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Abstract: 2’-O-Methylribo phosphorothioate oligonucleotides incorporating cyclopalladated
benzylamine conjugate groups at their 5’-termini have been prepared and their ability to hybridize
with a designated target sequence was assessed by conventional UV melting experiments.
The oligonucleotides were further examined in splice-switching experiments in human cervical cancer
(HeLa Luc/705), human liver (HuH7_705), and human osteosarcoma (U-2 OS_705) reporter cell lines.
Melting temperatures of duplexes formed by the modified oligonucleotides were approximately
5 ◦C lower than melting temperatures of the respective unmodified duplexes. The cyclopalladated
oligonucleotides functioned as splice-correcting agents in the HeLa Luc/705 cell line somewhat
more efficiently than their unmodified counterparts. Furthermore, the introduction of this chemical
modification did not induce toxicity in cells. These results demonstrate the feasibility of using
covalently metalated oligonucleotides as therapeutic agents.
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1. Introduction

After five decades of intense research, nucleic acids are finally maturing into useful drugs [1,2] in
the form of antisense [3–9], antimiR [10–15], siRNA [16], and splice-switching oligonucleotides [17–20].
Modified oligonucleotides are needed in all of these approaches to overcome problems with cellular
delivery and stability [21–26]. Any therapeutic oligonucleotide would also benefit from enhanced
hybridization affinity for its target sequence. One way to achieve this is by metal coordination, as
exemplified by numerous studies on metal-mediated base pairing [27–30]. A number of oligonucleotide
conjugates of kinetically inert metal complexes, such as those of Pt(II) and Ru(II), have been described
and in many cases shown to hybridize more efficiently than their unmodified counterparts [31–37].
We, on the other hand, have been interested in oligonucleotides covalently metalated with more labile
transition metals and have recently reported on the synthesis and hybridization properties of the first
oligonucleotides incorporating palladacyclic base moieties or conjugate groups [38,39].

While the potential of metal coordination to promote hybridization is well documented, we
are not aware of any studies on the effect of covalent metalation on cellular uptake, toxicity, or
biological activity of an oligonucleotide. The present article aims at partly filling this gap, describing
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splice-correction in vitro by phosphorothioate oligonucleotides featuring palladacyclic conjugate
groups at their 5’-termini. The efficiency of splice-switching depends on the hybridization affinity of the
therapeutic oligonucleotide for the aberrant splice site and could, hence, be improved by coordination
of the covalently bound Pd(II) to nucleobases of the complementary strand. Splice-correction ability
and toxicity were tested on three different human cell lines and the oligonucleotides were delivered by
either lipofection or gymnosis. To the best of our knowledge this is the first use of covalently metalated
oligonucleotides in a biological context and, hence, an important proof of concept.

2. Results

2.1. Oligonucleotide Synthesis

Oligonucleotide sequences used in the present study are listed in Table 1. The splice-switching
oligonucleotides ON1a, ON1b, and ON1b-Pd and the respective negative controls ON2a, ON2b,
and ON2b-Pd feature 2’-O-methylribo and phosphorothioate backbone modifications throughout
their sequences. ON3, in turn, is an unmodified RNA oligonucleotide mimicking the aberrant
splice site of the splice-correction assay (see below) [40]. The 5’-modified oligonucleotides ON1b,
ON1b-Pd, ON2b, and ON2b-Pd were assembled on an automated DNA/RNA synthesizer using
conventional phosphoramidite strategy. The 5’-terminal benzylamine moiety was introduced as the
N-trifluorocetyl-protected building block described previously [39]. The sulfurization steps were
carried out by treatment with 3-((dimethylaminomethylidene)amino)-3H-1,2,3-dithiazole-3-thione
(DDTT) following the standard protocol. Conventional treatment with concentrated ammonia was
employed for removal of base and phosphate protections and release of the oligonucleotides from solid
support. Cyclopalladation of ON1b and ON2b was performed as described previously (Scheme 1) [39].
Finally, all modified oligonucleotides were purified by reverse-phase high performance liquid
chromatography (RP-HPLC, Figures S1, S3, S5 and S7 in the Supporting Information), characterized
by electrospray ionization mass spectrometry (ESI-MS, Figures S2, S4, S6 and S8 in the Supporting
Information) and quantified UV spectrophotometrically.

Table 1. Oligonucleotides used in this study.

