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Abstract
We study the problem of sequentializing a cellular automaton without introducing any intermediate states, and only

performing reversible permutations on the tape. We give a decidable characterization of cellular automata which can be

written as a single sweep of a bijective rule from left to right over an infinite tape. Such cellular automata are necessarily

left-closing, and they move at least as much information to the left as they move information to the right.
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1 Introduction

Cellular automata are models of parallel computation, so

when implementing cellular automata on a sequential

architecture, one cannot simply update the cells one by

one—some cells would see already updated states and the

resulting configuration would be incorrect. The simplest-

to-implement solution is to hold two copies of the current

configuration in memory, and map ðx; xÞ7!ðx;GðxÞÞ7!
ðGðxÞ;GðxÞÞ. This is wasteful in terms of memory, and one

can, with a bit of thinking, reduce the memory usage to a

constant by simply remembering a ‘wave’ containing the

previous values of the r cells to the left of the current cell,

where r is the radius of the CA.

Here, we study the situation where the additional

memory usage can be, in a sense, dropped to zero—more

precisely we remember only the current configuration x,

and to apply the cellular automaton we sweep a permuta-

tion v : Sn ! Sn from left to right over x (applying it

consecutively to all length-n subwords of x). The positions

where the sweep starts may get incorrect values, but after a

bounded number of steps, the rule should start writing the

image of the cellular automaton. We formalize this in two

ways, with ‘sliders’ and ‘sweepers’, which are two ways of

formally dealing with the problem that sweeps ‘start from

infinity’.

It turns out that the cellular automata that admit a sliding

rule are precisely the ones that are left-closing (Defini-

tion 5), and whose number of right stairs (see Definition 6)

of length 3m divides jSj3m for large enough m. This can be

interpreted as saying that the the average movement ‘with

respect to any prime number’ is not to the right. See

Theorems 2 and 3 for the precise statements, and Sect. 4

for decidability results.

We introduce the sweeping hierarchy where left-to-right

sweeps and right-to-left sweeps alternate, and the closing

hierarchy where left-closing and right-closing CA alter-

nate. We show that the two hierarchies coincide starting

from the second level. We do not know if the hierarchies

collapse on a finite level.

1.1 Preliminaries

We denote the set of integers by Z. For integers i� j we

write [i, j) for fx 2 Z j i� x\jg and [i, j] for ½i; jÞ [ fjg;
furthermore ½i;1Þ ¼ fx 2 Z j i� xg and ð�1; iÞ ¼ fx 2
Z j x\ig have the obvious meaning. Thus ½0;1Þ is the set
of non-negative integers which is also denoted by N0.

Occasionally we use notation for a set M of integers in a

place where a list of integers is required. If no order is

specified we assume the natural increasing order. If the

reversed order is required we will write MR.

For sets A and B the set of all functions f : A ! B is

denoted BA. For f 2 BA and M � A the restriction of f to
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M is written as f jM or sometimes even fM . Finite words

w 2 Sn are lists of symbols, e.g. mappings w : ½0; nÞ ! S.

Number n is the length of the word. The set of all finite

words is denoted by S�.
Configurations of one-dimensional CA are biinfinite

words x : Z ! S. Instead of x(i) we often write xi. We

define the left shift r by rðxÞi ¼ xiþ1. The restriction of x to

a subset ð�1; iÞ gives a left-infinite word for which we

write xð�1;iÞ; for a right-infinite word we write x½i;1Þ. These

are called half-infinite words. Half-infinite words can also

be shifted by r, and this is defined using the same formula.

The domain is shifted accordingly so for x 2 S½i;1Þ we have

rðxÞ 2 S½i�1;1Þ.
We use a special convention for concatenating words:

Finite words ‘float’, in the sense that they live in Sn for

some n, without a fixed position, and u � v denotes the

concatenation of u and v as an element of Sjujþjvj. Half-
infinite configurations have a fixed domain ð�1; i� or

½i;1Þ for some i, which does not change when they are

concatenated with finite words or other half-infinite con-

figurations, while finite words are shifted suitably so that

they fill the gaps exactly (and whenever we concatenate,

we make sure this makes sense).

More precisely, for w 2 S� and y 2 Sð�1;i�, we have y �
w 2 Sð�1;iþjwj� and for w 2 S� and z 2 S½i;1Þ we have w �
z 2 S½i�jwj;1Þ (defined in the obvious way). For a word w 2
S� and half-infinite words y 2 Sð�1;iÞ and z 2 S½iþn;1Þ we

write y � w � z for the obvious configuration in SZ, and this is
defined if and only if jwj ¼ n.

The set SZ of configurations is assigned the usual pro-

duct topology generated by cylinders. A cylinder defined

by word w 2 Sn at position i 2 Z is the set

½w�½i;iþnÞ ¼ fx 2 SZ j x½i;iþnÞ ¼ wg

of configurations that contain word w in position ½i; iþ nÞ.
Cylinders are open and closed, and the open sets in SZ are

precisely the unions of cylinders. We extend the notation to

half-infinite configurations and denote for any D � Z and

any y 2 SD

½y�D ¼ fx 2 SZ j xD ¼ yg:

These sets are closed in the topology.

2 Sliders and sweepers

A block rule is a function v : Sn ! Sn. Given a block rule v
we want to define what it means to ‘‘apply v from left to

right once at every position’’. We provide two alternatives,

compare them and characterize which cellular automata

functions can be obtained by them. The first alternative,

called a slider, assumes a bijective block rule v that one can
slide along a configuration left-to-right or right-to left to

transition between a configuration y and its image f(y). The

second alternative, called a sweeper, must consistently

provide values of the image f(y) when sweeping left-to-

right across y starting sufficiently far on the left.

We fist define what it means to apply a block rule on a

configuration.

Definition 1 Let v : Sn ! Sn be a block rule and i 2 Z.

The application of v at coordinate i is the function vi :
SZ �! SZ given by viðxÞ½i;iþnÞ ¼ vðx½i;iþnÞÞ and viðxÞj ¼ xj

for all j 62 ½i; iþ nÞ. More generally, for i1; . . .; ik 2 Z we

write

vi1;...;ik ¼ vik � � � � � vi2 � vi1 :

In general it is meaningless to speak about ‘‘applying v
to each cell simultaneously’’: An application of v changes

the states of several cells at once. Applying it slightly

shifted could change a certain cell again, but in a different

way.

We next define finite and infinite sweeps of block rule

applications with a fixed start position.

Definition 2 Given a block rule v for i; j 2 Z, i� j, define

v½i;j� ¼ vj � � � � � vi; analogously let v½i;jÞ ¼ vj�1 � � � � � vi.
For any configuration x 2 SZ and fixed i 2 Z the sequence

of configurations xðjÞ ¼ v½i;j�ðxÞ for j 2 ½i;1Þ has a limit (in

the topological space SZ) which we write as viþðxÞ.
Analogously, for a block rule n the sequence of

configurations xðjÞ ¼ n½j;iÞ
R

ðxÞ for j 2 ð�1; iÞ has a limit

for which we write ni�ðxÞ.

It should be observed that in the definition of viþðxÞ one
has i\j and the block rule is applied at successive posi-

tions from left to right. On the other hand j\i is assumed

in the definition of ni�ðxÞ and since the
R

in n½j;iÞ
R

indicates

application of n at the positions in the reverse order, i.e.

i� 1; i� 2; . . .; j, the block rule is applied from right to

left.

Example 1 Let S ¼ f0; 1g and consider the block rule

v : S½0;2Þ ! S½0;2Þ : ða; bÞ7!ðb; aÞ. For consistency with the

above definition denote by n the inverse of v (which in this

case happens to be v again). Let s 2 S and y 2 SZ. We will

look at the configuration x 2 SZ with

xi ¼
yiþ1; if i\0

s; if i ¼ 0

yi; if i[ 0

8
><

>:

The application of v successively at positions 0; 1; 2; . . .
always swaps state s with its right neighbor. Since cell j can
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only possibly change when vj�1 or vj is applied, each cell

enters a fixed state after a finite number of steps; see also

the lower part of Fig. 1 starting at the row with configu-

ration x.

Example 2 Let S ¼ f0; 1g and consider the block rule

v : S½0;2Þ ! S½0;2Þ : ða; bÞ7!ðaþ b; bÞ. Then sliding this rule

over a configuration x 2 f0; 1gZ produces the image of x in

the familiar exclusive-or cellular automaton with neigh-

borhood f0; 1g (elementary CA 102). We will see in

Example 4 that the exclusive-or CA with neighborhood

f�1; 0g can not be defined this way.

