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Abstract: The proteome represents all the proteins expressed by a genome, a cell, a tissue, or an organism
at any given time under defined physiological or pathological circumstances. Proteomic analysis has
provided unparalleled opportunities for the discovery of expression patterns of proteins in a biological
system, yielding precise and inclusive data about the system. Advances in the proteomics field opened the
door to wider knowledge of the mechanisms underlying various post-translational modifications (PTMs)
of proteins, including glycosylation. As of yet, the role of most of these PTMs remains unidentified. In this
state-of-the-art review, we present a synopsis of glycosylation processes and the pathophysiological con-
ditions that might ensue secondary to glycosylation shortcomings. The dynamics of protein glycosylation,
a crucial mechanism that allows gene and pathway regulation, is described. We also explain how—at a
biomolecular level—mutations in glycosylation-related genes may lead to neuropsychiatric manifestations
and neurodegenerative disorders. We then analyze the shortcomings of glycoproteomic studies, putting
into perspective their downfalls and the different advanced enrichment techniques that emanated to
overcome some of these challenges. Furthermore, we summarize studies tackling the association between
glycosylation and neuropsychiatric disorders and explore glycoproteomic changes in neurodegenerative
diseases, including Alzheimer’s disease, Parkinson’s disease, Huntington disease, multiple sclerosis, and
amyotrophic lateral sclerosis. We finally conclude with the role of glycomics in the area of traumatic
brain injury (TBI) and provide perspectives on the clinical application of glycoproteomics as potential
diagnostic tools and their application in personalized medicine.

Keywords: glycosylation; post-translational modifications; neurodegenerative diseases; neuropsychi-
atric disorders; proteomics
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1. Introduction
1.1. Post-Translational Modifications (PTMs)—An Overview

The proteome represents all the proteins expressed by a genome, a cell, a tissue,
or an organism at any given time under defined physiological circumstances [1]. Even
though proteins result from the well-known two-step process of transcription then trans-
lation of specific nucleotide sequences, these macromolecules, which are the building
blocks of life, can and will undergo several modifications throughout their life span. Such
alterations, known as post-translational modifications (PTMs), affect numerous protein
properties/characteristics that modify protein functions, including [2] protein lifespan, sol-
ubility, folding, localization, abundance, protein-protein interactions, [3] receptor activation,
enzyme function, and assembly [4].

Advances in the molecular biology field, mainly in genomics and proteomics, pave
the way for understanding the mechanisms underlying various PTMs [5,6]. Presently, the
number of PTMs discovered has exceeded 400, and research for the past decade has estab-
lished the important role that such modifications play in various biological processes such
as signal transduction, gene expression regulation, DNA repair, and cell cycle regulation [7].
Table 1 inserted below summarizes the main characteristics of the essential PTMs.

Table 1. The main types of PTMs: process, localization, targeted sites, and affected biological
processes.

PTM Process Localization Common Amino
Acids/Sites Targeted

Cellular Processes
Affected

Phosphorylation
The addition of one or
more phosphate groups to
the protein by kinases

Phosphorylation occurs
in the nucleus or
cytosol

In animal cells: serine,
tyrosine, and threonine

DNA replication and
transcription, cell
movement, cell
metabolism, apoptosis,
environmental stress
responses

Glycosylation

The addition of
carbohydrate molecules to
the polypeptide chain by
glycoyltransferases

Glycosylation occurs in
the endoplasmic
reticulum (ER), Golgi
apparatus or cytosol

Serine (Ser), threonine
(Thr), asparagine (Asn),
and tryptophan (Trp)
residues

Cell adhesion, cell-cell, and
cell-matrix interactions,
receptor activation and
signal transduction,
protein secretion and
trafficking

Acetylation

The addition of an acetyl
group by acetyltransferase
(KAT) and histone
acetlytransferases (HAT)

Acetylation takes place
mainly in the nucleus Lysine (Lys) residues

Transcription regulation,
protein-protein interaction,
cell metabolism, nuclear
transport

Sulfation

The addition of sulfate
molecules by
tyrosylprotein transferases
(TPST)

Sulfation takes place in
the trans-Golgi
network

Tyrosine (Tyr) residues Protein-protein interactions
and leukocyte rolling

Hydroxylation

The addition of a hydroxy
(OH) group to a protein
amino acid by
hydroxylases

Hydroxylation occurs
in the cytosol

Lysine (Lys) and
proline (Pro) residues

Transcription factor
regulation

SUMOylation
The addition of SUMO
protein via three enzymes
(E1, E2 and E3)

SUMOylation occurs in
the cytoplasm and
nucleus

Lysine (Lys) residues Transcription regulation
and signal transduction
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Table 1. Cont.

PTM Process Localization Common Amino
Acids/Sites Targeted

Cellular Processes
Affected

Ubiquitylation

The attachment of
ubiquitin to a target
protein by ubiquitin ligase
and ubiquitin-conjugating
enzyme

Ubiquitylation takes
place in the cytosol Lysine (Lys) residues

Protein degradation,
transcription regulation,
apoptosis and autophagy

Methylation

The transfer of a methyl
group or more to amino
acid side chains by
methyltrasnferaes

Methylation usually
occurs in the nucleus

Lysine (Lys) and
arginine (Arg) residues

Histone modification,
transcription regulation
and epigenetic silencing

Among these PTMs, glycosylation is a major PTM associated with many important
biological processes such as receptor activation and signal transduction, protein folding and
degradation, as well as cell adhesion and cell-to-matrix interaction is glycosylation [8,9].
This modification that results from the attachment by the covalent bond of an oligosaccha-
ride chain residue commonly targets serine (Ser), threonine (Thr), asparagine (Asn), and
tryptophan (Trp) sites is catalyzed by a glycosyltransferase enzyme, and it may occur in
the ER, the Golgi apparatus, or the cytosol [10].

1.2. Glycosylation of Proteins

As previously mentioned, one of the most common PTMs is glycosylation, as it embod-
ies more than half of the mammalian cell protein modifications [11], with 70% of eukaryotic
proteins having undergone at least one glycosylation [12]. This process of attachment of a
sugar/carbohydrate moiety to certain sites of organic molecules, such as lipids or proteins,
offers greater proteomic diversity when compared to other modifications [13,14]. Table 2,
inserted right below, describes the different types of glycosylation. From the literature, it
has been established that protein glycosylation mediates a series of important biological
functions such as cell communication [15,16], adhesion [14,17,18], trafficking [19,20], and
protein stabilization [21]. Research has shown that glycosylation is a tightly regulated pro-
cess where specific substrate/enzymatic modifications occur in particular organelles [22].
There are two main types of glycosylation, N- and O-glycosylation, as shown in Figure 1
below. N-glycosylation refers to the attachment of glycans to the asparagine with a motif
of asparagine-X-serine/threonine, where X denotes any amino acids but proline. In con-
trast, O-glycosylation refers to the attachment of glycans to the serine/threonine without a
consensus motif [22–26].

Table 2. A description of the different types of glycosylation.

Types of Glycosylation

N-linked Glycans bind to the amino group of asparagine in the ER

O-linked Monosaccharides bind to the hydroxyl group of serine or
threonine in the ER, Golgi, cytosol, and nucleus

C-linked Mannose binds to the indole ring of tryptophan

Phospho-glycosylation Glycan binds to serine via a phosphodiester bond
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Figure 1. A depiction of the nomenclature, topology, and glycosylation patterns of N- and O-glycans.
(A) Linkage of N-acetylglucosamine to asparagine amino acid via an N-linked bond, followed by linkage
of N-acetylgalactosamine to serine or threonine amino acids via an O-linked bond. The glycoprotein
shown is a transmembrane protein. The possible bonds formed between glycan residues are illustrated.
(B) The three possible types of N-linked glycosylation products, depicted through transmembrane pro-
teins. GlcNAc: N-acetylglucosamine; Man: mannose; Gal: galactose; NeuNAc/Sia: N-acetylneuraminic
acid/sialic acid; Fuc: fucose.

1.3. Dynamics of Glycosylation

Glycosylation is known to be a template-free process regulated by modifying metabolic
enzymes like glycosyltransferases [27,28]. Human glycans mainly contain different combi-
nations of the following monosaccharide units: mannose (Man), glucuronic acid (GlcA),
galactose (Gal), glucose (Glc), L-fucose (Fuc), N-acetylgalactosamine (GalNAc), sialic acid
(Sia, Neu5Ac), and N-acetylglucosamine (GlcNAc) [29,30]. The different resulting sugar
combinations alongside the various possible isomerization patterns that will follow—
whether positional or linkage isomerization—introduce and add to the richness and the
vast microheterogeneity of glycosylation [31].

Glycobiological and glycoproteomics studies over the years have revealed that the
dynamic process of glycosylation determines important events such as cell-cell interaction,
cellular metabolism, and extracellular communication [32,33]. Almost all secreted proteins
and intracellular proteins are amended by the addition of oligosaccharides, where glycans
are covalently bonded to proteins to regulate their final structure and function [33,34].
The reasons behind glycosylation vary, including modulation and structural adaptation,
intrinsic and extrinsic recognition, and mimicry of other glycosylated proteins in hosts [35].
Thus, glycans are said to be “turned on and off” to modulate glycoproteins [36].

Two cellular components are essential to glycosylation—endoplasmic reticulum (ER)
and Golgi apparatus. Glycosylation is initiated in ER by forming the conserved precursor
oligosaccharide. N-glycan precursors will be further processed in the ER to remove termi-
nal glucoses before being transferred to Golgi. [37]. Therefore, proper ER structure and
functioning are both needed and required for proper glycosylation dynamics. The glycans
will then be modified by different glycosidases and glycosyltransferases to form complex
structures. Many in vitro studies have revealed the impairment of protein glycosylation
due to the disruption of Golgi’s structure [38,39]. Mass-spectrometry analysis of GRASP-
depleted HeLa cells revealed decreased levels of high-mannose and complex glycans, thus
divulging the importance of Golgi structure in maintaining protein glycosylation [40].

1.4. Pathophysiological Aspects of Mis-Glycosylated Products

Glycosylation is crucial in allowing genes and pathways to function properly. Any
mutation present in glycosylation-related genes may lead to the formation of neurologically
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impaired individuals. These mutations, specifically the congenital disorders of glycosyla-
tion (CDG), have been proven to participate in the occurrence of over 80% of neurological
abnormalities [41]. Glycans can present irregularities on either proteins or lipids, leading
to various genetic defects. Within a mammalian cell, the glycome is highly complex, even
more so than the proteome or the genome [42]. This complexity provides a fine-tuning
mechanism for several cellular processes, where different proteins are expressing the same
sugar chain and present diverse functional consequences. The outcome of glycosylation
is mostly context-dependent [43]; several factors influence the formation of the final gly-
cosylation product. These include the supply of the activated sugars, the identity of the
proteins or lipids attached, and the enzymes involved in the biosynthesis [44]. Glycosylated
proteins can be connected to several different glycan types, making each form a unique
one employed in specific pathways [45]. Consequently, any hindrance preventing their
formation or delivery can affect the related glycosylation pathways.

Proper glycosylation necessitates the correct functioning of the Golgi system. Flaws in
the trafficking of proteins and their composition along with unstable Golgi homeostasis
may directly impact glycosylation. Trafficking defects may be due to the mislocalization
of several glycosyltransferases and nucleotide-sugar transporters, impacting single or
multiple glycosylation pathways. These defects mainly transpire in cytoplasmic proteins
transiently associated with the Golgi system, hence affecting the guidance of vesicles
holding glycosylation machinery to their location [46].

Other glycosylation defects may be seen during aging, which is related to the onset of
several diseases [47]. Glycosylation can endure age-related modifications, subsequently
increasing molecular heterogeneity and impaired protein function, such as in the case of
age-related pathologies including sarcopenia and cataracts [48].

Many diseases can be correlated to defective glycosylation. Liver diseases such as
hepatitis C virus (HCV) or hepatitis B virus (HBV) are thought to be caused by hyper
fucosylation, increasing the branching, and bisecting the N-acetylglucosamine present
in glycans [49]. These chronic infections can then lead to hepatocellular carcinoma and
cirrhosis in humans. The alterations of different glycans have been observed in a variety
of diseases such as liver disease [50,51], diabetes [52,53], and gestational diabetes mellitus
(GDM) [54].

The most commonly widespread glycosylation disorder is manifested through phos-
phomannomutase 2 (PMM2) mutation, which transforms mannose-6-phosphate to mannose-
1-phosphate. This defect, in turn, reduces the products used for N-glycosylation, leaving
many proteins unstable due to the partly employed N-glycosylation sites [44]. The PMM2
mutation can lead to several neurological defects in children characterized as N-linked
disorders such as hypotonia, intellectual disabilities, stroke-like episodes, and seizures [55].

Another mutation occurring at the NGLY gene that encodes cytoplasmic enzymes can
cause what is known as the “congenital disorder of de-glycosylation”. This specific muta-
tion hampers the normal progression of the endoplasmic reticulum-associated degradation
(ERAD) pathway, leading to the hindrance in the degradation of misfolded N-glycosylated
proteins. Patients with mutated NGLY1 show movement disorders, microcephaly, and
developmental delays [56]. Other diseases showing glycosylation defects include asthma,
chronic pain, arthritis, and amyotrophic lateral sclerosis (ALS) [57,58].