Oligonucleotide Sequence 1

ON1a 5′-C*C*U* C*U*U* A*C*C* U*C*A* G*U*U* A*C*A*-3′

ON1b 5′-B- C*C*U* C*U*U* A*C*C* U*C*A* G*U*U* A*C*A*-3′

ON1b-Pd 5′-BPd- C*C*U* C*U*U* A*C*C* U*C*A* G*U*U* A*C*A*-3′

ON2a 5´-C*A*G* A*G*U* U*C*U* C*A*G* G*A*U* G*U*A*-3′

ON2b 5′-B- C*A*G* A*G*U* U*C*U* C*A*G* G*A*U* G*U*A*-3′

ON2b-Pd 5′-BPd- C*A*G* A*G*U* U*C*U* C*A*G* G*A*U* G*U*A*-3′

ON3 5′-AUU GUA ACU GAG GUA AGA GGU U-3′

ON4 5′-att gta act gag gta aga ggt t-3′

1 B refers to unmetalated and BPd to cyclopalladated benzylamine residue. Starred letters refer to
2’-O-methylribo phosphorothioates, all other uppercase letters to natural ribonucleotides and lowercase letters
to deoxyribonucleotides.
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2.2. Hybridization Studies

The 5’-terminal cyclopalladated benzylamine moiety has previously been shown to moderately
enhance the hybridization of short DNA oligonucleotides [39]. To test whether this effect could be
reproduced with considerably longer 2’-O-methyl-RNA oligonucleotides featuring a phosphorothioate
backbone, melting profiles of duplexes formed by ON1a, ON1b, and ON1b-Pd with the native RNA
target ON3 were recorded. As a negative control, similar experiments were carried with ON2a,
ON2b, and ON2b-Pd, lacking sequence complementarity to ON3. The pH of the samples was 7.4
(20 mM cacodylate buffer) and the ionic strength 0.10 M (adjusted with sodium perchlorate). Before
measurement, the samples were annealed by heating to 90 ◦C and allowed to gradually cool down to
room temperature.

Duplexes ON1a•ON3, ON1b•ON3, and ON1b-Pd•ON3 all exhibited sigmoidal melting curves
with a single melting temperature at 71.1 ± 0.4, 66.7 ± 0.2, and 65.4 ± 0.6 ◦C, respectively (Figure 1A).
In other words, the 5’-terminal benzylamine moiety was considerably destabilizing in both unmetalated
and cyclopalladated form, in contrast with previous results on short DNA oligonucleotides. To test
whether this unexpected result could be explained by different steric requirements of RNA–RNA
and RNA–DNA double helices, the experiments were repeated with the DNA target sequence ON4.
As expected, replacing the RNA target with a DNA target resulted in lower melting temperatures
in all cases (52.4 ± 0.9, 45.8 ± 0.6, and 44.3 ± 0.8 for ON1a•ON4, ON1b•ON4, and ON1b-Pd•ON4,
respectively) but the relative stabilities of the modified and unmodified duplexes remained largely
unchanged. Nevertheless, the RNA–RNA duplexes ON1a•ON3, ON1b•ON3, and ON1b-Pd•ON3
were all hybridized at the temperature of the splice-correction experiments (37 ◦C). As expected, none
of the negative control oligonucleotides ON2a, ON2b, and ON2b-Pd formed a stable duplex with
ON3 (data not shown).
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Figure 1. UV melting profiles for duplexes formed by the RNA ON3 (A) and DNA ON4 (B) targets
with ON1a (cyan circles), ON1b (magenta triangles), and ON1b-Pd (yellow squares); pH = 7.4 (20 mM
cacodylate buffer); [oligonucleotides] = 1.0 µM; I(NaClO4) = 0.10 M.

2.3. Reporter Cell Lines

Splice-switching ability of the cyclopalladated oligonucleotide ON1b-Pd and its unmetalated
counterpart ON1b was tested on human cervical cancer (HeLa Luc/705), human osteosarcoma (U-2
OS_705) and human liver (HuH7_705) cell lines. Each of these cell lines carried the pLuc/705
splice-switching reporter—a luciferase-encoding gene interrupted by a mutated β-globin intron
2 [40–42]. The mutated intron presents an aberrant 5’ splice site which, in turn, activates a cryptic 3´
splice site, ultimately resulting in the translation of nonfunctional luciferase [40]. Hybridization of
an oligonucleotide targeting the aberrant pre-mRNA results in splicing, which then yields the correct
mRNA and restored luciferase activity, quantifiable by luminometry.
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2.4. Splice-Correction Mediated by Lipofectamine 2000 Transfection of ONs

