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This letter presents a new intelligent control scheme for the accurate tra-
jectory tracking of flexible link manipulators. The proposed approach
is mainly based on a sliding mode controller for underactuated systems
with an embedded artificial neural network to deal with modelling inac-
curacies. The adopted neural network only needs a single input and one
hidden layer, which drastically reduces the computational complexity
of the control law and allows its implementation in low-power micro-
controllers. Online learning, rather than supervised offline training, is
chosen to allow the weights of the neural network to be adjusted in real
time during the tracking. Therefore, the resulting controller is able to
cope with the underactuating issues and to adapt itself by learning from
experience, which grants the capacity to deal with plant dynamics prop-
erly. The boundedness and convergence properties of the tracking error
are proved by evoking Barbalat’s lemma in a Lyapunov-like stability
analysis. Experimental results obtained with a small single-link flexible
manipulator show the efficacy of the proposed control scheme, even in
the presence of a high level of uncertainty and noisy signals.

Introduction: Flexible link manipulators (FLMs), due to their slender
profile, are usually much lighter than rigid ones and provide not only a
larger payload ratio but also a higher energy efficiency [1, 2]. In view
of these advantages, their scope of application is rapidly expanding and
currently ranges from surgical tasks to space missions [3, 4]. However,
the elastic behaviour of flexible manipulators leads to an infinite number
of underactuated degrees of freedom and, in most cases, to undesired
structural vibrations [5, 6], which in fact makes the design of a control
scheme for this kind of robotic device quite challenging.

Due to their learning and approximation capabilities, artificial neural
networks (ANN) have been used to deal with the inherent non-linearities
and typical uncertainties of flexible robotic manipulators [7–9]. Never-
theless, it should be highlighted that ANN alone may not guarantee the
necessary robustness to allow safe operating conditions. On the other
hand, by combining ANN with non-linear control methods, the result-
ing intelligent controller is able to meet both stability and robustness
requirements while maintaining the learning and approximation features
provided by neural networks [10, 11].

Sliding mode control (SMC), in view of its robustness property, is un-
doubtedly a very appealing alternative for uncertain non-linear systems
like FLMs [12–14]. Notwithstanding the many advantages of SMC, a
well-known drawback of this method is the control chattering, which in
the case of FLMs can excite higher modes of vibration [15, 16]. In or-
der to avoid undesirable chattering effects, a thin boundary layer neigh-
bouring the switching surface can be adopted, but it usually spoils the
tracking performance, leading to a steady-state control error [17]. It has
already been shown [12–16] that the tracking error in flexible link ma-
nipulators can be reduced by combining ANN with SMC. However, it
should be noted that despite ANN’s ability to approximate the dynamics
of flexible link manipulators and to improve the tracking performance,
its architecture must be chosen very carefully, in order to avoid compu-
tational complexity and time-consuming issues related to large networks
[15].

This work proposes a new intelligent controller for the accurate tra-
jectory tracking of single-link flexible manipulators. The control law is
based on a sliding mode scheme for underactuated mechanical systems,
with an adaptive neural network embedded in it to deal with the un-

Fig. 1 Experimental setup of a single-link flexible manipulator

known dynamics of the FLM. The boundedness and convergence prop-
erties of the closed-loop signals are rigorously proved by means of a
Lyapunov-like stability analysis. Furthermore, the main advantages of
the introduced approach can be also highlighted:

(i) since it is based on a robust controller for underactuated systems,
the proposed scheme is able to deal with the underactuating issues
straightforwardly;

(ii) the chosen ANN architecture requires only a single hidden layer
and one neuron in the input, rather than all system states or state
errors, which exponentially reduces the computational complexity
of the neural network and allows its implementation in low-power
microcontrollers;

(iii) by using online learning to update the ANN weights instead of su-
pervised offline training, the adopted neural net is able to continu-
ously approximate the plant dynamics;

(iv) only information related to hub angle and tip acceleration is re-
quired to be measured, which avoids the need for more sensors
along the link. The experimental results obtained with a small
single-link flexible manipulator evince the effectiveness of the
adopted control scheme, as well as the aforementioned features.

