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Abstract

We give a closed form for the generating function of the discrete
Chebyshev polynomials. The closed form consists of the MacWilliams
transform of Jacobi polynomials together with a binomial multiplica-
tive factor. It turns out that the desired closed form is a solution to
a special case of Heun differential equation, and that the closed form
implies combinatorial identities that appear quite challenging to prove
directly.
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1 Introduction

The discrete Chebyshev polynomials belong to the rich family of orthogonal
polynomials (see [9] for a general treatise on the orthogonal polynomials and
[2] for a previous work of the authors). The inner product associated to the
discrete Chebyshev polynomials is defined with a discrete weight function,
and hence the vector space PN of polynomials having degree at most N
forms a natural reference for the orthogonal polynomials discussed in this
article.

The sum and the scalar product in PN are defined pointwise, and the
inner product is defined as

〈p, q〉w =
N∑
l=0

wlp(l)q(l). (1.1)

The Krawtchouk polynomials (see [6]) K
(N)
0 , K

(N)
1 , . . ., K

(N)
N (of order N)

are orthogonal with respect to weight function wl =
(
N
l

)
and the discrete
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Chebyshev polynomials D
(N)
0 , D

(N)
1 , . . ., D

(N)
N of order N with respect to

weight function wl = 1 for each l. In addition to orthogonality, we have

deg(K
(N)
k ) = deg(D

(N)
k ) = k for each k ∈ {0, 1, . . . , N}.

As (orthogonal) polynomials with ascending degree, the discrete Cheby-
shev polynomials form a basis of PN , and hence any polynomial p of degree
at most N can be uniquely represented as

p = d0D
(N)
0 + d1D

(N)
1 + . . .+ dND

(N)
N , (1.2)

where dl ∈ C. Coefficients dl in (1.2) are called the discrete Chebyshev
coefficients of p. Since the discrete Chebyshev polynomials are orthogonal
with respect to constant weight function, they have the following property
important in the approximation theory: With respect to norm ||p− q||2 =∑N

l=0(p(l) − q(l))2, the best approximation of p in PM can be found by
simply taking M + 1 first summands of (1.2) (see [4], for instance).

2 Preliminaries

2.1 The Discrete Chebyshev Polynomials

There are various ways to construct polynomials orthogonal with respect to

inner product (1.1) with weight function wl = 1 so that deg(D
(N)
k ) = k.

We choose a construction analogous to that of Legendre polynomials [9].
We first define the difference operator ∆ by ∆f(x) = f(x + 1) − f(x), the
binomial coefficient by

(
x
k

)
= 1

k!x(x− 1) . . . (x− k + 1), and finally

D
(N)
k (x) = (−1)k∆k

((
x

k

)(
x−N − 1

k

))
. (2.1)

It is straightforward to see that polynomials Dk (here and hereafter, we
omit the superscript N if there is no danger of confusion) defined above
form a basis of PN orthogonal with respect to inner product (1.1) with
weight wl = 1. Moreover, clearly deg(Dk) = k, since one application of ∆
decreases the degree of a polynomial by one [3].

In this article, we consider (2.1) as the definition of discrete Chebyshev
polynomials, but it is also easy to see that the following explicit expressions
hold (see [3]):

D
(N)
k (x) =

k∑
l=0

(−1)l
(
k

l

)(
N − x
k − l

)(
x

l

)

=

k∑
l=0

(−1)l
(
k + l

k

)(
N − l
k − l

)(
x

l

)
. (2.2)
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Also, it is rather easy to verify that the discrete Chebyshev polynomials
satisfy the following recurrence relation:

k2Dk = (2k − 1)D1Dk−1 − (N + k)(N − k + 2)Dk−2, (2.3)

D0 = 1, D1 = N − 2x (see [3]). The recurrence (2.3) also extends the
definition of Dk to cases k > N .

