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Abstract
Human genome harbors 55 receptor tyrosine kinases (RTK). At least half of the RTKs have been reported to be cleaved by
gamma-secretase-mediated regulated intramembrane proteolysis. The two-step process involves releasing the RTK
ectodomain to the extracellular space by proteolytic cleavage called shedding, followed by cleavage in the RTK
transmembrane domain by the gamma-secretase complex resulting in release of a soluble RTK intracellular domain. This
intracellular domain, including the tyrosine kinase domain, can in turn translocate to various cellular compartments, such as
the nucleus or proteasome. The soluble intracellular domain may interact with transcriptional regulators and other proteins to
induce specific effects on cell survival, proliferation, and differentiation, establishing an additional signaling mode for the
cleavable RTKs. On the other hand, the same process can facilitate RTK turnover and proteasomal degradation. In this
review we focus on the regulation of RTK shedding and gamma-secretase cleavage, as well as signaling promoted by the
soluble RTK ICDs. In addition, therapeutic implications of increased knowledge on RTK cleavage on cancer drug
development are discussed.

Introduction

Human genome harbors genes encoding 55 receptor tyr-
osine kinases (RTK) [1]. RTKs can signal through tradi-
tional, canonical pathways involving other kinases and lipid
messengers but can also signal through a noncanonical
pathway involving the proteolytic release of intracellular
domain fragments (ICD), which translocate to various cel-
lular compartments [2–4].

Full-length RTKs and RTK fragments have been
observed in the intracellular cell compartments such as
nucleus and mitochondria [4]. Active RTK fragments can
be generated by proteolytic cleavage resulting in the release
of soluble RTK ICDs from the membrane. These fragments

can be generated by various mechanisms in response to
various stimuli, including caspase cleavage and gamma-
secretase-dependent pathways. In this review we will focus
on gamma-secretase-dependent cleavage pathways. Other
mechanisms of RTK processing have been recently
reviewed elsewhere [5].

Generation of soluble ICD by ectodomain
shedding and gamma-secretase cleavage

ERBB4 was recognized as the first RTK cleavable by
gamma-secretase almost 20 years ago [6]. Since then the
amount of RTKs identified as substrates have gradually
increased to a point that approximately half of the RTKs
have been reported to be cleaved by gamma-secretase
(Table 1). The prevalence of this phenomenon among RTKs
indicates that cleavage-associated and -generated signaling
can play a major role in RTK signaling.

Most of the work addressing the molecular mechanisms
by which the gamma-secretase complex recognizes and
interacts with its substrates has been carried out with Alz-
heimer’s disease-related amyloid precursor protein (APP)
and to some extent with the notch receptors. Only relatively
little research has been conducted on the intracellular
cleavage of RTKs and, so far, practically no work has
addressed aspects of substrate recognition, substrate
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binding, and actual cleavage catalysis in the context of
RTKs. Thus, it is plausible that gamma-secretase-mediated
cleavage is regulated by mechanisms resembling those
exploited by both APP and notch, but this remains to be
confirmed.

The formation of a soluble ICD requires the full-length
receptor to be cleaved by two sequential proteolytic clea-
vage events in a process called regulated intramembrane
proteolysis (RIP; Fig. 1) [7]. At first, the extracellular
ectodomain of the receptor is cleaved and released into
extracellular space by a sheddase. Alpha-secretases such as
matrix metalloproteinases (MMP) and members of a disin-
tegrin and metalloproteinase (ADAM) family, and beta-
secretases such as aspartic proteases, promote the ectodo-
main shedding of gamma-secretase substrates by proteolytic

cleavage adjacent to the plasma membrane in the extra-
cellular juxtamembrane part of the receptor (Fig. 1a).
ADAM10 and ADAM17 (tumor necrosis factor alpha-
converting enzyme; TACE) are responsible for most of the
RTK ectodomain shedding. Some RTKs are subject to
cleavage by both of these sheddases (Table 1).

The ectodomain shedding is followed by the secondary
cleavage event at the receptor transmembrane domain by
gamma-secretase intramembrane protease complex, releas-
ing an intracellular protein fragment (Fig. 1b). Indeed, only
transmembrane proteins with ectodomains within 12−35
amino acids in length (the length typically generated by
shedding) function as substrates for gamma-secretase [8].

