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Non-Markovian dynamics in two-qubit dephasing channels with an application to superdense coding
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We study the performance of two measures of non-Markovianity in detecting memory effects in two-qubit
dephasing channels. By combining independent Markovian and non-Markovian noise on the qubits, our results
show that the trace distance measure is able to detect the memory effects when at least one of the local channels
displays non-Markovianity. A measure based on channel capacity, in turn, becomes nonzero when the global
two-qubit dynamics shows memory effects. We apply these schemes to a well-known superdense coding protocol
and demonstrate an optimal noise configuration to maximize the information transmission with independent local
noises.
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I. INTRODUCTION

Quantum information protocols, such as quantum tele-
portation, quantum cryptography, and quantum key distribu-
tion [1,2], rely on faithful transmission of quantum information
among several parties. However, in any practical scenario,
during the transmission, errors take place. The influence of the
errors in a quantum information context is described via the
theory of noisy quantum channels [3].

Quantum channels describing the noise during transmission
of information are often described as so-called black box
input-output systems. However, in practice, an interaction
with a quantum environment generates the noise [4], giving
rise to a continuous family of channels instead of just one
input-output system. Then, the interaction time (or channel
length) influences strongly the properties of the channel. The
conventional wisdom is that the noise is harmful for all
quantum protocols and isolation from the surroundings is
necessary for harnessing the quantum properties. However,
recent work has shown how adding even more noise to
the system can actually be beneficial in certain cases [5–9].
Quantum information protocols, such as entanglement swap-
ping, distillation, quantum teleportation, and quantum key
distribution, have been shown to benefit from correlated noise
when non-Markovian features are present.

In recent years there has been rapid progress both in
theory and experimental control of non-Markovian open
quantum systems [10–19]. Further, first theoretical proposals
for exploiting non-Markovianity for quantum information pro-
cessing and metrology exist [6,20,21]. However, many ques-
tions related to the proper quantification of non-Markovianity
[10–15] and to the exploitation of memory effects as a quantum
resource still remain elusive. Especially, the additivity prop-
erties of the various non-Markovian measures remain largely
unknown [22–24].

The main question in this paper is the following: How, in
a practical example, do the different measures describe the
dynamics of resources for quantum information tasks? We
study two non-Markovianity measures, namely the Bylicka,
Chruscinski, and Maniscalco (BCM) and Breuer, Laine,
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and Piilo (BLP) measures [11,21], which are introduced in
the following sections. BCM is the first non-Markovianity
measure based on quantum channel capacity, which has a
well-defined meaning in an information theoretic sense. BLP
is one of the first and most well-known measures and is
based on monitoring the distinguishability of quantum states
measured by trace distance. In this sense it also has an
information interpretation and is natural choice for a measure
to compare against. We study the measures in the case of
two independent qubit dephasing channels. We first study the
non-Markovianity properties of the global channel via two sug-
gested measures for non-Markovian dynamics and then con-
sider an application of the channel in superdense coding [25],
one of the best-known examples of using entanglement for
quantum information processing purposes, making it perfect
for showing the differences of the measures in describing the
usefulness of noisy quantum channels from the resource point
of view.

II. NON-MARKOVIAN DYNAMICS OF TWO-QUBIT
DEPHASING CHANNELS

Since the experimental platforms for studying quantum
systems allow sophisticated engineering schemes, the impor-
tance of non-Markovian processes in open quantum systems
has become crucial, leading to a vast development towards
a general consistent theory of memory effects in quantum
dynamics. This has led to an active discussion on the proper
definition and quantification of non-Markovian effects in
recent years [10–15].

Dynamics of open quantum systems influenced by noise
are described with a family of completely positive, trace-
preserving (CPTP) maps, denoted {�t }t>0. Each member �t

of the family is a CPTP map that evolves an input state ρ(0)
from time zero to an output state ρ(t) = �tρ(0) at time t . We
study the case where two qubits are subjected to independent
and uncorrelated dephasing channels which can be tuned to
exhibit both Markovian and non-Markovian dynamics. This
type of dynamics can be experimentally realized with a high
degree of environment engineering and further the model
allows analytical treatment of most of the non-Markovianity
measures.
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In matrix form, the evolution of the density matrix of our bipartite system of interest, ρAB , can be written as