2.1 Definition of sliders

A slider applies a bijective block rule in order to transition

between two configurations, as in popular before/after

image sliders. Sliding the block rule from left to right

transforms the ‘‘before’’ configuration into the ‘‘after’’

configuration, and sliding the inverse block rule back from

right to left reconstructs the ‘‘before’’ configuration from

the ‘‘after’’ configuration. This relates pairs of configura-

tions to each other. Figure 1 shows a slider in action that

relates configuration y to its left shift z ¼ rðyÞ.

Definition 3 A bijective block rule v with inverse n
defines a slider relation F 	 SZ 
 SZ by ðy; zÞ 2 F iff for

some x 2 SZ and some i 2 Z we have ni�ðxÞ ¼ y and

viþðxÞ ¼ z. We call pair (x, i) a representation of

ðy; zÞ 2 F.

Note that every ðx; iÞ 2 SZ 
 Z is a representation of

exactly one pair, namely ðni�ðxÞ; viþðxÞÞ 2 F.

Lemma 1 Let (x, i) be a representation of ðy; zÞ 2 F un-

der a bijective block rule v of block length n. Then

xð�1;iÞ ¼ zð�1;iÞ and x½iþn;1Þ ¼ y½iþn;1Þ.

Proof Applying block rule v at positions j� i in x never

changes cells at positions k\i. Therefore xk ¼ ðviþðxÞÞk ¼
zk proving the first part.

The second part follows analogously. h

Lemma 2 Let ðy; zÞ 2 F be fixed. For all i 2 Z denote

Ri ¼ fx 2 SZ j ðx; iÞ is a representation of ðy; zÞg:

For i\j the function v½i;jÞ : Ri �! Rj is a bijection, with

inverse n½i;jÞ
R

. All Ri have the same finite cardinality.

Proof The claim follows directly from the definition and

the facts that

vjþ � v½i;jÞ ¼ viþ and nj� � v½i;jÞ ¼ ni�; ð1Þ

and that v½i;jÞ and n½i;jÞ
R

are inverses of each other.

More precisely, if x 2 Ri then z ¼ viþðxÞ ¼ vjþðv½i;jÞðxÞÞ
and y ¼ ni�ðxÞ ¼ nj�ðv½i;jÞðxÞÞ so v½i;jÞðxÞ 2 Rj. This proves

that v½i;jÞ maps Ri into Rj. This map is injective. To prove

surjectivity, we show that for any x0 2 Rj its pre-image

n½i;jÞ
R

ðx0Þ is in Ri. Composing the formulas in (1) with n½i;jÞ
R

from the right gives vjþ ¼ viþ � n½i;jÞ
R

and

nj� ¼ ni� � n½i;jÞ
R

, so as above we get z ¼ vjþðx0Þ ¼
viþðn½i;jÞ

R

ðx0ÞÞ and y ¼ nj�ðx0Þ ¼ ni�ðn½i;jÞ
R

ðx0ÞÞ, as required.
The fact that the cardinalities are finite follows from

Lemma 1: there are at most jSjn choices of x½i;iþnÞ in x 2 Ri.

h

Lemma 3 A slider relation F 	 SZ 
 SZ defined by a

bijective block rule v is closed and shift-invariant, and the

ξ0−(x) · · · y−3 y−2 y−1 y0 y1 y2 y3 · · · y
... · · ·

ξ[−3,0)R (x) · · · s y−2 y−1 y0 y1 y2 y3 · · ·
ξ[−2,0)R (x) · · · y−2 s y−1 y0 y1 y2 y3 · · ·
ξ[−1,0)R (x) · · · y−2 y−1 s y0 y1 y2 y3 · · ·

x · · · y−2 y−1 y0 s y1 y2 y3 · · · x

χ[0,1)(x) · · · y−2 y−1 y0 y1 s y2 y3 · · ·
χ[0,2)(x) · · · y−2 y−1 y0 y1 y2 s y3 · · ·
χ[0,3)(x) · · · y−2 y−1 y0 y1 y2 y3 s · · ·

... · · ·
χ0+(x) · · · y−2 y−1 y0 y1 y2 y3 y4 · · · z

Fig. 1 A sequence of

configurations with the center

cell at position 0. Starting with

configuration x in the middle

when going downward the

swapping rule v is applied to

blocks [0, 1], [1, 2], etc., and

going from x upward rule n ¼ v
is applied to blocks ½�1; 0�,
½�2;�1� and so on
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projections ðy; zÞ7!y and ðy; zÞ7!z map F surjectively onto

SZ.

Proof By Lemma 2 every ðy; zÞ 2 F has a representation

(x, 0) at position 0. Therefore, the relation F is closed as

the image of SZ in the continuous map x 7!ðn0�ðxÞ; v0þðxÞÞ.
Clearly (x, i) is a representation of (y, z) if and only if

ðrðxÞ; i� 1Þ is a representation of ðrðyÞ; rðzÞÞ. Hence the

relation F is shift-invariant.

The image of F under the projection ðy; zÞ7!z is dense.

To see this, consider any finite word w and a configuration

x with x½�jwj;0Þ ¼ w. The pair (x, 0) represents some

ðy; zÞ 2 F, and because z ¼ v0þðxÞ we have z½�jwj;0Þ ¼ w.

The denseness follows now from shift invariance and the

fact that w was arbitrary. The image of F under the

projection is closed so the image is the whole SZ.

The proof for the other projection is analogous. h

Corollary 1 If F 	 SZ 
 SZ defined by a bijective block

rule v is a function (that is, if for all y 2 SZ there is at most

one z 2 SZ such that ðy; zÞ 2 F) then this function f : y 7!z

is a surjective cellular automaton.

Proof Because the projections ðy; zÞ7!y and ðy; zÞ7!z are

onto, the function f is total and surjective. Because the

relation F 	 SZ 
 SZ is closed, the function f is continuous.

As it is continuous and shift-invariant, it is a cellular

automaton. h

Definition 4 Let v be a bijective block rule such that the

slider relation it defines is a function f : SZ �! SZ. The

surjective cellular automaton f is called the slider defined

by v.

Example 1 indicates that the slider for the block rule

swapping two states is the left shift. By Corollary 1 every

slider is a surjective CA. But not every surjective CA is a

slider. This will follow from an exact characterization of

which cellular automata are sliders below.

2.2 Characterization of sliders

We start by improving Corollary 1 and show that sliders

are left-closing cellular automata.

Definition 5 Two configurations y and y0 are right-

asymptotic if there is an index i 2 Z such that

y½i;1Þ ¼ y0½i;1Þ. They are called left-asymptotic if there is an

index i 2 Z such that yð�1;iÞ ¼ y0ð�1;iÞ. A CA f is left-

closing if for any two right-asymptotic configurations y and

y0 holds: If y 6¼ y0 then f ðyÞ 6¼ f ðy0Þ. Right-closing CA are

defined symmetrically using left-asymptotic

configurations.

Lemma 4 A slider is a left-closing cellular automaton.

Proof Let slider f be defined by a bijective block rule

v : Sn ! Sn, so that f is a surjective cellular automaton. Let

n be the inverse of v.
Suppose f is not left-closing, so that there exist two

distinct right-asymptotic configurations y and y0 such that

f ðyÞ ¼ f ðy0Þ. We may suppose the rightmost difference in

y and y0 is at the origin. Let r be a radius for the local rule

of f, where we may suppose r� n, and let y½�2r;2r� ¼
w0v; y

0
½�2r;2r� ¼ w1v where jw1j ¼ jw2j ¼ 2r þ 1. We can

apply the local rule of f to words, shrinking them by

r symbols on each side, and write F : S� ! S� for this map.

Since y and y0 have the same f-image, we have

Fðw0vÞ ¼ Fðw1vÞ.
Let m be such that 2m [ jSjn and for each k 2 f0; 1gm,

define the configuration

yk ¼ . . .0000wk1vwk2v. . .vwknv:0000. . .

where the right tail of 0s begins at the origin. For each yk,

pick a point xk representing ðyk; f ðykÞÞ at the origin. By the

pigeon hole principle, there exist k 6¼ k0 such that

ðxkÞ½0;nÞ ¼ ðxk0 Þ½0;nÞ. Let j be the maximal coordinate where

k and k0 differ.
Now, the rightmost difference in yk and yk0 is in

coordinate R ¼ �2r � 1� ð4r þ 1Þðm� jÞ (the last coor-

dinate of the word wkj ). We have f ðykÞ½R�r;1Þ ¼
f ðyk0 Þ½R�r;1Þ by the assumption that j is the rightmost

coordinate where k and k0 differ, and by Fðw0vÞ ¼ Fðw1vÞ.
Thus we also have ðxkÞ½R�r;0Þ ¼ ðxk0 Þ½R�r;0Þ, since v

0þðxkÞ ¼
f ðykÞ and v0þðxk0 Þ ¼ f ðyk0 Þ and these sweeps do not modify

coordinates in ½R� r; 0Þ. Recall that we have ðxkÞ½0;nÞ ¼
ðxk0 Þ½0;nÞ by the choice of k and k0, so ðxkÞ½R�r;nÞ and

ðxk0 Þ½R�r;nÞ.