Gamma-secretase protein complex is composed of four
subunits: presenilin, which is proteolytically cleaved to N-
terminal and C-terminal fragments, presenilin enchancer-2
(PEN-2), anterior pharynx defective-1 (APH-1), and nicas-
trin [9]. Human proteome harbors two isoforms for pre-
senilin and three for APH-1 creating multiple possible
combinations for composition of the protein complex.
Nicastrin binds to free N-termini of substrates and excludes
substrates with too large free N-termini [10, 11], explaining
the requirement for prior ectodomain shortening by shed-
dases for the correct assembly of gamma-secretase complex
on substrates such as RTKs. Presenilin harbors the enzy-
matic activity of gamma-secretase complex and cleaves
RTKs among other type I single transmembrane proteins
[12]. The actual roles of other subunits are still unclear. The
cleavage results in the release of a soluble ICD from the cell
membrane into the cell cytoplasm (Fig. 1b).

The requirement for substantial conformational changes
in the gamma-secretase complex during the substrate
binding and catalysis of the cleavage have been reported
[11]. The substrates bind to gamma-secretase at a substrate
binding site, from which they are then transferred to a
docking site in the vicinity or overlapping the catalytic site.
It has been demonstrated that substrate movement out from
the binding site to catalytic site is required for cleavage
[11].

RTK recognition by gamma-secretase

A conserved structural motif in the transmembrane domain
of substrates is probably needed for the recognition by
gamma-secretase complex. So far, no conserved amino acid
consensus sequence has been identified serving either as the
substrate recognition sequence or as the actual substrate
cleavage site. The recognition of substrates is thought to be
based on a combination of the length of the remaining
ectodomain after shedding [8], the strength of interaction
between the substrate transmembrane domain and the
gamma-secretase complex [10] and subcellular localization

Table 1 RTKs reported to be cleaved by gamma-secretase

RTK Sheddase Reference for
sheddase

Reference for
gamma-secretase
cleavage

AXL ADAM10/ADAM17 [108] [110]

CSF1R ADAM17 [111] [96]

EphA2 MT-MMP [112] [17]

EphA4 ADAM19 [113] [114]

EphA5 [17]

EphA7 [17]

EPHB2 ADAM10 [29] [29]

EPHB3 [17]

EPHB4 ADAM8 [115] [17]

EPHB6 [17]

ERBB4 ADAM17 [80] [6]

FGFR3 Metalloprotease [30] [30]

FGFR4 [17]

IGF1R [97]

INSR ADAM17 [116] [116]

MER ADAM17 [117] [17]

MET ADAM10/ADAM17 [98, 118] [98]

MUSK [17]

PTK7 ADAM17 [66] [66]

RYK Metalloprotease [119] [31]

TIE1 metalloprotease [99] [99]

TRKA Metalloprotease [120] [17]

TRKB Metalloprotease [93] [93]

TYRO3 [17]

VEGFR1 ADAM8/ADAM10/
ADAM17

[115, 121] [71]

VEGFR2 ADAM17 [122] [101]

VEGFR3 [17]

In total, 27 human RTKs (out of the 55 encoded by genome) have been
reported to be cleaved by gamma-secretase. Proteases indicated to be
responsible of ectodomain shedding are also listed, when known
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of the substrate in relation to gamma-secretase activity
[13, 14]. Interestingly, gamma-secretase complex may also
cleave specific substrates directly with no need for shedding
[15, 16], in cases where the ectodomains are naturally short
enough to circumvent the size exclusion step provided by
the nicastrin subunit for substrate recognition [10].

While most of the substrate interactions with gamma-
secretase complex have been indicated to take place within
N- and C-terminal presenilin sequences, interactions of the
substrates with PEN-2 and nicastrin subunits have also been
observed [11]. Nicastrin and PEN-2 have been shown to
interact with amino acid residues close to the N-terminus of
the substrate. Recent data indicate that nicastrin acts as a
gatekeeper for substrates and obstructs the entrance of large
ectodomain containing substrates [10]. In the proposed
model of gamma-secretase cleavage by Fukumori and
Steiner, substrates interact with nicastrin and PEN-2 when
substrates are introduced to gamma-secretase complex [11].
However, a complete picture of the structural elements
guiding RTK recognition by the gamma-secretase complex
remains to be elucidated.

Regulation of ICD formation

Gamma-secretase has over 100 identified substrates
[12, 17, 18] but known substrates represent only a minor
fraction from the potential ones in the human proteome,
which includes about 2500 single span membrane proteins

[19, 20]. In the same manner as any proteolytic process
intramembrane proteolysis requires substrate identification,
cleavage of the scissile bond at the active site of the pro-
tease, and finally the release of a product [21]. However,
ectodomain shedding and subsequent gamma-secretase
cleavage are irreversible procedures unlike many
other signaling mechanisms and hence must be tightly
regulated.

The main factors that regulate RTK RIP are (i) ectodo-
main shedding that is required before gamma-secretase
cleavage and is thus critical for the initial selection of
substrates, and (ii) subcellular localization of substrates and
gamma-secretase complex in relation to each other.