Single-link flexible manipulator: Figure 1 presents the experimental
setup of a small single-link flexible manipulator, designed and manufac-
tured at the Manufacturing Laboratory of the Federal University of Rio
Grande do Norte, Brazil. The device was developed to be a test bed for
the evaluation of new control schemes and consists of a flexible metallic
link, a brushed DC motor with gearbox, an H-bridge based motor driver,
an optical incremental encoder, a low-cost MMA8452 accelerometer and
an AD/DA converter (myRIO by National Instruments).

The dynamic behaviour of a flexible link manipulator can be repre-
sented by a set of coupled non-linear partial and ordinary differential
equations, which in fact represent great challenges for the design of the
control law [1, 4]. Therefore, the adoption of any discretization tech-
nique for this kind of mechatronic system provides an effective way to
solve the control problem, reducing the dynamic model to a finite dimen-
sional system of ordinary differential equations. By using the lumped-
parameter approach presented by [18], for instance, the dynamics of a
single-link flexible manipulator can be expressed in the following vector
form:

Mq̈ + Kq = bτ + p (1)

where M ∈ R
m×m represents the inertia matrix, K ∈ R

m×m stands for the
stiffness matrix, b = [1 0]�, with 0 ∈ R

� being a zero vector, τ is the in-
put torque, p ∈ R

m takes all the modelling uncertainties into account,
and q = [θ φ1 . . . φ�]� ∈ R

m is the vector of generalized coordinates,
with m = � + 1 being the number of degrees of freedom, θ representing
the hub angle and φi, for i = 1, . . . , �, standing for the angular displace-
ment of each element that composes the flexible link. Figure 2 shows a
schematic diagram of the single-link flexible manipulator with the refer-
ence frames and generalized coordinates.

Due to the lightweight and fast response of FLMs, it is usually also
necessary to consider the dynamics of the actuator. Here, a first-order
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Fig. 2 Schematic diagram of a single-link flexible manipulator

low-pass filter is used to represent the dynamics of the DC motor with
gearbox:

τ̇ = −γ (τ − u) (2)

where u the control signal and γ is the positive filter time constant.

Intelligent controller: In order to keep the control scheme as simple as
possible so that it can be implemented on compact hardware like micro-
controllers, let’s consider the hub angle θ as an actuated variable and only
one unactuated variable (� = 1), namely the tip displacement φ = φ1.
Thus, for control purposes and taking into account the dynamics of the
actuator (2), the dynamic behaviour of the flexible manipulator (1) can
be rewritten as follows:

[
Maa Mau

Mau Muu

][...
θ...
φ

]
=

[
fa + γ u

fu

]
+

[
da

du

]
(3)

where Maa, Mau, Mau and Muu are elements of the inertia matrix, fa and
fu are related to the stiffness of the link, da and du stand for the distur-
bance terms, which may include external perturbations and unmodelled
dynamics, and subscripts a and u denote, respectively, the actuated and
unactuated coordinates.

By solving (3) for
...
θ and

...
φ , we get:

...
θ = M ′−1

aa ( f ′
a + γ u + d ′

a) (4)
...
φ = M ′−1

uu ( f ′
u − γ MauM−1

aa u + d ′
u ) (5)

where M ′
aa = Maa − M2

auM−1
uu , M ′

uu = Muu − M2
auM−1

aa , f ′
a =

fa − MauM−1
uu fu, f ′

u = fu − MauM−1
aa fa, d ′

a = da − MauM−1
uu du, and

d ′
u = du − MauM−1

aa da.
Defining q̃ = q − qd as the tracking error, with qd being the desired

trajectory, and following [19], a stable sliding surface that considers both
actuated and unactuated coordinates can be defined as