Now, we should have n0�ðxkÞ ¼ yk and n0�ðxk0 Þ ¼ yk0 ,

in particular we should have n0�ðxkÞR 6¼ n0�ðxk0 ÞR. But this
is impossible: n0�ðxkÞR is completely determined by

ðxkÞ½R�nþ1;nÞ and similarly n0�ðxk0 ÞR is determined by

ðxk0 Þ½R�nþ1;nÞ, but ðxkÞ½R�nþ1;nÞ ¼ ðxk0 Þ½R�nþ1;nÞ since

ðxkÞ½R�r;nÞ ¼ ðxk0 Þ½R�r;nÞ and r� n: h

Next we analyze numbers of representations. We call a

representation (x, i) of a pair (y, z) simply a representation

of configuration y, because z ¼ f ðyÞ is determined by y. Let

R(y, i) be the set of configurations x such that (x, i) is a

representation of y. By Lemma 1 the elements of

R(y, i) have the form x ¼ f ðyÞð�1;iÞ � w � y½iþn;1Þ for some

word w 2 Sn where n is the block length of v.
By Lemma 2 the cardinality of the setR(y, i) is independent

of i. Let us denote by N(y) this cardinality. It turns out that the

number is also independent of the configuration y.
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Lemma 5 NðyÞ ¼ Nðy0Þ for all configurations y; y0.

Proof Let n be the block length of rule v.

(i) Assume first that y; y0 are left-asymptotic. There is

an index i 2 Z such that yð�1;iÞ ¼ y0ð�1;iÞ. Then

for any z we have that zð�1;iÞy½i;1Þ 2 Rðy; i� nÞ if
and only if zð�1;iÞy

0
½i;1Þ 2 Rðy0; i� nÞ. This gives a

bijection between Rðy; i� nÞ and Rðy0; i� nÞ so

that NðyÞ ¼ jRðy; i� nÞj ¼ jRðy0; i� nÞj ¼ Nðy0Þ.
(ii) Assume then that y; y0 are right-asymptotic. Also

f(y) and f ðy0Þ are right-asymptotic so there is an

index i 2 Z such that f ðyÞ½i;1Þ ¼ f ðy0Þ½i;1Þ. Con-

sider z½i;1Þ be such that x ¼ f ðyÞð�1;iÞ
z½i;1Þ 2 Rðy; iÞ. Then viþðxÞ ¼ f ðyÞ. Consider then
x0 ¼ f ðy0Þð�1;iÞz½i;1Þ obtained by replacing the left

half f ðyÞð�1;iÞ by f ðy0Þð�1;iÞ. Because f ðyÞ½i;1Þ ¼
f ðy0Þ½i;1Þ we have that viþðx0Þ ¼ f ðy0Þ. The con-

figuration y00 represented by ðx0; iÞ is right-asymp-

totic with y0 and satisfies f ðy00Þ ¼ f ðy0Þ. Because
f is left-closing by Lemma 4, we must have

y00 ¼ y0. We conclude that f ðyÞð�1;iÞz½i;1Þ 2
Rðy; iÞ implies that f ðy0Þð�1;iÞz½i;1Þ 2 Rðy0; iÞ, and
the converse implication also holds by a symmet-

ric argument. As in (i), we get that

NðyÞ ¼ jRðy; iÞj ¼ jRðy0; iÞj ¼ Nðy0Þ.
(iii) Let y; y0 be arbitrary. Configuration y00 ¼

yð�1;0Þy
0
½0;1Þ is left-asymptotic with y and right-

asymptotic with y0. By cases (i) and (ii) above we

have NðyÞ ¼ Nðy00Þ ¼ Nðy0Þ. h

As N(y) is independent of y we write N for short.

Next we define right stairs. There were defined in Kari

(1996) for reversible cellular automata—here we general-

ize the concept to other CA and show that the concept

behaves well when the cellular automaton is left-closing. A

right stair is a pair of words that can be extracted from two

consecutive configurations x and f(x) that coincide with

y and z, respectively, as shown in Fig. 2. The precise

definition is as follows.

Definition 6 Let f : SZ �! SZ be a cellular automaton,

and let m be a positive integer. Let y 2 S½iþ3m;1Þ be a right

infinite word and let z 2 Sð�1;iÞ be a left-infinite word.

– A pair of words ðv;wÞ 2 S2m 
 S2m is a right stair

connecting (y, z) if there is a configuration x 2 SZ such

that vy ¼ x½iþm;1Þ and zw ¼ f ðxÞð�1;iþ2mÞ.

– The stair has length 3m and it is confirmed (at position

i) by configuration x.

– We write W3mðy; zÞ for the set of all right stairs of

length 3m connecting (y, z).

– We write W3m for the union of W3mðy; zÞ over all y and
z.

Due to shift invariance, x confirms ðv;wÞ 2 W3mðy; zÞ if
and only if rðxÞ confirms ðv;wÞ 2 W3mðrðyÞ; rðzÞÞ. This
means that W3mðy; zÞ ¼ W3mðrðyÞ; rðzÞÞ, so it is enough to

consider i ¼ 0 in Definition 6. In terms of cylinders,

ðv;wÞ 2 W3m if and only if f ð½v�½m;3mÞÞ \ ½w�½0; 2mÞ 6¼ ;.
We need the following known fact concerning left-

closing CA. It appears as Proposition 5.44 in Kůrka (2012)

where it is stated for right-closing CA. See Fig. 3(a) for an

illustration.

Lemma 6 (Proposition 5.44 in Kůrka (2012)) Let f be a

left-closing CA. For all sufficiently large m 2 N, if s 2 Sm

and t 2 S2m are such that f ð½s�ðm;2m�Þ \ ½t�ð0;2m� 6¼ ; then for

all b 2 S there exists a unique a 2 S such that

f ð½as�½m;2m�Þ \ ½bt�½0;2m� 6¼ ;.

The condition f ð½s�ðm;2m�Þ \ ½t�ð0;2m� 6¼ ; is just a way to

write that there exists x 2 SZ with xðm;2m� ¼ s and

f ðxÞð0;2m� ¼ t. Note that the statement of the lemma has two

parts: the existence of a and the uniqueness of a. We need

both parts in the following.

A number m is a strong left-closing radius for a CA f if

it satisfies the claim of Lemma 6,1 and furthermore m� 2r

where r� 1 is a neighborhood radius of f. Next we state

corollaries of the previous lemma, phrased for right stairs

in place of s and t to be directly applicable in our setup.

Corollary 2 Let f be a left-closing CA. Let m be a strong

left-closing radius.

(a) W3mðy; zÞ ¼ W3m for all y and z.

(b) Let ðvc;wdÞ 2 W3m for c; d 2 S and v;w 2 S2m�1.

For every b 2 S there exists a unique a 2 S such that

ðav; bwÞ 2 W3m. (See Fig. 3b for an illustration.)

(c) Every ðv;wÞ 2 W3mðy; zÞ is confirmed by a unique x.

Proof (a) Let y; y0 2 S½3m;1Þ and z; z0 2 Sð�1;0Þ be arbi-

trary. It is enough to prove that W3mðy0; z0Þ � W3mðy; zÞ.
The claim then follows from this and shift invariance

W3mðy; zÞ ¼ W3mðrðyÞ; rðzÞÞ.
First we show that W3mðy0; z0Þ � W3mðy; z0Þ. Let ðv;wÞ 2

W3mðy0; z0Þ be arbitrary, so that there exists x0 2 ½vy0�½m;1Þ
such that f ðx0Þð�1;2mÞ ¼ z0w. Then ðv;wÞ 2 W3mðy; z0Þ is

confirmed by the configuration x00 such that x00ð�1;3mÞ ¼
x0ð�1;3mÞ and x00½3m;1Þ ¼ y. Indeed, x00½m;1Þ ¼ vy, and because

m� r, the radius of the local rule of f, we also have

f ðx00Þð�1;2mÞ ¼ f ðx0Þð�1;2mÞ ¼ z0w.