Glycosylation studies have become significant in uncovering the various aspects of
cancer. The role of glycoproteins and glycans has become prominent in cancer studies,
where glycosylation is thought to be associated with carcinogeneses such as metastasis,
tumor adhesion, and malignant transformation [59]. Recent advances in glycomics have
prompted the discovery of unique N- and O-glycans acting as glycobiomarkers used in
cancer diagnosis and therapy [60].
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2. Glycomics and Glycoproteomics Methodology
2.1. Challenges in Glycomics and Glycoproteomics

Although glycoproteomic studies have been attracting more interest in recent decades,
the challenge of this cutting-edge analysis remains significant due to the fact that (i) gly-
coproteins usually present in low abundance relative to common proteins in a biological
system; (ii) ionization efficiency of glycans is poor relative to peptides and proteins, and
(iii) glycans have no UV or fluorescent absorbance, thus UV detectors and fluorescence
detectors are no longer effective in glycomic analysis. Therefore, different technologies and
approaches have been developed to overcome these challenges, improving the sensitivity
and reliability of glycomic and glycoproteomic characterizations. There are two major
strategies for studying protein glycosylation: glycomics and glycoproteomics. Glycomic
research analyzes glycans released from biological sources, while glycoproteomic research
focuses on the characterization of intact glycoproteins and glycopeptides. Although gly-
coproteomics provides information on both glycoforms and their occupancies on protein
sites, whereas glycomics can only analyze glycans, glycomics has higher sensitivity and
separation efficiency with the combination of several derivatization and separation tech-
niques, which benefit the characterization of minor structures and isomers. Therefore, both
glycomics and glycoproteomics are important in glycoscience and complementary to each
other.

2.2. Enrichment of Glycoproteins

Due to the low abundance of glycoproteins in biological samples such as blood serum
and tissues, enrichment is necessary prior to glycoproteomics analysis to enhance the
signal intensity of glycopeptides. In addition, the microheterogeneity of glycosylation
sites and glycan structures, as well as the low ionization efficiency relative to unmodified
proteins, also demand an enrichment procedure. During the last decades, many enrichment
strategies have been developed and applied in glycoproteomic studies.

2.2.1. Lectin Enrichment

Lectins are specialized proteins that can specifically bind to carbohydrates, recognizing
sugar groups of other molecules [61]. They have been widely used to enrich certain types
of glycoproteins from biological systems due to their selectivity against different glycan
moieties. The most frequently employed lectins are concanavalin A (ConA) and wheat
germ agglutinin (WGA) [61].

In addition to ConA and WGA, other lectins have been utilized for glycoprotein en-
richment, such as lentil lectin (LcH, specific to fucosylated core), elderberry lectin (SNA,
specific to sialic acid), Ricinus communis agglutinin (RCA, specific to galactose), and peanut
agglutinin (PNA, galactose). Jacalin (AIL) lectin is commonly utilized in O-glycopeptide
enrichment due to its specificity to GalNAc core structures [61,62]. Lectin materials have
been immobilized to different bases such as monolithic resin, magnetic beads, and microar-
ray to achieve a better enrichment and purification efficiency of glycopeptides. However,
lectin enrichment suffered from the fact that only a particular type of glycopeptides could
be enriched by one lectin material due to the different selectivity of different lectins. To
overcome this drawback, multiple lectin combination strategies have been used to enrich a
broad type of glycopeptides [63,64].

2.2.2. HILIC Enrichment

Hydrophilic interaction chromatography (HILIC) is widely utilized to enrich gly-
copeptide due to the fact that glycan is more hydrophilic than a peptide. Glycopeptides
have stronger interactions with a highly polar stationary phase such as amine-, hydroxyl-,
amide- and zwitterionic particles, allowing the purification of glycopeptides through a
binary gradient [65]. Recently, several different types of HILIC materials have been devel-
oped to reduce the cost and enhance the enrichment efficiency, including cotton [66–68],
metal-organic frameworks (MOFs) [69,70], polymers [71,72], and magnetic materials [73,74].
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Alternatively, electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) has
been employed to enrich glycopeptide. [75]. Recently, Mechref and colleagues investigated
the enrichment efficiency of HILIC and ERLIC on breast cancer cell lines and reported com-
plementary results of these methods [76]. With the efficient, non-specific, easy-to-handle,
and MS-compatible features, HILIC enrichment has been considered as one of the most
widely used approaches in glycopeptide enrichment.

2.2.3. Hydrazide Chemistry Enrichment

Hydrazide chemistry was introduced to extract glycoproteins based on a covalent
immobilization on solid hydrazide support [77]. In this method, cis-diol groups of glycans
are initially oxidized to form aldehydes and covalently bind to support. After enzymatic
digestion (mostly tryptic digestion), non-glycosylated peptides were washed off and gly-
copeptides were released by PNGase F. This technique has been applied commonly to
investigate glycoproteins in many diseases such as liver cancer [78], lung cancer [79], and
breast cancer [80]. However, although it has a high specificity of glycoprotein enrichment,
the irreversible covalent bond between glycans and supports makes it impossible to acquire
complete glycan structural information from an intact glycopeptide, thus hindering the
application of this method on intact glycopeptide identification.

2.2.4. Click Chemistry Enrichment

Similar to hydrazide chemistry, click chemistry introduces a covalent bond on glycans
of glycoproteins. In this technique, azido groups are incorporated into glycan structures
through metabolic labeling that provides an orthogonal enrichment method by click chem-
istry and subsequently biotin and avidin binding to enrich glycoproteins containing the
designated azido labels [78]. It was first achieved by a copper-catalyzed cycloaddition
reaction [81] and then improved to be easy-to-use copper-free click chemistry with high
labeling efficiency and enrichment rate [82]. To date, the most common reagents for this
method are per-acetylation unnatural sugar analogs such as AC4ManNAz and AC4GlcNAz.
However, this enrichment method can only apply to living organisms, such as cell cultures
or animals, and the application in clinical samples (blood serum or tissue) is limited.

2.2.5. Boronic Acid Enrichment

Boronic acid is an alternative approach for glycopeptide enrichment. Boronic acid can
form reversible cyclic boronate esters with cis-diol groups of glycans, attracting much inter-
est in glycoproteomics. This reversibility of boronic acid to bind glycopeptide prompted
the functionalization of boronic acid to other materials that have a large surface area,
including magnetic carbon nanotubes [83], Fe3O4 nanoparticles [84], and metal-organic
framework [85]. Recently, Wu and coworkers introduced benzoboroxole dendrimer func-
tionalized beads, which could markedly increase glycopeptide coverage than the conven-
tional boronic acid method [86]. Despite the benefit in glycopeptide enrichment brought by
this material, the multiple synthetic steps and lack of commercialization prevent the broad
application of this method.

2.3. Technologies in Glycomics and Glycoproteomics

In recent decades, techniques have been developed and improved for better glycomic
and glycoproteomic separation and identification. Conventional UV or fluorescence-based
detection methods are no longer efficient in glycomics analysis due to the low absorption
of glycans. Although fluorescent tags can be added to obtain visibility, the lack of enough
standards and structural information of UV/fluorescent detectors demands a better identi-
fication technique. Thus, MS has become the most common technique in glycomics and
glycoproteomics research because of its high sensitivity and adequate structural informa-
tion [87–90]. However, the fact that glycans have low ionization efficiency and compete
with the protons during the ionization process hinders glycomics and glycoproteomics anal-
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ysis using MS alone. Therefore, different labeling and separation techniques are coupled
with MS to acquire a better characterization of glycoforms.

2.3.1. Lectin Microarray in Glycomics and Glycoproteomics

Lectin, specific to one or more certain monosaccharides moieties, has been used in
glycomics and glycoproteomics studies due to its high selectivity, fast analytical speed,
and easy-to-use protocols. Since different lectins have different specificities, a series of
lectins can be immobilized to a solid support to profile carbohydrate expression patterns in
biological samples [91], known as lectin microarray. This technology allows the analysis of
glycan profiles with a simple sample preparation procedure, making it useful for the rapid
bulk clinical sample analyses.

A lectin microarray consisting of 45 lectins was recently applied to profile glycan
patterns from Influenza A virus hemagglutinin. Besides glycan moieties, different linkages
such as α2, 3- and α2, 6-sialylation as well as α1, 3 galactosylation could be distinguished by
specific lectins [92], extending its application to isomeric glycomics studies. However, the
lectin array can only recognize monosaccharides’ moieties. The lack of detailed structural
information for individual glycoforms precludes the comprehensive characterization of
glycans and glycopeptides.

2.3.2. MS-based Glycomics and Glycoproteomics

MALDI-MS. Matrix-assisted laser desorption/ionization (MALDI)-mass spectrome-
try (MS) has been used as a fast analysis approach of glycoform analysis. MALDI-MS is
one of the most widely used MS techniques enabling rapid analysis with simple sample
preparation steps as well as sufficient structural information. Numerous investigations
have been performed to improve MALDI matrix, among which 2,5-dihydroxybenzoic acid
(DHB) is considered the most widely used matrix for glycans and glycopeptides [93]. In
addition, 1,1,3,3-tetramethylguanidinium (TMG) salts of p-coumaric acid (CA) (G3CA)
and 3-Aminoquinoline/p-coumaric acid (3-AQ/CA) have also been reported to be effi-
cient matrices in glycomics and glycoproteomics studies [94]. Recently, a nanomaterial
has been reported to be a co-matrix in permethylated glycomics analysis, which signifi-
cantly increased signal intensity and induced a controllable in-source fragmentation [89].
However, MALDI usually introduces unexpected fragments of labile sialic acids [95].
Therefore, derivatization methods such as methylamidation/esterification [96] and perme-
thylation [89] are utilized to stabilize the sialic acid. Besides, these derivatization methods
allowed the differentiation of sialic acid linkage isomers through introducing mass shift [96]
or different MS2 patterns [97].

The rapid analytical speed and controlled laser beam permit in situ glycomic analysis
of tissue sections using MALDI-imaging. The glycan expression changes could be distinct
in different areas of tissue sections [98,99]. The derivatization of dimethylamidation and
subsequent amidation also allows the imaging of sialylated linkage isomers on formalin-
fixed paraffin-embedded (FFPE) tissues [100]. This technique has revealed the glycan
attributes in their native environment. Despite the clear advantages, the unseparated
sample resulted in relatively low signal intensity and a more complicated spectrum, which
is not suitable for the comprehensive characterization of glycans and glycopeptides.

LC-MS. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is the most
widely used technique for glycomics and glycoproteomics. The separation prior to MS
analysis eliminates the ionization competition and removes impurities such as salts in
complex biological samples, facilitating the identification and quantitation of glycans and
glycopeptides. Reducing end derivatization is commonly utilized for glycomics analysis
to improve the ionization efficiency of native glycans. Multiple separation materials and
techniques have been developed to better separate and identify glycans and glycopeptides,
including reverse phase, hydrophilic interaction chromatography (HILIC), porous graphitic
carbon (PGC), and ion exchange.
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The common separation approach for glycoproteomics is reversed-phase LC-MS/MS.
Analytes are resolved by their hydrophobic interactions with the stationary particles,
which is ideal for the separation of peptides and glycopeptides. C18 column, as the
most widely used reversed-phase material, is the main tool for glycopeptides separa-
tion. In addition to C18, C4, or C8, which are commonly utilized for top-down glyco-
proteomic analysis, many studies have reported label-free glycoproteomics [76,78]. How-
ever, different labeling techniques have been applied to enhance the separation, ioniza-
tion, and quantitation of glycopeptides, including methylamidation ((7-Azabenzotriazol-
1-yloxy)tripyrrolidinophosphonium hexafluorophosphate (PyAOP)) [101], esterification
and amidation [102], and permethylation [103]. Besides, the isobaric tags, such as isobaric
tags for relative and absolute quantitation (iTRAQ) and tandem mass tag (TMT) that have
been widely used for proteomics, are also efficient in glycopeptides analysis [77,104]. To-
gether with different MS dissociation techniques such as collision-induced dissociation
(CID), higher-energy collision dissociation (HCD), electron-transfer dissociation (ETD),
electron transfer/higher-energy collision dissociation (EThcD), and ultraviolet photodis-
sociation (UVPD), these developed techniques prompt the comprehensive glycoprotein
characterization.

Other than glycoproteomics, C18-LC-MS/MS can also be used for glycomics. However,
permethylation is necessary to allow the separation of glycans on the C18 column due
to the hydrophilicity of native glycans. Mechref and coworkers have reported the high-
temperature separation of permethylated glycans using nanoC18-LC-MS/MS, and partial
isomeric separation was also observed [105]. The permethylation coupled to C18 separation
permitted a high sensitivity in glycomics analysis with the least quantitative bias compared
to other widely used labeling techniques [104]. However, permethylation conditions
prevent the use of different tags due to the poor compatibility of permethylation to most of
the commercialized reducing end labeling reagents.

HILIC-LC-MS is another efficient and common technique utilized for native and reduc-
ing end-labeled glycans. In this technique, hydrophilic interactions, including hydrogen
bonding, ionic interactions, and dipole-dipole interactions [106] between analytes and
stationary phase, are the driving forces of separation. [107]. Due to the fact that native
glycans cannot be efficiently ionized and detected by UV and fluorescence, reducing end
derivatization methods are usually used to enhance the ionization and detection of glycans.
The developed and widely used derivatization reagents include 2-aminobenzamide (2-
AB)/2-aminobenzoic acid (2-AA) [108], 2-amino-pyridine (2-AP), and aniline [109]. Having
fluorescent groups, glycans labeled with these reagents can be quantified by the combina-
tion of fluorescence detector and MS. In addition, recently, TMT and RapiFluor have been
proved to be efficient in LC-MS-based glycomics analysis [104]. Other than derivatization,
different HILIC materials are also introduced to improve the separation of glycans. The com-
mon HILIC materials for glycomics include zwitterionic (ZIC®)-HILIC columns [108,110],
amide/amine columns [111,112], and hydroxyl group HILIC columns [113]. Besides sepa-
rating compositional glycans, HILIC also permits the separation of glycan isomers [110],
including positional isomers and linkage isomers [114,115].