Regulation of RTK RIP by sheddases

While gamma-secretase cleavage of cell surface proteins
could be considered a relatively passive event taking place
almost automatically after exposure of the substrate by
prior ectodomain shedding, it is not promiscuous. In
agreement, not all RTKs that have been reported to be
shed undergo cleavage by gamma-secretase. RTKs such
as ERBB2 and TIE2 have been found to undergo ecto-
domain shedding, but no indications for gamma-secretase
cleavage has been reported so far [22, 23]. This could be
explained by that further cleavage by gamma-secretase
proceeds only in specific molecular or subcellular con-
texts [10, 11, 13, 14, 24] or that the half-life of the
released ICD is so short that it is not easily observed

Fig. 1 Regulated intramembrane proteolysis of RTKs. a RTK ecto-
domains are shed by cleavage at the extracellular juxtamembrane
domains by sheddases, such as ADAM17 or ADAM10. Ligand acti-
vation of RTK may result in exposure of phosphatidylserines on the
cell surface resulting in a conformational change in ADAM17 facil-
itating access to the RTK cleavage site. b After shedding of the
ectodomain, gamma-secretase complex, consisting of APH-1, nicas-
trin, PEN-2, and presenilin, gains access to membrane-bound RTK

fragment. Nicastrin can now interact with the short RTK ectodomain.
RTK binding to the gamma-secretase complex induces further con-
formational changes in the gamma-secretase subunits that result in
substrate translocation to the active site. Cleavage of the RTK sub-
strate in transmembrane domain results in the release of the soluble
ICD into the cell cytoplasm. RTK receptor tyrosine kinase, APH-1
anterior pharynx defective-1, PEN-2 presenilin enchancer-2, ICD
intracellular domain fragment
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without treating cells with reagents that increase the
cleavage or inhibit the degradation of ICDs [25].

In any case, as shedding is typically a prerequisite for
subsequent processing, RTK cleavage by gamma-secretase
is in principle subject to control by any circumstances that
affect the expression or activation of the sheddase. For
example, it has been shown that ERBB4 ectodomain is
present in the serum of the breast cancer patients at higher
concentrations than in the serum of healthy individuals, and
that the enhanced shedding associates with more ADAM17
protein present in breast cancer tissue as compared to paired
samples representing histologically normal adjacent breast
tissue [26]. Upregulation of ADAM expression has also
been reported in other cancer types, and number of effectors
of ADAM gene expression have been defined, including
cytokines and growth factors [27, 28].

While basal RTK cleavage has been reported, quite often
activation by ligand is needed for RTKs to be cleaved by
gamma-secretase. For example, ligand-induced cleavage
has been observed for CSF1R, EPHB2, ERBB4, FGFR3,
RYK, VEGFR1, and VEGFR2 [6, 29–34]. The activation of
RTK cleavage by ligands may be due to activation of
downstream signaling kinases that result in activation of
shedding by phosphorylation of the cytoplasmic tail of
ADAM17 and/or ADAM10. These mechanisms include the
activation of PLK2, MAPKs, and PKC (reviewed in refs.
[35, 36]).

In addition to ligand activation, activation of other cel-
lular receptors and changes in ion concentrations across the
cellular membranes have been associated with induction of
gamma-secretase cleavage. Examples include cleavage of
CSF1R, EPHB2, and ERBB4 RTKs [26, 29, 37]. The likely
explanation is that these molecules that promote activation
of cleavage increase the activity or the amount of sheddases
promoting the shedding, and as such generate substrates for
subsequent gamma-secretase cleavage.

It has further been indicated that shedding of ectodo-
mains requires phosphatidylserine exposure at the outer
layer of the cell surface that interacts with ADAM17
membrane-proximal-domain leading to a conformational
change in the ADAM17 ectodomain enabling its catalytic
site to interact with cleavage sites of its transmembrane
substrates [38, 39] (Fig. 1a). Overall, it has been proposed
that to achieve shedding activity, ADAM17 has to be
activated while ADAM10 is more constitutively active
(reviewed in ref. [36]).

The regulation of gamma-secretase cleavage at the level
of shedding may also be modified by O-glycosylation of the
substrates [40] Sheddases cleave substrates at membrane
proximal extracellular juxtamembrane domain, which is
also where O-glycosylation frequently takes place. Glyco-
sylation has been found to predominantly reduce ADAM17-
mediated shedding, with some reports indicating alterations

in cleavage sites after glycosylation as well [40]. The sites
of O-glycosylation are controlled by only one or few
GalNac-transferase isoforms indicating that shedding could
be regulated to some extent by expression of specific
GalNac-transferase isoforms [40]. Interestingly, an ERBB4
mutation Q646C that creates a constitutively active ERBB4
[41] and is situated at one of the proposed ADAM17
cleavage sites [40] was shown to decrease the efficiency of
site-specific O-glycosylation [40]. Hence, it is conceivable
that O-linked glycosylation of RTKs influences the intra-
cellular cleavage and signaling by reducing ectodomain
shedding.

