017)
17. Joki, K., Bagirov, A., Karmitsa, N., Mäkelä, M.M., Taheri, S.: Double bundle method for finding Clarke

stationary points in nonsmooth DC programming. SIAM J. Optim. (2018) (to appear)
18. Kiwiel, K.C.: An aggregate subgradient method for nonsmooth convex minimization. Math. Program.

27(3), 320–341 (1983)
19. Kiwiel, K.C.: A descent method for nonsmooth convex multiobjective minimization. Large Scale Syst.

8(2), 119–129 (1985)
20. Kiwiel, K.C.: Proximity control in bundle methods for convex nondifferentiable optimization. Math.

Program. 46(1), 105–122 (1990)
21. Le Thi, H.A., Pham Dinh, T.: Solving a class of linearly constrained indefinite quadratic problems by DC

algorithms. J. Global Optim. 11(3), 253–285 (1997)
22. Le Thi, H.A., Pham Dinh, T.: The DC (difference of convex functions) programming and DCA revisited

with DCmodels of real world nonconvex optimization problems. Annals Oper. Res. 133(1), 23–46 (2005)
23. Lukšan, L.: Dual method for solving a special problem of quadratic programming as a subproblem at

linearly constrained nonlinear minimax approximation. Kybernetika 20(6), 445–457 (1984)
24. Mäkelä, M.M.: Multiobjective Proximal Bundle Method for Nonconvex Nonsmooth Optimization: For-

tran Subroutine MPBNGC 2.0. Technical Representative B 13/2003, Reports of the Department of
Mathematical InformationTechnology, SeriesB, Scientific computing,University of Jyväskylä, Jyväskylä
(2003)

25. Mäkelä, M.M., Eronen, V.P., Karmitsa, N.: On Nonsmooth Multiobjective Optimality Conditions with
Generalized Convexities. Tech. Rep. 1056, TUCSTechnical Reports, Turku Centre for Computer Science,
Turku (2012)

26. Mäkelä, M.M., Eronen, V.P., Karmitsa, N.: On nonsmooth multiobjective optimality conditions with
generalized convexities. In: Rassias, T.M., Floudas, C.A., Butenko, S. (eds.) Optimization in Science and
Engineering, pp. 333–357. Springer, Berlin (2014)

27. Mäkelä, M.M., Karmitsa, N., Wilppu, O.: Proximal bundle method for nonsmooth and nonconvex multi-
objective optimization. In: Tuovinen, T., Repin, S., Neittaanmäki, P. (eds.) Mathematical Modeling and

123

https://doi.org/10.1007/s10107-017-1156-1
https://doi.org/10.1007/s10898-017-0568-z
https://doi.org/10.1007/s10898-017-0568-z


J Glob Optim (2018) 72:403–429 429

Optimization of Complex Structures, Computational Methods in Applied Sciences, vol. 40, pp. 191–204.
Springer, Berlin (2016)

28. Mäkelä, M.M., Neittaanmäki, P.: Nonsmooth Optimization: Analysis and Algorithms with Applications
to Optimal Control. World Scientific Publishing Co., Singapore (1992)

29. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)
30. Miettinen, K., Mäkelä, M.M.: Interactive bundle-based method for nondifferentiable multiobjective opti-

mization: NIMBUS. Optimization 34(3), 231–246 (1995)
31. Mistakidis, E.S., Stavroulakis, G.E.: Nonconvex Optimization in Mechanics. Smooth and Nonsmooth

Algorithms, Heuristics and Engineering Applications by the F.E.M. Kluwer Academic Publisher, Dor-
drecht (1998)

32. Moreau, J.J., Panagiotopoulos, P.D., Strang, G. (eds.): Topics inNonsmoothMechanics. Birkhäuser, Basel
(1988)

33. Mukai, H.: Algorithms for multicriterion optimization. IEEE Trans. Autom. Control ac–25(2), 177–186
(1979)
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