The method of using generating functions is among the cornerstones
of various areas of mathematics, and does not need any further introduc-
tion. We merely focus on the very simple form of the generating function of
Krawtchouk polynomials (see [6]):

(1 + t)N−x(1− t)x =
∞∑
k=0

K
(N)
k (x)tk. (2.4)

In fact, when studying binomial distributions, it is quite natural to define
the Krawtchouk polynomials via (2.4).

On the other hand, the quest for the generating function of the dis-
crete Chebyshev polynomials seems to be a more complicated task. In what
follows, we give a closed form for the generating function

∞∑
k=0

D
(N)
k (x)tk. (2.5)

It should be noticed, however, that some useful closed-form expressions
carrying information about the discrete Chebyshev polynomials have been
found before. For instance in [5] an expression

(1 + t)k(1 + s)N−x(1− st)x (2.6)

having the property that the coefficient of sktk equals to D
(N)
k (x) is given.

2.2 A Differential Equation for Jacobi Polynomials

For a nonnegative integer n, the Jacobi polynomial P
(α,β)
n (x) is, up to the

constant factor, the unique entire rational solution to the differential equa-
tion (for Jacobi polynomials)

(1− x2)y′′ +
(
β − α− (α+ β + 2)x

)
y′ + n(n+ α+ β + 1)y = 0 (2.7)

(see [1]).
In this article, we are interested in Jacobi polynomials with parameters

α = 0, β = −(N + 1), where N > 0 is a fixed integer. We also substitute

x for n and t for x in equation (2.7), and denote J
(N+1)
x (t) = P

(0,−N−1)
x (t).
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We usually omit superscript N + 1 and denote Jx(t) = J
(N+1)
x (t). Then

Jx(t) satisfies differential equation

(1− t2)J ′′x (t)− (N + 1− (N − 1)t)J ′x(t) + x(x−N)Jx(t) = 0. (2.8)

Recall that in this context, x is a fixed nonnegative integer. Polynomial
Jx(t) can be expressed as

Jx(t) =
1

2x

x∑
k=0

(
x

k

)(
x−N − 1

k

)
(t− 1)k(t+ 1)x−k (2.9)

(see [1]). Since equation (2.8) is clearly invariant under substitution x ←
N − x, we have symmetry

JN−x(t) = Jx(t) (2.10)

(see [1]).

2.3 MacWilliams Transform

The MacWilliams transform of order x for a polynomial P is defined as

P̂x(t) = (1 + t)xP (
1− t
1 + t

). (2.11)

As definition (2.11) shows, MacWilliams transform is a special case of Möbius
transformation together with factor (1 + t)x. If the subscript x is clear by
context, we may omit it. It is also straightforward to see that if x is an
integer so that deg(P ) ≤ x, then P̂ is again a polynomial. In this arti-
cle, we will however face situations with non-integer values of x, and it is
worth noticing already here that (2.11) shows that if t > −1, then P̂x(t) is
a uniquely defined differentiable function of real variable x.

In what follows, Ĵx(t) stands for the MacWilliams transform of Jx of
order x. It is then straightforward to uncover a representation for Ĵx(t):

Ĵx(t) = (̂Jx)x(t) =

x∑
k=0

(−1)k
(
x

k

)(
x−N − 1

k

)
tk. (2.12)

The symmetry (2.10) implies straightforwardly

ĴN−x(t) = (ĴN−x)N−x(t) = (1 + t)N−xJN−x(
1− t
1 + t

)

= (1 + t)N−2x(1 + t)xJx(
1− t
1 + t

) = (1 + t)N−2xĴx(t).

Equality
ĴN−x(t) = (1 + t)N−2xĴx(t) (2.13)

thus obtained will be important in understanding the alternative represen-
tation of the generating function introduced in Section 5.
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3 Heun Equation

A differential equation for the MacWilliams transform of Jx(t) can be found
easily. For short, we denote J(t) = Jx(t) and Ĵ(t) = Ĵx(t) in the following
lemmata.