Subcellular localization in regulation of RTK RIP

It has been reported that most of the mature ADAM17 is
localized intracellularly as a result of constitutive inter-
nalization, with only a small fraction residing on the cell
surface [42]. Furthermore, most of the intracellular
ADAM17 is in inactive form in endoplasmic reticulum (ER)
and its maturation takes place in the Golgi apparatus. The
trafficking from ER to Golgi is dependent on iRhoms 1 and
2 [43–46]. Furthermore, ADAM17 substrate selectivity,
shedding activity, and cell surface stability have been
indicated to be regulated by iRhoms [47–49]. In addition,
sorting protein PACS-2 is involved in trafficking and sus-
taining cell surface activity of ADAM17 [50]. The cell
surface localized ADAM17 has been observed to be regu-
lated by tissue inhibitor of metalloproteinases 3 (TIMP3),
which binds to catalytic domain of ADAM17 [51].
ADAM10 can be regulated by TIMP1 as well as by TIMP3
[52]. In addition, integrin beta1 interaction with ADAM17
has been associated with inhibition of cell surface
ADAM17 [53, 54].

Chen et al. showed that ADAM10 and gamma-secretase
complex reside in the same multiprotease complex [55].
While the study focused on ADAM10, it is plausible that
other sheddases reside in their own multiprotease com-
plexes with gamma secretase. Indeed, it was demonstrated
that other sheddases such as ADAM17 did not immuno-
precipitate with ADAM10 in contrast to gamma-secretase
complex, which did immunoprecipitate with ADAM10
[55]. Both sheddases and gamma-secretase residing in same
complexes can in principle result in optimized processivity
of the cleavage event by promoting efficient ICD release
after shedding. However, further research is needed to
illustrate the composition of the protease complexes used
for each RTK.

Different gamma-secretase complexes containing either
presenilin-1 or presenilin-2 have been reported to direct
their gamma-secretase complexes to distinct subcellular
localizations [13, 14]. Presenilin-2-containing gamma-
secretases are directed to late endosomes/lysosomes [14]
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while presenilin-1-containing complexes are distributed
more diffusely in the cell membranes. It has also been
shown that composition of the lipid membrane affects the
localization and activity of gamma-secretase as well as its
substrates. Presenilin-1-containing gamma-secretase com-
plexes have been shown to localize to lipid rafts and the
composition of lipids to affect the activity of the complex
[56–59]. In addition, it has been observed that gamma-
secretase cleavage is quite a slow process compared to
similar cleavage events executed by soluble enzymes [60].
It was demonstrated that the strength of substrate/enzyme
interaction can regulate the overall reaction rate of gamma-
secretase, and that rate of proteolysis is influenced by sub-
strate binding and processing. Taken together, these
observations indicate that proper spatial distribution and
compartmentalization of gamma-secretase and substrates is
needed for appropriate cleavage process.

Intracellular fate of cleaved ICD

Cleaved ICDs of RTKs have been detected in various cel-
lular subcompartments. Also in this respect, the most-
studied RTK is ERBB4. Soluble ERBB4 ICD, as detected

by overexpressing constructs encoding solely the ICD
domain, or by analyzing endogenously produced ICD
fragments using subcellular fractionation analyses and
chemical inhibitors of nuclear export, has been detected in
nucleus by several models both in vitro and in vivo [6, 25,
61–63]. Cell types that naturally produce ERBB4 ICD in
their nuclei include mammary epithelial cells and other
breast cancer cells. Interestingly, it has been reported that
more nuclearly localized ERBB4 is detected in breast can-
cer tissue than in normal breast [64] and that nuclear
ERBB4 localization associates with worse prognosis than
cell surface localization in breast cancer [65].

In addition to ERBB4, soluble ICDs of endogenously
expressed AXL, RYK, and TRKA have been reported to
translocate to the cell nucleus while those of FGFR3 and
PTK7 have only been observed in nucleus when over-
expressed [17, 30, 31, 66–68]. The ICDs of AXL, FGFR3,
and PTK7 have been observed in the nucleus in vitro [17,
30, 66, 67], RYK in an in vivo mouse model [31], and
TRKA in immunohistochemical analysis of human liver
tissue samples [68].

