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Here, we report on the nonlinear ionization of argon atoms in the short wavelength regime using
ultraintense x rays from the European XFEL. After sequential multiphoton ionization, high charge
states are obtained. For photon energies that are insufficient to directly ionize a 1s electron, a
different mechanism is required to obtain ionization to Ar17+. We propose this occurs through a
two-color process where the second harmonic of the FEL pulse resonantly excites the system via a
1s → 2p transition followed by ionization by the fundamental FEL pulse, which is a type of x-ray
resonance-enhanced multiphoton ionization (REMPI). This resonant phenomenon occurs not only
for Ar16+, but also through lower charge states, where multiple ionization competes with decay
lifetimes, making x-ray REMPI distinctive from conventional REMPI. With the aid of state-of-the-
art theoretical calculations, we explain the effects of x-ray REMPI on the relevant ion yields and
spectral profile.

X-ray free-electron lasers (XFELs) [1, 2] have offered
new avenues for studying matter under intense femtosec-
ond radiation. In this case, the system is highly excited
or ionized during the XFEL pulse resulting in a multi-
tude of new processes such as nuclear resonance superra-
diance [3], plasma dynamics in solids [4], and structural
dynamics in complex molecular systems [5]. Simpler sys-
tems such as atoms [6–10], molecules [11–13], and clus-
ters [14, 15] provide a means to investigate multiphoton
processes in a well-controlled manner. For longer wave-
lengths, multiphoton processes have been well-studied.
In particular, resonance-enhanced multiphoton ioniza-
tion (REMPI) [16–18] has been a useful spectroscopic
technique, since it provides a highly sensitive and se-
lective means to ionize molecular compounds without
strong fragmentation effects. As such, REMPI has been
used in a wide variety of physical, chemical, and biolog-
ical systems with recent applications in ultracold atom-
molecule [19] and atom-atom [20] collisions, molecular
chirality [21], catalytic surface chemistry [22], nuclear-
spin conversion [23], and metrology [24, 25].

REMPI relies on the laser wavelength being tuned to
an electronic resonance, which leads to promotion to an
excited state followed by ionization. As the absorption
cross section for resonant excitation is typically stronger
than the ionization cross section, REMPI provides an
efficient means to ionize these systems at photon en-
ergies below the ionization threshold. Although XUV
FELs have been used to show REMPI for shorter wave-
lengths [26, 27], extending REMPI to the x-ray regime

requires entirely different physical processes and interpre-
tation. Conventional REMPI relies on the excitation of a
valence electron where the only relaxation pathway is ra-
diative decay. On the other hand, a core-excited electron
after x-ray resonant excitation can additionally relax by
Auger-Meitner [28] decay, which is orders of magnitude
faster than radiative decay. Thus, the complex interplay
between ultrafast decay processes and REMPI renders
this fundamental nonlinear process challenging to fully
resolve in the x-ray regime.

In this Letter, we observe nonlinear ionization to create
Ar17+, through a resonant two-color process in the x-ray
regime. With the aid of state-of-the-art theoretical mod-
eling, we attribute the ionization to a two-color REMPI-
like process where the second harmonic of the FEL [29]
creates a 1s → 2p core excitation and the fundamental
FEL pulse subsequently ionizes the system. The core ex-
citation can occur for charge states up to Ar16+ where
the lower charge states are influenced by their respective
core-hole lifetimes. We find the observed broadband na-
ture of the spectral resonance to be due to overlapping
resonances with lower Ar charge states.

A schematic of the x-ray REMPI or XREMPI process
is given in Fig. 1. For the higher charge states of Ar,
the orbital energies shift to more negative values (higher
binding energies). The relative shifts in energies between
shells lead to new resonances occurring, dependent on
the charge state and the photon energy. To illustrate
this effect, we show the transitions for Ar10+ and Ar16+

with red and blue arrows, respectively, where the reso-
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Figure 1. (color online) Schematic of resonance-enhanced
multiphoton ionization processes. The dark-colored arrows
correspond to the second harmonic of the light-colored ar-
rows, i.e., ~ω2 = 2~ω1. The photon energies exemplified by
the red arrows are smaller than the blue arrows. The orbital
energies of the different electron shells are plotted as a func-
tion of the Ar charge state. See text for additional details.