Besides HILIC, porous graphitic carbon (PGC) is the most widely used material
for isomeric separation of both native/reducing end-labeled glycans and permethylated
glycans. There are two major forces, dispersive interactions (reverse-phase type) and
polar retention effect, that prompt the separation of glycan isomers [116]. Native and
reducing end-labeled isomeric N- and O-glycan separation on PGC has been demonstrated
in recent decades [117–120]. An alternative strategy of PGC-LC-MS is the separation of
permethylated glycan isomers. Recently, Mechref and coworkers [104,121] introduced
an improved PGC-LC-MS approach at a high temperature (75 ◦C) to achieve a decent
separation of permethylated glycan isomers. This approach was also applied to complex
biological samples to investigate the N-glycan isomeric changes in diseases [61,122], and
separate permethylated free oligosaccharide isomers [123].
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Ion exchange chromatography is also used for glycan profiling [124]. Recently, a
high-pH anion-exchange chromatography (HPAEC)-MS was used to acquire structural
information of glycans [125]. However, the compatibility of HPAEC with MS is a challenge
due to the high concentration of salts used in HPAEC that would significantly inhibit the
ionization efficiency of analytes. Nevertheless, this issue can be addressed by using an
online suppressor that replaces Na+ with H+. The most common use of ion-exchange chro-
matography is the fractionation of glycan samples in 2D-LC. Glycans could be separated in
the anion exchange column by the size and number of sialic acids [126] and then further
separated by another column [127]. Although the major application of ion-exchange chro-
matography is not the isomeric separation of glycans, it has the ability to resolve several
glycan isomers [128,129].

CE-MS. Capillary electrophoresis (CE)-MS is a powerful tool to study glycans and
glycopeptides with a high resolution and a short analytical time. The separation of analytes
is based on their sizes, shapes, and charges. The high electric field of CE allows the
analysis with an ultrahigh-resolution and a low number of samples. These features make
CE-MS capable of analyzing the microheterogeneity of both glycopeptides and intact
glycoproteins [130–134].

When CE-MS is utilized for glycomics analysis, glycans are usually derivatized prior
to CE. The common derivatization reagents that enhance the separation and ionization in-
clude 9-aminopyrene-1,3,6-trisulfonic acid (APTS) [135,136], TMT [137] and 2-AA [138,139].
Despite other tags developed for CE-MS, APTS is still the most common reagent for gly-
comics studies [140]. As a type of CE, a DNA sequencer has also been utilized for glycomics
analysis [135,141]. Moreover, CE has proved its ability for isomeric separation of gly-
cans [142,143]. However, the compatibility of electrolytes in CE with MS and the low
flow rate hindered most CE methods from being applied in CE-MS. However, improved
MS-compatible electrolytes and a sheath flow are used to fix these issues.

IM-MS. Ion mobility (IM), as a gas phase separation technique, provides a secondary
separation dimension beyond condensed-phase separation. Ionized analyte molecules are
separated in an electric field of a drift cell, thus being resolved by their masses, charges,
sizes, and shapes when colliding with buffer gas molecules [142,144]. The drift time of
different analyte ions can be converted to rotationally averaged collision cross-section
(CCS), thus being independent of instrumental settings and only related to the feature of
ions. Besides identifying glycopeptides [145], partial isomeric separation of glycans has
been achieved using IM-MS [146,147]. Although IM-MS has attracted much interest in
recent years, relatively low resolution hampered its application to characterize glycans and
glycopeptides comprehensively. However, its unique separation mechanism could be an
additional tool combined with other separation techniques.

2.3.3. Dissociation and Acquisition Techniques Facilitate MS-based Glycomic and
Glycoproteomic Identification and Quantitation

One advantage of MS-based glycoproteomics and glycomics is the adequate structural
information acquired by various dissociation techniques. The most common dissociation
methods are collision-induced dissociation (CID) and higher-energy collisional dissociation
(HCD), which have been applied in glycomics [148–153] and glycoproteomics [154–156] for
years. However, as the low-mass limitation (1/3 cutoff) of CID, glycan oxonium ions cannot
be detected when analyzing large precursor ions. Compared to CID, HCD overcomes
this issue and offers higher resolution [157]. Moreover, the oxonium ions generated in
HCD can be employed to trigger other dissociation techniques such as electron transfer
dissociation (ETD) in glycoproteomic analysis to increase the dynamic range and duty
cycles [158,159]. In addition to CID/HCD, electron transfer dissociation (ETD) and electron
capture dissociation (ECD) are significant in glycoproteomic studies since they majorly
fragmentate peptide backbone while keeping glycan structures intact [160].

Although the aforementioned techniques are able to provide structural information
for the identification of glycopeptides and glycans, they are not efficient in generating cross-
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ring fragmentation that is necessary for identifying glycan linkage isomers. Thus, there is
a great challenge to acquire enough information for isomeric identification of glycan and
glycopeptide isomers. To overcome this issue, multiple novel dissociation methods were
developed and investigated in this decade, including infrared multiphoton dissociation
(IRMPD) [161–163], ultraviolet photodissociation (UVPD) [164–166], and charge transfer
dissociation (CTD) [167,168]. These methods can provide more cross-ring fragmentation,
thus facilitating the identification of glycan and glycopeptide isomers. However, the novel
dissociation methods were mainly demonstrated on standards or model glycoproteins. It is
necessary to further investigate these techniques using complex biological and biomedical
samples in future studies.

Another efficient way to improve the identification of glycans and glycopeptides is
the combination of different dissociation techniques such as EThcD [169,170], activated-
electron photodetachment (a-EPD) [171], and CID/UVPD [172]. In addition to tandem
MS, MSn techniques are also employed to improve the identification of glycans [173–175]
and glycopeptides [176,177], where n usually ranges from 3 to 5. However, the relatively
large amount of sample needed for MSn hinders its application to address biological issues
where sample amounts are usually limited.

With the aforementioned dissociation techniques, several acquisition strategies can be
used to improve the quantitation of glycans and glycopeptides. Multiple reaction monitor-
ing (MRM) and recently parallel reaction monitoring (PRM) have been demonstrated to be
accurate targeted quantitation methods for both glycans and glycopeptides [178–181]. The
limitation of MRM and PRM is that they cannot be used for untargeted analysis. However,
with more glycomic and glycoproteomic work performed, more targets will be documented
for further MRM and PRM analysis of biological samples.

2.3.4. Software to Facilitate Automated Data Processing

Glycomics and glycoproteomics are focusing on hundreds to thousands of structures,
causing data processing and interpretation time-consuming. The structural identification
becomes even more complicated when processing glycoproteomic data since it needs the
accurate assignments of both glycan and peptide structures. In addition, when considering
different glycan compositions and isomers on the same peptide backbone, manually identi-
fication from biological samples such as blood serum or cell lines would be dramatically
inefficient. Therefore, automated data processing software is helpful, especially for large
sample cohorts.

Common software for glycan characterization include GlycoMod [182], GlycoRe-
Soft [183,184], Glyquest [185], SysBioWare [186], SimGlycan [187], and MultiGlycan [188].
These software employed different algorithms and databases for glycan identification.
Noticeably, MultiGlycan can generate quantitative results automatically. Additionally,
there are several de novo glycan identification software such as GlycoDeNovo [189], Glyco-
Peakfinder [190], and Glycoforest [191]. These de novo software do not identify glycan
structures based on a known library but from their MS and MS/MS patterns. In addition
to the aforementioned software, there are assistant tools, such as GlycoWorkbench [192]
and Skyline [193], widely used in glycomic studies. Skyline is also a powerful tool in
glycoproteomic studies.

Common software for glycopeptides/glycoprotein characterization include GlycoPep
ID [194], SimGlycan [187], GlycoMiner [195], GlycoPeptide Search (GPS) [196], GlypID
2 [197], GlycoPep Grader (GPG) [198], MSFragger [199], pGlyco [200], Byonic [201]. Addi-
tionally, there are more software developed by academic groups such as Glyco-Proteome
Analyzer (I-GPA) [202], SweetNET [203], Glyco-DIA [204], etc. [205–209]. Most of the
academic software are open source; however, some of them focus on specific goals, are
not user-friendly, and few of them keep updating. In contrast, commercialized software
Byonic, which is easy-to-use and flexible to customized search, has been the most widely
used software in glycoproteomics.
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Although plenty of software have been developed and applied for glycomic and
glycoproteomic data processing, none of them can achieve automated isomeric assignment
and quantitation, which is necessary to address in future work. However, the fact that some
software can assign the same compositions to different retention times (such as MultiGlycan)
indicates the potential success of further development of isomeric identification.

In general, together, these advanced techniques and software enable efficient and
reliable analyses of glycomics and glycoproteomics, which have been applied to address
biomedical issues, including neurodegenerative diseases.

3. Glycomics and Glycoproteomics of Human Biofluid

Biofluids, such as serum, plasma, or urine, are logical sources for biomarker discovery
as they have been among the easiest clinical samples to obtain [210], making them ideal
for investigating the expression difference of glycoproteins in longitudinal studies and
during different disease stages or in healthy subjects. Aberrant glycosylation has been
associated with many diseases and can be investigated from biofluidic proteins such as
immunoglobulin G (IgG) [32], alpha-1-acid glycoprotein (AGP) [31], or haptoglobin [61].
In addition, most of the broadly validated cancer biomarkers are biofluidic glycoproteins,
including but not limited to alpha-fetoprotein (AFP), CA19-9 (cancer antigen 19-9), CA125,
CA15-3, carcinoembryonic antigen (CEA), and prostate-specific antigen (PSA) [211]. There-
fore, the characterization of biofluidic glycoproteins is of great interest to better understand
the attributes of glycoforms in disease development and screen glycan or glycopeptide
indicators.

The characterization of glycopeptide using the methodology mentioned above has
exhibited alterations of glycopeptide expressions in biofluidic samples collected from pa-
tients [212,213]. In recent research, Zhang et al. [213] detected 134 N-glycopeptides from
plasma/urine samples in 15 patients to demonstrate the differential expressions of gly-
coproteins and the ratio of fucosylated to nonfucosylated N-glycopeptide that could be
indicators of papillary thyroid carcinoma. In another study, follicular fluid glycoproteomics
of 57 participants were analyzed to reveal 10 differentially expressed glycoproteins in
women with polycystic ovary syndrome (PCOS) [212]. Although many efforts have been
performed to acquire deep insight into the expressions of glycopeptides in biological pro-
cesses, most of the works in the recent five years were conducted on cells or tissues [214],
and the number of samples was quite limited compared to glycomics analysis. The gly-
coproteomics analysis of bulk biofluidic samples still needs to be enhanced for a better
glyco-marker investigation.

Glycomics is another approach to study protein glycosylation. More techniques
can be employed in glycomics research with higher sensitivity than the well-established
glycoproteomics technique allowing a more reliable identification of glycosylation patterns
due to the absence of a peptide backbone. In the last decade, numerous works have
been made to investigate glycome expression changes in different biological samples, thus
facilitating understanding glycans’ roles in multiple bio-functions. The number of samples
(cohort) was relatively large for those biofluid-based glycomics studies because biofluids
such as serum or plasma are obtainable from both patients and healthy people. Rudd
and coworkers analyzed over 1000 plasma samples (including 633 colorectal cancer (CRC)
patients and 478 age- and gender-matched healthy people) to identify potential glycan
markers for CRC. 2-AB labeled glycans were characterized using HILIC-LC-MS. Several
glycans and glycan peaks were employed to achieve the prediction of CRC with a 77.8%
accuracy (with 100% specificity and 50% sensitivity). This is one of the glycomics studies
that investigated the highest number of clinical samples and performed both screening and
verification procedures, thus enhancing the reliability of the glycan makers discovered in
this study [215].
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Kamiyama et al. performed a serum glycomics study on 369 hepatocellular carcinoma
(HCC) patients and 26 healthy people. Methyl esterification and MALDI-TOF permit-
ted the correlation of 67 N-glycans to the clinical index of patients. Two glycans were
identified as significant HCC recurrent and prognosis indicators through receiver oper-
ating characteristics (ROC) analysis and following correction analysis [216]. Zhao et al.
investigated N-glycan profiles from 347 serum samples (219 CRC patients and 128 age-
and sex-matched healthy people) using a DNA sequencer-assisted/fluorophore-assisted
carbohydrate electrophoresis (DSA-FACE). Two N-glycan expression-based mathematical
models were established and showed better diagnostic capacities than the FDA-approved
biomarker CEA. One model was further verified in the follow-up studies and considered a
better biomarker for CRC diagnosis [67].

Not only N-glycans but also O-glycans have been proved to be essential in can-
cers. [217]. In addition to O-glycans, glycan isomers also exhibited significant expression
changes in biofluids of many cancers [120,218–220]. However, the cohort applied in these
studies was still not large enough to draw a reliable conclusion about O-glycan and glycan
isomer markers.

In recent years, glycomics and glycoproteomics of human biofluids have been of great
interest. This has prompted more studies in this field to better understand which role
glycosylation plays in different diseases. Several additional studies have been performed
and revealed that significant changes in glycans’ expression and glycopeptides’ expression
are to be found when studying the biofluids of many diseases. In this review, we listed
representative examples that investigated a large cohort for glycan biomarker discovery.
Although glycomics and glycoproteomics analysis of human biofluids provide more in-
formation for clinical diagnosis and disease prognosis, it remains a major challenge since
no glycan biomarkers have been approved by the FDA. The clinical sample cohorts for
glycomics and glycoproteomics analysis are still not large enough to verify the reported
potential glycan and glycopeptide markers. In addition, the analytical time needed for
glycomics and glycoproteomics is long, and the technical requirements of comprehensive
characterization of glycan/glycopeptide patterns are relatively high due to the complex
steps in sample preparation protocols and complicated operation of LC-MS as well as
the following data interpretation. Only experienced scientists can conduct such experi-
ments and interpret data, thus preventing the routine use of these techniques in hospitals.
In future studies, these challenges demand faster, simpler, more reliable glycomics and
glycoproteomics strategies and larger sample cohorts.