Transfection by Lipofectamine 2000 has proven to be a robust delivery method for a wide range of
cell types and modified oligonucleotides. In the present study, each of the three reporter cell lines was
transfected with the modified oligonucleotides ON1b and ON1b-Pd and, for positive and negative
controls, the unmodified oligonucleotide ON1a and the non-complementary oligonucleotides ON2b
and ON2b-Pd (ON2a has been used previously and reported not to influence the splice-correction
of the HeLa-705 construct [43]) following the previously reported protocol [44]. With the HeLa
Luc/705 cell line, the experiments were carried out at three different oligonucleotide concentrations
(25, 50 and 100 nM) and marked restoration of luciferase activity was observed by all the sequences
complementary to the aberrant splice site. At each concentration, ON1b and, especially, ON1b-Pd
were more efficient than ON1a with the HeLa Luc/705 cell line (Figure 2A). The non-complementary
oligonucleotides ON2b and ON2b-Pd were inactive in all but the highest concentrations employed.
As a control experiment, splice-correction in the HeLa Luc/705 cells was also investigated on the
mRNA level at the highest oligonucleotide concentration (100 nM). The modified oligonucleotides
ON1b and ON1b-Pd were again somewhat more efficient than their unmodified counterpart ON1a
(Figure S9 in the Supporting Information). Curiously, considerable restoration of correct splicing was
observed also with the non-complementary oligonucleotides ON2b and ON2b-Pd.

With HuH7_705 and U-2 OS_705 cell lines, the experiments were carried out at a single
concentration of 100 nM. With the HuH7_705 cell line, restoration of luciferase activity by the
complementary sequences was comparable to that observed with the HeLa Luc/705 cell line at the
highest oligonucleotide concentration (Figure 3A). In contrast, restoration of luciferase activity in the
U-2 OS_705 cell line was very modest (Figure 3B). The most efficient splice-switching oligonucleotide
was in both cases the unmodified ON1a. The palladated non-complementary control sequence
ON2b-Pd was inactive whereas, unexpectedly, significant restoration of luciferase activity was
observed on treatment with its unpalladated counterpart ON2b, in particular in the HuH7_705
cell line.
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Figure 2. Restoration of Luciferase activity in HeLa Luc/705 cells by ON1a (cyan), ON1b (magenta),
ON1b-Pd (yellow), ON2b (green), and ON2b-Pd (grey). The oligonucleotides were delivered by either
lipofection (A) or gymnosis (B). Each column represents the mean with the standard error of the
mean (SEM) of three (lipofection) or two (gymnosis) independent experiments (n ≥ 3). P-values were
calculated by two-way ANOVA test and differences were statistically compared using post hoc Fisher’s
LSD test (n.s. non-significant, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 and **** p ≤ 0.0001).
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Figure 3. Restoration of Luciferase activity in HuH7_705 (A,C) and U-2 OS_705 (B,D) cells by ON1a
(cyan), ON1b (magenta), ON1b-Pd (yellow), ON2b (green), and ON2b-Pd (grey). The oligonucleotides
were delivered by either lipofection (A,B) or gymnosis (C,D). Each column represents the mean with
the standard error of the mean (SEM) of at least three independent experiments (n ≥ 3).

2.5. Splice-Correction Mediated by Gymnosis

Splice-correction by ON1a, ON1b, and ON1b-Pd and the negative controls ON2b and ON2b-Pd
was also tested in the absence of any transfection agents (Figure 2B for the HeLa Luc/705 and
Figure 3C,D for the HuH7_705 and U-2 OS_705 cell lines). As described above for transfection by
Lipofectamine 2000, the experiments were carried out at three oligonucleotide concentrations (0.25,
0.50 and 1.0 µM) with the HeLa Luc/705 and at a single oligonucleotide concentration (1.0 µM) with
the HuH7_705 and U-2 OS_705 cell lines. In most cases the splice-switching efficiency was lower
in gymnosis than with transfection by Lipofectamine 2000, with the U-2 OS_705 cell line being an
exception. In the HeLa Luc/705 cell line, a similar dose response pattern was observed as with
lipofection, ON1b-Pd being again the most efficient splice-switching agent. In contrast, ON1b-Pd
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showed lower activity than ON1b or ON1a in the HuH7_705 and U-2 OS_705 cells. Curiously, the
activity of the unpalladated oligonucleotide ON1b in the U-2 OS_705 cell line was considerably higher
in gymnosis than when delivered by lipofection. These differences could reflect alterations in the
abilities of the cyclopalladated and unmetalated oligonucleotides to penetrate into cells but the low
levels of splice-correction achieved preclude firm conclusions.