nance shifts from ∼3000 eV to ∼3100 eV. To examine
the formation of Ar17+, let us first consider the tran-
sition Ar16+→Ar17+, which has an ionization energy of
4130 eV [30]. For the case of an FEL photon energy of
~ω1 = 1550 eV, Ar16+ is produced through sequential
multiphoton ionization [31], but Ar17+ cannot be pro-
duced through the absorption of another ~ω1 photon.
Instead, resonant excitation can be achieved through ei-
ther a direct ~ω1 two-photon process (excited to 1s2s) or
an ~ω2 one-photon process (excited to 1s2p), where ~ω2

is the second harmonic of the FEL pulse (~ω2 = 2~ω1).
These two processes are respectively represented by light
and dark blue arrows in Fig. 1. Then, the resonantly
excited states can be ionized by absorbing another ~ω1

photon. As such, the overall pathway occurs through
either a one-color, three-photon (2+1)-REMPI or a two-
color, two-photon (1′+1)-REMPI, where the prime indi-
cates the second harmonic.

Our experiment was performed using the Small Quan-
tum Systems scientific instrument at the European
XFEL [32, 33]. In brief, soft x-ray FEL pulses with a
nominal pulse length of 25 fs were focused to a size of ap-
proximately 1.5µm×1.5µm (FWHM) in the interaction
region. The photon energy of the fundamental pulse was
scanned from 1450 eV to 1583 eV with a measured energy
bandwidth of approximately 1 % (FWHM). The pulse en-
ergy varied from 2 mJ to 6 mJ due to shot-by-shot fluc-
tuations within the pulse train, which was measured up-
stream by an x-ray gas monitor detector [34]. From a pre-
vious measurement, the contribution of second harmonic
radiation was estimated to be between 0.2 and 0.6 % [35].
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Figure 2. (color online) Ion yields of Ar as a function of
the measured FEL pulse energy for three cases: (a) be-
low the resonance, ~ω1 = 1450 eV; (b) on the resonance,
~ω1 = 1550 eV; and (c) above the resonance, ~ω1 = 1576 eV.
The ion yields are given in counts per FEL pulse. The exper-
imental noise for each measurement is given as a gray area.
(d) Ion time-of-flight spectrum for ~ω1 = 1550 eV integrated
over a measured pulse energy range of 4 mJ–6 mJ with the
inset centered on Ar17+ and an isotope of Ar15+.
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Due to transmission of the grazing-incidence mirrors,
third harmonic radiation is fully suppressed (4 · 10−9)
for the photon energies used in this experiment [36]. The
FEL beam crossed an effusive beam of Ar gas in the
interaction region where an ion time-of-flight spectrom-
eter was used to count ions on a shot-by-shot basis. To
analyze and interpret our data, we performed theoreti-
cal calculations using xatom [37–39], which solves cou-
pled rate equations to simulate x-ray multiphoton multi-
ple ionization dynamics with decay rates and cross sec-
tions calculated using the Hartree–Fock–Slater approach.
To calculate direct two-photon and one-photon resonant
absorption cross sections, we employed grid-based time-
dependent configuration interaction singles [40, 41] and
an extended version of xatom [42], respectively.

Figure 2 shows the ion yields of the high charge states
(> +10) of Ar as a function of the measured pulse en-
ergy for three cases: (a) below the resonance, (b) on the
resonance, and (c) above the resonance. For complete-
ness, the ion time-of-flight spectrum on the resonance
is shown in Fig. 2 (d) integrated over a measured pulse
energy range of 4 mJ–6 mJ. The figure shows the higher
charge states of Ar with Ar17+ and 36Ar15+ shown in
the inset. For Figs. 2(a)–(c), the data are plotted on
a log-log scale such that the slope of the distribution is
proportional to the number of absorbed photons, as long
as there is no saturation [31, 43, 44]. Overall, the ion
yields show very similar power dependences for all three
cases, with the exception of Ar17+. For both above and
below the resonance, the Ar17+ yield shows no depen-
dence on the pulse energy. Given the statistical error,
the yields fall within the experimental noise (gray area).
On the other hand, when the photon energy is tuned to
the resonance, the Ar17+ yield shows an increase for pulse
energies greater than 4 mJ.