ρAB(t) =

⎛
⎜⎜⎜⎝

ρ11 ρ12κ2(t) ρ13κ1(t) ρ14κ1(t)κ2(t)

ρ21κ
∗
2 (t) ρ22 ρ23κ1(t)κ∗

2 (t) ρ24κ1(t)

ρ31κ
∗
1 (t) ρ32κ

∗
1 (t)κ2(t) ρ33 ρ34κ2(t)

ρ41κ
∗
1 (t)κ∗

2 (t) ρ42κ
∗
1 (t) ρ43κ

∗
2 (t) ρ44

⎞
⎟⎟⎟⎠,

where κi(t) are the complex-valued decoherence functions
having absolute values between 0 and 1. Their time depen-
dence dictates the properties of the quantum channel com-
pletely. The terms containing products of the κi coefficients
reflect the fact that the local channels are independent. For
general, possibly correlated channels these products should be
replaced with more general functions, containing information
about the correlations [5]. Equivalently, the independence
of the local channels means that the dynamical map of the
total system is a tensor product of local dynamical maps:
�AB

t = �A
t ⊗ �B

t . This property is useful in studying the
non-Markovian properties of the channel and qualitatively
comparing the two different measures we are interested in. The
explicit form of the decoherence functions is not relevant for
studying the behavior qualitatively and is therefore presented
in more detail in Sec. III.

A. BCM measure

Recently, a non-Markovianity measure based on moni-
toring the monotonicity of the quantum channel capacity
Q was introduced by Bylicka, Chruscinski, and Maniscalco
(BCM) [21]. The quantum capacity measures the ability
of a quantum channel to reliably transmit information. For
degradable channels, as the dephasing channels considered in
this paper, Q is defined in terms of the coherent information
as follows:

Q({�t }) = sup
ρ

Ic(ρ,�t ). (1)

Then based on Q, the measure is defined as

NBCM =
∫

dQ{�t }
dt

>0
Q{�t }dt. (2)

The measure monitors and adds up the possible temporary
increases in the capacity Q to get a value such that any channel
which has NBCM > 0 is defined to be non-Markovian. For
brevity, we will not calculate explicit values for the measure.
From the definition we see that as long as the capacity Q

is nonmonotonic, the measure will be nonzero and thus the
channel is non-Markovian in the BCM sense.

After a straightforward calculation using the method from
Ref. [26], Q({�AB

t }) of the channel considered in our work
can be written as

Q
({

�AB
t

}) = 2 − H2

[
1 + |κ1(t)|

2

]
− H2

[
1 + |κ2(t)|

2

]
,

(3)
where H2 is the binary entropy function. From this we see that
for uncorrelated local dephasing channels, the bipartite quan-
tum channel capacity is additive: Q({�AB

t }) = Q({�A
t }) +

Q({�B
t }). Using this result and choosing as examples five

different combinations of local dephasing channels, as listed
in Table I, we see different types of behavior for the global
channel. The table also contains the parameters AA and
AB related to the experimental realization of the Markovian
and nonlocal channels in the photonics setup (see Sec. III).
The behavior of the capacities in the photonic realization is
plotted in Fig. 1. The additivity property in (3) shows directly
that combination of any two local Markovian dephasing
channels always leads to a Markovian global channel. It
also implies that using identical non-Markovian dephasing
channels on both Alice’s and Bob’s sides always leads to
a global non-Markovian channel. However, we can also
combine a Markovian and a non-Markovian channel to get
both Markovian and a non-Markovian global channel. It is also
possible to combine two different non-Markovian channels to
get a Markovian global channel in sense of the BCM measure.

The combinations 3 and 5, plotted in Fig. 1, are particularly
interesting. In the case of combination 5 two local non-
Markovian 1-qubit channels give rise to Markovian 2-qubit
channel with respect to the BCM measure. Because of this, the
two independent channels can complement each other, which
enables the above combination of two independent, locally
non-Markovian channels to become globally Markovian. On
the other hand, in the case of combination 3, one channel
is Markovian enough to smooth out the non-Markovian
behavior of the other channel, hence making the global channel
Markovian. As we will see below, this cannot happen for the
BLP measure.