2.6. Cell Viability

The viability of the HeLa Luc/705 and HuH7_705 cells after lipofection by the modified
oligonucleotides was tested by a WST-1 cell proliferation assay. No marked toxicity was observed with
any of the modified oligonucleotides, regardless of sequence or 5’-modification (Figure 4). With the
HuH7_705 cell line, the number of viable cells after treatment with the modified oligonucleotides ON1b,
ON1b-Pd, and ON2b-Pd was, in fact, somewhat higher than after treatment with the unmodified
oligonucleotide ON1a.
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Figure 4. Viability of (A) HeLa Luc/705 and (B) HuH7_705 cells upon lipofection by oligonucleotides
ON1a (cyan), ON1b (magenta), ON1b-Pd (yellow), and ON2b-Pd (grey). Each column represents the
mean with the standard error of the mean (SEM) of two independent experiments (n = 2).

3. Discussion

3.1. Hybridization Affinity of the Modified Oligonucleotides

The considerable thermal destabilization of duplexes ON1b•ON3 and, especially,
ON1b-Pd•ON3 relative to ON1a•ON3 was unexpected in light of our previous observation
that the same terminal cyclopalladated benzylamine moiety stabilizes short DNA duplexes more
than an additional Watson–Crick base pair [39]. Coordination of the covalently bound Pd(II) to the
phosphorothioate backbone could explain the destabilization of ON1b-Pd•ON3 but not the similar
destabilization of the unpalladated ON1b•ON3. Another possible explanation is related to the
different geometries of DNA–DNA and RNA–RNA double helices. The N donor of the benzylamine
moiety is flanked by two sp3-hybridized carbon atoms that may be difficult to accommodate within
the base stack and this problem would probably be more pronounced with the relatively rigid
and tightly wound A-type double helix favored by RNA (while the benzylamine moiety itself is
in a terminal position, the target sequence ON3 features 2-nucleotide overhangs on both sides of
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the region complementary to the splice-switching oligonucleotides). RNA–DNA hybrid double
helices, such as those formed by ON1a, ON1b, and ON1b-Pd with the DNA target ON4, also
exhibit a mostly A-type conformation but are less rigid than RNA–RNA double helices. The similar
destabilization of ON1b•ON3, ON1b-Pd•ON3, ON1b•ON4, and ON1b-Pd•ON3 relative to the
respective unmodified duplexes does not, hence, definitively rule out geometry of the double helix as
the mechanism of this destabilization but nevertheless seems to argue against it.

3.2. Splice-Correction by the Modified Oligonucleotides

In the luciferase assay, the modified oligonucleotides ON1b and ON1b-Pd exhibited modestly
higher splice-correction efficiency than their unmodified counterpart ON1a in the HeLa Luc/705
cell line while the opposite was true in the HuH7_705 cell lines, after lipofection at the highest
oligonucleotide concentration employed (100 nM). A low but clear restoration of the luciferase signal
was observed also after treatment with the non-complementary control ON2b. To exclude that this
effect was just caused by a cellular activation leading to a general increase in reporter transcription, an
RT-PCR was performed. Surprisingly, an increased restoration of the splicing could also be noticed at
the mRNA level. A possible explanation of the effect of the modified control oligonucleotide would
be that at higher concentrations the terminal benzylamine, which may act as an intercalator, would
increase binding affinity of the partially complementary control oligonucleotide to the pre-mRNA.
On the other hand, Tm measurements performed with the RNA target ON3 appear to contradict this
explanation. Still, it is only after delivery by lipofection at the highest concentration that this nonspecific
increase in Luciferase was seen. In the gymnosis experiments, the correction pattern is in better
agreement with the Tm measurements. It is also worth noting that palladation reduces the nonspecific
effect of the control ON2b (Figure 3A,B). These apparent anomalies notwithstanding, our results show
for the first time that covalently palladated oligonucleotides can be delivered to cells using standard
methods, including gymnosis, and that within cells they are not toxic and they hybridize with the
intended target sequence, paving way for future studies on improved organometallic oligonucleotides.