To further investigate this ionization process, we
have measured the resonance spectral profile. Figure 3
presents the experimental yield ratio of Ar17+ to Ar16+

as a function of the photon energy at a pulse energy
of 4.2±0.1 mJ. The expected resonance positions, cor-
responding to half of the 1s2s (1S0) and 1s2p (1P1)
transition energies of Ar16+ [45], are marked as solid
vertical lines on the top of the figure. The 1s2s (3S1)
state (dashed line) does not have a significant contribu-
tion to the resonance since the two-photon transition to
this state is forbidden and the M1 one-photon transition
is suppressed [46]. Nonetheless, our experimental data
clearly show that a) the peak position is red-shifted com-
pared to the literature values, and b) the distribution
is broad and asymmetric toward lower photon energies.
These features are in stark contrast to the typical spectral
dependence of REMPI at longer wavelengths, which gives
sharp, narrow peaks when the laser is on the resonant
transition. What causes these distinctions for XREMPI
compared to conventional REMPI?

We first examine the pulse-length dependence of the
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Figure 3. (color online) Ar17+ to Ar16+ yield ratio as a func-
tion of the photon energy at a pulse energy of 4.2±0.1 mJ.
Theoretical yield ratios for different pulse lengths with a fixed
pulse energy of 4.2 mJ are given in different colors. The labels
at the bottom indicate 1s→ 2p transitions for different charge
states and electronic configurations. (a) Ar4+: 1s22s22p53p5.
(b) Ar6+: 1s22s22p43p4, (c) Ar9+: 1s22s2p43s2, (d) Ar10+:
1s22s2p33s2, (e) Ar11+: 1s22s2p23s2, (f) Ar14+: 1s22p2, (g)
Ar15+: 1s22p, (h) Ar16+: 1s2, and (i) Ar15+: 1s23p. Here,
the electron configurations are given before the transition. See
text for additional details.

resonance profile by using theoretical modeling in Fig. 3.
The yield ratios are calculated for several pulse lengths,
which are given as multiple colors. The dependence on
other parameters is given in Figs. S1–S3 in the Supple-
mental Material (SM). Besides one-photon ionization by
the fundamental pulse, one-photon ionization and reso-
nant excitation by the second harmonic are included in
the calculations for all charge states. We assume that the
second harmonic contribution is 0.2% of the fundamental
fluence and its bandwidth is equivalent to the fundamen-
tal bandwidth, which was measured to be ∼ 1% for this
experiment. On the other hand, direct two-photon exci-
tation by the fundamental pulse is excluded since its con-
tribution turns out to be negligible at fluences under con-
sideration (see Fig. 4). The theoretical results are shifted
on the x axis by the difference between one half of the
1s2p transition energy of Ar16+ calculated using xatom
(1551.3 eV) and the literature value (1569.8 eV) [45].
The results are volume-integrated [39] with a pulse en-
ergy fixed at 4.2 mJ. Our calculations demonstrate that
the peak position is shifted to lower photon energies and
the profile width is broadened as the pulse length be-
comes shorter. Note that these effects on the resonance
profile are not strongly sensitive to the calibrated peak
fluence or transmission (see Fig. S1 in the SM for their
resonance profile dependence). The calculated resonance
profile with a pulse length of 10 fs fairly matches the ex-
perimental profile, which is consistent with a prior obser-
vation that the x-ray pulse length is a few times shorter
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than its nominal value [6].

For a conventional REMPI experiment using ultra-
short laser pulses, the resonance profile is governed by
the homogeneous bandwidth broadening due to the pulse
length being shorter than the lifetime of the resonant
state. In this case, the resonance profile can also be
shifted due to the AC Stark effect since the intensity
increases as the pulse length decreases, but the reso-
nance peak still remains symmetric. Having said that,
the measured resonance profile and its pulse-length de-
pendence in Fig. 3 cannot be explained by conventional
REMPI for the following reasons. First, the observed
width (∼ 60 eV) is much broader than the FEL band-
width, which corresponds to about 30 eV (∼ 1% of the
second harmonic). In fact, for a self-amplified sponta-
neous emission (SASE) XFEL pulse, the bandwidth is
not directly related to the pulse length but determined
by the shortest pulse duration of the “spiky” pulses [47–
51]. For our calculations, we employed the same FEL
bandwidth for the various pulse lengths. Second, the ob-
served red-shift with respect to the resonances at Ar16+

is more than 10 eV, but the AC Stark shift in the x-
ray regime is negligible (< 0.2 eV) at the peak inten-
sity under consideration (see Fig. S4 in the SM). Third,
the resonance profile is asymmetric towards lower photon
energies, which strongly hints that resonances occur for
charge states lower than Ar16+. When the pulse length
becomes sufficiently long (∼ 100 fs), the resonance profile
peaks at the resonance corresponding to the 1s2p transi-
tion of Ar16+ and its width is reduced to the FEL band-
width of ∼ 30 eV.

