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Abstract

Background: Graph drawing is an integral part of many systems biology studies,
enabling visual exploration and mining of large-scale biological networks. While a
number of layout algorithms are available in popular network analysis platforms, such
as Cytoscape, it remains poorly understood how well their solutions reflect the
underlying biological processes that give rise to the network connectivity structure.
Moreover, visualizations obtained using conventional layout algorithms, such as those
based on the force-directed drawing approach, may become uninformative when
applied to larger networks with dense or clustered connectivity structure.

Methods: We implemented a modified layout plug-in, named Multilevel Layout,
which applies the conventional layout algorithms within a multilevel optimization
framework to better capture the hierarchical modularity of many biological networks.
Using a wide variety of real life biological networks, we carried out a systematic
evaluation of the method in comparison with other layout algorithms in Cytoscape.

Results: The multilevel approach provided both biologically relevant and visually
pleasant layout solutions in most network types, hence complementing the layout
options available in Cytoscape. In particular, it could improve drawing of large-scale
networks of yeast genetic interactions and human physical interactions. In more
general terms, the biological evaluation framework developed here enables one to
assess the layout solutions from any existing or future graph drawing algorithm as
well as to optimize their performance for a given network type or structure.

Conclusions: By making use of the multilevel modular organization when visualizing
biological networks, together with the biological evaluation of the layout solutions,
one can generate convenient visualizations for many network biology applications.

Background
Network graphs provide a valuable conceptual framework for representing and mining

high-throughput experimental datasets, as well as for extracting and interpreting their

biological information by the means of graph-based analysis approaches [1-8]. In cellu-

lar systems, network nodes typically refer to biomolecules, such as genes or proteins,

and the edge connections the type of relationships the network is encoding, including

physical or functional information. Network visualization aims to organize the complex

network structures in a way that provides the user with readily apparent insights into

the most interesting biological patterns and relationships within the data, such as

Tuikkala et al. BioData Mining 2012, 5:2
http://www.biodatamining.org/content/5/1/2 BioData Mining

© 2012 Tuikkala et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:tero.aittokallio@fimm.fi
mailto:tero.aittokallio@fimm.fi
http://creativecommons.org/licenses/by/2.0


components of biological pathways, processes or complexes, which can be further

investigated by follow-up computational and/or experimental analyses [4-6,9,10].

Owing to the developments in biotechnologies, experimental datasets are steadily

increasing in their size and complexity, posing many challenges to the network-centric

data visualization and biological exploration.

There exists a wide variety of advanced network layout algorithms that seek to place

connected nodes of a graph close to each other. Conventionally, these layout algo-

rithms are specifically designed for a particular network type, such as gene regulatory

networks or signalling pathways [11,12], metabolic pathways or biochemical networks

[13-15], or phylogenetic networks [16]. Algorithmic solutions have also been intro-

duced for specific network topologies, such as drawing fragmented networks [17], grid

layouts [18], or detailed visualization of small networks [19]. However, there exists no

universal layout solution, and therefore a practical strategy involves trying out multiple

layout algorithms a number of times to see which one best arranges a given network

[6,20]. Such a test-and-trial strategy often neglects the biological relevance of the lay-

out solutions, as well as requires bioinformatics skills or resources to allow experi-

menting with several algorithms, many of which are not implemented as user-friendly

software packages.

To provide researchers with an easy access to network visualization tools, several

network analysis software come with sophisticated methods for laying out networks.

Such software packages, each providing a specific range of visualization options,

include, e.g., VisANT, NAViGaTOR, PATIKA, PINA, MATISSE, GraphViz, Osprey,

Graphle, CellDesigner, Biolayout, ProViz and Pajek; see [4,5,10] and references therein.

Among others, Cytoscape software platform for network analysis and visualization has

been widely adopted by the biological community because of its ease of use, compat-

ibility with and direct access to many network formats and databases, respectively, as

well as straightforward extensibility through open-source plug-in development

[4,5,20,21]. In its core, a number of advanced layout algorithms are available, including

those based on spring-embedded and force -directed graph drawing approaches

[22,23]. Many of these algorithms work reasonably well, especially for small- and med-

ium-sized networks (e.g., 50-1000 nodes), whereas larger networks, in particular those

with a dense or clustered connectivity structure, are more difficult to visualize, often

resulting in ‘hairball’ network layouts [4-6].