4. Glycoproteomics and Neurodegeneration
4.1. Glycosylation and Neurodegenerative Diseases

In the last decade, researchers worked extensively to unveil the relationships between
glycoproteins and neurodegenerative diseases, including Alzheimer’s disease (AD), Parkin-
son’s disease (PD), Huntington disease (HD), Multiple Sclerosis (MS), and Amyotrophic
Lateral Sclerosis (ALS). These relationships are depicted in Figure 2 and Table 3 found just
below.
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Table 3. Detailed descriptions of several neurodegenerative diseases, tackling the glycosylation
changes occurring within each disease further exacerbating its consequences. These diseases include
Alzheimer’s, Parkinson’s, Prion diseases, and many others.

Title Neurodegenerative
Disease

Glycosylation
Aspect Results Analytical

Methods Ref.

Glyceraldehyde-3-
phosphate
dehydrogenase:
Aggregation
Mechanisms and
Impact on
Amyloid Neurode-
generative
Diseases.

Amyloid
neurodegenerative
diseases

Glycolytic enzyme
glyceraldehyde-3-
phosphate
dehydrogenase
(GAPDH) has the
ability to change
the concentration
of carbonyl
compounds like
glyceraldehyde-3-
phosphate and
methylglyoxal.

• Inhibition of glycolysis is due to
the decreased activity of modified
GAPDH.
• Dysregulation of the cell
metabo-lism is due to the
compartmentalization of
phosphorylated and glycated
GAPDH and the replacement of
active GAPDH in supramolecular
complexes by its dena-tured form.
• Blocking of the chaperone
system by misfolded forms of
modified GAPDH leads to the
formation of amyloid struc-tures.
• Denatured and modified
GAPDH could mediate
amyloid-like transition of
susceptible proteins and peptides
(amy-loid beta peptide, tau
protein, al-pha-synuclein, prion,
etc)

ELISA [221]

Identification of an
Intracellular Site of
Prion Conversion.

Prion diseases

Cellular prion
protein (PrPC) is a
glycosyl-
phosphatidyl-
inositol (GPI)
anchored
glycoprotein that is
able to misfold to a
pathogenic isoform
PrPSc.
PrPSc acts as the
causative agent of
prion diseases.

• Mis-folding PrPC to PrPSc is a
causa-tive agent of prion diseases.
• Understanding where the
conver-sion of PrPC to PrPSc

occurs in cells can help to clarify
the cellular mechanism of the
disease and it opens the door to
new therapeutic strategies aimed
at the con-version compartment.
• It has been found that the prion
conversion occurs in the
endosomal recy-cling
compartment (ERC), where it
trans-its after being internalized
from the cell surface.

Immunofluore
scence [222]

Alterations in
Sulfated
Chondroitin Gly-
cosaminoglycans
Following
Controlled Cortical
Impact Injury in
Mice

Traumatic Brain
Injury (TBI)

Many actions of
chondroitin sulfate
proteoglycans
(CSPGs) in the
central nervous
system (CNS) are
governed by the
specific sulfation
pattern on the gly-
cosaminoglycan
(GAG) chains
attached to CSPG
core proteins.

• It has been found that there are
specific changes in the level and
localization of CSPGs and
CS-GAGs in response to TBI, with
the predominant elevation in
4-sulfated GAG chain
surrounding the injury core.

Immunoblotting
Immunostaining [223]
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Table 3. Cont.

Title Neurodegenerative
Disease

Glycosylation
Aspect Results Analytical

Methods Ref.

Increasing
O-GlcNAc Slows
Neurodegenera-
tion and Stabilizes
Tau against
Aggregation.

Alzheimer’s
disease (AD)

Oligomerization of
tau is a key process
contributing to the
progressive death
of neurons in AD.
Tau is modified by
O-linked N-
acetylglucosamine
(O-GlcNAc), and
in some cases,
O-GlcNAc can
influence tau
phosphorylation.

• It has been found that the
treatment of hemizygous JNPL3
tau transgenic mice with and
O-GlcNAcase inhibitor elevated
tau O-GlcNAc, hindered the tau
aggre-gates formation and
diminished neuronal cell lost.
• Based on the in vitro
biochemical aggregation studies,
it has been suggested that the
O-GlcNAc may be to prevent
pro-tein aggregation.
• It is also suggested that
O-GlcNacase can be considered as
a po-tential therapeutic target that
could hin-der progression of AD.

SDS-PAGE
Western blot
Fluorescence
immunohis-
tochemistry
(IHC)

[224]

Mutation in
B4GALNT1 (GM2
Synthase) Underlie
a New Disorder of
Ganglioside
Biosynthesis.

Diseases of
ganglioside
biosynthesis

A mutation in the
B4GALNT1 gene,
encoding GM2
synthase, catalyzes
the second step in
complex
ganglioside
biosynthesis, as the
cause of this
neurodegenerative
phenotype.

• Biochemical profiling of the
glycosphingolipid biosynthesis
confirmed that a lack of GM2 in
affected subjects is associated
with a predictable elevation in its
precursor levels (GM3), which
can significantly facilitate the
diagnosis of this disease.

MALDI mass
spectrometry
Gas chro-
matography

[225]

Receptors for
Advanced
Glycosylation
Endproducts in
Human Brain:
Role in Brain
Homeostasis.

Alzheimer’s
disease (AD) and
other
neurodegenerative
diseases

Advanced
glycation end
products (AGEs)
are the reactive of
nonenzymatic
glucose
macromolecule
condensation
products, which
play role in neu-
roinflammation.

• Non-enzymatic glycosylation is
implicated in the theory of aging.
This suggests the central role of
advanced glycation end products
in age-relation cognitive features.

Immunohis
tochemistry
RT-PCR
Western blot
Ligand blot

[226]

Glycosylation
Status of Nicastrin
Influences
Catalytic Activity
and Substrate
Preference of
γ-Secretase.

Alzheimer’s
disease

The assembly of
nicastrin (NCT)
and its maturation
occurs through
complex
N-glycosylation
including the
terminal sialic acid
residues on NCT
glycan, affecting
γ-Secretase
complex.

• γ-secretase complex catalyzes
the cleavage of amyloid precursor
protein to generate amyloid-β
pro-tein (Aβ), the main cause of
Alz-heimer’s disease.
• Complex glycosylation of NCT
including terminal sialylation is
critical for γ-secretase activity.
• Immature NCT preferentially
reduced Aβ generation in both
cell-based and biochemical assays.
• Thorough glycosylation of NCT
is critical for enzymatic activi-ty
and substrate preference of
γ-secretase.

Gel elec-
trophoresis
Western blot

[227]
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Table 3. Cont.

Title Neurodegenerative
Disease

Glycosylation
Aspect Results Analytical

Methods Ref.

Glycosylation
Significantly
Inhibits the
Aggregation of
Human Prion
Protein and
Decreases Its
Cytotoxicity.

Prion diseases

Wild-type PrP and
its
monoglycosylated
mutants N181D,
N197D, and
T199N/N181D/
N197D are
primarily attached
to the plasma
membrane via a
glycosylphos-
phatidylinositol
(GPI) anchor.
This glycosylation
occurs at 2 sites
being Asn-181 and
Asn-197 at the
C-terminal
through
sialylation.

• Glycosylation deficiency
enhances human prion protein
(PrP) cytotoxicity induced by
MG132 or the toxic prion peptide
PrP 106–126.
• Glycosylation acts as a
necessary cofactor in determining
PrP localization on the plasma
membrane and that it
significantly inhibits the
aggregation of human PrP and
decreases its cytotoxicity.

Western
blotting
Flow
cytometry
Circular
dichroism
spectroscopy
Laser
scanning
confocal
analysis

[228]

Disruption of
Golgi Morphology
and Altered
Protein
Glycosylation in
PLA2G6-
associated
Neurodegenera-
tion.

PLA2G6-
associated
neurodegenera-
tion
(PLAN)

N-linked and
O-linked
glycosylation in
cerebrospinal fluid,
plasma, urine, and
cultured skin
fibroblasts were
assessed, along
with sialylation
and Golgi
morphology in
cultured
fibroblasts.

• Golgi morphology, O-linked
glycosylation and sialylation may
play a role in the pathogenesis of
PLAN and perhaps other
neurodegenerative disorders.
• Alteration in Golgi morphology
and abnormalities of protein
O-linked glycosylation and
sialylation in cultured fibroblasts
were rescued by lentiviral
overexpression of wild type
PLA2G6.

HPLC
MALDI-
TOF/MS
Immunofluores
cence
Lentiviral
vector

[38]

Sialylation
Enhances the
Secretion of
Neurotoxic
Amyloid-β
Peptides.

Alzheimer’s
disease

Overexpression of
the β-galactoside
α2,6-
sialyltransferase
(ST6Gal-I) in
Neuro2a cells
enhances
α2,6-sialylation of
endogenous APP
and increases the
extracellular levels
of its metabolites.

• In the mouse model, the
amount of α2,6-sialylated
amyloid precursor protein (APP)
appeared to be correlated with
the soluble APPβ (sAPPβ) level.
• It is suggested that the
sialylation of APP promotes its
metabolic turnover and could
affect the AD pathology.

Western blot [229]
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Table 3. Cont.

Title Neurodegenerative
Disease

Glycosylation
Aspect Results Analytical

Methods Ref.

Loss of O-GlcNAc
Glycosylation in
Forebrain
Excitatory
Neurons Induces
Neurodegenera-
tion.

Alzheimer’s
disease

Problems in
O-GlcNAc
glycosylation (or
O-GlcNAcylation)
of proteins like
α-synuclein,
amyloid precursor
protein (APP), and
tau in forebrain
excitatory neurons
may induce neu-
rodegeneration
diseases.

• O-GlcNAc modification plays a
central role in regulating both
APP and tau and that
dysfunctional O-GlcNAc
signaling may contribute to
improper APP processing and tau
pathology.
• O-GlcNAcylation levels can
enhance nonamyloidogenic
processing of APP by raising
α-secretase activity and lowering
γ-secretase activity.
• O-GlcNAcylation regulates
pathways critical for the
maintenance of neuronal health
and suggest that dysfunctional
O-GlcNAc signaling may be an
important contributor to
neurodegenerative diseases.

Immunohis
tochemistry
(IHC)
ELISA
Gene
expression
microarray
qRT-PCR

[230]

V232M
Substitution
Restricts a Distinct
O-glycosylation of
PLD3 and its
Neuroprotective
Function.

Alzheimer’s
disease

O-glycosylation at
a specific site
pT271 in
phospholipase D3
(PLD3) is crucial
for the wild-type’s
normal trafficking
and cellular
localization. The
Val232Met variant
substitution
impairs this
O-glycosylation.

• Mutation of Val232Met variant
of phospholipase D3 (PLD3) may
affect AD pathogenesis by
impairing this O-glycosylation,
subsequently leading to enlarged
lysosomes and possible aberrant
protein recycling.
• PLD3VM had a less
neuroprotective function, while
PLD3WT expression enhanced
lysosomal functions, V232M
weakened PLD3’s trafficking to
the lysosomes.

Quantitative
PCR
Flow
cytometry
Cell
immunocyto-
chemistry

[231]

Glycation
Potentiates
α-Synuclein-
associated
Neurodegenera-
tion in
Synucleinopathies.

Parkinson’s
disease and other
neurodegenerative
diseases

Glycation of the
N-terminal region
of α-synuclein by
glucose is
considered an
age-associated
post-translational
modification. This
PTM enhances
α-synuclein
toxicity in vitro
and in vivo, in
Drosophila and in
mice.

• A hallmark present in
Parkinson’s disease as well as
other neurodegenerative diseases
is α-synuclein misfolding and
aggregation.
• Glycation leads to reducing
membrane binding of
α-synuclein, impairing the
clearance, and supporting the
accumulation of toxic oligomers,
that in turn impair neuronal
synaptic transmission.
• The use of glycation inhibitors
allowed normal clearance of
α-synuclein to be re-established,
where the aggregations were
reduced, alleviating the motor
phenotypes in Drosophila.

Flow
cytometry
Immunoblo
tting
Reverse
phase HPLC
Mass
spectrometry
Size
exclusion
chromatogra-
phy
Nuclear
magnetic
resonance
spectrometry

[232]
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Table 3. Cont.

Title Neurodegenerative
Disease

Glycosylation
Aspect Results Analytical

Methods Ref.

The Prion Protein
Requires
Cholesterol for
Cell Surface
Localization.

Prion diseases and
neurodegenerative
disorders like
Alzheimer’s
disease

PrPC is a cell
surface
glycoprotein
linked to the outer
leaflet of the
plasma membrane
by a glycosyl-
phosphatidyl-
inositol (GPI)
anchor.
Prion conversion
from PrPC to PrPSc

occurs in the
presence of
cholesterol
allowing prion
propagation.

• Levels of cholesterol in the
brains of affected individuals
increase during the clinical course
of both prion diseases and
Alzheimer’s disease.
• Imbalance in cholesterol
homeostasis may lead to synaptic
dysfunction and
neurodegeneration in prion
diseases and AD.

Immunoblot [233]

Characterization of
the Glycosylation
Profiles of
Alzheimer’s
β-Secretase Protein
Asp-2 Expressed in
a Variety of Cell
Lines.

Alzheimer’s
disease

Asp-2 is a
transmembrane
aspartic protease
expressed in the
brain, shown to
have β-secretase
activity.
Mature Asp-2 has
four
N-glycosylation
sites.