Lemma 1. Ĵ(t) satisfies differential equation

t(1 + t)Ĵ ′′(t) + (Nt+ 1− 2t(x− 1))Ĵ ′(t) + x(x−N − 1)Ĵ(t) = 0. (3.1)

Proof. By computing the derivatives of Ĵ(t) = (1 + t)xJ(1−t1+t) we can rep-

resent Ĵ(t), Ĵ ′(t), and Ĵ ′′(t) in terms of J(1−t1+t), J
′(1−t1+t), and J ′′(1−t1+t). A

direct calculation allows us also to reverse the representations to get

J(
1− t
1 + t

) = (1 + t)−xĴ(t), (3.2)

J ′(
1− t
1 + t

) =
1

2
x(1 + t)−x+1Ĵ(t)− 1

2
(1 + t)−x+2Ĵ ′(t), and (3.3)

J ′′(
1− t
1 + t

) =
1

4
x(x− 1)(1 + t)−x+2Ĵ(t)

− 1

2
(x− 1)(1 + t)−x+3Ĵ ′(t) +

1

4
(1 + t)−x+4Ĵ ′′(t). (3.4)

Replacing t with 1−t
1+t in (2.8) and substituting (3.2)-(3.4) into (2.8) gives us

the claim.
Another way to prove the lemma is to use (2.12) and verify by direct

calculations that differential equation (3.1) is satisfied.

Lemma 2. Let T (t) be defined as T (t) = (1 + t)N−2xĴ(−t2). Then T (t)
satisfies differential equation

(t3 − t)T ′′(t) +
(
2t(N − 2x) + 3t2 − 1

)
T ′(t)

+
(
N − 2x− tN(N + 2)

)
T (t) = 0 (3.5)

Proof. As in the previous Lemma, we can express T (t), T ′(t), and T ′′(t) in
terms of Ĵ(−t2), Ĵ ′(−t2), and Ĵ ′′(−t2), and then to reverse the representa-
tions to get

Ĵ(−t2) = (1 + t)2x−NT (t) (3.6)

Ĵ ′(−t2) =
1

2t
(N − 2x)(1 + t)2x−N−1T (t)

− 1

2t
(1 + t)2x−NT ′(t) (3.7)

Ĵ ′′(−t2) =
1

4t3
(N − 2x)(1 + t)2x−N−2(t(N − 2x+ 2) + 1)T (t)

− 1

4t3
(2t(N − 2x) + t+ 1)(1 + t)2x−N−1T ′(t)

+
1

4t2
(1 + t)2x−NT ′′(t) (3.8)
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by direct calculation. By substituting −t2 for t in (3.1) and by using (3.6)-
(3.8), we get differential equation (3.5) after some direct calculations.

Differential equation (3.5) can be easily rewritten in standard natural
form for the Heun differential equation

t(t− 1)(t− q)y′′(t) +
(
c(t− 1)(t− q) + d · t(t− q)

+ (a+ b+ 1− c− d)t(t− 1)
)
y′(t) + (abt− λ)y(t) = 0

(see [8]) by taking q = −1, a = −N , b = N + 2, c = 1, d = N − 2x+ 1, and
λ = 2x − N . So, the generalized Riemann scheme (see [8]), describing the
local characteristic properties of this equation, is as follows:

1 1 1 1
0 1 −1 ∞ ; t
0 0 0 −N ; 2x−N
0 2x−N N − 2x N + 2

 .