Soluble ERBB4 ICD has also been reported to translo-
cate into the mitochondria [69, 70] while the ICDs
of EPHB2 and VEGFR1 remain in the cytosol of the cell

Fig. 2 Functional significance of RTK fragments generated by RIP.
The reported functions associated with nuclear localization of ICDs
include roles in neural development, mammary gland development,
and lung development as well as with breast cancer. Mitochondrial
localization has been associated with regulation of apoptosis. Cyto-
plasmic ICD localization allows activation of other receptors, such as

NMDA. Downregulation of RTK signaling has also been associated
with rapid localization of ICDs to proteasome after gamma-secretase
cleavage. The release of shed ectodomains may also contribute to
downregulation of RTK signaling by sequestering ligands. RTK
receptor tyrosine kinase, RIP regulated intramembrane proteolysis,
ICD intracellular domain fragment, NMDA N-methyl-D-aspartate
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[71, 72]. The mechanisms governing the translocation of the
released ICDs into various cellular organelles after the
cleavage remain largely unknown. However, modification
of ERBB4 ICD by the small ubiquitin-like modifier
(SUMO) has been shown to promote nuclear localization by
a mechanism probably involving enhanced kinase activity
and inhibition of nuclear export of ERBB4 ICD from the
nucleus back to the cytosol [73, 74].

As discussed below, the soluble ICD of several RTKs
may also rapidly translocate to proteasomes for degradation.

Cellular functions regulated by cleaved RTK
ICDs

After the release from the membrane, the RTK ICDs can act
as signaling molecules with various functions (Fig. 2). The
ICDs, again mostly studied in the context of ERBB4, have
for example been observed to regulate gene expression by
acting as transcriptional coactivators or corepressors.

ERBB4 ICD signaling in development and growth

Various processes in development and differentiation of
different organs have been reported to be at least partially
dependent on the functionality of nuclear ERBB4 ICD. The
ICD has been shown to localize into the nuclei in mammary
epithelial cells and found to induce differentiation of the
mammary gland in a mouse model [61, 75, 76]. Maturation
of mouse fetal lung type II epithelial cells has also been
reported to be dependent on ERBB4 ICD formation in vitro
[63, 77, 78]. In addition, it has been speculated that ERBB4
cleavage by gamma-secretase and production of ICD pro-
motes mesenchymal cell proliferation during mouse heart
valvulogenesis [79], although this assumption was not
based on direct evidence of the activities of the cleaved ICD
but interpretation of functional differences between clea-
vable and noncleavable ERBB4 isoforms [80, 81].

The molecular mechanisms relaying signaling from the
nuclearly localized ERBB4 ICDs have reported to include
nuclear interactions with several transcriptional activators or
repressors. For example, it has been proposed that STAT5 is
escorted to nucleus by ERBB4 ICD in mammary epithelial
cells where the complex associates with beta-casein gene
promoter inducing its activity and mammary differentiation
[82]. During maturation of fetal lung in a mouse model,
ERBB4 ICD has been reported to associate with transcrip-
tion factors YAP, STAT5a and estrogen receptor beta [63,
77, 78]. Interaction of ERBB4 ICD with hypoxia-inducible
factor 1 alpha (HIF-1α) in the nucleus results in stabilization
of HIF-1α and increase in HIF-mediated transcription [76].
Interestingly, HIF-1α has been observed to regulate ERBB4
endocytosis and ERBB4-mediated differentiation of the

mammary epithelial cells [83], indicating a reciprocal reg-
ulation by the two proteins. Association of estrogen-
responsive gene expression and ERBB4 ICD has been
identified, and ERBB4 ICD and estrogen receptor alpha
localize as a complex to estrogen-inducible gene promoters,
such as those regulating the expression of progesterone
receptor and stromal cell-derived factor 1 (SDF-1). Sup-
porting a functional role for soluble ICD, the localization
was abolished when ERBB4 cleavage was blocked by a
mutation preventing gamma-secretase cleavage [84]. Con-
sistent with the biological role of these observations,
ERBB4 is expressed in estrogen receptor-positive breast
cancers and ERBB4 ICD has been found to increase
estrogen response element-mediated transcriptional activity
[65]. The cleavage producing ERBB4 ICD may also pro-
mote proliferation or survival of estrogen-receptor-positive
breast cancer cells. Indeed, overexpression of a cleavable
ERBB4 isoform promotes breast cancer cell growth both
in vitro [65, 73, 83, 85] and in vivo [86], and an antibody
specifically blocking ERBB4 cleavage suppresses it [87].

Other transcriptional factors that have been reported to
directly associate with and be modulated by ERBB4 ICD
include ETO2, Krab-associated protein 1 (Kap1), and AP-2
[85, 88, 89].