1 The word ‘strong’ is added to distinguish this from the weaker

closing radius obtained directly from the definition by a compactness

argument.
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Next we show that W3mðy; z0Þ � W3mðy; zÞ. Let

ðv;wÞ 2 W3mðy; z0Þ. We start with finite extensions of

w on the left: we prove that for every finite word u 2 S�

we have f ð½vy�½m;1ÞÞ \ ½uw�½�juj;2mÞ 6¼ ;. Suppose the con-

trary, and let bu 2 Skþ1 be the shortest counterexample,

with b 2 S and u 2 Sk. (By the assumptions, the empty

word is not a counterexample.) By the minimality of bu,

there exists xr 2 ½vy�½m;1Þ such that f ðxrÞ½�k;2mÞ ¼ uw.

Choose s ¼ xr½�kþm;�kþ2mÞ and t ¼ f ðxrÞ½�k;�kþ2mÞ and apply

the existence part of Lemma 6. By the lemma, there exists

a configuration xl such that xl½�kþm;�kþ2mÞ ¼ xr½�kþm;�kþ2mÞ

and f ðxlÞ½�k�1;�kþ2mÞ ¼ b � f ðxrÞ½�k;�kþ2mÞ.

Consider x obtained by gluing together the left half of xl

and the right half of xr: define xð�1;�kþ2mÞ ¼ xlð�1;�kþ2mÞ
and x½�kþm;1Þ ¼ xr½�kþm;1Þ. Note that in the region

½�k þ m;�k þ 2mÞ configurations xl and xr have the

same value. By applying the local rule of f with radius

r we also get that f ðxÞð�k�1;�kþ2m�rÞ ¼ f ðxlÞð�k�1;�kþ2m�rÞ ¼
b � f ðxrÞ½�k;�kþ2m�rÞ and f ðxÞ½�kþmþr;2mÞ ¼ f ðxrÞ½�kþmþr;2mÞ.

Because m� 2r we have �k þ 2m� r� � k þ mþ r, so

that f ðxÞð�k�1;2mÞ ¼ b � f ðxrÞð�k;2mÞ ¼ buw. We also have

x½m;1Þ ¼ xr½m;1Þ ¼ vy, so that x proves that bu is not a

counterexample.

Consider then the infinite extension of w on the left by z:

Applying the finite case above to each finite suffix of z and

by taking a limit, we see with a simple compactness

argument that there exists x 2 ½vy�½m;1Þ such that

f ðxÞ½�1;2mÞ ¼ zw. This proves that ðv;wÞ 2 W3mðy; zÞ.
(b) Let ðvc;wdÞ 2 W3m and let b 2 S be arbitrary. Let

y 2 S½3m;1Þ be arbitrary, and and let z 2 Sð�1;0Þ be such that
z�1 ¼ b. By (a) we have that ðvc;wdÞ 2 W3mðy; zÞ. Let x be
a configuration that confirms this, so x½m;1Þ ¼ vcy and

f ðxÞð�1;2mÞ ¼ zwd. Let a ¼ xm�1. Because x½m�1;3m�1Þ ¼ av

and f ðxÞ½�1;2m�1Þ ¼ bw, configuration x confirms (at posi-

tion i ¼ �1) that ðav; bwÞ 2 W3m.

Let us prove that a is unique. Suppose that also

ða0v; bwÞ 2 W3m. We apply the uniqueness part of

Lemma 6 on s and t where t ¼ wd and s is the prefix of

v of length m. Because ða0v; bwÞ is a right stair,

f ð½a0v�½m�1;3m�1ÞÞ \ ½bw�½�1;2m�1Þ 6¼ ;. Because m� 1� 2r

�1� r, the local rule of f assigns f ðxÞ2m�1 ¼ d for all

x 2 ½a0v�½m�1;3m�1Þ, so that f ð½a0v�½m�1;3m�1ÞÞ\ ½bwd�
½�1;2mÞ 6¼ ;. But then f ð½a0s�½m�1;2mÞÞ \ ½bt�½�1;2mÞ 6¼ ;, so

that by Lemma 6 we must have a0 ¼ a.

(c) Suppose x 6¼ x0 both confirm that

ðv0;w0Þ 2 W3mðy; zÞ. Then x½m;1Þ ¼ v0y ¼ x0½m;1Þ. Let k\m

be the largest index such that xk 6¼ x0k. Extract a; a
0; b; c; d 2

S and v;w 2 S2m�1 from x and x0 as follows: avc ¼ x½k;kþ2m�
and a0vc ¼ x0½k;kþ2m� and bwd ¼ f ðxÞ½k�m;kþm� ¼ f ðx0Þ½k�m;

k þ m�. Then ðvc;wdÞ 2 W3m and ðav; bwÞ; ða0v; bwÞ 2
W3m. This contradicts (b). h

Now we can prove another constraint on sliders.

Lemma 7 Let f be a slider. Let m be a strong left-closing

radius, and big enough so that f is defined by a bijective

block rule v : Sn �! Sn of block length n ¼ 3m. Let N be

the number of representatives of configurations (indepen-

dent of the configuration) with respect to v. Then

N � jWnj ¼ jSjn:

In particular, jWnj divides jSjn.

Proof Fix any y 2 S½3m;1Þ and z 2 Sð�1;0Þ. Denote

A ¼ fx 2 SZ j x½3m;1Þ ¼ y and f ðxÞð�1;0Þ ¼ zg. Consider

the function A �! W3mðy; zÞ defined by x 7!ðx½m;3mÞ;
f ðxÞ½0;2mÞÞ. It is surjective by the definition ofW3mðy; zÞ, and
it is injective by Corollary 2(c). Because W3mðy; zÞ ¼ W3m

by Corollary 2(a), we see that jAj ¼ jW3mj.
For each w 2 S3m define configuration xw ¼ zwy. Rep-

resentations (x, 0) of y 2 A are precisely ðxw; 0Þ for

w 2 S3m. Because each y has N representations and there

are jSj3m words w we obtain that N � jW3mj ¼ jSj3m. h

Now we prove the converse: the constraints we have

proved for sliders are sufficient. This completes the char-

acterization of sliders.

Lemma 8 Let f be a left-closing cellular automaton, let

m be a strong left-closing radius, and assume that jWnj
divides jSjn for n ¼ 3m. Then f is a slider.

v
w

y
z

0 m 2m 3m

x
f(x)

v
w

0 m 2m 3m

Fig. 2 A right stair (v, w) of length 3m connecting y and z, confirmed

by x at position i ¼ 0

s
t

0 m 2m

(a)

v
wz

0 m 2m 3m

(b)

a
b

yFig. 3 a An illustration for

Lemma 6, and b an illustration

for Corollary 2(b) and for

Lemma 8

J. Kari et al.

123



Proof Let N ¼ jSjn=jWnj and pick an arbitrary bijection

p : Wn 
 f1; 2; . . .;Ng �! Sn. Let floc : S
2mþ1 �! S be the

local rule of radius m for the cellular automaton f.

Let us define a block rule v : Snþ1 �! Snþ1 as follows

(see Fig. 3). Consider any c 2 S, any k 2 f1; 2; . . .;Ng and

any ðav; bwÞ 2 Wn where a; b 2 S and v;w 2 S2m�1. Let

d ¼ flocðavcÞ. We set v : pððav; bwÞ; kÞ � c 7!b � pððvc;
wdÞ; kÞÞ. This completely defines v, but to see that it is

well defined we next show that (vc, wd) is a right stair. By

Corollary 2(a) we have that ðav; bwÞ 2 Wnðcy; zÞ for arbi-

trary y, z so there is a configuration x such that x½m;1Þ ¼
avcy and f ðxÞð1;2mÞ ¼ zbw. The local rule floc determines

that f ðxÞ2m ¼ flocðavcÞ ¼ d. It follows that ðvc;wdÞ 2
Wnðy; zbÞ, confirmed by x at position i ¼ 1.

Now that we know that v is well defined, let us prove

that v is a bijection. Suppose pððav; bwÞ; kÞ � c and

pðða0v0; b0w0Þ; k0Þ � c0 have the same image

b � pððvc;wdÞ; kÞÞ ¼ b0 � pððv0c0;w0d0Þ; k0ÞÞ. We clearly

have b ¼ b0, and because p is a bijection, we have

v ¼ v0, c ¼ c0, w ¼ w0, d ¼ d0 and k ¼ k0. By Corol-

lary 2(a) we also have that a ¼ a0.
As v is a bijective block rule, it defines a slider relation

F. We need to prove that for every configuration y, the only

z such that ðy; zÞ 2 F is z ¼ f ðyÞ. Therefore, consider an

arbitrary representation (x, i) of ðy; zÞ 2 F. Write x ¼
zð�1;iÞ � pððav; bwÞ; kÞ � c � y½iþnþ1;1Þ for letters a; c; b 2 S

words v;w 2 S2m�1 and k 2 f1; 2; . . .;Ng. This can be done

and as p is surjective and all items in this representation are

unique as p is injective. We have ðav; bwÞ 2 Wnðcy; zÞ so

by Corollary 2(c) there is a unique configuration x0 that
confirms this. Then x0½iþm;1Þ ¼ avc � y½iþnþ1;1Þ and

f ðx0Þð�1;iþ2mÞ ¼ zð�1;iÞ � bw. Associate x0 to (x, i) by defin-

ing gðx; iÞ ¼ x0.