B. BLP measure

Another way of defining Markovianity is to use trace
distance, which is a metric defined by the trace norm on the set

TABLE I. Summary of different kinds of behaviors for the
global channel with different parameter values. Here M. stands for
Markovian in the sense of BCM measure. In the last case marked
with an asterisk (*) we have rescaled the time parameter t to 0.5t on
Bob’s side to get the oscillations of the decoherence functions out of
phase. This amounts to changing the birefringence on Bob’s side, as
seen in the photonic implementation in Sec. III. Note also that �AB

will always be non-Markovian in the BLP sense, if one of the local
channels is.

Combination AA �A AB �B �AB

1 0.004 M. 0.026 M. M.
2 0.377 non-M. 0.004 M. non-M.
3 0.07 non-M. 0.004 M. M.
4 0.377 non-M. 0.145 non-M. non-M.
5 0.091 non-M. 0.091 non-M.* M.
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FIG. 1. The behavior of the quantum capacity for different
combinations of different kinds of local channels. The dot-dashed
blue line represents the global channel and the other lines represent
the local channels. The different combinations are tabulated in Table I.

of quantum states. The trace distance of two quantum states
ρ1 and ρ2 is defined as

D(ρ1,ρ2) = 1
2 ||ρ1 − ρ2||tr. (4)

D is monotonic under positive trace preserving maps [27] and
also has a physical interpretation as it is closely related to the
optimal probability Pd (ρ1,ρ2) of distinguishing two unknown
quantum states ρ1 and ρ2. The relation is

Pd (ρ1,ρ2) = 1
2 [1 + D(ρ1,ρ2)]. (5)

With this connection, an increase in the trace distance between
pairs of states of a system of interest is interpreted as
information flowing back into the system. The corresponding
non-Markovianity measure, introduced by Breuer, Laine, and
Piilo (BLP), is defined as [11]

NBLP = sup
ρ1(0),ρ2(0)

∫
σ (ρ1(t),ρ2(t))>0

σ (ρ1(t),ρ2(t)) dt, (6)

where

σ (ρ1(t),ρ2(t)) = dD(ρ1(t),ρ2(t))
dt

. (7)

The measure is built by adding up the increases in the trace
distance between pairs of states during the evolution. Then this
number is maximized over all possible choices for the initial
states to get a quantity which characterizes only the properties
of the channel. Specifically, wheneverNBLP > 0 the channel is
defined as non-Markovian. As in the case of the BCM measure,
we will not calculate the explicit numerical values for the BLP
measure, since we only focus on finding out if it is nonzero or
not.

The BLP measure of non-Markovianity can always detect
the local non-Markovian behavior in the case of independent
local channels. This can be seen by choosing specific product
states as the initial probe states and using the properties
of the trace distance. Let ρA

i be arbitrary states of Alice’s
system and ρB

1 be an arbitrary state of Bob’s system.

Then

D
[
ρA

1 (t) ⊗ ρB
1 (t),ρA

2 (t) ⊗ ρB
1 (t)

] = D
[
ρA

1 (t),ρA
2 (t)

]
, (8)

which shows that this choice of initial states is sensitive only
to what happens on Alice’s side. For example, let the initial
states be

ρAB
1 = 1

2

(
1 1

1 1

)
⊗ 1

2

(
1 0

0 1

)
, (9)

ρAB
2 = 1

2

(
1 0

0 1

)
⊗ 1

2

(
1 0

0 1

)
. (10)

Now after mapping ρAB
1 and ρAB

2 with �AB
t we get for the

trace distance

D
[
ρAB

1 (t),ρAB
2 (t)

] = |κ1(t)|
2

. (11)

Since |κ1(t)| can be chosen to be nonmonotonic (the case
where the local channel on Alice’s side is non-Markovian), so
can the trace distance (11). Because the measure was defined as
a maximization over all initial state pairs, this particular choice
gives a lower bound for it. This implies that the dynamics of
the system is non-Markovian with respect to BLP measure. A
similar result can, of course, be obtained also for the case of
a non-Markovian channel on Bob’s side. Thus it is clear that
the BCM and BLP measures are not equivalent in the case of
2-qubit dephasing channels. Similar reasoning applies to any
number of independent qubit channels. However, we see that
different kinds of local behavior can lead to non-Markovian
global behavior, meaning that the information transmission
capacity of the two-qubit channel is not necessarily only
deteriorating over time. In the following section we will study
the performance of our channel in the superdense coding
protocol with different combinations of local noise.