To get a better insight into the XREMPI mechanism,
we analyze the contributions of individual resonant pro-
cesses occurring for all charge states including Ar16+, at
the peak of the resonance profile (~ω = 1550 eV) with
a fixed pulse length of 10 fs. Figure 4 shows the ion
yield ratios of Ar17+ to Ar16+ as a function of the cal-
ibrated peak fluence. Similar to Fig. 2, the experimen-
tal data are plotted on a log-log scale and fitted with a
simple power function, y = C × xn, where n is a mea-
sure of number of photons absorbed. The fit yields a
power dependence of n = 2.5 ± 0.6, which points to a
nonlinear ionization process by either three or two pho-
tons. We additionally plot theoretical ion yield ratios
calculated for the various XREMPI pathways in Fig. 4.
The purple (circles) curve represents the full XREMPI
calculation including one-photon resonant excitation by
the second harmonic (ω2) and direct two-photon reso-
nant excitation by the fundamental (2ω1), both of which
are calculated for all charge states. For the ground state
of Ar16+, the direct two-photon cross section is explicitly
calculated (see Fig. S5 in the SM). For the other charge
states, we have assumed the same cross-section profiles,
but shifted them according to the calculated transition
energies. The orange (squares) curve indicates the calcu-
lated yield assuming only the direct two-photon resonant
excitation cross sections, which results in a power depen-
dence of three. The light blue (triangles) curve presents
the calculation with the ω2 excitation of 1s → 2p only
for electron configurations K2L0Mm where 0 ≤ m ≤ 8.
The green (crosses) curve is for K2L1Mm, and the dark
blue (diamonds) curve is for K2L2Mm.

Our analysis demonstrates that, even for the lower
bound estimate of the second harmonic contribution
(0.2%), the one-photon resonant excitation of K2L2Mm

by the second harmonic predominantly contributes to
the formation of Ar17+ in the range of experimental
peak fluences. Note that K2L2Mm corresponds to the
charge state of +q, where +6 ≤ q ≤ +14. In this
case, a 1s vacancy is formed in the lower charge states,
Arq+, and must survive until the final ionization step,
i.e., Ar17+. Thus, its ionization mechanism is charac-
terized by (1′+n)-XREMPI from Arq+ to Ar17+, where
n = 17 − q. This requires absorption of (n + 1) pho-
tons and ejection of n electrons. On the other hand,
formation of ground state Ar16+ from Arq+ requires
(16 − q) = (n − 1) photons. Therefore, even for cases
when 1s promotion occurs in the lower charge states, the
Ar17+ to Ar16+ yield ratios plotted in Fig. 4 still yield a
power dependence of two, except for the orange curve.

This (1′+n)-XREMPI process in the lower charge
states can explain the asymmetric broadening of the reso-
nance profile shown in Fig. 3 since the 1s→ 2p transition
energy is shifted to smaller energies for the lower charge
states, as shown in Fig. 1. Furthermore, ultrafast decay
processes are critical in x-ray multiphoton ionization dy-
namics [31]. For example, the ion yields of Ar without de-
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cay processes are substantially reduced (see Fig. S6 in the
SM). If the pulse length is comparable to or shorter than
the decay lifetimes, it is more likely that the 1s vacancy
formed in the lower charge states can be further ionized
before the decay process occurs (see Fig. S7 in the SM for
Auger-Meitner and fluorescence lifetimes as a function of
charge state). Surprisingly, the most probable XREMPI
transition for a pulse length of 10 fs occurs for Ar14+. In
that case, the second harmonic first excites the 1s elec-
tron, followed by the absorption of three photons from
the fundamental pulse in order to reach Ar17+, which
would be (1′+3)-XREMPI. This way, the early-formed
vacancy can survive over the course of sequential ioniza-
tion up to +17, thus leaving its footprint on the resonance
profile of Ar17+/Ar16+. This phenomenon resembles the
quasinonsequential mechanism that is expected to lead
to a breakdown of frustrated absorption [52, 53]. Thus,
the pulse-length sensitivity of the resonance profile is due
to the various ionization pathways and associated decay
lifetimes, rather than the bandwidth of the pulse.