Let us show that gðviðxÞ; iþ 1Þ ¼ gðx; iÞ. By the defi-

nition of v we have

viðxÞ ¼ zð�1;iÞ � b � pððvc;wdÞ; kÞÞ � y½iþnþ1;1Þ

where d ¼ flocðavcÞ. To prove that gðviðxÞ; iþ 1Þ ¼ x0 ¼
gðx; iÞ it is enough to show that x0 confirms

ðvc;wdÞ 2 Wnðy; zbÞ. But this is the case because

x0½iþmþ1;1Þ ¼ vc � y½iþnþ1;1Þ and f ðx0Þð�1;iþ2mþ1Þ ¼ zð�1;iÞ�
bwd. The fact that f ðx0Þiþ2m ¼ d follows from x0½iþm;iþ3m� ¼
avc and d ¼ flocðavcÞ.

By induction we have that for any j� i holds

gðv½i;jÞðxÞ; jÞ ¼ x0. Moreover, pair ðv½i;jÞðxÞ; jÞ represents

the same ðy; zÞ 2 F as (x, i). Therefore, x0½jþnþ1;1Þ ¼
y½jþnþ1;1Þ and f ðx0Þð�1;jÞ ¼ zð�1;jÞ for all j� i. Let us look

into position p ¼ iþ nþ mþ 1. Using any j[ p we get

f ðx0Þp ¼ zp and using j ¼ i we get x0½p�m;pþm� ¼ y½p�m;pþm�.

This means that zp ¼ flocðy½p�m;pþm�Þ, that is, zp ¼ f ðyÞp.

Because i was arbitrary, p is arbitrary. We have that

z ¼ f ðyÞ, which completes the proof. h

Theorem 1 The function f admits a slider if and only if f is

a left-closing cellular automaton and jWnj divides jSjn for

n ¼ 3m where m is the smallest strong left-closing radius.

We can state this theorem in a slightly more canonical

(but completely equivalent) form by normalizing the length

of stairs:

By Corollary 2, for a left-closing cellular automaton

f the limit

kf ¼ lim
m!1

jW3mj
jSj3m

ð2Þ

is reached in finite time, namely as soon as m is a strong

left-closing radius, and thus kf is rational for left-closing

f. In Kari (1996) it is shown that the map f 7!kf gives a

homomorphism from the group of reversible cellular

automata into the rational numbers under multiplication.

For a prime number p and an integer n, write vpðnÞ for the
largest exponent k such that pkjn. For prime p and rational

r ¼ m=n, write vpðrÞ ¼ vpðmÞ � vpðnÞ for the p-adic valu-

ation of r.

Theorem 2 The function f admits a slider if and only if f is

a left-closing cellular automaton and vpðkf Þ� 0 for all

primes p.

Example 3 Let A ¼ f0; 1g 
 f0; 1; 2g and write r2 and r3
for the left shifts on the two tracks of AZ. Then consider

f ¼ r2 
 r�1
3 . For this CA we have by a direct computation

jW3j ¼ 22 � 34 so kf ¼ 22 � 34=63 so v3ðkf Þ ¼ 1[ 0, and

thus f does not admit a slider. Similarly we see that r3 

r�1
2 does not admit a slider.

Example 4 Let S ¼ f0; 1g and consider the exclusive-or

CA with neighborhood f�1; 0g, i.e. f ðxÞ ¼ xþ r�1ðxÞ.
Then f is left-closing but a direct computation shows

v2ðkf Þ ¼ 1[ 0, so f does not admit a slider. Compare with

Example 2.

2.3 Definition of sweepers

An alternative approach not requiring bijectivity of v is

specified in the following:

Definition 7 A block rule v defines a sweeper relation

F 	 SZ 
 SZ by ðy; zÞ 2 F iff some subsequence of

v0þðyÞ; v�1þðyÞ; v�2þðyÞ; . . . converges to z.

Lemma 9 The projection ðy; zÞ7!y on the first component

maps a sweeper relation F surjectively onto SZ. The rela-

tion F is a function f if and only if for each configuration

y the limit limi!�1 viþðyÞ exists and equals f(y).

Sequentializing cellular automata

123



Proof For every y 2 SZ the sequence v0þðyÞ; v�1þðyÞ;
v�2þðyÞ; . . . has a converging subsequence with some limit

z. Then ðy; zÞ 2 F so the projection is onto.

If z ¼ limi!�1 viþðyÞ exists then every subsequence of

v0þðyÞ; v�1þðyÞ; v�2þðyÞ; . . . converges to z so z is the

unique configuration such that ðy; zÞ 2 F. Conversely, if

limi!�1 viþðyÞ does not exist then v0þðyÞ; v�1þðyÞ;
v�2þðyÞ; . . . has two subsequences converging to distinct

z1 and z2. In this case ðy; z1Þ and ðy; z2Þ are both in relation

F. h

Definition 8 Let v be a block rule such that for each

configuration y the limit z ¼ limi!�1 viþðyÞ exists. The

function y 7!z is called the sweeper defined by v.

Before we are going to compare the notions of sliders

and sweepers we provide a result on a special kind of

Mealy automata.

2.4 A note on finite Mealy automata

In this section we consider Mealy automata with a set Q of

states and where the set A of input symbols and the set of

output symbols coincide. For convenience instead of pairs

of elements we use words of length 2. Thus, we denote by

l : QA ! AQ the function mapping the current state q and

an input symbol a to lðqaÞ ¼ a0q0, where q0 is the new state

of the automaton.

The motivation for this is the following. When a block

rule v is sweeping over a configuration one can think of the

block q 2 Sn where v will be applied next as encoding the

state of a Mealy automaton. The word a 2 Sn immediately

to the right of it is the next input symbol. By applying v at

positions 0; 1; . . .; n� 1 the word qa is transduced into a

word a0q0 2 S2n where a0 can be considered the output

symbol and q0 the next state of the automaton. When v is

bijective then clearly l is bijective, too.

Let d : QA ! Q denote the function yielding only the

new state of the Mealy automaton. The extension d� :
QA� ! A�Q to input words is for all states q, all inputs

w 2 A� and a 2 A defined by d�ðqeÞ ¼ q and

d�ðqwaÞ ¼ dðd�ðqwÞaÞ.
Because of the application we have in mind we now

restrict ourselves to the case where Q ¼ A and speak of

elements e 2 Q. Let �e ¼ ð. . .; e�2; e�1; e0Þ denote a

sequence of elements which is infinite to the left.

Definition 9 A finite tail �ei ¼ ðe�i; . . .; e0Þ of �e is good for

q if d�ð�eiÞ ¼ q.

An infinite sequence �e is good for q if infinitely many

finite tails �ei ¼ ðe�i; . . .; e0Þ are good for q. A state q is

good, if there is an infinite sequence �e that is good for q.

Let G � Q denote the set of good states and B � Q the set

of bad states.

Lemma 10 If l is bijective then G ¼ Q and B ¼ ;.

Proof First, observe that the property of being good is

preserved by d. If g is good, then each dðgaÞ is good, too: If
�e is good for g, then �ea is good for dðgaÞ since

d�ðe�i; . . .; e0Þ ¼ g implies d�ðe�i; . . .; e0; aÞ ¼ dðgaÞ. This
means that lðGAÞ � AG.

Since l is injective and jGAj ¼ jAGj, in fact

lðGAÞ ¼ AG. Therefore lðBAÞ � AB, that is d preserves

bad states. Now, assume that there indeed exists a bad state

b 2 B. Consider �b ¼ ð. . .; b; b; bÞ. The states bi ¼ d�ðbiÞ
are all bad, but at least one of them happens infinitely

often, which would mean that it is good, which is a

contradiction. h

2.5 Relation between sliders and sweepers

Compared to Definition 4 the advantage of Definition 8 is

that it does not require v to be bijective. But as long as v is

bijective, there is in fact no difference.