III. TWO-QUBIT DEPHASING CHANNEL
IN THE SDC PROTOCOL

Superdense coding is one of the best-known examples
of using entanglement for quantum information processing
purposes [25]. In the protocol Alice and Bob share one of the
Bell states. Then Alice applies a unitary transformation to her
qubit to change the overall state to any of the four Bell states.
Subsequently, she sends her qubit to Bob, who performs a
measurement to find out the overall state. Because the states
are orthogonal, they can be distinguished perfectly and thus
four different messages can be sent from Alice to Bob with
perfect fidelity. This equals a capacity of two classical bits
with only one qubit and one bit of entanglement.

Suppose Alice and Bob initially share two polarization
entangled photons in the Bell state |�+〉, which they plan
to use for the superdense coding protocol. However, in
addition to the encoding operation on Alice’s side, both
photons are subjected to local, independent dephasing chan-
nels caused by unitary coupling between the polarization
and frequency degrees of freedom. The frequency degree of
freedom for Alice’s and Bob’s photons are characterized by
the frequency distribution g(ωA,ωB), which is normalized so
that

∫
dωAdωB |g(ωA,ωB)|2 = 1. The state of the combined
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FIG. 2. Illustration of superdense coding scheme with local
dephasing noises on Alice’s and Bob’s side. Each local noise UA,B (t)
can be chosen independently of the other to examine different
strategies to improve mutual information.

system is thus

|�+〉 ⊗ |χ〉 = 1√
2

(|HH 〉 + |V V 〉)

⊗
∫

dωAdωBg(ωA,ωB)|ωAωB〉. (12)

The couplings are of the form [5]

Uj (t) =
∫

dωj (eiωj n
j

V t |V 〉〈V | + eiωj n
j

H t |H 〉〈H |) ⊗ |ωj 〉〈ωj |.
(13)

The channel structure is illustrated in Fig. 2. First local
dephasing noise UA(t1) and UB(t2) act both on Alice’s and
Bob’s photons. After that Alice applies unitary encoding by
using a local unitary Rk(t) operation on her photon. More
details of the encoding operation can be found in the appendix.
The unitary matrix Rk(t) is a modified Pauli matrix, used to
make the decoherence function real. In order to achieve this,
the interaction times must be known, so that Rk(t) can be
chosen accordingly. This amounts to tuning and calibrating
the possible experimental realization of the superdense coding.
We define the encoding operators Rk(t) corresponding to the
four possible messages as

R0(t) = α∗(t)β∗(t)|H 〉〈H | + α(t)β(t)|V 〉〈V |,
R1(t) = β∗(t)|H 〉〈V | + β(t)|V 〉〈H |,

(14)
R2(t) = −iβ∗(t)|H 〉〈V | + iβ(t)|V 〉〈H |,
R3(t) = α∗(t)β∗(t)|H 〉〈H | − α(t)β(t)|V 〉〈V |.

Here, α(t) and β(t) are some time-dependent complex func-
tions such that |α(t)| = |β(t)| = 1 ∀t . A simple calculation
shows that applying each Rk(t) to the initial system state |�+〉
creates four orthogonal states which thus can be perfectly
distinguished. The different messages and corresponding
measurements are listed in Table II.

TABLE II. Alice’s encoding and Bob’s measurement operations
for transmitting and receiving the messages 0–3.

Input x Alice performs Bob measures Output y

0 R0(t) |�+〉 0
1 R1(t) |
+〉 1
2 R2(t) |
−〉 2
3 R3(t) |�−〉 3

After Alice’s encoding, local dephasing channels UA(t3)
and UB(t4) act on both Alice’s and Bob’s qubits respectively.
The operator describing the evolution of the total system for a
given encoding operator k takes the form

Uk = UA(t3)Rk(t)UA(t1) ⊗ UB(t4)UB(t2). (15)

We assume that Alice and Bob can control the interaction times
of their local noises. For the following analytical calculations
we assume that t1 = t2 = t3 = t4 := t/2, i.e., all four noises
have the same duration and the total interaction times in Alice’s
and Bob’s sides are equal to t . Later on, we also present
results when there is no noise on Bob’s side and for the case
when the only noise is that of Alice after her encoding. When
all four interactions are on, we can now calculate how the
initial state (12) of the total closed system evolves when using
different Rk(t). Using specific choices for the functions α(t)
and β(t) (see the Appendix), the final states that Bob obtains
before his measurement become