Many biological networks have shown to represent with a modular organization [24],

which often manifests in a hierarchical cluster structure of highly interconnected net-

work modules across a spectrum of resolution levels [1-3]. Such modular architecture

has been revealed using both physical mapping of protein interaction networks [1], as

well as by quantitative mapping of genetic interactions networks [25]. These two net-

work types encode fundamental and partly complementary information about physical

and functional relationships among biomolecules. Protein-protein interaction networks

characterize physical relationships between proteins that are in direct binding contact

or co-existence in a complex. Changes in the observed modularity of the human pro-

tein interaction networks has been used, for instance, to predict biological and clinical

outcomes, such as brain cancer progression or breast cancer metastasis [26,27].

Genetic interaction networks mapped by combinations of pairwise gene mutations in

model organisms, such as budding yeast, have revealed highly hierarchical maps of
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inter-connected network modules, such as components of compensatory pathways or

protein complexes, and their functional cross-connections that regulate cellular pro-

cesses and maintain mutational robustness [28,29].

We hypothesized that such a multilevel organization of the network connectivity

structure could be utilized to provide both visually attractive and biologically relevant

network layouts. Therefore, we implemented a Cytoscape plug-in, named Multilevel

Layout, which combines traditional node placement algorithms with a multilevel opti-

mization framework introduced by Walshaw [30]. The multilevel framework first con-

structs a hierarchy of increasingly coarser graphs and then applies the force-directed

placement at each level of resolution to generate globally clear and aesthetic layout

solutions. Our implemented version of the generic multilevel framework is modified

for network biology applications, e.g., by including options for grouping the nodes

based on their degree of connectivity or using clustering coefficient to further empha-

size the hierarchical modularity of the networks. We have previously demonstrated

that the longer running time of the multilevel approach, compared to the traditional

layout options, is compensated by its capacity to provide visually pleasant layouts also

for larger networks [31].

In the present work, we investigated whether the multilevel layout approach could

provide also biologically meaningful network visualizations, in addition to being

visually attractive. To this end, we compared the multilevel layout solutions to those

generated by popular layout algorithms in the Cytoscpape platform, in terms of their

capacity at capturing the semantic similarity information about underlying biological

processes. Based on such systematic comparative evaluations on various large-scale

networks, originating both from physical and genetic interaction mappings, one could

provide the users with a practical guidance on how to choose a preferable layout algo-

rithm for different network types and their characteristic properties. To facilitate draw-

ing of networks with several thousands of nodes, we improved the computational

complexity of the multilevel approach through the use of efficient M-tree database

structures. To promote their widespread usage in network biology applications, we

have made available efficient implementations of both the Multilevel Layout algorithm

and Biological Evaluation as plug-ins for Cytoscape software.

Methods
Multilevel layout algorithm

The multilevel framework for graph drawing was originally proposed by Walshaw [30].

The generic algorithm combines the traditional force-directed node placement method

of Fruchterman and Reingold [23] with multilevel organization by recursively coarsen-

ing graphs in two phases. In the first phase, the algorithm generates a set of increas-

ingly coarser graphs, G0, G1, ..., GL, where G0 is the original graph for which the layout

is being calculated, and GL is the coarsest graph consisting of only two nodes and one

connecting edge. The graph Gi is said to be on the level i of the graph hierarchy, or

the level i of the progress of the multilevel algorithm. In the multilevel concept, the

graphs are coarsened by finding a maximal independent subset of edges and by com-

bining the nodes connected by these edges into a metanode in the graph on the next

level of the hierarchy (Figure 1). Since the problem of solving the maximal indepen-

dent edge set problem is generally NP-hard, and the computation time is essential for
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many users of the network biology platforms, we content ourselves here on non-opti-

mal solutions. The coarsening scheme proposed by Walshaw [30] was to pick a ran-

dom node and match it with a neighboring node with the smallest weight (defined to

be 1 for each node in G0 and the number of original nodes inside a metanode in Gi

for i > 0). If there are nodes without a suitable matching partner in Gi-1, then those

nodes form singleton nodes in the graph on the next level Gi. To deal with specific

types of biological networks, such as those having ‘star-like’ structures, we modified

the weighting function by taking into account also the node degree (the number of

edges incident to the node) in the matching phase [31] (Additional File 1).