• Carbohydrate structure
characterization of Asp-2
expressed in Chinese hamster
ovary, CV-1 origin of SV40, and
baculovirus-infected SF9 cells
were reported.
• It has been reported that
biantennary and triantennary
oligosaccharides of the complex
type were released from
glycoproteins expressed in the
mammalian cells, while high
mannose glycan types were
identified from glycoprotein
synthesized in the
baculovirus-infected cells.
• Protease activity of Asp-2 is
depended on its glycosylation.

Gel elec-
trophoresis
HILIC
MALDI-TOF-
MS

[234]

Altered Protein
Glycosylation
Predicts
Alzheimer’s
Disease and
Modulates its
Pathology in
Disease Model
Drosophila.

Alzheimer’s
disease

The process of
capping N- and
O-linked glycans
by a terminal sialic
acid (sialylation)
was reported to be
altered in AD.
Inhibiting the
MGEA5 gene,
encoding the
enzyme that
dynamically
removes
O-GlcNAc from
proteins, OGA,
reduces the extent
of O-GlcNAc
removal from tau.

• Many glycosylation-related
genes are differentially expressed
in brains of AD patients
compared with healthy controls.
• The result from the in vivo
study in AD model indicates that
certain alterations in expression
levels of glycosylation-related
genes are casually related to
disease severity, whereas others
are circumstantial.

Western blot [235]
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Table 3. Cont.

Title Neurodegenerative
Disease

Glycosylation
Aspect Results Analytical

Methods Ref.

A Comprehensive
Glycome Profiling
of Huntington’s
Disease Transgenic
Mice.

Huntington’s
disease (HD)

Total glycomics,
namely,
N-glycomics,
O-glycomics and
glycosphin-
golipidomics of
HD transgenic
mice can be a
hallmark for the
central nervous
system disorders
to discover disease
biomarkers.

• Core-fucosylated and
bisecting-GlcNAc types of
N-glycans were found to be over
expressed in the brain tissue HD
mice.
• Core-fucosylated and sialic acid
for biantennary type glycans were
found to be elevated in the sera of
HD transgenic mice compared to
the control mice.
• Core 3 type O-glycans were
increase in male and decrease in
both striatum and cortexes of
female HD transgenic mice.
• Serum levels of core 1 type
O-glycans decreased and core 2
type o-glycans were undetected
for HD transgenic mice.
• In glycosphingolipids, GD1
increased in brain tissue, and
GM2-NeuGc decreased in serum.

Glycoblotting
MALDI-
TOF/MS

[236]

Interplay between
Protein
Glycosylation
Pathways in
Alzheimer’s
Disease.

Alzheimer’s
disease

Serum samples of
10 AD patients,
MCI patients, and
controls were
studied.

• Differences in levels of glycan
involved in both protein
O-GlcNAcylation and
N-/O-glycosylation between
patients and healthy individuals
can be seen, revealing brain
region–specific
glycosylation-related pathology
in patients.
• Robust decrease in protein
O-GlcNAcylation and elevation
in PAS staining of the soluble
fraction of frontal cortex tissue of
AD patients can be observed
when compared to that in healthy
controls.
• Glycosylation alterations
identified by PAS staining in the
soluble membrane fractions of
AD patients could be partially
attributed to alterations in
glycosylation of molecules other
than glycoproteins, such as
glycolipids.
• The alterations in the AD
glycome in the serum could
potentially lead to novel
glyco-based biomarkers for AD
progression.

SDS-
polyacryla
mide gel
electrophore-
sis,
Western blot
ELISA
Lectin chip
microarray

[237]
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Figure 2. Correlation between glycosylation changes and CNS diseases. (A) Depiction of the conse-
quences of glycosylation defects occurring in the different lobes of the human brain. (B) Characterization
of consequences of altered glycosylation based on the type of neurological or psychiatric disease formed.

4.1.1. Alzheimer’s Disease

Alzheimer’s disease (AD) is a neurodegenerative disease mainly related to the ac-
cumulation of amyloid-β (Aβ) peptides in the brain. In the study of Hüttenrauch et al.,
they discovered that Glycoprotein Nonmetastatic Melanoma Protein B (GPNMB) is a novel
AD-related factor not only in transgenic mice models but also in sporadic AD patients. In
transgenic AD models, their immunohistochemistry, ELISA, and expression profiling tests
found that GPNMB increases in an age-dependent manner and is co-localized with IBA1-
positive microglia cells that cluster near amyloid plaques in the brain. However, GPNMB is
increased in cerebrospinal fluid (CSF) and brain samples in sporadic AD patients, whereas
normal values of GPNMB are found in non-demented controls [238].

Some researchers like Ilic et al. were interested in investigating the relationship
between the hippocampal expression of brain-specific neuroplastin isoform (Np65) and tau
pathology in AD. Np65 expression and localization were analyzed in 6 human hippocampi
with confirmed AD neuropathology and compared to six age- and gender-matched control
hippocampi by immunohistochemistry measurements. Their results suggest that this
glycoprotein is involved in tissue reorganization and can represent a potential molecular
marker of plasticity response in the early neurodegeneration process of AD [239]. However,
García-Ayllón et al. were interested in knowing the regulation of human natural killer-1
(HNK-1) in neurodegenerative diseases, especially in AD, because it was not well elucidated.
This study showed that HNK-1 is decreased in the brain of AD since it is influenced by the
β-amyloid protein formation [240].

Several other studies tested the effect of P-glycoprotein on amyloid clearance. This
glycoprotein is located across the blood-brain barrier, and it is the efflux transporter that
is highly expressed on the luminal side, supporting the process of Aβ clearance from
the brain [241,242]. These studies concluded that P-glycoprotein is considered a novel
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pharmacological target in AD [243], which plays a crucial role in the clearance of amyloid-β
42, and amyloid-β 40 [242,244].

4.1.2. Huntington’s Disease

Huntington’s disease (HD) is a fatal genetic neurodegenerative disease that is directly
related to the aggregation of mutant huntingtin (HTT) protein where the expansion of
polyglutamine occurs [213,245,246]. According to the literature, different glycoproteins are
associated with this disease [247,248]. Still, the number of studies that tackled this topic
for HD is considered small compared to other neurodegenerative diseases. In the 2015
study of Kao et al., they discovered that higher levels of P-glycoprotein were observed
in the brain capillaries of human HD patients. Their results also showed that R6/2 HD
transgenic mice with the human mutant HTT gene had enhanced NF-kB activity in their
brain capillaries [245]. Thus, they concluded that mutant huntingtin caused a change
in the expression of P-glycoprotein through the NF-kB pathway in brain capillaries in
Huntington’s disease patients and altered the availability of P-glycoprotein substrates in
the brain.

Another study suggests that the expression of microRNA miR-27a is associated with
HD. In this study, they used an in vitro HD mouse model to check the effect of miR-27a
on mutant huntingtin (HTT) aggregation. Their immunocytochemistry tests showed that
mutant huntingtin (HTT) aggregation was elevated with differentiation, and they exam-
ined the phenotype of HD after transfecting miR-27a in the R6/2-derived differentiated
NSCs [246]. However, several old studies aimed to check the glycoproteins associated
with different neurodegenerative disorders and not only HD. These studies showed that
Huntington’s disease is linked to the expression of the histocompatibility glycoprotein
HLA-DR [249], p53, and CREB-binding protein where it represses their transcription in a
transgenic mouse model of HD [250].

4.1.3. Multiple Sclerosis Disease

Multiple sclerosis (MS) is another neurodegenerative disease mainly caused by de-
myelinating the human central nervous system (CNS). Almost all of the studies in the
literature studied the relationship between MS disease and the expression of myelin oligo-
dendrocyte glycoprotein (MOG) because the role of pathological auto-antibodies against
the latter in MS disease models is highly controversial [251]. These glycoproteins are located
on the myelin sheath’s outer external surface, insulating lipid layer around neurons [252].
MOG is considered a possible target antigen for antibodies in MS disease models and other
demyelinating diseases [253].

The study of Khare et al. showed that antibodies derived from adult MS patients
exacerbate experimental autoimmune encephalomyelitis (EAE) in ‘humanized’ mice that
transgenically express human FcγRs (hFcγRs). Additionally, this exacerbation is primarily
dependent on MOG recognition by the human-derived antibodies, and enhancing the
affinities of these antibodies for specific FcγRs demonstrates that FcγRIIA is more important
than FcγRIIIA in mediating disease exacerbation. Thus, this study showed the relationship
of the contribution of MOG-specific antibodies to MS and unveiled internal mechanisms
that could help the development of new therapeutic targets [253].

Another study analyzed T-cells’ reactivity and the related frequency to utilize a novel
technique to detect any antigen-specific T-cells with bead-bound MOG as a stimulant. They
tested samples of peripheral blood mononuclear cells from natalizumab-treated persons
with MS versus healthy people, and these samples were analyzed using IFNγ/IL-22/IL-
17A FluoroSpot. The results of these studies revealed a more significant number of IFNγ,
IL-22, IL-17A along with double and triple cytokine producing MOG-specific T-cells in MS
patients compared to the control sample. Additionally, their data showed that more than
50% of MS patients have MOG-specific T-cells, which gives an insight into the link between
this glycoprotein and MS disease [254].
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4.1.4. Amyotrophic Lateral Sclerosis Disease

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting motor
neurons, leading to cognitive and physical impairments [255]. Additionally, available
therapeutic options cannot slow the progression of these diseases, and novel treatments
are urgently needed. In the research of Budge et al., they studied the association between
inflammatory cytokines such as interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor
necrosis factor-α (TNF-α) and ALS as well as several neurodegenerative diseases. This
study revealed that nonmetastatic glycoprotein melanoma protein B (GPNMB) is neuropro-
tective in an animal model of ALS. Future studies should investigate the more potential
therapeutic value of GPNMB in ALS [255].

However, P-glycoprotein is another glycoprotein found appealing in ALS models in
several recent studies. In the paper of Chan et al., they studied the critical obstacles for
drug delivery residing at the level of both the blood-brain barrier (BBB) and the blood-
spinal cord barrier (BSCB). Such obstacles that would limit the efficacy of therapeutic
agents were P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug
resistance-associated protein 2 (MRP2). They checked their expression in the ALS SOD1-
G93A transgenic rat model across the three stages of disease progression: pre-onset, onset,
and symptomatic. In the symptomatic stage, their results showed an increase in both
P-glycoprotein transport activity and expression compared to the control sample, while no
change in the animals with BCRP and MRP2. Therefore, their experiments and immunohis-
tochemical analysis in the brain and spinal cord capillaries of SOD rats suggested that any
treatment should not be from P-glycoproteins substrates to improve therapeutic efficacy in
the CNS during ALS progression [256].

Another recent study showed that the upregulation of P-glycoprotein affected by
disease advancement progressively reduces central nervous system penetration and ther-
apeutic efficacy of the ALS-related drugs. Additionally, they discovered that glutamate,
which is abnormally secreted by mutant SOD1 and sporadic ALS astrocytes, would enhance
the upregulation of P-glycoprotein expression in endothelial cells by activating NMDA re-
ceptors. However, not all ALS forms worked with the same mechanism since C9orf72-ALS
astrocytes did not affect endothelial cell P-glycoprotein expression. Therefore, their results
unveiled the complex molecular interplay between astrocytes of different ALS forms and
endothelial cells potentially occurring in disease affecting the progression of ALS disease
and the efficacy of pharmacotherapies [257].

4.1.5. Parkinson’s Disease

Parkinson’s disease (PD) is a neurodegenerative disorder affecting dopaminergic
neurons in the brain and especially the substantia nigra (SN). This disease causes stiffness
and abnormal muscle movements. Several relationships between PD and glycoproteins
have been studied in the last five years, and they are helping discover novel therapeutic
candidates to treat PD patients. In the paper of Dunn et al., the researchers discovered
the involvement of synaptic vesicle glycoprotein 2 (SV2) in PD through modifying the
sensitivity of L-DOPA and the nicotine of neuroprotection genetically. Their results also
showed that SV2C expression is predominantly changed in postmortem brain tissue from
mice PD samples but not in other neurodegenerative diseases such as Alzheimer’s disease
or multiple system atrophy. Therefore, they suggested that SV2C disruption is a distinctive
characteristic of PD that likely leads to dopaminergic dysfunction in the neurons [258].

GPNMB is another glycoprotein linked to an increased risk of PD, as stated by Moloney
et al. In this study, alterations in the level of GPNMB were observed in the SN part of the
brain in PD cases compared to stable levels in age-matched controls. However, the trans-
genic mice modeling synucleinopathy experiments demonstrated an increase in GPNMB or
glucocerebrosidase (GCase) deficiency compared to wild-type mice. Thus, the expression
of GPNMB in SN of PD cases and the induction of GPNMB after experimental glycosphin-
golipid increases are considered the potential for primary lipid-induced degeneration in
PD [259].
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Moreover, in the study of Gan et al., they created microRNA (miR)-124-loaded rabies
virus glycoprotein (RVG) 29 surface-conjugated polymeric nanoparticles (NPs) that treat
neuroinflammation in PD because they assumed that elevation in the intracellular concen-
tration of miR-124 would affect the prognosis for PD. Moreover, their immunohistochemical
staining results showed that exogenous delivery of these nanoparticles downregulated
MEKK3 expression in animal studies. Therefore, this study revealed that miR-NPs could
inhibit pro-inflammatory signaling and improve neuroprotection in Parkinson’s disease
patients [260].

Protein glycosylation contributes to the pathogenesis of different human diseases
like PD, and various studies tackled this issue. A recently published study identified
alterations in glycosylation in a mouse PD model using biotinylated Agaricus bisporus
lectin after injecting these models with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. The
data analysis from lectin affinity chromatography coupled with mass spectrometry showed
a significant increase in the glycosylation of microtubule-associated protein 6 in PD mice
compared to control mice. This research showed crucial innovative information, such as
the association between hyperglycosylated MAP6 and the pathogenesis of PD [261].