4. Materials and Methods

4.1. General Methods

Mass spectra were recorded on a Bruker Daltonics micrOTOF-Q mass spectrometer (Bruker,
Billerica, MA, USA). Freshly distilled triethylamine was used for preparation of the HPLC elution
buffers. The other chemicals, including oligonucleotides ON1a, ON2a, ON3, and ON4, were
commercial products and used as received.

4.2. Oligonucleotide Synthesis

Modified phosphorothioate oligonucleotides ON1b, ON1b-Pd, ON2b, and ON2b-Pd were
synthesized on an Applied Biosystems 3400 (Applied Biosystems, Waltham, MA, USA) automated
DNA/RNA synthesizer by conventional phosphoramidite strategy, with 5-(benzylthio)-1H-tetrazole
as the activator and 3-((dimethylaminomethylidene)amino)-3H-1,2,3-dithiazole-3-thione (DDTT)
as the sulfurizing agent. A coupling time of 300 s was employed for both the commercial
2´-O-methylribonucleoside building blocks as well as the N-trifluorocetyl-protected benzylamine
building block [39]. After chain assembly, removal of base and phosphate protections and release of
the oligonucleotides from solid support was accomplished by treatment with 25% aqueous ammonia
at 55 ◦C for 16 h. Cyclopalladation of ON1b and ON2b was carried out by incubating 115 nmol of the
oligonucleotide and 173 nmol of Li2PdCl4 in a mixture of H2O (454 µL) and MeCN (454 µL) at 25 ◦C for
24 h. Finally, all modified oligonucleotides were purified by reversed-phase high performance liquid
chromatography (RP- HPLC) on a Hypersil ODS C18 column (250 × 4.6 mm, 5 µm, Thermo Fisher
Scientific, Waltham, MA, USA) eluting with a linear gradient (0 to 50% over 30 min) of MeCN in 50 mM
aqueous triethylammonium acetate. The purified oligonucleotides were characterized by electrospray
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ionization mass spectrometry (ESI-MS). Products ON1b-Pd and ON2b-Pd were contaminated by
approximately 15% of the unpalladated starting materials ON1b and ON2b but the purity was
deemed acceptable for the hybridization and splice-switching studies. The oligonucleotides were
quantified by UV spectrophotometry using molar absorptivities calculated by an implementation of the
nearest-neighbors method. Contribution of the benzylamine moiety, whether free or cyclopalladated,
was assumed to be negligible.

4.3. UV Melting Temperature Measurements

UV melting profiles were recorded on a PerkinElmer Lambda 35 UV-Vis spectrometer equipped
with a Peltier temperature control unit (PerkinElmer, Waltham, MA, USA). The samples contained
the appropriate oligonucleotides in 1.0 µM concentration at pH = 7.4 (20 mM cacodylate buffer) and
I = 0.10 M (adjusted with NaClO4). Before measurement, the samples were annealed by heating to
90 ◦C and then allowing to cool slowly to room temperature. The denaturation and renaturation curves
were obtained by monitoring the absorbance at λ = 260 nm as a function of temperature (10–90 ◦C,
ramping by 0.5 ◦C min−1), sampling at 0.5 ◦C intervals. The melting temperatures were determined as
inflection points on the denaturation and renaturation curves.

4.4. Cell Lines and Culture Conditions

The three reporter cell lines, HeLa Luc/705 (human cervical cancer cells), HuH7_705 (human liver
cells), and U-2 OS_705 (human osteosarcoma cells) [41], were cultured and maintained in high glucose
Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS) at
37 ◦C in a humidified incubator with 5% CO2.

4.5. Transfection with Lipofectamine 2000

Cells were seeded at a density of 1.1 × 104 per well in white TC-Treated 96-well plates (Corning®,
Gothenburg, Sweden) one day before transfection, to reach cell confluency of approximately 70–80%.
Lipofectamine 2000/oligonucleotide (25, 50 or 100 nM) complexes were prepared in OptiMEM® for
transfection according to the manufacturer’s protocol. Before adding the complexes to cells, culture
media were removed and 100 µL of complexes were added per well. After 4 h, the complexes were
replaced with complete media with 10% FBS (100 µL per well). Cells were incubated at 37 ◦C in a
humidified incubator with 5% CO2 for another 20 h before analysis.

4.6. Gymnosis Experiments

Cells were seeded at a density of 5 × 103 per well in white TC-treated 96-well plates. One day
after seeding, media were replaced with fresh media supplemented with 9 mM of CaCl2, together with
or without appropriate amount of oligonucleotide to achieve 1 µM final concentration per well, using
the Hori et al. protocol [45]. The medium was later replaced with fresh medium supplemented with
9 mM of CaCl2 after 48–72 h. Cells were incubated at 37 ◦C in a humidified incubator with 5% CO2

and harvested for luciferase measurements 7 days after initial treatment.