In the second phase of the multilevel method, the graphs GL, GL-1, ..., G1 are uncoar-

sened starting from the coarsest one. The two nodes of the graph GL are initially

placed randomly within the canvas. Then, at each recursion level, the nodes combined

at the previous level are placed on the same location as the combined metanode. If the

metanode consists of only one node from the previous recursion level, then the node

is placed on the same location as the one representing it on the higher level. After

such initial placing, a node-weighted version of the force-directed placement algorithm

is applied on each recursion level. To speed-up the calculation of the force-directed

placement, we made here the use of M-trees in order to quickly fetch the neighboring

nodes of the node for which a new position is being calculated. The M-tree is an index

structure that enables efficient indexing and querying of spatial data in metric spaces

[32,33]. As another modification for biological applications, we implemented an option

that allows improved separation of dense clusters according to their clustering coeffi-

cient (CC, the number of edges connecting the neighbors of the node divided by the

maximum possible number of such edges). The clustering option emphasizes the

attractive forces of those nodes with high CC-values towards their connected neighbors

and also emphasizes the repulsive forces between the network clusters [31] (Additional

File 1).

Figure 1 Graph coarsening for multilevel organization. The coarsening process is visualized in a sub-
network of Ito-Core (8 nodes, 10 edges). The arrows and highlighting indicate those nodes that are
combined into a new metanode (MN). At the first level of the coarsening (1), nodes N2 and N3; nodes N4
and N8; and nodes N6 and N7 are merged into metanodes MN1, MN3, and MN2 (2). At the next level (3),
node N1 and metanode MN1 are merged into a new metanode MN3; and node N5 and metanode MN2
are merged into metanode MN5. Finally, after merging metanodes MN5 and MN3 into metanode MN6 (4),
there are only two nodes left and the coarsening process is finished (5).
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Implementation of the algorithm

The Java implementation of the multilevel layout algorithm is distributed as an open-

source Cytoscape plug-in, named Multilevel Layout, licensed with GNU GPLv2 license

[34]. The plug-in can be used either with default or customized settings (Additional

File 2). The most important setting is the clustering option which toggles on or off the

usage of clustering coefficient in the layout calculation (by default it is on). The natural

spring length setting can be used to scale up or down the resulting layout, which may

be needed with very large graphs having several recursive coarsening levels. In most

cases, however, the user can simply rely on the default setting, since such downscaling

is done automatically during the layout calculation if the resulting layout becomes too

wide. Problems with extreme wide networks may occur in the form of abnormal termi-

nation of the algorithm, if the inter-node distance underflows the decimal scale of the

programming language. In addition, there are two other layout user-settings: a constant

multiplier for repulsive force calculation (a higher value increases the effect of the

repulsive force), and a tolerance parameter which controls the convergence of the algo-

rithm (a higher value results in faster convergence). The user can also choose whether

the original weighting function or its degree-modified version is used in the node

matching process.

Biological evaluation procedure

To facilitate biological evaluation of the layout algorithms and their solutions, we

developed and implemented an additional plug-in for Cytoscape, named Biological Eva-

luation plug-in, for which implementation, source-code and user-instructions are freely

available from website [35]. The idea behind the evaluation procedure is to compare

the two-dimensional layout generated by a layout algorithm against an external biologi-

cal evaluation criterion. More specifically, our procedure reviews all the connected

edges of the layout in the order of their Euclidean distances, and evaluates such

increasing neighbor sets with respect to a Gene Ontology (GO)-based semantic simi-

larity of the corresponding gene products [36]. Semantic similarity has been widely

used for biological evaluation of many bioinformatic approaches [37]. Our implementa-

tion constructs a GO structure in the computer memory such that it can be used to

efficiently query the semantic similarity between gene or protein nodes in the layout

[38].