Finally, myelin-associated glycoprotein (MAG) was also studied along with its rela-
tionship with PD in the study of Papuć et al. They measured IgM autoantibodies against
MAG using ELISA for 132 subjects (50% are PD patients). This study demonstrated an
elevation in the production of anti-MAG IgM antibodies in PD patients, along with an
activation of the humoral response against MAG in Parkinson’s patients [262]. However,
the role of anti-MAG antibodies as biomarkers of PD is not clear, and further studies are
warranted.

4.2. Glycoproteomics and Psychiatric Disorders
4.2.1. Depressive Disorders

All studies of glycomics and mood disorders focused on the major depressive disorder
(MDD) and hinted towards the implication of N-glycosylation in the etiology of MDD. The
first clinical study compared the protein glycosylation pattern in depressed and remitted
patients with MDD [263]. Blood samples were collected from ten patients with MDD
(defined as Hamilton Depression Rating Scale > 18) during both depression and remission
states and ten healthy controls. Binding signals for ten lectins were significantly altered in
the remitted MDD group compared to the depressed MDD and control groups, suggesting
that these lectins may be stress response markers in MDD. These changes were most signif-
icant for Trichosanthes Japonica Agglutinin I (TJA-I), Sambucus Nigra Agglutinin (SNA),
Griffonia Simplicifolia Lectin I Isolectin B4 (GSL-I-B4), and Helix Pomatia Agglutinin (HPA)
(p < 0.001). Additionally, analysis of the expression levels of sialyltransferases in leukocytes
of participants showed that the expression of ST6GALNAC2 was significantly decreased
in remitted patients compared to depressed patients [263]. As sialylation is thought to
influence brain structure and function [264], alteration in glycoproteins’ sialylation can act
as a biomarker of interest in MDD [263].

In an exploratory study, Park et al. assessed the N-glycan profiles of 18 individuals
with MDD at baseline and six weeks after antidepressant treatment. Results showed gender-
dependent correlations with the severity of depressive symptoms before and after initiating
antidepressant treatment. Indeed, at T0, 11 glycan peaks were significantly correlated
with the Hamilton Depression Rating Scale (HDRS) score in all patients, with differential
profiles of correlation in males and females. Additionally, only females had 2 IgG4 N-glycan
glycoforms-containing bisecting N-acetylglucosamine—significantly correlated with the T0
HDRS score. After six weeks of antidepressant response, all cohorts showed no difference in
glycan peak level or IgG N-glycan profiles between responder and non-responder groups,
both at T0 and T6. However, in females, oligo-mannose N-glycan levels and 3 IgG4 N-
glycosylation traits were different between responder and non-responder patients at T0.
The authors concluded that specific glycosylation traits might be associated with MDD
severity and antidepressant response in a gender-dependent fashion [265].
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Lastly, Boeck et al. compared the serum N-glycan profiles of 21 females with an
acute depressive episode to 21 non-depressed healthy females. Compared to controls,
women with MDD showed significant alterations in the serum levels of several N-glycan
structures: reduced total level of agalactosylated N-glycans, particularly two agalacto core-
α-1,6-fucosylated biantennary glycans (NG1A2F), and increased total level of triantennary
N-glycans, mainly the branching α-1,3-fucosylated triantennary glycan (NA3FB) and the
non-fucosylated biantennary glycan (NA2). These differences significantly correlated
with depressive symptom severity, and to a lesser extent, with interleukin-6 levels and
C-reactive protein levels. Additionally, post-hoc analyses revealed that the alterations in
N-glycan profiles were most pronounced in MDD patients with a history of childhood
sexual abuse [266].

Overall, the results of these studies point towards alterations in the serum N-glycan
profile in patients with MDD that are potentially linked to inflammatory processes and that
might be used as future biomarkers for diagnostic evaluation and assessment of treatment
response.

4.2.2. Neurodevelopmental Disorders

Zwaag et al. performed genome-wide copy number variant analysis of the DNA of
105 patients with autism and 267 healthy controls. This was followed by an independent
analysis of autism chromosomal susceptibility loci derived from the literature to see whether
glycobiology-related genes are commonly present in regions that confer risk for autism.
The authors identified seven cytogenetic regions from their participants and selected six
susceptibility loci identified from previous genetic linkage analysis studies [267]. Gene-
network analysis of the 13 susceptibility loci revealed an overrepresentation of genes related
to glycobiology. Indeed, six genes (B3GALNT2, B3GALT1, GAL3ST2, B3GNT5, GALNTL5,
and ARSA) involved in glycobiology were highly ranked in the loci and many of which are
expressed in developing murine brain regions known to be altered in the human autistic
brain. The authors suggested that dosage alterations, via genomic losses and gains, in
these genes contribute to dysfunction in glycosylation pathways, and interaction with other
culprit factors would produce an autism phenotype [267].

In another study by Pivac et al., components of the plasma N-glycome were quantified
in 81 children and 5 adults with autism, 99 children with attention-deficit hyperactivity
disorder (ADHD), and 340 matching healthy controls. The study did not find any differ-
ences in plasma glycans of participants with autism compared to those of healthy controls.
However, several highly significant associations were observed in individuals with ADHD.
The most notable changes in plasma glycans in the ADHD group were increased glycan
groups GP11 and DG7 and a decrease in GP12 (p < 0.001). Furthermore, ADHD was associ-
ated with a regular pattern of changes in GP11, GP12, GP14, GP16, tetrasialoglycans, and
trigalactosylated glycans. The glycans increased in ADHD were composed of biantennary
glycans and antennary fucosylation (A2FG2), whereas those that were decreased consisted
of tri- and tetra-antennary glycans [268]. Future studies should further assess the glyco-
phenotype of individuals with neurodevelopmental disorders, as this might shed light on
the pathophysiology of these conditions and open a new direction or the development of
potential therapeutics.

4.2.3. Schizophrenia and Related Psychotic Disorders

A growing body of clinical research has reported glycosylation and glycomic abnor-
malities in patients with schizophrenia [269]. These studies are summarized in Table 4
inserted right below. Findings suggested that dysfunction in glycobiology pathways could
contribute to the pathophysiology of schizophrenia and hold potential as diagnostic and
treatment tools for the disease.
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Table 4. An overview of the alterations in the normal glycosylation patterns occurring in Schizophre-
nia, a neuropsychiatric disorder, along with the subsequent consequences on other protein expression
levels.

Title Neurodegenerative
Disease Glycosylation Aspect Results Analytical

Methods Ref.

Abnormal
N-acetylglucosaminy
ltransferase
Expression in
Prefrontal Cortex in
Schizophrenia.

Schizophrenia

N-linked and O-linked
glycosylation in cerebrospinal
fluid (CSF) and plasma along with
glycosyltransferase transcripts in
frontal cortex were studied.
Comparison of protein expression
of nine N-
acetylglucosaminyltransferases
(GlcNAcTs) glycosylating
enzymes in postmortem tissue
from the dorsolateral prefrontal
cortex of 12 elderly patients with
schizophrenia and 12 healthy
controls was done.

• There was a decrease in
protein expression of
UDP-GlcNAc: BetaGal Beta-1,
3 GlcNAcT 8 (B3GNT8) and
mannosyl (alpha-1,
3-)-glycoprotein beta-1, 4
GlcNAcT (MGAT4A)
expression in patients with
schizophrenia compared to
controls, providing evidence
for dysregulated
glycosylation in
schizophrenia.

Western blot [270]

N-linked
Glycosylation of
Cortical N-methyl-D-
aspartate and Kainate
Receptor Subunits in
Schizophrenia.

Schizophrenia

N-glycosylation of ionotropic
glutamate receptors (iGluRs) and
N-glycosylation of
N-methyl-D-aspartate (NMDA)
and kainate (KA) receptor
subunits in the dorsolateral
prefrontal cortex was studied.
Comparison of NMDA and
kainate receptor subunits
N-glycosylation in postmortem
tissue from the dorsolateral
prefrontal cortex of 35 patients
with schizophrenia and 31 healthy
controls was performed.

• The levels of NMDA and
kainite receptor subunits
were unchanged between
patients with schizophrenia
and healthy controls.
• NR1, NR2A, and NR2B
NMDA receptor subunits,
and GluR6 and KA2 kainate
receptor subunits were
N-glycosylated.
• GluR6 was significantly
more sensitive to
endoglycosidase H in patients
with schizophrenia, reflecting
a large molecular mass of
N-linked high mannose
and/or hybrid sugars on the
GluR6 protein subunit in
patients with schizophrenia

SDS-
polyacrylamide
gel
electrophoresis

[271]

Abnormal N-linked
Glycosylation of
Cortical AMPA
Receptor Subunits in
Schizophrenia.

Schizophrenia

N-linked glycosylation occurs in
the ER and the Golgi apparatus
before the assembled receptors
are transported to the plasma
membrane.
Comparison of AMPA receptor
subunit N-glycosylation in
postmortem tissue from the
dorsolateral prefrontal cortex of
35 schizophrenia patients and
31 healthy controls was done.

• The absolute level of AMPA
receptors may not be critical,
but rather changes in
trafficking and activity of
these receptors may
contribute to schizophrenia.

Western blot
Lectin-binding
assays
Immunoisolation

[272]

N-Glycosylation of
GABAA Receptor
Subunits is Altered in
Schizophrenia.

Schizophrenia

N-glycosylation of molecules
associated with glutamatergic
neurotransmission were checked.
Comparison of γ-aminobutyric
type A receptor (GABAAR)
subunit N-glycosylation in
postmortem tissue from the
superior temporal gyrus of
14 adult patients with
schizophrenia and 14 healthy
controls was performed.

• There was evidence for
N-glycosylation of the α1, β1,
and β2 GABAAR subunits in
patients with schizophrenia,
with characteristic glycan
attachment on the α1, α4, and
β1–3 GABAAR subunits.
• Although the
N-glycosylation of α1, β1, and
β2 were all changed in
patients with schizophrenia,
the concentrations of
GABAAR subunits
themselves were unchanged.

Western blot
Lectin Affinity
Isolation

[273]
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Table 4. Cont.

Title Neurodegenerative
Disease Glycosylation Aspect Results Analytical

Methods Ref.

Antipsychotic
Treatment of Acute
Paranoid
Schizophrenia
Patients with
Olanzapine Results
in Altered
Glycosylation of
Serum Glycoproteins.

Schizophrenia

Disialylated bi- and triantennary
glycans were checked.
Identification of the glycosylation
profile of serum proteins in
23 antipsychotic-naïve adult
patients diagnosed with acute
paranoid schizophrenia before
and after 6 weeks of treatment
with Olanzapine was performed.

• It has been shown that
olanzapine treatment of
schizophrenia patients
resulted in changes in the
glycosylation machinery
associated with the
biosynthesis of abundant
serum proteins.
• Olanzapine appeared to
affect the extent of
digalactosylation and
disialylation of serum
proteins.
• As glycosylation impacts on
many important cellular
processes,
olanzaoine-induced
glycosylation changes may
induce a number of
downstream effects

HILIC
fluorescence-
based
glycoanalytical
technology
Two-
dimensional gel
electrophoresis
SDS-PAGE gel
electrophoresis
MALDI-TOF
Mass
Spectrometry
ELISA

[274]

Identification of
N-glycosylation
Changes in the CSF
and Serum in
Patients with
Schizophrenia.

Schizophrenia

N-glycans and sialylated glycans
in the cerebrospinal fluid (CSF)
appear altered in schizophrenia
patients.
Comparison of serum and CSF
glycans of adult patients with first
onset unmedicated schizophrenia
(19 for serum and 14 for CSF) and
healthy controls (19 for serum and
18 for CSF) was done.

• Changes in protein
glycosylation are associated
with disease physiopathology,
with some of the alterations
being gender specific, and can
be hold potential as
diagnostic tools for
schizophrenia.

NP-HPLC [275]

Abnormal
Glycosylation of
EAAT1 and EAAT2
in Prefrontal Cortex
of Elderly Patients
with Schizophrenia.

Schizophrenia

N-glycosylation can regulate
excitatory amino acid transporters
(EAATs).
Comparison of the glycosylation
pattern of EAATs in postmortem
tissue from the dorsolateral
prefrontal and anterior cingulate
cortices of 35 adult patients with
schizophrenia and 33 healthy
controls was performed.

• There is significantly less
glycosylation of both EAAT1
and EAAT2 (glial
transporters) in neuronal
postmortem tissues of
patients with schizophrenia.
• There was no evidence for
N-linked glycosylation of
EAAT3 (neuronal transporter)
in postmortem tissues of
either patients with
schizophrenia or healthy
controls.
• Deficits in glycosylation
that are glia-specific may
have a role in the
pathophysiology of
schizophrenia.

Gel
Electrophoresis
Western blot

[276]

Evidence for
Disruption of
Sphingolipid
Metabolism in
Schizophrenia.

Schizophrenia

This study compares the
expression of genes encoding
proteins related to glycobiology in
the prefrontal cortex, related to N-
and O-linked glycan biosynthesis
of 30 adult patients with
schizophrenia and 30 healthy
controls.

• There was a statistically
significant decrease in the
expression of seven genes
encoding for glycan
transferases in the N- and
O-linked glycan biosynthetic
pathways and
glycosphingolipid
metabolism in patients with
short-term illness, and one
gene in those with chronic
illness.

Spectrophotometer
Microarray
Analysis
PCR

[277]
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Table 4. Cont.

Title Neurodegenerative
Disease Glycosylation Aspect Results Analytical

Methods Ref.