Theorem 3 Let v be a bijective block rule and f a one-

dimensional CA. The rule v is an slider for f if and only if it

is a sweeper for f.

The two implications are considered separately in

Lemmata 11 and 12 below. For the remainder of this

section let v : Sn ! Sn always denote a bijective block rule

and let f : SZ ! SZ denote a one-dimensional CA (without

stating this every time).

Lemma 11 If v is not a sweeper for f then it is not a slider

for f.

Proof If v is not a sweeper for f then there is a configu-

ration y for which the limit limi!�1 v½i;1ÞðyÞ does not exist
or is wrong.In both cases there is a cell j 2 Z and a state

s 2 S such that s 6¼ f ðyÞj but v½i;1ÞðyÞj ¼ s for infinitely

many i\j� n.

We will construct a configuration x such that vj�ðxÞ ¼ y

and vjþðxÞj ¼ s 6¼ f ðyÞj. Therefore v is not a slider for f (see
Definition 4).

As a first step we subdivide the ‘‘left part’’ ð�1; jþ nÞ
of Z into windows Wk of length n. For k� 0 let pk ¼
�knþ j denote the smallest index in Wk, i. e. Wk ¼
½pk; pk�1Þ (where p�1 ¼ jþ n).Analogously divide the ‘‘left

part’’ of y into words yðkÞ of length n by setting yðkÞ ¼ yjWk

(see Fig. 4).

Let M denote the set fi j v½i;1ÞðyÞj ¼ sg. M contains

infinitely many integers i\p1 ¼ j� n. Then there has to be

a word vð0Þ 2 Sn such that the set M0 ¼ fi 2 M j
i\p1 and v½i;jÞðyÞjW0

¼ vð0Þg is infinite. Since M0 � M

certainly vðvð0ÞÞ0 ¼ s holds.
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For all k� 0 we now inductively define words vðkþ1Þ and

xðkþ1Þ (all of length n) and along with it infinite sets Mkþ1.

Since Mk is infinite, there is a word vðkþ1Þ such that the set

Mkþ1 ¼ fi 2 Mk j i\pkþ2 and v½i;pkÞðyÞjWkþ1
¼ vðkþ1Þg

is infinite. Since Mkþ1 � Mk one has v½pkþ1;pkÞðvðkþ1ÞyðkÞÞ ¼
xðkþ1ÞvðkÞ for some xðkþ1Þ (see Fig.5). Since v is bijective,

for the inverse n of v holds vðkþ1ÞyðkÞ ¼ n½pkþ1;

pkÞRðxðkþ1ÞvðkÞÞ, too. Note again that n is applied from right

to left.

Now choose configuration x ¼ � � � xð3Þ � xð2Þ � xð1Þ�
vð0Þ � y½jþn;1Þ.

On one hand vjþðxÞ already after the application of v at

position j produces state s there which never changes again.

Thus vjþðxÞ 6¼ f ðyÞ.
On the other hand by construction for all k� 0 holds

n½pkþ1;pkÞRðxðkþ1ÞvðkÞÞ ¼ vðkþ1ÞyðkÞ.
Therefore

n½p1;p0Þ
R

ðxÞ ¼ n½p1;p0Þ
R

ð� � � xð3Þxð2Þxð1Þvð0Þy½jþn;1ÞÞ
¼ � � � xð3Þxð2Þvð1Þzð0Þy½jþn;1Þ

and by induction for all k� 0

n½pkþ1;p0ÞRðxÞ ¼ n½pkþ1;p0ÞRð� � � xð3Þxð2Þxð1Þvð0Þy½jþn;1ÞÞ
¼ � � � xðkþ1ÞvðkÞyðk�1Þ � � � yð0Þy½jþn;1Þ

Obviously one gets ni�ðxÞ ¼ y. h

Lemma 12 If v is not a slider for f then it is not a sweeper

for f.

Proof If v is not a slider for f then there exists a config-

uration x and an i 2 Z such that for z ¼ viþðxÞ and y ¼
vi�ðxÞ one has f ðyÞ 6¼ z. Let n be the inverse of v. Let j be a
cell where f ðyÞj 6¼ zj. If j\iþ n instead of x can consider

x0 ¼ n½i�1;...;i�m�ðxÞ for some sufficiently large m. Assume

therefore that j� iþ n.

We will prove that there is a configuration v such that

for infinitely many positions m the configuration v½m;1ÞðvÞ
will not have the correct state at position j. Therefore the

limit limm!�1 v½m;1ÞðvÞ cannot exist and have the correct

state at position j. Thus v is not a sweeper for f.

Below the abbreviation Q ¼ Sn is used.

Configuration x is of the form zð�1;iÞ � w � y½iþn;1Þ for

some w 2 Q. Applying v at position i and further to the

right produces the same result independent of what is to the

left of w. Therefore if zð�1;iÞ is replaced by any z0ð�1;iÞ still

the wrong state is produced at position j.

Define a Mealy automaton with Q ¼ A by lðqaÞ ¼
v½0;nÞðqaÞ (observe that qa 2 S2n). Since l is bijective, one

can now use the result from Lemma 10 and conclude that

there is a sequence ð. . .; vð2Þ; vð1ÞÞ, infinite to the left, of

elements vðkÞ 2 Q such that

d�ðvðkÞ � � � vð1ÞÞ ¼ w for infinitely many k: ð3Þ

Let v be the infinite to the left half-configuration obtained

by concatenating all vðkÞ, more precisely v : ð�1; iþ nÞ !
S where v�knþjþi ¼ v

ðkÞ
j for all k� 1 and all j 2 ½0; nÞ.

Condition (3) implies that for infinitely many k� 1

applying v in v from position �knþ i up to but excluding

i produces w at the end, i. e. in the window ½i; iþ nÞ. In
other words v½�knþi;iÞðvÞ ¼ v0ð�1;iÞ � w (v0 depends on k but

doesn’t matter).

Therefore for infinitely many k

v½�knþi;iÞðvy½iþn;1ÞÞ ¼ � � � � w � z½iþn;1Þ

and v½�knþi;1Þðvy½iþn;1ÞÞ ¼ � � � � w0 � z½iþn;1Þ

Since we could assume that the position j where f ðyÞj 6¼ zj
is in the interval ½iþ n;1Þ one can conclude that v is not a

sweeper for f. h

While the sliding and sweeping rule defined by a block

rule are equal when both define a cellular automaton,

sweeping rules can also define non-continuous functions.

y

p0 =
j

p1 =
−n + j

p2 =
−2n + j

W0W1W2

Fig. 4 For configuration y the

windows Wk contain the words

yðkÞ

v(k+1) y(k)

x(k+1) v(k)

Fig. 5 Transition from vðkþ1ÞyðkÞ to xðkþ1ÞvðkÞ by applying v from left

to right at the positions indicated by the gray bars. Application of the

inverse n from right to left realizes the opposite transition from

bottom to top

Sequentializing cellular automata

123



Example 5 Let S ¼ f 0

0

� �

;
0

1

� �

;
1

0

� �

;
1

1

� �

g and define

v : S2 ! S2 by vð 1

0

� �
0

0

� �

Þ ¼ 0

0

� �
0

1

� �

, vð 0

0

� �
0

1

� �

Þ ¼

1

0

� �
0

0

� �

, and vðabÞ ¼ ab for ab 62 f 1

0

� �
0

0

� �

;
0

0

� �
0

1

� �

g.

We claim that limi!�1 viþðxÞ is well-defined for all

x 2 SZ, so that the sweeping relation v defines is a function.
Let x 2 SZ be arbitrary, and let n 2 Z. We need to show

that viþðxÞn converges.

Suppose first that for some k\n, we have xk ¼
1

a

� �

for

a 2 f0; 1g. Then for all i\k, the value viþðxÞn is indepen-

dent of the values xj � k, since v½i;k�1�ðxÞk ¼
1

a

� �

, meaning

that the sweep is synchronized (in the sense that whatever

information was coming from the left is forgotten and the

sweep continues the same way) and viþðxÞn is determined

by x½k;n� for all i\k. Thus, in this case viþðxÞn converges.

Suppose then that for all k\n, xk ¼
0

a

� �

for some

a 2 f0; 1g. If xk ¼
0

0

� �

for some k\n, then since xk�1 6¼

1

0

� �

we also have v½i;k�2�ðxÞk�1 6¼
1

0

� �

either. Thus, the

value at k does not change when v is applied at k � 1, and

as in the previous paragraph, the sweep is synchronized at

this position. Again viþðxÞn is determined by x½k;n� for all

i\k, so viþðxÞn converges.