The output of the evaluation plug-in is a graphical evaluation chart, which depicts

how well the information content of the network layout agrees with the biological pro-

cess ontology stored in the GO (Additional File 3). As the percentage of evaluated

neighbors increases towards 100%, the average semantic similarity of each algorithm

approaches the random trace, which represents the average semantic similarity of the

whole network. As an upper bound, the evaluation chart includes also the theoretical

optimal case, which represents the ideal situation in which the ranking of the node

pair according to their layout distance equals the ranking based on the semantic simi-

larity of these pairs in the GO. Consequently, a trace in the chart that is closest to

such optimal line suggests that the evaluated layout algorithm tends to produce the

most biologically meaningful layout for a given network. To account for randomness

in the layout algorithm, we repeated the layout generation and evaluation multiple

times, and the results shown in the evaluation chart are averages over the runs.
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To summarize the evaluation traces into single a statistic for each layout algorithm,

we calculated a semantic similarity score (area between the semantic similarity trace of

the algorithm and the random trace divided by the area between the optimal and ran-

dom traces). The higher the score, the more biologically meaningful is the layout solu-

tion, whereas values close to zero correspond to random selection of nodes. The

normalized score makes it also is easy to compare the evaluation results across a num-

ber of interaction networks. The semantic similarity scores from the different layout

algorithms were compared separately for the physical interaction and genetic interac-

tion networks. The relative improvement obtained with the multilevel approach was

evaluated by comparing its performance against the other layout algorithms. Statistical

significance of the observed differences between the algorithms in their semantic simi-

larity scores was assessed using the paired t-test, where the p-value is calculated by the

means of the two-tailed Student’s t-distribution. Three different significance levels

were used: p < 0.0005, p < 0.005 and p < 0.05.

Test network data

To evaluate the performance of the layout algorithms implemented in Cytoscape, we

used 11 interaction networks of budding yeast (Saccharomyce Ceravisiae), representing

a wide range of topological properties (Table 1). In particular, we focused on two parti-

cular types of relationships the network are typically encoding: physical links based on

screening of pairwise protein-protein interactions (PPI) or multiple protein co-complex

associations (CCA), and genetic interactions between pairwise gene deletions, which

reflect the relative effect of a mutation in one gene on the phenotype of a mutation in

another gene. It has been shown that the genetic interaction networks encode func-

tional information that is supplemental to that obtained from the physical protein

interactions or complexes [29,39,40].

The test networks included five of the physical interaction datasets available from the

CCSB Interactome Database [41]. The first one is from the early study by Ito et al.

[42], who used their high-throughput mapping system, based on yeast two-hybrid

Table 1 Interaction networks used in the study

Network name Ref Type Screen Nodes Edges D MND MNDSD MCC

Ito-Core [42] PI PPI 426 568 0.006 2.667 3.919 0.093

VonMering [49] PI PPI 573 2097 0.013 7.319 9.017 0.450

Schwikowski [50] PI PPI 1297 1862 0.002 2.871 3.109 0.125

Y2H-CCSB [43] PI PPI 964 1598 0.003 3.315 5.456 0.095

Y2H-Union [43] PI PPI 1647 2682 0.002 3.257 5.334 0.086

AP/MS-Combined [45] PI CCA 1004 8319 0.017 16.57 18.63 0.648

LC-Multiple [48] MT LCI 1213 2621 0.004 4.322 4.533 0.337

Secretory-Map [53] GI E-MAP 409 4175 0.050 20.42 23.82 0.251

Chromosome-Map [54] GI E-MAP 735 17,185 0.064 46.76 43.61 0.233

Costanzo [55] GI SGA 4319 74,984 0.007 29.96 41.86 0.062

Costanzo-Stringent [55] GI SGA 3811 35,924 0.004 16.07 22.92 0.046

Network types: PI, physical interactions; GI, genetic interactions; MT, mixed type. Screening methods: PPI, protein-protein
interaction screen; CCA, protein co-complex association mapping; LCI, literate-curated interactions; E-MAP, epistatic
miniarray profiling; SGA, synthetic genetic array mapping. Topological parameters: D, density; MND, mean node degree;
MNDSD, standard deviation of MND; MCC, mean clustering coefficient of the network. Costanzo-Stringent sub-network
was constructed using the interaction score cut-offs ε < -0.17 or ε > 0.21. In each network, we extracted the largest
connected component to be used in the evaluations.
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(Y2H) screens, to identify pairwise two-hybrid interactions in all possible combinations

between the proteins of the S. Ceravisiae (Ito-Core). In each network, we extracted the

largest connected component to be used in the evaluations. The ‘second-generation’

high-quality Y2H dataset is from the recent study of Yu et al. [43], in which they car-

ried out a proteome-scale high-throughput Y2H screen in triplicate (Y2H-CCSB). An

integrated PPI dataset was also constructed by Yu et al. by combining the Y2H-CCSB

and Ito-Core networks with the PPI data obtained from another Y2H screen of Uetz et

al. [44] (Y2H-Union).