Serum
Glycoconjugates in
Children with
Schizophrenia and
Conduct and
Adjustment
Disorders.

Schizophrenia

Glycoproteins and
glycosaminoglycans are altered in
the sera of children.
Comparison of serum
glycoproteins in 8 children with
schizophrenia, 11 with conduct
disorder, 6 with adjustment
disorder and 20 13–17 years of age
healthy controls was conducted.

• The serum
glycosaminoglycans were
significantly elevated only in
children with schizophrenia
(versus normal range in the
three other groups).
• The protein-bound
carbohydrates were all
significantly elevated in
children with schizophrenia
(versus only arabinose and
galactosamine in children
with conduct disorder, and
only galactosamine in
children with adjustment
disorder).

Chemical
ionization-mass
spectrometry

[278]

Serum Glycoproteins
in Schizophrenia. Schizophrenia

Serum glycoproteins containing
glucose and L-arabinose, in
addition to mannose, galactose,
fucose, sialic acid, and a trace of
xylose are examined.
Comparison of serum
glycoproteins and their
carbohydrate component in
30 adult patients with
schizophrenia and 20 healthy
controls was performed.

• The mean concentration of
each of the protein-bound
carbohydrate components
was significantly elevated in
patients with schizophrenia
• The electrophoretic patterns
for serum glycoprotein
showed increases in alpha-2
and beta globulins in patients
with schizophrenia.
• The contents of glucose and
arabinose were higher in
serum glycoproteins from
patients with schizophrenia.

GLC-electron-
impact mass
spectrometry

[279]

4.2.4. Sleep-Wake Disorders

Only one study looked at glycomics of sleep disorders, particularly rapid eye move-
ment sleep behavior disorder (RBD). In this study comparing serum glycomes of nine pa-
tients with RBD to ten healthy controls, Dong et al. identified 56 N-glycans in the RBD group
compared to 59 N-glycan structures in healthy controls. On average, 60% were sialylated
structures, 20% fucosylated structures, and 20% high mannose structures. A total of 16 N-
glycans were found to be significantly altered in the RBD group (p < 0.05), of which six were
overexpressed. N-glycans with the composition of HexNAc4Hex5Fuc1, HexNAc5Hex5,
and HexNAc4Hex5Fuc1NeuAc1 displayed the most substantial difference between the
RBD group and healthy controls (p < 0.01). Moreover, HexNAc4Hex5Fuc1NeuAc1 showed
a relatively high abundance (4 ± 3% in the RBD group vs. 3.1 ± 0.7% in healthy controls).
Alternatively, 7 N-glycan isomers were significantly different between the two groups
(p < 0.05), of which HexNAc4Hex5Fuc1NeuAc1 (4511-2) and HexNAc4Hex5Fuc1 NeuAc2
(4512-2) showed the most substantial difference (p < 0.001) with higher levels in the RBD
group than in healthy controls. The authors concluded that the differentially expressed
N-glycans in the RBD group could be potential diagnostic biomarker candidates that
will provide further insight into the neurodegenerative processes commonly observed in
patients with idiopathic RBD [123].

4.2.5. Trauma- and Stressor-Related Disorders

To investigate whether traumatic stress accelerates physiological aging, Moreno-
Villanueva et al. analyzed the N-glycosylation profile in 13 patients with post-traumatic
stress disorder (PTSD), 9 high-stress trauma-exposed individuals, and 10 low-stress healthy
controls. Although the study did not find significant differences in plasma N-glycans
between the three groups, results suggested that cumulative exposure to traumatic events
advances the aging process. Indeed, patients with PTSD and high stress had significantly
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higher values on the GlycoAge Test compared to controls (p = 0.03), equivalent to an accel-
eration of their aging by 15 years. The traumatic load was positively correlated with the
GlycoAge Test (p = 0.02), while gender did not affect it [280].

In another study looking for PTSD biomarkers, N-glycomic profiles of 299 male
veterans with PTSD were compared to 244 healthy controls [281]. Results showed that six
plasma N-glycans were significantly altered in patients with PTSD compared to controls.
Among these plasma N-glycans, four (GP14 = A2G2S1, GP27 = A3G3S3, GP33 = A4G4S3,
GP39 = A4F1G4S4) were significantly higher, whereas two (GP16 = FA2G2S1, GP19 = M9)
were significantly lower. The severity of PTSD was not associated with different plasma
N-glycans, and IgG N-glycans were similar between groups. In this study, patients with
PTSD did not show signs of accelerated physiological aging on the GlycoAge Test compared
to controls [281].

There are also few reports of observed differences in the serum glycosylation profile
of highly stressed individuals. This includes significantly higher concentrations of 57 kDa
glycoprotein in war prisoners [282] and soldiers [283] and higher concentrations of N-
oligosaccharides, mostly sialic acid in soldiers [284] as compared to healthy controls. The
above findings of altered glycome profiles in individuals with acute stress or PTSD suggest
that trauma-related disorders might be mediated by changes in glycosylation patterns [285].

5. Glycoproteomics and TBI
5.1. Post-Translational Modifications and TBI

After mechanical insults, the brain acquires direct irreversible characterizations caus-
ing both focal and diffuse injury. As a consequence, TBI warrants a progressive cascade
of cellular, neurochemical, and metabolic events that endorse the disruption of normal
brain function and modulate gene expression, ultimately leading to the exacerbation of
neural injury [286], as shown in Figure 3 inserted below. The primary and secondary
injury conditions accompanying TBI have been proven to modify cellular PTM profiles and
increase the risk of developing neurodegenerative diseases such as AD and PD. Shifts in
PTM physiology may lead to health and disease homeostasis fluctuations, affecting cell
signaling pathways and protein interactions and triggering several dysfunctional neurolog-
ical manifestations [287]. Researchers have utilized gene knockout studies in mice to show
that certain PTMs are indispensable for neural development. The importance of PTMs may
stem from their major participation in the biosynthesis of specific neuronal components,
where aberrant progressions may lead to alterations of normal neural development and
migration [288]. In a recent study, Endo demonstrated that aberrant mannosylation during
development could alter neuronal migration, triggering several congenital disorders such
as muscular dystrophy [289].

Glycoproteomic analysis has been employed in a limited number of studies to expose
the crucial roles of PTM alterations in the progression of TBI pathology. In 2016, Yang
et al. conducted a study on 224 TBI patients investigating the role of a specific aberrant
PTM in neuronal damage following TBI [290]. The study elucidated the involvement of
tau phosphorylation in subsequent cognitive impairment, altering the normal PTM profile
of patients with variable TBI severity. Results showed a direct correlation between tau
phosphorylation and the modifications closely related to neuronal damage. In parallel with
the increase of TBI severity, rapid inductions of tau phosphorylation were found at the
focal injury sites. This was accompanied by the enhanced roles of GSK-3β and PP2A, being
key participants in the process of tau hyper-phosphorylation as TBI severity increases [290].
Therefore, tau pathology may prove to be a primary target for TBI therapy due to the
significant impact on cognitive function and neurotransmission.
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Figure 3. An overview of the after-effects of TBI on the neurological components of the brain,
ultimately leading to aberrant glycosylation as shown by MS-based glycoproteomics. TBI: traumatic
brain injury, MS: mass spectrometry.

In addition, protein carbonylation is considered a well-documented irreversible PTM
that leads to the loss of protein function. Carbonylation is generally a consequence of
oxidative stress seen in many neuropathologies such as AD and PD. A 2014 study used the
brains of adult Sprague Dawley rats to visualize protein carbonylation after a controlled
cortical impact (CCI) [291]. Immunohistochemistry results showed that this TBI model
led to the co-localization of carbonylation cell markers in astrocytes, neurons, microglia,
and oligodendrocytes of the ventral portion of the dorsal third ventricle and the lining
above the median eminence. The further proteomics analysis determined that the proteins
most affected by carbonylation following TBI were dihydro pyrimidase-related protein 2,
glial fibrillary acidic protein, fructose-bisphosphate aldolase A, and fructose-bisphosphate
aldolase C [291]. Another study considered the effects of TBI on cytoskeletal proteins
present in PC12 cells [292]. Results indicated the increase of oxidative stress in these cells
as well as the increase of carbonylation in β-actin and β-tubulin. This suggested that the
manifestation of TBI may lead to carbonylation of cytoskeletal proteins, which in turn
undermines their stability.

5.2. Glycosylation in Neurotrauma

Glycosylation is a ubiquitous PTM responsible for most protein modifications in
human cells and organisms. Glycan binding proteins such as lectins have been employed
to visualize and identify glycan structures in CNS trauma. Glycan biomarkers discovered
through quantitative glycomics such as CA125 and CEA have been proven to improve
the clinical prognosis and diagnosis of neurotrauma, attaining a diagnostic capacity and
prompting the improvement of glycomic techniques [293]. In the CNS, eukaryotic cells
like neurons and glia are crusted with a layer of glycans, functioning dynamically to allow
cellular communication. Different cell types arise from highly proliferative neural stem
cells via variable expressions of glycan-rich molecules. The association of glycan structures
with other entities paves the road for neural development, cellular differentiation, and
normal molecular trafficking during neural development [3]. Any disruption or alteration
occurring in the normal glycosylation profile can lead to disastrous neurological outcomes.
Aberrant glycosylation, such as elongation or trimming of glycan structures, can be linked to
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many neurological problems, disorders, and immune responses. For example, alterations in
the expression of stage-specific embryonic antigen-1 (SSEA1) and tumor rejection antigens
(TRA), which are glycan antigen conjugates, can lead to aberrant differentiation of neural
stem cells into mature neurons or glial cells [9,280].

Within the ER-Golgi network, there exist eight major pathways of glycan generation.
The initiation and extension of glycan chains depend on pathway-specific glycosyl trans-
ferases, but it can also rely on transferases that serve a number of different pathways.
Mutations occurring in any of the main players of these pathways may lead to neurological
deficits. In N-linked glycosylation, the TUSC3 gene encodes an oligosaccharyltransferase
subunit, enhancing glycosylation efficiency by slowing down the process of glycoprotein
folding. Mutations or deficiencies in the TUSC3 gene contribute to the decrease of total
and intracellular magnesium levels in mammals, possibly permitting the manifestation of
non-syndromic intellectual disability [294]. Other transfigurations affecting CNS proteins
include the misfolding of the cellular prion protein (PrPC), a glycosyl-phosphatidyl-inositol
(GPI) anchored glycoprotein. Misfolding PrPC transforms it into its pathogenic counterpart
PrPSc, allowing its aggregation through altered interactions with proteins and lipid mem-
brane components and subsequently spreading the pathology in prion diseases. Moreover,
glycosylation deficiencies heighten human PrP cytotoxicity, enhancing the association with
higher levels of reactive oxygen species (ROS), which leads to an increase in oxidative
stress [295].

In neurotrauma, the role of glycosylation has been illustrated through spinal cord
injuries (SCI). The pathology of SCI, as for TBI, is mediated by the increased release of
proinflammatory cytokines during the secondary injury conditions, leading to axonal de-
struction, demyelination, and neuronal loss. Following SCI, a sialic acid molecule may
be added to the membrane proteins of ion channels, altering neuronal ion conductance
and possibly inducing apoptosis of neurons and oligodendrocytes. Membrane proteins
can also undergo excessive glycosylation, exacerbating the excitotoxic environment that
spreads after trauma [296]. Li et al. found higher concentrations of glycosylated proteins
in the dorsal root ganglion neurons, associated with possible sialylation on voltage-gated
channels. Gene knockout studies performed on mice illustrated the role of glycosyltrans-
ferase enzymes following trauma, proving that the biosynthesis of glycans has a primary
impact on neuronal development and glial scar formation. Aberrant glycosylation and
O-mannosylation may further alter normal neural migration, increasing the pathology of
trauma [297].

5.3. Neuronal Death following Experimental TBI

TBI is a pathological event triggering neuropathological conditions. As primary insult
occurs, the direct force trauma is limited to specific underlying tissue. This mechanical
hit may result in acute hemorrhage, neuronal loss, and necrotic cell death depending
on TBI severity. Secondary injury conditions favor diffuse and long-lasting damage that
targets both glia and neurons. The secondary insult of TBI may provoke a delayed form
of cell death, allowing progressive neurodegeneration and damage site expansion [298].
Neuroinflammation is considered the main player in the secondary phase of TBI pathol-
ogy, depending on the release of proinflammatory cytokines after the initial trauma. The
activation of inflammasome complexes is an essential step of neuroinflammation, subse-
quently triggering a stage of neuronal death called pyroptosis. For example, inflammasome
complexes may be involved in activating caspase-1, catalyzing the cleavage of interleukins
such as interleukin-18 (IL-18) and IL-1β into their active forms as pro-inflammatory cy-
tokines [299]. Within the CNS, microglia function as the primary intermediaries of the
innate immune response, having a dual beneficial and detrimental role that results in tissue
repair or neurodegeneration, respectively. On the one hand, microglial cells remove cellular
debris formed after impact and release anti-inflammatory cytokines that prevent further
neuronal injury. In addition, the activation of highly reactive microglia may result in the
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release of cytotoxic pro-inflammatory mediators that inhibit the restoration of cellular
integrity and contribute to neuronal dysfunction and death [300].

An important process in secondary damage following TBI is excitotoxicity [301]. It
occurs mainly due to the excessive activation of the excitatory amino acid (EAA) receptors,
where the N-methyl-D-aspartate (NMDA) receptors play the most prominent role [302]. In
moderate and severe TBI, mechanical insults damage the protein channels and disturb the
ionic homeostasis [303]. The high quantities of glutamate bound at the NMDA receptor
promote a considerable Ca2+ influx causing a Ca2+ overload, which leads to an ionic
imbalance where the increase of sodium (Na+) influx and potassium (K+) efflux lead to
additional depolarization. Excitotoxicity manifested as the excessive depolarization of
neurons, glia, and cerebral endothelial cells will occur. The latter will lead to neuronal
destruction, cell death, and dysfunction, ultimately driving the cell toward oxidative
stress [304–306].