In the remaining case, xk ¼
0

1

� �

for all k\n. Then

since vð 0

1

� �
0

1

� �

Þ ¼ 0

1

� �
0

1

� �

, the rule is not applied in

the left tail of x, and thus certainly viþðxÞn converges.

The function defined by the sweeping rule is not

continuous at
0

1

� �Z

since vZð 0

1

� �Z

Þ ¼ 0

1

� �Z

while for

any n 2 N we have

vZð:::
0

0

� �
0

0

� �
0

0

� �
0

1

� �n

:
0

1

� �N

Þ ¼ :::
0

0

� �
0

0

� �
1

0

� �
1

0

� �n

:
1

0

� �N

3 Realization of bi-closing CA using LR
and RL sliders

In the definition of a slider we use a left-to-right slide of the

window to realize the CA transition. Of course, one can

analogously define right-to-left sliders and prove a

characterization via right-closing CA. We can also alter-

nate these two types of rules, and obtain a ladder-shaped

hierarchy analogous to the Borel, arithmetic and polyno-

mial hierarchies.

Definition 10 Let R denote the set of CA for which there

is a slider ‘‘from left to right’’ as in Definition 4.

Analogously let L denote the set of CA for which there

is a right-to-left slider. Denote D ¼ L \R. Let now

L0 ¼ R0 ¼ fidg, and for all k 2 N0 let Lkþ1 ¼ L � Rk

and Rkþ1 ¼ R � Lk. For all n, write Dn ¼ Ln \ Rn.

Note that in Ln, there are n sweeps in total, and the last

sweep goes from right to left. We have L1 ¼ L, R1 ¼ R,

D1 ¼ D. See Fig. 6.

In Theorem 4 below we will show a close relation

between this ‘‘slider hierarchy’’ and a ‘‘closingness hier-

archy’’ defined as follows, exactly analogously. Let Lcl

denote the set of left-closing CA and Rcl the set of right-

closing CA. Define Lcl
0 ¼ Rcl

0 ¼ fidg and for all k, Lcl
kþ1 ¼

Lcl � Rcl
k and Rcl

kþ1 ¼ Rcl � Lcl
k .

As always with such hierarchies, it is natural to ask

whether they are infinite or collapse at some finite level.

We do not know if either hierarchy collapses, but we show

that after the first level, the hierarchies coincide. The main

ingredients for the theorem are the following two lemmata.

Lemma 13 Let f be a left-closing CA. For all n large

enough, jWnj divides some power of jSj.

Proof Let m be a strong left-closing radius for f. Number

m can be chosen as large as needed. Let floc be the local

update rule of f of radius 3m. By Theorem 14.7 in Hedlund

(1969) there exist, for k ¼ 3m chosen sufficiently large,

– positive integers L, M and R such that L �M � R ¼ jSj2k,
– pairwise different words u1; . . .; uM of length k,

– sets L1; . . .;LM � S2k of words of length 2k, each of

cardinality jLij ¼ L,

– sets R1; . . .;RM � S2k of words of length 2k, each of

cardinality jRij ¼ R,

– a word w of length 3k whose set pre-images of length

5k under floc is precisely

[M

i¼1

LiuiRi:

See Fig. 7 for an illustration.

Let y 2 S½k;1Þ be arbitrary and let z 2 Sð�1;0Þ be such that

z½�3k;0Þ ¼ w. Define A ¼ fx 2 SZ j x½k;1Þ ¼ y; f ðxÞð�1;0Þ ¼
zg. By Corollary 2 we know that jW3mj ¼ jAj.
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(i) If x 2 A then x½�4k;kÞ is a pre-image of w ¼ z½�3k;0Þ.

This means that for some i 2 f1; . . .;Mg, we have x½�4k;kÞ 2
LiuiRi and, in particular, x½�2k;kÞ 2 uiRi.

(ii) Conversely, let i 2 f1; . . .;Mg and v 2 Ri be

arbitrary. Words in Liuiv are pre-images of w so

f ð½uiv�½�2k;kÞÞ \ ½w�½�3k;0Þ 6¼ ;. Because f is left-closing and

k is a strong left-closing radius for f there exists a unique

x 2 A such that x½�2k;kÞ ¼ uiv.

From (i) and (ii) we can conclude that jAj ¼ M � R.
Hence L � jW3mj ¼ L � jAj ¼ L �M � R ¼ jSj2k. h

Lemma 14 Let f be a left-closing CA. Then for any large

enough n, we have rn � f 2 R.

Proof By the previous lemma, we have vpðkf Þ ¼ 0 for all

p 6j jSj. Similarly as in Kari (1996) one sees that the map

g 7!kg is a homomorphism among left-closing CA, so

vpðkrn�f Þ ¼ vpðkrn þ kf Þ ¼ vpðkf Þ � nvpðjSjÞ� 0

for large enough n. The claim follows from Theorem 2. h

Theorem 4 For each k 2 N with k� 2 we have Lk ¼ Rcl
k

and Rk ¼ Lcl
k .

Proof By Lemma 4 we have f 2 L)f 2 Rcl and

f 2 R)f 2 Lcl, so by induction Lk 	 Rcl
k and Rk 	 Lcl

k .

Suppose then that f 2 Rcl
k and k� 2, so

f ¼ f1 � f2 � � � � � fk�1 � fk

where fi 2 Rcl for odd i and fi 2 Lcl for even i. Then write

f ¼ ðf1 � rn1Þ � ðf2 � rn2Þ � � � � � ðfk�1 � rnk�1Þ � ðfk � rnkÞ

where
Pk

i¼1 ni ¼ 0 and for each odd i, ni � 0 is small

enough that fi � rni 2 L and for each even i, ni � 0 is large

enough that fi � rni 2 R. This shows that f 2 Lk. Similarly

Lcl
k 	 Rk, concluding the proof. h

A cellular automaton f is bi-closing if it is both left-

closing and right-closing, i.e. f 2 Dcl
1 . Such cellular auto-

mata are also called open, since they map open sets to open

sets. By the previous result, every bi-closing CA can be

realized by a left-to-right sweep followed by a right-to-left

sweep by bijective block rules:

Theorem 5 Each bi-closing CA is in D2.

4 Decidability

In this section, we show that our characterization of sliders

and sweepers shows that the existence of them for a given

CA is decidable. We also show that given a block rule,

whether it defines some CA as a slider (equivalently as a

sweeper) is decidable. We have seen that sweepers can also

define shift-commuting functions which are not continu-

ous. We show that this condition is also decidable.

Lemma 15 Given a cellular automaton f : SZ ! SZ, it is

decidable whether it is left-closing, and when f is left-

closing, a strong left-closing radius can be effectively

computed.

Proof It is obviously decidable whether a given m 2 N is

a strong left-closing radius, since checking this requires

only quantification over finite sets of words. This shows

that left-closing is semi-decidable and the m can be com-

puted when f is left-closing. When f is not left-closing,

there exist x, y such that x½1;1Þ ¼ y½1;1Þ, x0 6¼ y0 and

f ðxÞ ¼ f ðyÞ. A standard pigeonhole argument shows that

there then also exist such a pair of points whose left and

right tails are eventually periodic, showing that not being

left-closing is semidecidable. h

Lemma 16 Given a left-closing cellular automaton

f : SZ ! SZ, one can effectively compute the rational

number kf defined in (2).

Proof As observed after defining (2), the limit is reached

in finite time, once m is a strong left-closing radius. By the

L1

Δ1

R1

L2

Δ2

R2

L3

Δ3

R3

L4

Δ4

R4

· · ·

· · ·

Δ5

Fig. 6 The slider hierarchy

w

u1

uM
R1

RM

L1

LM

k k k k k

Fig. 7 Illustration of Theorem 14.7 in Hedlund (1969), with L ¼ 4,

R ¼ 3
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previous lemma, one can effectively compute a strong left-

closing radius. h

Theorem 6 Given a cellular automaton f : SZ ! SZ, it is

decidable whether f admits a slider (resp. sweeper).

Proof By Theorem 3, a block rule is a sweeping rule for

f if and only if it is a slider rule for f, so in particular

f admits a slider if and only if it admits a sweeper. Theo-

rem 2 characterizes cellular automata admitting a slider as

ones that are left-closing and satisfy vpðkf Þ� 0 for all

primes p. Decidability follows from the previous two

lemmas. h

We now move on to showing that given a block rule, we

can check whether its slider or sweeper rule defines a CA.

In the rest of this section, we explain the automata-

theoretic nature of both types of rules, which allows one to

decide many properties of the slider and sweeper relations

even when they do not define cellular automata. As is a

common convention in automata theory, all claims in the

rest of this section have constructive proofs (and thus imply

decidability results), unless otherwise specified.