ERBB4 and RYK ICDs in neural development

ERBB4 and RYK ICDs have been associated with func-
tions in neural development. In the developing mouse, the
generation of ERBB4 ICD has been identified to be required
for control of astrogenic differentiation [62]. The ERBB4
ICD was shown to interact with TAB2 and N-COR, an
adaptor and a corepressor protein, respectively. These pro-
teins are chaperoned to nucleus as a complex with the ICD
and the complex binds to astrocytic-associated genes lead-
ing to repression of gene expression in vitro [62]. In addi-
tion, inhibition of gamma-secretase cleavage of ERBB4 has
been indicated to prevent ligand-stimulated ICD formation
and maturation of oligodendrocytes in vitro [90].

The cleavage of RYK has been reported to be required
for Wnt3-dependent neuronal differentiation and nuclear
localization of RYK ICD requires Wnt activation in neural
progenitor cell cultures [31]. RYK ICD has been found to
accumulate to nucleus during the cortical development,
facilitating production of neurons from undifferentiated
cells [31]. RYK ICD localization to nucleus has been
identified to be dependent on SMEK1 and SMEK2 [91]. It
was indicated that SMEK1 and SMEK2 chaperone the RYK
ICD to nucleus and both SMEK and RYK ICD together
associate with chromatin to DLX1/2 intergenic regulation
element and are involved in regulation of its transcription
and neuronal differentiation of mouse primary cortical
neural stem cells.
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Other RTK ICDs in the nucleus

Nuclear localization of PTK7 has been found to affect the
proliferation of colon cancer cell lines [66]. This observation
was based on overexpression of intracellular constructs
in vitro, which may affect clinical interpretation of the
findings.

Nuclear localization has also been observed for the ICD
of TRKA by immunostaining human liver tissue samples
with antibodies recognizing intracellular epitopes of TRKA,
but not with antibodies recognizing the receptor ectodomain
[68]. TRKA ICD was observed to colocalize with the
splicing factor SC-35, associated with maturation of mRNA
transcripts, and phosphorylation of the nuclear TRKA ICD
in liver cells was interpreted as an indication of nuclear
activity. These results led the authors to speculate that
TRKA ICD could have a role in regulation of gene tran-
scription and/or transcript processing. Research following
the original observation has confirmed the cleavage of
TRKA by gamma-secretase activity [17].

Stimulation with FGF1 has also been reported to induce
gamma-secretase cleavage of FGFR3 in COS7 and T-Rex
293 cells. This was found to result in nuclear localization of
the released ICD [30]. In contrast to a prevailing theme in
gamma-secretase cleavage, shedding of FGFR3 was reported
to require endocytosis. Also unlike the case of other RTKs,
cathepsins rather than ADAM10 or ADAM17 were shown to
be involved in the shedding of the FGFR3 ectodomain [30].

Non-nuclear ICD signaling

In addition to promoting differentiation and growth, the
ERBB4 ICD has been demonstrated to induce apoptosis in
various breast cancer cell lines. In SKBr3 cells ERBB4 ICD
has been found to localize into mitochondria and has been
proposed to directly function as a proapoptotic protein, as
the ICD contains a BH3 domain similar to the BH3-only
type of BCL2 family members [70]. Consistently with this
model, a point mutation in the transmembrane domain that
was proposed to inhibit the gamma-secretase cleavage also
suppressed the mitochondrial translocation of ICD and the
associated induction of apoptosis [69, 70]. Moreover,
ERBB4 ICD was observed to physically interact with
BCL2, the prototype antiapoptotic protein, and over-
expression of BCL2 was shown to reduce the ERBB4 ICD-
induced cell death [70]. Furthermore, the ERBB4 ICD has
been observed to phosphorylate MDM2 and promote its
ubiquitination leading to increase in p53 and p21 levels
[92], suggesting that there are also other mechanisms by
which ERBB4 ICD may regulate apoptosis.

The cleavage of EPHB2 by gamma-secretase has been
suggested to result in the formation of ICD residing in the
cytoplasm where EPHB2 phosphorylates another receptor,

N-methyl-D-aspartate receptor (NMDAR) in cultured rat
primary neurons [72]. The phosphorylation is independent
of SRC kinases normally associated with NMDAR signal-
ing and promotes cell surface expression of NMDAR. The
formation of EPHB2 ICD was proposed to potentially affect
learning and memory through NMDAR [72].

Taken together, the soluble ICDs of RTKs have been
observed to act as active signaling molecules with distinct
functional properties. In the case of ERBB4 ICD, multiple
functions have been reported in various cellular and orga-
nelle contexts. This growing body of evidence indicates that
ICDs released from the cell membrane by gamma-secretase
cleavage can have an active signaling role in various bio-
logical contexts.