It is worthwhile to compare XREMPI with resonance-
enabled or enhanced x-ray multiple ionization
(REXMI) [8, 10], one of the distinctive phenomena
in the field of XFEL–matter interactions. REXMI
exploits a broad energy bandwidth to drive multiple
resonant excitations for a range of charge states. After
multielectron excitations, further ionization occurs via
electron-correlation-driven relaxation processes. Due
to the intrinsic broad bandwidth which characterizes
SASE pulses [47–51], REXMI-type processes have been
demonstrated as an ultra-efficient ionization mechanism
in previous XFEL experiments. On the other hand,
XREMPI involves a single-electron excitation, and
further ionization occurs only by absorbing additional
photons. Since XREMPI occurs only for a specific
transition and charge state, it is beneficial to have a
narrow bandwidth through the use of a monochromator
or self-seeding techniques (see Fig. S8 in the SM for the
resonance profiles calculated from narrower bandwidths).

In conclusion, we observed a novel type of REMPI in
the x-ray regime experimentally and validated the pro-
cess theoretically. Through sequential multiphoton ion-
ization, neutral Ar is ionized to high charge states. For
photon energies that are insufficient to directly ionize 1s
electrons, promotion to Ar17+ requires a resonant process
to create a 1s vacancy. We show that this occurs through
a REMPI-like process where the second harmonic of the
FEL promotes a 1s → 2p transition and the fundamen-
tal FEL pulse subsequently ionizes the system further.
That said, XREMPI is not restricted to a combination
of the fundamental and second harmonic, and two-color
capabilities at XFELs [54–56] could provide a desirable
means to study XREMPI.

The resonance spectral profile of the XREMPI pro-
cess shows a broad, asymmetric, red-shifted distribution
due to overlapping resonances with lower charge states,

which is a clear distinction from conventional REMPI
profiles at longer wavelengths. We have also demon-
strated the strong dependence of the resonance profile
on the pulse length, which is potentially applicable to
characterize FEL beam parameters. With advances in
seeding of XFELs and the availability of narrow band-
width radiation [57, 58], XREMPI can be used to re-
veal individual resonance structures in the spectral pro-
file. This capability can be applied to perform precision
spectroscopy on atoms or molecules; for example, highly
charged ions of astrophysical relevance [59, 60]. XREMPI
also offers the powerful new aspect of element specificity
in molecules, thereby opening up a novel spectroscopic
technique to study x-ray ionization processes. For in-
stance, with x rays, one can selectively excite one atom
in a molecule and probe another atom. One can take
advantage of the XREMPI technique to determine many
physical processes such as charge migration from one site
in the molecule to another position, thereby tracking the
response of several different atoms in the molecule.

Data recorded for the experiment at the European
XFEL are available on request at [61].
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C. Gutt, K. Zeil, C. Rödel, U. Hübner, U. Schramm,
and T. E. Cowan, Observation of ultrafast solid-density
plasma dynamics using femtosecond x-ray pulses from a
free-electron laser, Phys. Rev. X 8, 031068 (2018).

[5] K. Nass, A. Gorel, M. M. Abdullah, A. V. Martin,
M. Kloos, A. Marinelli, A. Aquila, T. R. M. Barends,
F.-J. Decker, R. B. Doak, L. Foucar, E. Hartmann,
M. Hilpert, M. S. Hunter, Z. Jurek, J. E. Koglin, A. Ko-
zlov, A. A. Lutman, G. N. Kovacs, C. M. Roome, R. L.
Shoeman, R. Santra, H. M. Quiney, B. Ziaja, S. Boutet,
and I. Schlichting, Structural dynamics in proteins in-
duced by and probed with x-ray free-electron laser pulses,
Nat. Commun. 11, 1814 (2020).

[6] L. Young, E. P. Kanter, B. Krässig, Y. Li, A. M. March,
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