ρS
0 (t) = 1

2 (|HH 〉〈HH | + |V V 〉〈V V | + |k(t)||V V 〉〈HH |
+ |k(t)||HH 〉〈V V |),

ρS
1 (t) = 1

2 (|V H 〉〈V H | + |HV 〉〈HV | + |h(t)||V H 〉〈HV |
+ |h(t)||HV 〉〈V H |),

ρS
2 (t) = 1

2 (|V H 〉〈V H | + |HV 〉〈HV | − |h(t)||V H 〉〈HV |
− |h(t)||HV 〉〈V H |),

ρS
3 (t) = 1

2 (|HH 〉〈HH | + |V V 〉〈V V | − |k(t)||V V 〉〈HH |
− |k(t)||HH 〉〈V V |), (16)

where (see the Appendix)

h(t) = e− 1
2 (σ�nt)2

1 + AB

(
ei�nωB

1 t + ABei�nωB
2 t

)
,

(17)

k(t) = e− 1
2 (σ�nt)2

1 + AA

(
ei�nωA

1 t + AAei�nωA
2 t

)
h(t).

�n = nA
H − nA

V = nB
H − nB

V is the birefringence on Alice’s
and Bob’s sides and σ is the width, ω

j

i are the locations of
the centers, and Aj = A

j

2/A
j

1 is the ratio of the amplitudes
of the frequency peaks of Alice’s and Bob’s photons. By
manipulating Aj we can control whether the local environment
is Markovian or non-Markovian [16].

A. Mutual information

Mutual information measures correlations between two
random variables X and Y . Basically it tells how much one
can deduce from Y by knowing X. In this sense, it is a natural
measure to quantify the success of a messaging protocol where
Alice wants to send a message to Bob.

For two discrete random variables X and Y with the joint
distribution p(x,y) and marginal distributions p(x) and p(y),
the classical mutual information is defined as

I (X : Y ) = H ({p(x)}) + H ({p(y)}) − H ({p(x,y)}), (18)

where H is the Shannon entropy. By using the definition of
Shannon entropy and the relation p(x,y) = p(y|x)p(x) we
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see that

I (X : Y ) =
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log2
p(y|x)

p(y)
. (19)

Now let X be the set of messages used by Alice and Y be the
set used by Bob. Then p(x) is the probability that Alice sends
the message x and p(y) is the probability that Bob receives
the message y. p(y|x) is the conditional probability of Bob
receiving message y given that Alice sent message x. In the
superdense coding protocol the conditional probabilities can
be calculated as

p(y|x) = tr[Eyρx], (20)

where ρx is the state that Alice encodes the message x to and Ey

is the positive operator valued measure element representing
the measurement outcome associated to the message y by Bob.
For simplicity we assume a uniform distribution on Alice’s
messages, which means that p(x) = p(y) = 1

4 .

B. Channel performance in terms of mutual information

By using the reduced density matrices ρS
k (t) calculated in

Eq. (16) we can obtain the conditional probabilities p(y|x)
of Eq. (19) and then calculate the mutual information. For
example, the conditional probability of Bob getting the
incorrect result |
−〉 when Alice has performed the encoding
R1(t) is

p(2|1) = tr
[|
−〉〈
−|ρS

1 (t)
] = 1 − |h(t)|

2
.

In a similar way one calculates also the other conditional
probabilities. Combining these with the known probabilities
p(x) = p(y) = 1

4 ∀x ∈ X,y ∈ Y we get for the mutual infor-
mation

I (X : Y ) =
3∑

x=0

1

4

3∑
y=0

p(y|x) log2
p(y|x)

1/4

= 2 − 1

2

{
H2

[
1 + |k(t)|

2

]
+ H2

[
1 + |h(t)|

2

]}
.

(21)

Interestingly, the time-dependent mutual information
in (21) is almost the same as the quantum channel capacity
calculated in (3). In the following, we examine different
possibilities for dynamics of mutual information by plugging
different noise configurations of local dephasing channels
into (21). It is easy to see that if |k(t)| and |h(t)| are monotonic,
so is the mutual information. On the other hand if |k(t)|
and |h(t)| both have recoveries at the same time intervals
t1 � t � t2, then also the mutual information has recoveries at
the same intervals.