RTK downregulation by RIP

While ICDs released by gamma-secretase cleavage can add
diversity to intracellular signaling by creating active sig-
naling fragments, the cleavage also represents a mechanism
of membrane receptor turn-over and degradation. The two
steps of cleavage, generating the ectodomains and ICDs
could participate together in downregulating RTK signaling
through releasing the extracellular domain with the ligand-
binding capacity to the extracellular space, and degradation
of an active kinase domain, respectively. While there are a
few examples indicating roles for RTK ectodomains in
neutralizing the respective ligands (TRKB, AXL) [93, 94],
the fate of extracellular fragments formed as a result of
shedding is largely unknown. In this chapter, we will focus
on describing examples of the RTK ICDs in providing
negative regulation for RTK signaling.

Rapid degradation of soluble RTK ICDs

As the ICDs released from the cell surface include the
functional kinase domain, and a truncated ICD fragment
anchored to the cell membrane prior to gamma-secretase
cleavage may even possess enhanced kinase activity [95],
the kinetics of ICD dephosphorylation and degradation are
expected to play a central role in determining the functional
consequence of ICD generation. Rapid degradation by pro-
teasomes after gamma-secretase cleavage has been observed
for at least with CSF1R, IGF1R, MET, and TIE1 [96–99].

CSF1R is quickly downregulated by gamma-secretase
cleavage in macrophages during the activation of toll-like
receptors by lipopolysaccharide, the major component of
the cell wall of Gram-negative bacteria [37]. The resulting
CSF1R depletion has been associated with macrophage
activation. IGF1R expressed in HEK293 cells or murine
embryonic fibroblasts has been reported to be constitutively
shed followed by cleavage by the gamma-secretase complex
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resulting in formation of ICD that is rapidly degraded [97].
In epithelial cells, the soluble ICD of MET has been shown
to be quickly degraded after constitutive gamma-secretase
cleavage as well [98]. A noncleavable mutant full-length
MET accumulates to membrane and displays ligand-
independent signaling resulting in invasive growth of the
cells [98], suggesting that RIP of MET is a mechanism for
downtuning of signaling.

It has also been reported that proteolytic cleavage TIE1
in endothelial cells leading to ectodomain shedding and
rapid ICD degradation may result in activation of
TIE2 signaling [99]. As TIE1 cannot directly interact with
the TIE2 ligands, angiopoietins, the mechanism may
involve release of spatial hindrance within TIE1/TIE2
complexes or signaling executed by the ICDs. These find-
ings provide another interesting example of how down-
regulation of one RTK by RIP can result in increased
activity of another RTK.

Inhibition of VEGFR signaling by RIP

A few articles have addressed the role of RIP in regulating
signaling of the VEGFR subfamily of RTKs. Pigment
epithelium-derived factor (PEDF) has been reported to
induce shedding and gamma-secretase cleavage of
VEGFR1 resulting in inhibition of VEGF-induced endo-
thelial tube formation [71] and endothelial cell permeability
[33]. Induction of VEGFR1 ICD formation in retinal
microvascular endothelial cells was described to be asso-
ciated with reduction of VEGFR1 phosphorylation [33]. As
VEGFR1 is largely considered a negative regulator of
angiogenesis [100], the results could also be explained by
gamma-secretase-cleavage-associated release of the
VEGFR1 ectodomain and sequestration of ligands such as
VEGFA that also activate the proangiogenic VEGFR2. This
latter conclusion was supported by analyses of VEGFR1
cleavage in leukemic cells representing the few none-
ndothelial cell types naturally expressing VEGFR1 [34].

In addition to VEGFR1, VEGFR2 has been reported to
be cleaved by gamma-secretase in retinal pigment epithe-
lium cells following induction by PEDF, a VEGFR1 ago-
nist, leading to reduced VEGFR2 agonist-induced cellular
permeability [101]. In this model, the effect of PEGF was
shown to require indirect gamma-secretase-mediated pro-
cessing of VEGFR2, but not of VEGFR1. These results
provide an illustrative example of how the gamma-secretase
cleavage of the two VEGFRs, VEGFR1 and VEGFR2, is
differently regulated depending on the cellular context.

The third member of the VEGFR subfamily of RTKs,
VEGFR3, was also found to be cleaved in a systematic
screen for gamma-secretase-sensitive RTKs [17]. While
inhibition of gamma-secretase activity reduced VEGFR3-
induced growth when the receptor was overexpressed in

fibroblasts [17], no biological contexts for signaling of
soluble VEGFR3 ICD has to date been reported.