A rather different type of physical network was constructed by Collins et al. [45],

who combined two independent screens carried out by Gavin et al. [46] and Krogan et

al. [47], in which CCA links were identified on a large-scale using affinity-purification

followed by mass spectrometry (AP/MS-Combined). The Y2H and AP/MS data are of

complementary nature resulting in PPI networks with different topological and biologi-

cal properties. In particular, the CCA networks emphasize the complex membership,

resulting in higher clustering coefficient (Table 1). The fifth dataset from the CCSB

Interactome Database consists of both physical and genetic interactions, constructed

trough literature-curative analysis of online publications initially by Reguly et al. [48],

and further refined and filtered later by Yu et al. [43], such that interactions were

curated from two or more publications (LC-Multiple).

The two other physical interaction datasets were downloaded from two published

PPI network analyses. In the first one, von Mering et al. [49] combined the PPI data

from the previous studies by Ito et al. [42] and Uetz et al. [44], with the aim of using

the combined interaction dataset as a reference network when comparing different

Y2H screening approaches for discovering physical protein interactions in yeast (Von-

Mering). In the second study, Schwikowski et al. [50] analyzed yeast physical interac-

tions available from public databases, such as the yeast proteome database and the

MIPS database, and from previous large-scale studies, such as those of Ito et al. [42]

and Uetz et al. [44]. However, they included only direct interactions discovered trough

biochemical binding experiments or Y2H screening, thus leaving out those protein

complexes for which the protein contacts were unknown (Schwikowski).

The four genetic interaction networks used in the evaluations came from two techni-

cally different quantitative interaction screening approaches; epistatic mini array profil-

ing (E-MAP) from the Krogan Lab Interactome Database [51], and synthetic genetic

array (SGA) mappings from the Boone Lab DRYGIN Database [52]. Two E-MAP data-

sets were used here, in which the mapping approach was applied to the genes involved

either in the yeast early secretory pathway (Secretory-Map) [53] or in various aspects

of chromosome biology (Chromosome-Map) [54]. In contrast to these selected sets of

pairwise deletion mutants in yeast, Costanzo et al. [55] constructed an unbiased genetic

interaction screen by applying their SGA approach on whole-genome scale. We used

this high-dimensional dataset subject to two interaction scoring cut-offs (Costanzo and

Costanzo-Stringent; Table 1).

Results
The performance of the Multilevel Layout algorithm, with and without the clustering

option (referred to as MLL and MLL-C), was compared against three built-in layout

algorithms in Cytoscape. Force-directed layout (FDL) is a variant of the widely used
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node placement algorithm by Fruchterman and Reingold [23], thus representing a

baseline reference for the MLL. The Cytoscape implementation takes an advantage of

the efficient force-calculation algorithm by Barnes and Hut [56]. Cytoscape’s Spring-

embedded layout (SEL) implements a variant of the layout algorithm introduced by

Kamada and Kawai [22]. The algorithm is based on the idea of minimizing the total

energy of the network by calculating partial differential equations of the energy func-

tion and moving the nodes accordingly. The FDL and SEL algorithms represent popu-

lar open-source solutions, capable of producing visually pleasant layout solutions,

especially for relatively small and simple network structures [6,10]. The yFiles Organic

layout (ORL) is a proprietary closed-source implementation of the force-directed place-

ment paradigm, which combines elements from several layout algorithms to facilitate

identification of clusters of tightly connected network modules [20], hence sharing the

same objective with the MLL-C.