4 The Generating Function

By equality (2.12) function T (t) = (1 + t)N−2xĴx(−t2) can be represented
as

T (t) = (1 + t)N−2x
x∑
k=0

(
x

k

)(
x−N − 1

k

)
t2k. (4.1)

If t ∈ (−1, 1), we should keep in mind that Ĵx(−t2) = (1+t2)xJ(1+t
2

1−t2 ) can be
straightforwardly defined for any real values of x. Hence for t ∈ (−1, 1) also
T (t) = (1+t)N−2xĴx(−t2) can be defined for an arbitrary real x, even though
(4.1) is meaningful only for integer values of x (because of the summation
upper bound). Another way of generalizing (4.1) even to complex values of
x is to expand (4.1) straightforwardly to see that if we write

T (t) =
∞∑
k=0

τk(x)tk, (4.2)

then

τk(x) =
∑

0≤l≤k/2

(
N − 2x

k − 2l

)(
x

l

)(
x−N − 1

l

)
(4.3)

is a polynomial of degree k. For any fixed x, T (t) is an analytic function
of t in the disc |t| < 1 (we can use the principal branch of the logarithm
to defined to power), and hence it has a unique Maclaurin expansion (4.2)
convergent when |t| < 1.

That (4.2) converges for |t| < 1 can be also verified by using the ratio test,
but to estimate |τk+1(x)/τk(x)| as k tends to infinity is not very straight-
forward. On the other hand, the recurrence of the next lemma reveals that
lim
k→∞

|τk+1(x)/τk(x)| = 1.
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Remark 1. Polynomials τk(x) for small values of k are easy to find by using
(4.3). For instance, τ0(x) = 1, τ1(x) = N − 2x, and τ2(x) = 3x2 − 3Nx +
1
2N(N − 1).

Lemma 3. For k ≥ 2, polynomials τk(x) satisfy the recurrence relation

k2τk(x) = (2k − 1)(N − 2x)τk−1(x)− (N + k)(N − k + 2)τk−2(x). (4.4)

Proof. This is a general property for a generic solution to Heun equation, see
[8]. Recurrence (4.4) can be also obtained by differentiating and substituting
(4.2) to Equation (3.5).

Remark 2. From (4.4) it follows that

τk(x)

τk−1(x)
=

(2k − 1)(N − 2x)

k2
− (N + k)(N − k + 2)

k2
τk−2(x)

τk−1(x)
,

which shows that limk→∞ |τk+1(x)/τk(x)| = ∞ is impossible. Since clearly
τk(x) is a rational expression in k, the limit exists and is finite. Now

τk(x)

τk−1(x)
· τk−1(x)

τk−2(x)
=

(2k − 1)(N − 2x)

k2
· τk−1(x)

τk−2(x)
− (N + k)(N − k + 2)

k2

shows that lim
k→∞

|τk+1(x)/τk(x)| = 1.

We are now ready to state the main result.

Theorem 1. Function

TN,x(t) = (1 + t)N−2xĴx(−t2) (4.5)

is the generating function of discrete Chebyshev polynomials, i.e. τk(x) =
Dk(x) for each k ≥ 0.

Proof. By (2.3), the Discrete Chebyshev polynomials satisfy the same re-
currence relation (4.4) as polynomials τk(x) do. Since the initial conditions
τ0(x) = D0(x) and τ1(x) = D1(x) hold by Remark 1, we have equality
τk(x) = Dk(x) for each k.

Remark 3. It may be useful to compare (4.5) and (2.4). Let Ix(u) = 1 = u0.
Then by Formula (2.11)

Îx(t) = (1 + t)x
(1− t

1 + t

)0
= (1 + t)x,

so the generating function of Krawtchouk polynomials can be written as

(1 + t)N−x(1− t)x = (1 + t)N−2x(1− t2)x = (1 + t)N−2xÎx(−t2),
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whereas the generating function for Discrete Chebyshev polynomials is

(1 + t)N−2xĴx(−t2),

where

Jx(u) =
1

2x

x∑
k=0

(
x

k

)(
x−N − 1

k

)
(u− 1)k(u+ 1)k.

Note also that formula (2.13) is (trivially) valid for I as well for J .
Moreover,

Ix(u) = 1 =
1

2x
((1− u) + (1 + u))x =

1

2x

x∑
k=0

(
x

k

)
(1− u)k(1 + u)x−k,

whereas

Jx(u) =
1

2x

x∑
k=0

(−1)k
(
x−N − 1

k

)((x
k

)
(1− u)k(1 + u)x−k

)
=

1

2x

x∑
k=0

(
N + k − x

k

)(
x

k

)
(1− u)k(1 + u)x−k.