s = αa
¨̃θ + 2λa

˙̃θ + λ2
aθ̃ + αu

¨̃φ + 2λu
˙̃φ + λ2

uφ̃

= αaθ̈ + αuφ̈ + sr (6)

with sr = −αaθ̈d + 2λa
˙̃θ + λ2

aθ̃ − αuφ̈d + 2λu
˙̃φ + λ2

uφ̃.
The intelligent controller is then proposed in order to ensure the at-

tractiveness of the sliding surface:

u = −M̂−1
s [ f̂s + d̂ + ṡr + κ sat(s/ϕ)] (7)

where M̂s, f̂s, and d̂ are, respectively, estimates of Ms = γ [αaM ′−1
aa −

αuM ′−1
uu MauM−1

aa ], fs = αaM ′−1
aa f ′

a + αuM ′−1
uu f ′

u, and d = αaM ′−1
aa d ′

a +
αuM ′−1

uu d ′
u, κ represents the control gain, ϕ stands for the width of the

boundary layer, and sat(·) is the saturation function.
Now, a single-hidden layer network with the sliding variable s as the

input neuron is adopted to compute d̂:

d̂ = w�ψ(s) (8)

where w = [w1 . . . wn]� is the weight vector, ψ(s) = [ψ1 . . . ψn]� rep-
resents the vector with the activation functions ψi, i = 1, . . . , n, and n

is the number of neurons in the hidden layer. It should be noted that if

the six state errors (θ̃ , ˙̃θ, ¨̃θ, φ̃, ˙̃φ, ¨̃φ) have been adopted as input, instead
of only s, the computational complexity of the neural network would
exponentially grow from n to n6.

The chosen ANN can perform universal approximation [20], hence it
can estimate d with an arbitrary degree of accuracy ε, that is d = d̂∗ + ε,
with d̂∗ being the estimate related to the optimal weight vector w∗.

Since the adopted sliding surface is a stable manifold [19], the expo-
nential convergence of the proposed intelligent controller can be proved
by means of a Lyapunov-like stability analysis. Thus, let a positive-
definite function V be defined as

V (t ) = 1

2
s2 + 1

2ν
δ�δ (9)

with ν being a strictly positive constant and δ = w − w∗.
Considering that δ̇ = ẇ, the time derivative of V becomes

V̇ (t ) = sṡ + ν−1δ�ẇ = [αa
...
θ + αu

...
φ + ṡr]s + ν−1δ�ẇ

= [αaM ′−1
aa ( f ′

a + γ u + d ′
a) + αuM ′−1

uu ( f ′
u −

γ MauM−1
aa u + d ′

u) + ṡr]s + ν−1δ�ẇ

= [ fs + d + ṡr + Msu]s + ν−1δ�ẇ

= [d̂∗ + ε − d̂ − κ sat(s/ϕ)]s + ν−1δ�ẇ

= [ε − κ sat(s/ϕ)]s + ν−1δ�[ẇ − ν s ψ] (10)

Since sat(s/ϕ) = sgn(s) outside the boundary layer, by updating w
according to

ẇ = ν s ψ (11)

and defining the control gain as κ > η + ε, with η being a strictly posi-
tive constant, we get

V̇ (t ) = −[κ sgn(s) − ε]s ≤ −η|s| (12)

Integrating both sides of (12) yields

lim
t→∞

∫ t

0
η|s|dζ ≤ lim

t→∞[V (0) − V (t )] ≤ V (0) < ∞ (13)

Thus, by evoking Barbalat’s Lemma [21], it follows that the proposed
intelligent controller ensures the boundedness of the tracking error, that
is (q̃, ˙̃q) → �, with � = {(q̃, ˙̃q) ∈ R

2m| |s| ≤ ϕ}.