Run-to-run variability of the layout solutions

The evaluation runs were performed on a laptop with Intel i7 Q740 processor and 6

GB RAM running Windows 7 OS. The four layout algorithms were run using their

default parameter settings in Cytoscape version 2.8.1 [57]. The layouts of the ORL

algorithm remain relatively constant from run-to-run, except for smaller-scale net-

works, and therefore its evaluation was repeated 5 times. The rest of the layout algo-

rithms are more non-deterministic, resulting in some degree of between-run variability,

and therefore their performance was assessed based on several runs: 10-20 initializa-

tions for MLL and FDL and a maximum of 10 repeats for the SEL because of its rela-

tively high computational complexity. The results were averaged over the replicate

runs and the variability in computational times and semantic similarity scores was

assessed with standard error of the mean (SEM). In general, ORL and FDL showed

lowest variability over the replicate runs, followed by MLL, MLL-C and SEL (Addi-

tional File 4). Although the MLL-C algorithm is sensitive to the random initialization,

its layout solutions preserve the main characteristics of the underlying network topol-

ogy, such as highly connected hub nodes or network clusters, even if these may end

up being in different locations in the different runs (Additional File 5). Therefore, the

MLL-C algorithm is capable of producing topologically consistent layout solutions, the

biological relevance of which is evaluated in the next sections.

Semantic similarity in the physical networks

Compared to the popular layout algorithms in Cytoscape platform, the layout solutions

produced by the versions of the MLL algorithm captured relatively well the underlying

biological processes of the various test networks (Figure 2). In particular, when using

the clustering option of the algorithm, the biological information contents of the MLL-

C layout solutions were significantly higher than those of the FDL or SEL solutions in

the physical test networks (p < 0.0005 and p < 0.005, respectively, paired t-test). The

yFiles ORL algorithm obtained the best semantic similarity score in three of the 11 test

networks; these networks encode Y2H protein-protein interactions, co-complex mem-

bership associations and literature-curated physical and genetic interactions (Additional

File 4). Among these three networks, the AP/MS-Combined protein complex network

represents a rather unusual case with exceptionally high clustering coefficient (Table
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1). In the two other networks, the semantic similarity scores are close to each other

with MLL-C and ORL. In fact, in the Y2H-CCSB network, MLL-C showed best seman-

tic similarity among the nearest network neighbors, whereas the ORL layout outper-

forms the others when going to more distant node pairs (Additional File 3). However,

both MLL-C and ORL generated visually balanced network layouts, with marked clus-

ter structures, whereas SEL and FDL resulted in more ball-like or prolonged solutions

(Figure 3).

Semantic similarity in the genetic networks

To test whether the good performance of the ORL algorithm in the mixed physical and

genetic interaction network will also hold when analyzing purely functional relation-

ships, we evaluated its relative performance on four large-scale genetic interaction net-

works (Table 1). The evaluation results changed quite dramatically when focusing on

these functional interaction networks. In general, the semantic similarity scores were at

a lower level compared to the physical protein interaction networks (Figure 2). When

comparing the different layout options, the MLL-C algorithm showed increased biolo-

gical information content beyond those of the FDL, SEL or even ORL (p < 0.05, paired

t-test). Interestingly, the performance of the FDL was similar both in the physical and

genetic interaction networks. Moreover, it seems that the clustering option of the mul-

tilevel algorithm is not necessary when drawing genetic interaction networks. In fact,

the MLL algorithm without using the clustering option provided even slightly better

results in the smaller one of the two E-MAP networks (Secretory-Map; Additional File

4). However, the differences between the two MLL modes were relatively small

Figure 2 Biological evaluation of the layout algorithms. The black and grey bars show the average
semantic similarity over the networks of physical interactions (PI) and genetic interactions (GI), respectively.
Error bars show the standard error of the mean (SEM). Only one of the GI networks could be laid out using
the SEL algorithm in less than one hour. The performance of the other algorithms was compared against
the multilevel layout with the clustering option on (MLL-C): *** p < 0.0005; ** p < 0.005; * p < 0.05, two-
sided paired t-test.
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compared to the performance of the other layout options on the genetic interaction

networks (Additional File 3). Besides the network type, no other network parameter

could explain the variation in the semantic similarities across the layout solutions

either in the physical or genetic interaction networks (Additional File 6).