We recall definitions from Perrin and Pin (2004) for

automata on bi-infinite words. A finite-state automaton is

A ¼ ðQ; S;E; I;FÞ where Q is a finite set of states, S the

alphabet, E 	 Q
 S
 Q the transition relation, I 	 Q the

set of initial states and F 	 Q the set of final states.

The pair (Q, E) can be naturally seen as a labeled graph

with labels in S. The language of such an automaton A the

set LðAÞ 	 SZ of labels of bi-infinite paths in (Q, E) such

that some state in I is visited infinitely many times to the

left (negative indices) and some state in F infinitely many

times to the right. Languages of finite-state automata are

called recognizable.

If A 	 S�N and B 	 SN, write ½A;B� 	 SZ for the set of

configurations x 2 SZ such that for some y 2 A; z 2 B, xi ¼
Aiþ1 for i\0 and xi ¼ Bi for i� 0. We need the following

lemma.

Lemma 17 (Part of Proposition IX.2.3 in Perrin and Pin

(2004)) For a set X 	 SZ the following are equivalent

– X is recognizable

– X is shift-invariant and a finite union of sets of the form

[A, B] where B is x-recognizable (accepted by a Büchi

automaton) and A is the reverse of an x-recognizable
set.

In the theorems of this section, note that the set SZ 
 SZ

is in a natural bijection with ðS2ÞZ.

Proposition 1 Let v : Sm ! Sm be a bijective block rule.

Then the corresponding slider relation F 	 ðS2ÞZ is

recognizable.

Proof Let n ¼ v�1. The slider relation is defined as the

pairs y; z 2 SZ such that for some representation (x, 0) we

have v0�ðxÞ ¼ y and n0þðxÞ ¼ z.

For each uw 2 S½�m;m�1� where juj ¼ jwj ¼ m, we define

recognizable languages Auw 	 ðS2Þð�1;0Þ;Buw 2 ðS2Þ½0;1Þ

such that the slider relation is
S

uw2S½�m;m�1� ½Auw;Buw�.
For finite words, one-way infinite words and more

generally patterns over any domain D 	 Z, define the

ordered applications of v and n (e.g. viþ) with the same

formulas as for x 2 SZ, when they make sense.

For each word uw 2 S½�m;m�1�, define the x-recogniz-

able set Buw 	 ðS2ÞN containing those (y, z) for which

v0þðxÞ ¼ z where x 2 SN satisfies x½0;m�1� ¼ w,

x½m;1Þ ¼ y½m;1Þ, and n½�mþ1;�1�RðuwÞj½0;m�1� ¼ y½0;m�1�. One

can easily construct a Büchi automaton recognizing this

language, so Bw is x-recognizable.

Let then for w 2 Sm the set Aw 	 ðS2Þ�N
be defined as

those pairs (y, z) such that n0�ðzwÞjð�1;0Þ ¼ y, where

zw 2 Sð�1;m�1�. Again it is easy to construct a Büchi

automaton for the reverse of Aw.

Now it is straightforward to verify that the slider relation

of v is
[

uw2S½�m;m�1�

½Auw;Buw�;

which is recognizable by Lemma 17 since the slider rela-

tion is always shift-invariant. h

Lemma 18 Given a recognizable set X 	 ðS2ÞZ, inter-

preted as a binary relation over SZ, it is decidable whether

X defines a function.

Proof Since recognizable sets representing relations are

closed under Cartesian products, projections and intersec-

tions (by standard constructions), if X is recognizable also

the ‘fiber product’ Y 	 ðS2ÞZ containing those pairs ðz; z0Þ
satisfying 9y : ðy; zÞ 2 X ^ ðy; z0Þ 2 X is recognizable. The

diagonal D of ðS2ÞZ containing all pairs of the form (z, z) is

also clearly recognizable.

Since recognizable languages are closed under comple-

mentation (Perrin and Pin 2004), we obtain that ððS2ÞZ n
DÞ \ Y is recognizable. This set is empty if and only if X is

a function, proving decidability, since all proofs in this

section are constructive and emptiness of a recognizable

language is decidable using standard graph algorithms. h

The following is a direct corollary.

Theorem 7 Given a block rule, it is decidable whether it

is the sliding rule of a CA

We now discuss sweeping rules.
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Proposition 2 Let v : Sm ! Sm be a bijective block rule.

Then the corresponding sweeper relation F 	 ðS2ÞZ is

recognizable.

Proof One can easily construct a finite-state automaton

accepting the language X 	 ðf0; 1g2 
 S2ÞZ containing

those ðx; x0; y; zÞ 2 ðf0; 1g2 
 S2ÞZ where

vmþðyÞj½n;1Þ ¼ zj½n;1Þ

and xi ¼ 1 () i ¼ m and x0i ¼ 1 () i ¼ n. Simply con-

struct an automaton that checks that there is exactly one

1-symbol on each of the first two tracks, and when it sees

the first 1 is seen on the first track it starts keeping in its

state the current contents of the active window (where the

block rule is being applied). When 1 is seen on the second

track, it also starts checking that the image is correct.

Since X is described by an automaton and jSj � 2k for

some k, an adaptation of (Perrin and Pin 2004, Theo-

rem IX.7.1) shows that there exists a monadic second-order

formula over the successor function of Z, i.e. some formula

u 2 MF 2ð\Þ, that defines those tuples sets of integers

ðx; x0; y1; . . .; yk; z1; . . .; zkÞ where ðy1; . . .; ykÞ codes some

y and ðz1; . . .; zkÞ some z such that ðx; x0; y; zÞ is in X.

Since in tuple ðx; x0; y1; . . .; yk; z1; . . .; zkÞ that satisfies u
we have jxj ¼ jxj0 ¼ 1, it is standard to modify u0 into a

formula where x; x0 are replaced by first-order variables

i, j and correspond to the unique places in x and x0 where
the unique 1 appears. Now the formula w defined by

8j 2 Z : 8n 2 Z : 9i� n : u0ði; j; y1; . . .; yk; z1; . . .; zkÞ

defines those tuples ðy1; . . .; yk; z1; . . .; zkÞ that code pairs

(y, z) which are in the sweeper relation for v. Another

application of (Perrin and Pin 2004, Theorem IX.7.1) then

shows that sweeper relation is recognizable. h

The sweeping relation need not be closed, as shown in

Example 5. However, whether it is closed is decidable.

Lemma 19 Given a recognizable X 	 SZ, it is decidable

whether X is closed.

Proof Take an automaton recognizing X, remove all states

from which an initial state is not reachable to the left, and

those from which a final state is not reachable to the right.

Turn all states into initial and final states. Now X is closed

if and only if the new automaton recognizes X, which is

decidable by standard arguments. h

Theorem 8 Given a block rule, it is decidable whether it is

the sweeping rule of a CA.

Proof The sweeping rule of a block rule defines a CA if

and only if the sweeping relation is closed and defines a

function. These are decidable by Lemmas 18 and 19,

respectively. h

5 Future work and open problems

To obtain a practical computer implementation method for

cellular automata, one would need much more work. The

radius of v should be given precise bounds, and we would

also need bounds on how long it takes until the sweep starts

producing correct values. Future work will involve clari-

fying the connection between the radii m of local rules

v : Sm ! Sm and the strong left-closing radii, the study of

non-bijective local rules, and the study of sweeping rules

on periodic configurations.

On the side of theory, it was shown in Sect. 3 that the

hierarchy of left- and right-closing cellular automata cor-

responds to the hierarchy of sweeps starting from the

second level. Neither hierarchy collapses on the first level,

since there exists CA which are left-closing but not right-

closing, from which one also obtains CA which are in L1

but not R1.

Question 1 Does the hierarchy collapse on a finite level?

Is every surjective CA in this hierarchy?

As we do not know which cellular automata appear on

which levels, we do not know whether these levels are

decidable. For example we do not know whether it is

decidable if a given CA is the composition of a left sweep

and a right sweep.

It seems likely that the theory of sliders can be extended

to shifts of finite type. If X is a subshift, say that a home-

omorphism v : X ! X is local if its application modifies

only a (uniformly) bounded set of coordinates. One can

define sliding applications of such homeomorphisms

exactly as in the case of SZ.

Question 2 Let X 	 SZ be a transitive subshift of finite

type. Which endomorphisms of X are defined by a sliding

rule defined by a local homeomorphism?

In Kari (1996), block representations are obtained for

cellular automata in one and two dimensions, by consid-

ering the set of stairs of reversible cellular automata. Since

stairs play a fundamental role for sliders as well, it seems

natural to attempt to generalize our theory to higher

dimensions.
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