In addition, the sum or coefficients is equal to

x∑
k=0

(
N + k − x

k

)
=

x∑
k=0

(
(N − x) + k

(N − x)

)
=

(
N + 1

x

)
.

5 Concluding Remarks

Example 1. Expression (4.5) shows that if x is an integer at most N/2,
then TN,x(t) is a polynomial in t of degree N − 2x+ 2x = N . Thus we can
find expressions

TN,x(t) =

N∑
n=0

D(N)
n (x)tn

by simply evaluating Dn(N)(x) for n ∈ {0, 1, . . . , N} by using (2.3) or (4.3).
For example, N = 6 gives

T6,0(t) = 1 + 6t+ 15t2 + 20t3 + 15t4 + 6t5 + t6 = (1 + t)6

T6,1(t) = 1 + 4t+ 0 · t2 − 20t3 − 35t4 − 24t5 − 6t6 = (1 + t)4(1− 6t2)

T6,2(t) = 1 + 2t− 9t2 − 20t3 + 5t4 + 30t5 + 15t6

= (1 + t)2(1− 10t2 + 15t4)

T6,3(t) = 1− 12t2 + 30t4 − 20t6,

which is in full accordance with (4.5) and (2.12). For x ∈ {4, 5, 6} the power
6−2x of 1+t in (4.5) is no longer positive, so it is not clear that T6,x(t) would
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be a polynomial anymore. But if T6,x is not a polynomial for x ∈ {4, 5, 6},
there would be a rather mysterious asymmetry between x ≤ 3 and x > 3.
Fortunately it is easy to show that TN,x(t) is indeed a polynomial for each
x ∈ {0, 1, . . . , N} and the asymmetry actually vanishes via trivial equality
1− t2 = (1 + t)(1− t).

Theorem 2. The generating function TN,x(t) can be also represented as

TN,x(t) = (1− t)2x−N ĴN−x(−t2). (5.1)

Proof. Equality (2.13) implies

ĴN−x(−t2) = (1− t2)N−2xĴx(−t2) = (1− t)N−2x(1 + t)N−2xĴx(−t2),

and the claim follows immediately.

Example 2 (Example 1 continued). Since by Theorem 2 the expressions
T6,x(t) are polynomials in t of degree 6, we can evaluate their values for
x ∈ {4, 5, 6} as

T6,4(t) = 1− 2t− 9t2 + 20t3 + 5t4 − 30t5 + 15t6

= (1− t)2(1− 10t2 + 15t4)

T6,5(t) = 1− 4t+ 0 · t2 + 20t3 − 35t4 + 24t5 − 6t6 = (1− t)4(1− 6t2)

T6,6(t) = 1− 6t+ 15t2 − 20t3 + 15t4 − 6t5 + t6 = (1− t)6.

This is again in full accordance with (5.1) and (2.12).

To combine Theorems 1 and 2 into a single presentation is straightfor-
ward:

Theorem 3 (The explicit polynomial form for x ∈ {0, 1, . . . , N}). The
generating function TN,x(t) can be presented as a polynomial in t of degree
N :

TN,x(t) = (1 + t · sign(N − 2x))|N−2x|Ĵ
(N)
min{x,N−x}(−t

2).

Remark 4. Theorem 1 implies that (2.2) and (4.3) are equal, i.e.

∑
0≤l≤k/2

(
N − 2x

k − 2l

)(
x

l

)(
x−N − 1

l

)
=

k∑
l=0

(−1)l
(
k

l

)(
N − x
k − l

)(
x

l

)
. (5.2)

A direct combinatorial proof of (5.2) appears challenging, for instance, the
techniques of [7] appear powerless in this case. Theorem 2 implies an identity
similar to (5.2).
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