4.7. Luciferase Assay

A modification of the previously reported protocol for the luciferase assay was followed [41].
The medium was removed, and the cells lysed in 25 µL of 0.1% Triton-X 100 in 1X PBS per well in
a 96-well plate. After lysis of the cells, 5 µL were used to determine total protein quantity by DC
Protein Assay (BioRad). The remaining 20 µL of lysates were mixed with 50 µL of the luciferase
reagent (Promega) added via injector. The relative light units (RLU) of luciferase were measured
(GloMax® 96 Microplate Luminometer machine, Promega, Sweden) with 10 s integration time and 2 s
delay between injection and measurement. The values were divided by the total protein quantities
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determined and normalized to untreated well values. Final results are represented as fold increase in
luciferase activity.

4.8. RNA Expression Analysis

For determination of expression levels of corrected luciferase mRNA, total RNA was isolated
from the cells using the RNeasy plus kit. Three nanograms of isolated RNA were used in
each RT-PCR reaction using ONE STEP RT-PCR kit. The total volume was 20 µL and the
sequences of the forward and reverse primers were 5′-TTGATATGTGGATTTCGAGTCGTC-3′ and
5′-TGTCAATCAGAGTGCTTTTGGCG-3′, respectively. The program for the RT-PCR was as follows:
35 min at 55 ◦C and 15 min at 95 ◦C for the reverse transcription, followed directly by 30 cycles of
PCR (30 s at 94 ◦C, 30 s at 55 ◦C, and 30 s at 72 ◦C) and, finally, 10 min at 72 ◦C for the final extension.
The PCR products were analyzed in a 1.5% agarose gel in 1 × TBE buffer and visualized by SYBR Gold
staining. Documentation of gels was done with the Versadoc imaging system equipped with a cooled
CCD camera (BioRad, Hercules, CA, USA). Band intensities were analyzed with the Quantity One
software and the percentage of corrected mRNA was calculated by normalization against the sum of
band intensities of corrected and uncorrected bands.

4.9. Cell Viability Assay

The viability of cells after lipofection with the modified oligonucleotides was assessed with the
WST-1 assay (Roche, Germany). Cells were seeded and transfected as described above. 24 h after
transfection, the media were replaced with fresh media supplemented with WST-1 reagent (dilution
1:10 with H2O). After addition of media with WST-1 reagent, the cells were further incubated for 2 h at
37 ◦C in a humidified incubator with 5% CO2 according to the manufacturer’s protocol. Absorbance
measurements were carried out on a SpectraMAX i3x Western Blot Imager (Molecular Devices, San José,
CA, USA) at λ = 450 nm with a reference wavelength of 650 nm. Values were expressed as the ratio of
the absorbance at 450 nm of the treated cells to the untreated cells.

4.10. Data analysis

Data are expressed as mean with standard error of the mean (SEM). Statistical significance was
determined by one- or two-way analysis of variance (ANOVA) followed by individual comparisons
using Fisher’s least significant difference test. In all cases, p < 0.05 was considered significant.

5. Conclusions

Phosphorothioate oligonucleotides bearing a 5’-terminal cyclopalladated benzylamine moiety can
be delivered to cells in vitro using standard protocols. The modified oligonucleotides were non-toxic
and effected splice-correction by hybridization with the designated aberrant splice site. In the HeLa
Luc/705 cell line, the modified oligonucleotides were more efficient as splice-correcting agents than
their unmodified counterparts. The results thus demonstrate for the first time the feasibility of using
covalently metalated oligonucleotides as therapeutic agents.
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Figure S1: HPLC trace of oligonucleotide ON1b, Figure S2: Mass spectrum of oligonucleotide ON1b, Figure S3:
HPLC trace of oligonucleotide ON2b, Figure S4: Mass spectrum of oligonucleotide ON2b, Figure S5: HPLC trace
of oligonucleotide ON1b-Pd, Figure S6: Mass spectrum of oligonucleotide ON1b-Pd, Figure S7: HPLC trace of
oligonucleotide ON2b-Pd, Figure S8: Mass spectrum of oligonucleotide ON2b-Pd, Figure S9: A gel of RT-PCR of
luciferase mRNA and efficiency of splice-correction in HeLa Luc/705 cells.
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