Running time of the algorithms

Among the layout algorithms tested in Cytoscape, FDL was systematically the fastest

and SEL systemically the slowest layout option (Figure 4). As expected, the number of

nodes and edges in the network were the most predictive network properties for the

computation time of most layout algorithms, including MLL, MLL-C and FDL (p < 10-

5, Pearson’s correlation, t-distribution); however, the running time of the SEL algorithm

was correlated more strongly with other parameters, such as network density, average

node density or its standard deviation (Additional File 6). Notably, the SEL algorithm

could draw only 7 out of the 11 test networks in less than one hour. The running time

of the proprietary, closed-source ORL implementation seems to level off after 1000

Figure 3 Example layouts for the CCSB-Y2H network. (A) yFiles Organic layout (ORL). (B) Cytoscape’s
Spring-embedded layout (SEL). (C) Cytoscape’s Force-directed layout (FDL). (D) Multilevel layout with the
clustering option (MLL-C). The number of nodes and edges in the CCSB-Y2H network are 964 and 1598,
respectively, with an average clustering coefficient of 0.095. The node sizes and edge widths were
standardized in Cytoscape to make the layout displays comparable in accuracy (the same zooming
resolution was used in the export).
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nodes, regardless of the increased network complexity (Figure 4). The two MLL imple-

mentations were relatively fast on networks with less than 2000 nodes (running time

less than one minute); however, for the two largest genetic interaction networks, com-

prising of 3811 and 4319 nodes and 35,924 and 74,984 edges, respectively, the running

time of the MLL-C grows exponentially, approaching almost 4 and 7 minutes. There-

fore, even if the M-tree architecture could decrease the computation times of the

MLL-C algorithm, especially in larger and moderately dense networks (Additional File

7), further speed-up would be advantageous, especially when moving towards extre-

mely large and densely connected networks.

Discussion
We have implemented a multilevel network layout algorithm and shown that it can

generate visually pleasant and biologically meaningful layouts for a wide spectrum of

biological network structures. In general, the Multilevel Layout (MLL) plug-in provided

layout solutions and network views that are complementary to those of the built-in lay-

out options of Cytoscape; it demonstrated an added value especially in large-scale net-

works representing either pairwise functional or physical interactions between genes or

proteins.

A particular network type in which the multilevel algorithm showed an improved

performance involved the complex networks of genetic interactions. In contrast to the

physical PPI networks, emphasizing densely interconnected network clusters in the

functional genetic interaction layouts did not seem to increase the information on the

biological processes, as was demonstrated by the reduced semantic similarity of ORL,

and also of MLL-C to some extent, compared to the MLL without the clustering

option. This indicates that genetic interaction modules encode also a wide range of

functional cross-talk across multiple biological pathways. Such quantitative genetic

Figure 4 Computation times of the layout algorithms. The running times (in seconds) are plotted as a
function of the network size (number of nodes). The number of the nodes correlated significantly with the
running times of the MLL, MLL-C (with or without the M-tree option) and FDL algorithms (p < 10-5). The
running time of the proprietary ORL implementation converged after 1000 nodes. The systematically
slowest SEL algorithm was omitted from the illustration, since it could draw only 7 out of the 11 test
networks in less than one hour. The arrows point the two largest SGA genetic interaction networks
(Costanzo and Costanzo-Stringent).
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networks are increasingly being mapped in model organisms to study many fundamen-

tal questions, such as genotype-phenotype relationships and buffering of genetic varia-

tion [25,28,58]. Genetic interactions are also involved in many human disease

phenotypes, such as cancers and cardiovascular diseases. As an example, a statistical

epistasis network was recently constructed based on SNP-data to study the global

architecture of gene-gene interactions, as well to identify higher-level relationships and

inter-connected modules involved in bladder cancer [59]. Application of the multilevel

layout algorithm to such emerging networks should prove useful for many network

biology and network medicine applications.

In addition to the multilevel layout, we have also introduced here a novel way of

evaluating layout solutions in terms of their biological relevance. The implementation

of the Biological Evaluation plug-in enables one to evaluate layout solutions from any

existing or future graph drawing algorithm and to optimize its performance for a given

network under the analysis. In the present work, the comparative evaluations were car-

ried out on yeast interaction networks, since the GO annotations in S. Ceravisiae are

relative accurate and established, compared to many other organisms. Beyond the sys-

tematic evaluations presented here, we have been extensively testing and applying the

MLL plug-in also in other organisms. For instance, when applied to the literature-

curated Human Protein Reference Database (HPRD) network [60], the multilevel orga-

nization was able to visualize both the global and local network structures, such as the

large number of peripheral protein nodes and highly interconnected sub-network mod-

ules, which were largely missed by the other layout algorithms in Cytoscape (Figure 5;

Additional File 8).