Once excitotoxicity occurs, the excess of Ca2+ could promote the production of ROS
as well as nitric oxide (NO), where protective mechanisms such as antioxidants fail to
control free radicals [307]. The outcome is oxidative stress. The latter can be defined as
an impairment inflicted by ROS production and its detrimental consequences on proteins,
lipids, and DNA [308]. An aspect of TBI is the cellular damage enabled by the oxidation
of both lipids and proteins, where TBI severity can be correlated with the degree of ROS-
related tissue damage [309]. Oxidative stress in TBI is prominently manifested as lipid
peroxidation of neuronal, glial, and vascular cell membranes as well as myelin [310]. Brain
tissue is tremendously vulnerable to oxidative damage due to its high degree of oxidative
metabolic activity, relatively low antioxidant capacity, and low repair mechanism activity
since the neurons possess a non-replicating nature [308,311]. ROS can be produced via the
arachidonic acid cascade activity, mitochondrial leakage, catecholamine oxidation, and by
neutrophils [310,312].

The process of sequestering Ca2+ to the mitochondria could also lead to cell death
either directly by apoptosis or indirectly through the loss of oxidative phosphorylation and
failed production of adenosine triphosphate (ATP). A Ca2+ overload could play a leading
role in the mitochondrial cytochrome c release, caspase activation, and apoptosis [313,314].
In the model of closed-head injury, mitochondrial dysfunction due to the diffuse TBI is
correlated with TBI severity and measured by ATP and n-acetyl aspartate reductions [315].
The consequences of oxidative stress thus overwhelm the CNS, leaving it vulnerable to
other harmful outcomes.

6. Glycoproteomics and Glycosylation: Role in Personalized Medicine

Personalized medicine strives to deliver customized diagnosis and treatment for
patients based on a broad spectrum of parameters such as medical history, physiological
and genetic status, as well as molecular characteristics [316]. PTMs like glycosylation
present potential targets for disease hallmarks to be utilized in individualized medicine
as they are shown to have value in diagnosis, prognosis, and therapy response [286].
This ranges from identifying genetic polymorphisms in glycosyltransferases to predict
H. pylori infection susceptibility [317,318] to detecting glycosylation patterns in cancer
characterization [319–321].

6.1. Glycomics and Glycoproteomics in Cancer Studies

Malignant events in epithelial cells release glycoproteins with altered glycans into the
bloodstream [322], along with the increase in fucosylation and sialylation that has been
observed in several carcinomas [321,323,324]. For example, high levels of carcinoembryonic
antigen (CEA), a highly N-glycosylated glycoprotein involved in cell adhesion, have been
allocated a prognostic value in colorectal cancer, indicating progressed disease stages and a
well-differentiated tumor [325–328].

Additionally, the metastatic occurrence has been correlated with increased glycosy-
lation in invasive tissue compared to primary carcinomas [329,330]. The upregulation
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of sialic acid sugars attached to glycoproteins and glycolipids has become a hallmark of
several tumor cell types [331]. As metastasis and invasion depend on extracellular matrix
(ECM) molecules like ECM cytokines, growth factors, and cell surface proteins, their altered
glycosylation has been shown to induce contact-dependent mechanisms that allow tumor
cell extravasation [332]. Specifically, gliomas, which are challenging due to their invasive-
ness [333], bind hyaluronic acid-based ECM to interact with the lectican family chondroitin
sulfate proteoglycans and CD44 [334,335] that are involved in tumor migration. Another
protein that was shown to be upregulated in invasive gliomas is brevican protein [336,337].
Vipiano et al. identified two novel isoforms of the brevican protein present in gliomas, each
with a different pattern of glycosylation, and posed a role for them as diagnostic markers,
as well as potential targets for immunotherapy [338].

Enzymes involved in PTMS are also involved in the metastatic phenotype in brain
cancer [339]. GnT-V, a glycosyltransferase encoded by the gene MGAT5, was shown to be
increased in brain cancer, contributing to a decrease in cellular adhesion and promoting
metastasis [329,340,341]. Moreover, sialic acid epitopes allow cancerous cells to avoid
immune response by hindering their recognition [342]. Hudak et al. mimicked cancer-
associated sialylation by inserting sialylated glycopolymers into cancer cells’ membrane,
inducing the localization of Siglecs, which are sialic acid-binding proteins on immune
cells and increasing SHP-1 and SHP-2 phosphatase recruitment [343]. This resulted in NK
cells’ failure to be activated against tumor cells, revealing the role of sialylation in immune
evasion.

6.2. Glycomics and Glycoproteomics in Prion Disease

Glycosylation also interplays with other factors that contribute to several brain-related
diseases like prion disease and other neurodegenerative disorders, as shown in Figure 4.
Prion disease comprises the structural change of a specific prion protein PrPc into its disease-
associated isoform PrPSc [344]. PrPC undergoes two PTMs, the first is the attachment of
GPI anchor to its C-terminal residue Ser-231, and the other is glycosylation at residues
Asn-181 and Asn197 [345]. Studies have demonstrated that when PrPC is unglycosylated at
its N-terminus, it becomes more susceptible to conversion to PrPSc [346]. This was observed
in a study that used murine neuroblastoma cells treated with tunicamycin, which blocks
N-glycosylation, to reveal that reduced glycosylation of PrPC predisposed it to turn into
PrPSc [347]. Specifically, the immature high-mannose form of PrPC, which is yet to undergo
complex glycosylation, is the most susceptible to PrPSc conversion. For this reason, it was
postulated that mechanisms dependent on the binding of PrPC to F-box-only protein Fbox2,
which binds N-linked high mannose oligosaccharides and aids in substrate recognition by
SCF complex, might play a key role in prion disease pathology [348].

The glycosylation at the N-terminus can hold up to five sialic acid residues [349]. These
have been shown to alter the properties of the protein and play a role in the infectivity
rate of the misfolded isoform PrPSc [345]. Due to the fact that sialic acid is negatively
charged and is directed outwards to create a dense negative cloud [350,351], Katorcha et al.
proposed that it might impose an electrostatic hindrance for PrPSc replication. Trying to
prove that, the research team showed that the level of deglycosylation in the PrPSc form
was less than that in the PrPC. Addtitionally, among some mouse strains tested in the
same study, partial desialylation caused an increase in the replication rate of the protein,
adding evidence that this type of PTM forms a barrier to replication. To add to this, it
was observed that changes in the sialylation levels of PrPC affected the formation of three
different glycoforms [345] that were shown in previous studies to give rise to PrPSc in
a selective manner [352]. These were later used for strain typing of the different prion
subtypes [353,354]. In another study, the role of glycosylation in the subcellular localization
of PrPC was investigated [228] and was shown to exhibit an impaired localization at the
plasma membrane. Not only this, but the study also showed that glycosylation enhances
the protein’s proteinase K resistance and aggregation ability, increases ROS levels, and
increases cytotoxicity.
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Figure 4. The process of glycosylation of normal PrP and the effect of deficiency in glycosylation or
conversion of PrPC to PrPSc. (A) In normal conditions, nascent PrP undergo glycosylation which
occurs in the Endoplasmic Reticulum (ER), then it matures in the Golgi apparatus and eventually
reaches the plasma with the aid of GPI anchor. However, when glycosylation deficiency occurs,
the nascent PrP becomes insoluble aggregates which leads to early or late apoptosis (green label).
(B) Mature PrPC at the level of the plasma may interact with PrPSc, and this would lead to a conversion
and accumulation of PrPSc which in turn would increase the level of cytotoxicity due to the presence
of this prions disease.

6.3. Glycomics and Glycoproteomics in Neurodegenerative Diseases

Neurodegenerative diseases have also been strongly linked to changes in expression
levels of glycosyltransferases [355]. In this regard, two main glycosyltransferase mecha-
nisms are at play: ganglioside synthesis, primarily composed of sialic acid-containing gly-
cosphingolipids, and O-linked β-N-acetylglucosamine (O-GlcNAcylation) to proteins [356].
Gangliosides, which are abundant in neuronal and glial cells [357], play a role in cell
signaling, and their altered levels have been associated with amyotrophic lateral sclerosis
(ALS) [358], Parkinson’s [359], and Alzheimer’s [360]. Similarly, O-GlcNAcylation, which
has a role in synaptic and axonal function, has been linked with the same abovementioned
diseases when it is significantly reduced in cells.

Some genetic factors affecting these two mechanisms have been described to con-
tribute to neurodegeneration. For example, recent research has shown that mutations close
to the substrate-binding site of glycosyltransferase 8 domain-containing 1 (GLT8D1) causes
aberrations in enzyme activity and are linked to familial ALS [361]. This study by Cooper
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et al. is the first to demonstrate that a disruption in the function of a glycosyltransferase is
enough to cause a neurodegenerative disease [361]. Additionally, the two glycosyltrans-
ferases B3GALt4 and ST3GAL2 in neuromelanin-containing neurons in the substantia nigra
show a decreased expression in Parkinson’s diseases [362]. Consistently, GM1 ganglioside-
expressing cells show a similar reduced pattern [359], along with other brain gangliosides
GD1a, GD1b, and GT1b, in patients with the same disease [363]. Likewise, in humans and
the R6/1 mouse model of Huntington’s disease a decreased expression of glycosyltrans-
ferases impairing ganglioside synthesis, including ST3GAL5, ST8SIA3, B4GALNT1, and
ST3GAL2 was observed. The same study showed decreased gangliosides’ concentrations
in the diseased human caudate and the mouse striatum [364].

In contrast, patients with Alzheimer’s disease were found to display elevated levels
of the gangliosides GM1, GM2, and GM3 in their cerebral cortices [360,365]. Amyloid-β,
whose deposition defines the onset of Alzheimer’s, is bound to ganglioside species [366].
Speculations towards the neurotoxic effects of the insoluble GM1-bound amyloid-β were
under study [367], suggesting that this particular binding aids in the formation of the
insoluble β-pleated sheets [340]. Further studies on glycosyltransferases show that over-
expression of B4GALNT1 causes increased ganglioside expression along with increased
amyloid precursor protein (APP) that suppresses lysosomal degradation of β-secretase-1
(BACE1) and thus leads to amyloid-β pathology [368].

7. Potential Biomarkers in Disease Diagnosis (Clinical Application)

Finding potential biomarkers for any disease would be crucial in the early clinical
diagnosis for this disease, then working toward treating or even eradicating it after discov-
ering its whole mechanism. Clinical glycomics might play a major role in different medical
areas and specializations since it can help unveil the glycosylation mechanisms [369]. This
would be done through a set of several analytical methodologies that would determine
and analyze the structure of any glycan such as gel electrophoresis, mass spectrometry,
and from free glycans to intact glycoproteins [369], and more specialized ones as lectin
capture methodology [370]. Moreover, discovering the combination of protein levels and
their glycan isoforms would increase specificity for early diagnosis and therapy moni-
toring for several human disorders like cancer, inflammation, Alzheimer’s disease, and
diabetes. This is because clinical validation is as important as acknowledging all the ge-
netic and environmental factors which usually affect the protein-specific glycosylation
abnormalities [371].

Wide applications were performed and studied on different potential biomarkers and
medical fields. In the study of Chong et al., they tested a novel biomarker for inflammatory
diseases, namely Leucine-rich alpha-2 glycoprotein (LRG). Although they studied other
proteins and biomarkers that might affect inflammatory diseases, their results showed a
relationship only between LRG and patients with either bacterial meningitis or aseptic
meningitis [372].

Another study focused on finding a methodology that would allow them to get as
much as they can from the biomarkers in the blood, which is considered a golden source
for disease biomarkers. Thus, they performed prolonged ultracentrifugation coupled to
electrostatic repulsion-hydrophilic interaction chromatography (PUC-ERLIC) to discover
these biomarkers, and then they quantified them using mass spectrometry-based proteomic
technique [373]. On the other hand, the accessibility of the skin was a target for other
researchers to develop noninvasive tests of metabolic and disease activity for clinical use.
Thus, they studied potential biomarkers for chronic inflammatory disorders as impaired
human wound healing, and they were dermal extracellular matrix components such as
collagens, proteoglycans, hyaluronan, and glycoproteins [374].

Each disease has specifically related biomarkers, and sometimes multiple biomarkers
are expressed in several diseases, especially if the diseases are related to the same organ.
For example, in some neurodegenerative diseases, some common biomarkers can be found,
such as MOG, which is suggested as a potential biomarker for demyelinating diseases such
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as AD and MS [375]. Furthermore, other biomarkers such as apolipoprotein A-1, alpha-
2-HS-glycoprotein, and afamin are only expressed in patients with AD [376]. Moreover,
biomarkers such as glycoprotein non-metastatic melanoma B are considered a potential
biomarker for Gaucher disease to monitor individual patients and even understand the
disease mechanisms, which might give more insights into other related diseases through
the clinical applications [377].

8. Conclusions

Intense multidisciplinary research and numerous studies have provided robust evi-
dence of the potential role of glycomics to yield new classes of biomarkers for neurological
and psychiatric disorders. Such tools can represent an expanded approach to an early
and more accurate diagnose, improve patient characterization and classification, and
elucidate novel pathogenetic and pathophysiological information to be translated into
disease-modifying therapeutic strategies. Nonetheless, to make a wide impact on medical
practice and support clinical decision making, well-validated platforms at a reasonable cost
and with short turnaround times are needed, and clinical validity and utility of these new
markers must be convincingly demonstrated in large rigorous and independent clinical
studies.
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