Figure 3 shows the behavior of mutual information for four
different noise configurations. Note that the absolute values
of the decoherence functions depend only on the distance
between the peaks, which we denote �ωA and �ωB . For the
figures we use fixed parameter values of σ = 1.8 × 1012 Hz
and �ωA = �ωB = 1.6 × 1016 Hz. Two different local chan-
nels are used, Markovian and non-Markovian, with respect to
both BLP and BCM measures. In cases (a)–(d) the Markovian
one corresponds to the choice of parameter Aj = 0.004 and

FIG. 3. Mutual information as a function time in five different
noise configurations (a)–(e). (a) Noise only on Alice’s side after
her encoding. (b) Noise only on Alice’s side before and after her
encoding. (c) Noise on Alice’s side before and after her coding and
identical noise on Bob’s side. Here, in panels (a)–(c), the solid blue
line corresponds to non-Markovian local and the dashed purple line
corresponds to Markovian local channels. For panel (d), there is noise
on Alice’s side before and after her encoding and different noise on
Bob’s side. Here, the solid blue line corresponds to Markovian local
channel on Alice’s side and non-Markovian local channel on Bob’s
side while the dashed purple line corresponds to the opposite case.
Panel (e) is the same, but with different parameter values. Panel (f)
is the behavior of the trace distance with the same parameters as in
(e) for the state pair defined in Eqs. (9) and (10). Note that in panels
(e) and (f) we have focused on a different time interval to make the
difference more clear.

the non-Markovian one corresponds to Aj = 0.377, as in case
2 in Table II A. In case (e) the corresponding parameters
are Aj = 0.004 and t Aj = 0.07, corresponding to case 3 in
Table II A.

Figure 3(a) compares the dynamics of mutual information
between Markovian and non-Markovian cases when there is
noise only in Alice’s side after her encoding. As expected,
memory effects revive the mutual information temporarily and
finally the value approaches the classical limit equal to 1 in
both cases. However, when we add noise also before Alice’s
encoding on her side, this improves the situation both for
Markovian and non-Markovian cases; see Fig. 3(b). In addition
to the slower decrease of mutual information and revivals, it is
very interesting to notice that the asymptotic values approach
now 1.5, which is significantly higher than the classical limit
1. When there is no noise in Bob’s side and the duration
of the noise is equal before and after Alice’s encoding, then
|h(t)| = 1, and Eq. (16) shows that two states ρS

1 and ρS
2 fully

recover their quantum features by an echo mechanism. States
ρS

0 and ρS
3 , which depend on |k(t)|, eventually fully dephase.

This leaves us three distinguishable cases with four encoding
operations, and subsequently the value of mutual information
remains higher than the classical limit, and at the same time
below the value log2 3 if only three encoding operations were
used.

Figure 3(c) shows the results for the case having the same
Markovian or non-Markovian noise on both sides of Alice
and Bob. Here, the behavior is very similar to Fig. 3(a). The
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difference is quite obvious with stronger reduction and smaller
revival of mutual information since added identical noise to
Bob’s side. The situation is more interesting when the noise
applied in the two sides is different. Figure 3(d) shows the
results when Alice has Markovian and Bob has non-Markovian
noise or vice versa. Here, the values of mutual information are
higher when the non-Markovian noise acts on Alice’s side
instead of Bob’s side. We conclude that the combination of
Alice’s encoding operation with subsequent echo mechanism
for two of the states and the non-Markovian character of her
local channel is more efficient for SDC coding than placing
the non-Markovian channel to Bob’s side.

In cases (a)–(d) both BCM and BLP agree on the global
channel being non-Markovian. However, as discussed before,
with the values Aj = 0.004 and Aj = 0.07 in case (e), the
measures do not agree on the nature of the global channel
anymore. In terms of the BLP measure the channel is non-
Markovian as can be seen from Fig. 3(f), where the blue
line behaves nonmonotonically. On the other hand, as seen
in Fig. 3(e), the mutual information is always decreasing, no
matter which way around the local channels are. From this we
see that even though information in the BLP sense is flowing
back to the system, it is not useful for the task at hand and this
is captured by the BCM measure. We conclude that from these
two, BCM is a more appropriate choice for studying usefulness
of non-Markovianity in quantum communication tasks.