Therapeutic implications in cancer

Potential of RTK cleavage as target for treatment

RTK signaling is frequently altered during carcinogenesis,
and tumor cells may become addicted to specific activating
variations in RTK sequence or copy number [102]. There-
fore, modulation of RTK signaling by gamma-secretase
could affect processes relevant for tumor growth. It is of
note that the increased RTK activity can also result from
inadequate downregulation as well [103]. Thus, any defects
in the components of shedding and gamma-secretase clea-
vage machinery or in the regulation of cleavage process can
in principle regulate tumor formation.

Most of the human RTKs are targeted by one or several of
the currently approved cancer drugs. These drugs belong to
two major drug classes: Tyrosine kinase inhibitors that block
RTK signaling by competing for ATP to block the intrinsic
RTK kinase activity, or monoclonal antibodies that block
ligand interaction or RTK dimerization, facilitate RTK
endocytosis and degradation, or augment antibody-dependent
immunological mechanisms [104, 105]. Since signaling by
several of these RTKs is also modulated by gamma-secretase
activity, it is plausible that regulation of RTK processing by
modulators of gamma-secretase cleavage could also affect the
tumor promoting activity of the RTKs. Indeed, chemical
gamma-secretase inhibitors have demonstrated antitumor
activity in tumor models and multiple clinical trials have been
carried out for gamma-secretase inhibitors [106]. Most of the
activities of these inhibitors, however, have been attributed to
their ability to block notch signaling and there is very little
information available about the role of RTKs in mediating
either the antitumor activity or adverse effects of the gamma-
secretase inhibitors [34, 106]. The clinically tested gamma-
secretase inhibitors have demonstrated clinical antitumor
effect, but the adverse effects of the first-generation inhibitors
have not been tolerable. The increasing number of gamma-
secretase substrates introduces a challenge for developing
inhibitors selective only for the desired target. In addition,
adverse effects of gamma-secretase modulators may also
result from induction of cleavage of gamma-secretase sub-
strates by other membrane proteases such as rhomboid, which
normally would not cleave these proteins [107].

Role of RTK cleavage in resistance to RTK-targeted
therapies

While the relevance of RTK cleavage as a resistance
mechanism has not been extensively studied, one can
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speculate on several possible mechanisms by which RTK
processing could affect the sensitivity of cells to currently
existing RTK-targeted therapies. Indeed, the fact that
gamma-secretase-mediated RTK cleavage releases receptors
from the membrane alters the well-characterized RTK sig-
naling mode that has also been the primary target for drug
development.

The release of ectodomain by shedding does not only
deplete the cells from structures available for interaction
with therapeutic antibodies binding to the ectodomains but
can also create a decoy receptor that binds the antibody
within the extracellular space further neutralizing the effect
on cells that would still express an intact receptor. Small
molecule inhibitors against RTK kinase domains, on the
other hand, could still be active therapeutic agents even
after the release of a soluble ICD domain into intracellular
compartments. However, in spite of attempts to develop
ADAM inhibitors as cancer drugs [35], recent evidence
indicates that suppressing RTK shedding may not be
desirable, as this reduces the production of soluble decoy
receptors, and stabilizes fully active RTKs at cell surface.
An analysis of the effects of MAPK pathway inhibitors on
the shedding of RTKs indicated that reduced shedding of
RTKs, such as AXL, MET, and ERBB4, was associated
with resistance to MEK inhibitors in patients with mela-
noma [108]. The reduced RTK shedding was associated
with inhibition of ADAM10 by increase of cell surface
TIMP-1. Similarly, in colorectal cancer with KRAS muta-
tions, the reduced shedding of MET by ADAM17 has been
observed to create resistance to MEK inhibitors [109].

Future aspects

Most of the cleavable RTKs have no identified cellular
function for their gamma-secretase released ICDs, and only
a handful of RTK ICDs have any identified function. Future
research will need to expand our view of ICD signaling
beyond current understanding that is to a large extent based
on reports focusing on one RTK, ERBB4. As most of our
understanding about the biological relevance of gamma-
secretase-mediated processing of RTKs is based on in vitro
observations, there is also need for more thorough in vivo
validation of the findings. This goal would greatly
benefit from the characterization of cleavage sites and reg-
ulatory mechanisms critical for the process, thereby
enabling specific molecular and genetic interference with
the events.

Development of new and more specific inhibitors tar-
geting RTK cleavage needs better understanding of the
biological significance, as well as about the mechanisms by
which gamma-secretase substrates are distinguished from
nonsubstrates. In addition, almost all the knowledge about

molecular mechanisms and signaling events associated with
regulation and substrate recognition by gamma-secretase is
based on the research focusing on APP cleavage and, to
some extent, on notch cleavage as well. Validation of these
findings among RTKs would provide broader spectrum of
tools for development of therapeutic agents specifically
interfering with gamma-secretase-mediated cleavage of
RTKs.
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