Experimental results: The effectiveness of the proposed intelligent
controller is now evaluated in the experimental setup shown in Fig-
ure 1. The control scheme was implemented using LabVIEW and
myRIO (a real-time embedded device), both provided by National
Instruments. The computer code deployed in the experiments, in-
cluding all the required control parameters, as well as a detailed
description of the proposed algorithm and the data used to plot
the graphs can be accessed at https://github.com/RoboteamUFRN/
Intelligent-Control-Flexible-Manipulator. In order to assess the con-
troller’s robustness, as well as its ability to learn online how to compen-
sate for unmodelled dynamics, it is assumed that there is no prior knowl-
edge of the manipulator’s stiffness and damping properties, f̂s = 0.
Moreover, only a rough estimate of the manipulator inertia is considered,
M̂s = 12.5. Regarding the adaptive neural network, seven neurons with
Gaussian activation functions are adopted in the hidden layer. The weight
vector is initialized as w = 0 and updated by applying the Euler integra-
tion method to (11). For a fair evaluation of the adopted method, the
proposed intelligent control scheme is also compared with an adaptive
sliding mode controller. The intelligent scheme can be easily converted
to an adaptive one by setting d̂k+1 ← d̂k + νs�t, where �t is the sam-
pling period, d̂k stands for the estimation at the kth step and d̂0 = 0. The
goal is to allow the manipulator to track a desired trajectory and avoid
tip vibrations. Figures 3–5 show the experimental results obtained with
both intelligent and adaptive controllers by tracking θd = π/4 cos(πt ).
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Fig. 3 Experimental results: (a) hub angle and related (b) tracking error
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Fig. 4 Experimental results: hub (a) velocities and (b) accelerations
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Fig. 5 Experimental results: (a) tip acceleration and (b) control signal

As observed in Figure 3, the intelligent controller shows a strongly
improved performance by allowing the manipulator to track the desired
trajectory with a much smaller tracking error. By means of the Integral
Time-weighted Absolute Error (ITAE), it can be verified that the control
error related to the proposed intelligent controller (ITAEInt = 3.44) is al-
most 60% lower than that obtained with the adaptive scheme (ITAEAda =
8.20).

Considering that both control schemes also require the hub angular
velocities and accelerations, sliding mode observers [22] have been used
to estimate these variables. Figure 4 shows the obtained estimates, which
in fact also evince the better performance of the intelligent controller.

Figure 5 shows the absolute tip accelerations, that is θ̈ + φ̈, and the
control signal. Comparing Figures 4(b) and 5(a), it can be seen that
the high-frequency oscillations come from the measurements with the
MMA8452 accelerometer at the tip. In fact, this is due to the high noise
level associated with low-cost MEMS sensors. Even though this noise
could have been filtered out, we chose not to do it in order to avoid
unwanted delays and loss of information. It should be highlighted that,
regardless of the resulting noise in the control signal, Figure 5(b), the
proposed intelligent scheme is able to deal with it, without degrading
its tracking performance, as can be seen in Figure 3. Despite the quite
reasonable results, replacing the MMA8452 accelerometer with a more
accurate sensor is a forthcoming step.

For a better glimpse of the controller’s performance, a short video of
the experiment can be accessed at https://youtu.be/RIXIVRv5-98.

Conclusion: This letter introduces a new intelligent controller for
single-link flexible manipulators. By incorporating an artificial neural
network into a sliding mode controller for underactuated mechanical
systems, the resulting scheme is able to ensure accurate trajectory track-
ing, even in the presence of a high level of uncertainty, noisy signals and
passive (unactuated) degrees of freedom. In fact, since the weights of the
neural network are adjusted online, it can continuously approximate the
plant dynamics. Moreover, the adoption of the sliding variable as the in-
put to the neural network exponentially reduces the computational com-
plexity of the control law, allowing its deployment in compact devices
such as low-power microcontrollers. As the control law only requires
information regarding the hub angle and tip acceleration, it avoids the
need for more sensors along the link. The boundedness and convergence
properties of the closed-loop signals are analytically proved by means
of a Lyapunov-like stability analysis. The effectiveness of the proposed
approach is experimentally validated with a small single-link flexible
manipulator, showing a significantly improved performance when com-
pared to a non-linear adaptive controller.
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