After generating the layout, the resulting networks can be investigated in more detail,

for example, by zooming into densely-connected clusters. There is a wide range of

clustering algorithms introduced for finding such sub-network modules [61], some of

which are also available in network analysis software, including MCODE [62] or

Graphle [63]. As an example, we searched here for the top-scoring clusters in the

Schwikowski network using the MLL-C layout and ClusterViz Cytoscape plug-ins

(Additional File 9). To facilitate revealing the full spectrum of hierarchical modularity

of a network, one could also incorporate a cluster detection phase explicitly within the

multilevel framework, hence providing a multi-resolution viewing of the modules as

communities or metanodes, similarly as was done in the GenePro [64] or GLay [65].

Combining all of the nodes in the detected clusters could also further improve the

multilevel layout solutions, especially in networks such as the AP/MS-Combined,

which show exceptionally high and extensive clustering structure. The good perfor-

mance of the organic layout in this network indicates that there is still potential for

further improvement.

Instead of first detecting sub-network clusters or modules based on the network con-

nectivity and then contrasting these against known complexes or pathways, an alterna-

tive approach is to use such external biological information directly to optimize the

placement of the nodes or multinodes [12,66-71]. Here, we chose not to use any addi-

tional information in guiding the layout process, since this could bias the biological

evaluation of the layout algorithms, and because reliable external data may not be

always available, for instance, when studying human interaction networks. However,

one could extend the multilevel layout framework to incorporate also additional

Tuikkala et al. BioData Mining 2012, 5:2
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information, such as user-defined GO annotations or other node attributes, in the node

matching phase, in order to better emphasize biologically meaningful aspects of the

network topology. The multilevel framework can also be combined with other algo-

rithms than the force-directed layout in order to improve or modify the final layout

result. The yFiles organic layout would be an interesting option to include; however,

its proprietary implementation is not publicly available.

A limitation of the current implementation of the multilevel layout algorithm is its

relatively lengthy running times in the largest network graphs. For instance, generating

the layout took almost 7 minutes for the largest yeast genetic interaction network

(4319 nodes with 74,984 edges) and 8 minutes for the human HPRD-PPI network

(5699 nodes with 19,779 edges). While the M-tree architecture resulted in somewhat

reduced computation times, further speed-ups could be achieved by linking specific C

Figure 5 Example layouts for the HPRD network. (A) yFiles Organic layout (ORL). (B) Cytoscape’s
Spring-embedded layout (SEL). (C) Cytoscape’s Force-directed layout (FDL). (D) Multilevel layout with the
clustering option (MLL-C). The HPRD network consists of 5699 protein nodes and 19,779 literature-curated
protein-protein interactions. A high-resolution version of the layout solutions of the four layout algorithms
is provided in Additional File 8.
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functions to the Java implementation [65], or by using hardware-based graphics accel-

eration in Cytoscape [72]. For instance, performance benefits could be obtained

through full usage of the power of graphics processing units. Additional decrease in

the layout calculation times will likely be obtained by making better use of multiple

cores in the future versions of Cytoscape. For example, the Intel i7 processor could

handle eight simultaneous processing threads, making it suitable for parallelized layout

calculation once the Cytoscape platform is capable of supporting multi-threading and

effective parallelization.

Additional material
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Additional file 2: User-adjustable settings for the Multilevel Layout plug-in.

Additional file 3: Comparison of the layout algorithms using semantic similarity.

Additional file 4: Running times and semantic similarities for the test networks.

Additional file 5: Multiple runs of the MLL-C algorithm in the Ito-Core network.

Additional file 6: Correlation coefficients for running times and semantic scores.

Additional file 7: Relative speed-up of MLL-C provided by the M-tree architecture.

Additional file 8: Layout solutions when applied to the human HPRD network.

Additional file 9: The top-scoring clusters found in the Schwikowski network.
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