IV. CONCLUSIONS

In this paper we have studied the capability of two non-
Markovianity measures in quantifying memory effects for two
independent dephasing channels. The results for the BCM
measure show that having at least one local non-Markovian
channel can lead to both Markovian and non-Markovian global
channels. In contrast, the BLP measure always detects the
local non-Markovian behavior of the global map in the case of
independent channels. It turns out that the BCM measure better
captures the usefulness of the channel structure in transmitting
information in the SDC protocol for the considered cases.
This means that if one is interested only in the resource
aspect of the quantum channel, it is better to study the
non-Markovian properties using the BCM measure. We have
further studied various dephasing noise configurations to
optimize the information transmission. The results show that
when noise affects only Alice’s side, it is beneficial if it is
present both before and after her encoding. In this case, the
asymptotic limit of mutual information is significantly higher
than the classical limit. Moreover, when noise is present in both
Alice’s and Bob’s side—one of them being Markovian and
other one non-Markovian—it is more useful for information
transmission in SDC protocol to have non-Markovian channel
on Alice’s side. Our results help in understanding how
reservoir engineering and memory effects can be used to
improve various quantum-information-based protocols.

ACKNOWLEDGMENTS

This work has been supported by the Magnus Ehrnrooth
Foundation, the EU Collaborative project QuProCS (Grant

Agreement No. 641277), and the Academy of Finland (Project
No. 287750).

APPENDIX

Tracing out the environmental degrees of freedom gives
the following open-system states with different encoding
operations

ρS
0 (t) = 1

2 (|HH 〉〈HH | + |V V 〉〈V V |
+ α(t)2β(t)2k∗(t)|V V 〉〈HH |
+ α∗(t)2β∗(t)2k(t)|HH 〉〈V V |),

ρS
1 (t) = 1

2 (|V H 〉〈V H | + |HV 〉〈HV |
+ β(t)2h∗(t)|V H 〉〈HV |
+ β∗(t)2h(t)|HV 〉〈V H |),

ρS
2 (t) = 1

2 (|V H 〉〈V H | + |HV 〉〈HV |
− β(t)2h∗(t)|V H 〉〈HV |
− β∗(t)2h(t)|HV 〉〈V H |),

ρS
3 (t) = 1

2 (|HH 〉〈HH | + |V V 〉〈V V |
− α(t)2β(t)2k∗(t)|V V 〉〈HH |
− α∗(t)2β∗(t)2k(t)|HH 〉〈V V |), (A1)

where

h(t) =
∫

dωAdωBeiωB (nB
V −nB

H )t |g(ωA,ωB)|2,

k(t) =
∫

dωAdωBeiωA(nA
H −nA

V )t eiωB (nB
H −nB

V )t |g(ωA,ωB)|2

and the subindex of ρk specifies which Rk was used to evolve
the initial state (12).

By choosing the complex functions used in unitary
coding as

α(t)2 =
√

k(t)

k∗(t)

√
h∗(t)

h(t)
, β(t)2 =

√
h(t)

h∗(t)
, (A2)

we see that the decoherence functions in the density matrix
become β∗(t)2h(t) = |h(t)| and α∗(t)2β∗(t)2k(t) = |k(t)|.

Alice and Bob can freely choose the form of |g(ωA,ωB )|2
in the experimental realization. We are interested in the case
of independent noise channels, which means that the joint
frequency distribution |g(ωA,ωB)| is a product distribution

|g(ωA,ωB)| = |gA(ωA)||gB(ωB)|. (A3)

Suppose they agree on using a product of two double-
peaked Gaussian distributions. The peaks of the Gaussians
are centered at ω

j

1 and ω
j

2 . Using this we can evaluate the
integrals as [5]

h(t) = e− 1
2 (σ�nt)2

1 + AB

(
ei�nωB

1 t + ABei�nωB
2 t

)
,

(A4)

k(t) = e− 1
2 (σ�nt)2

1 + AA

(
ei�nωA

1 t + AAei�nωA
2 t

)
h(t),
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where �n = nA
H − nA

V = nB
H − nB

V is the birefringence on
Alice’s and Bob’s side and σ is the width, ωj

i are the locations
of the centers, and Aj = A

j

2/A
j

1 is the ratio of the amplitudes

of the frequency peaks of Alice’s and Bob’s photons. By
manipulating Aj we can control whether the local environment
is Markovian or non-Markovian [16].
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