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Abstract. Temperature and precipitation determine the conditions where plant species can occur.
Despite their significance, to date, surprisingly few demographic field studies have considered the
effects of abiotic drivers. This is problematic because anticipating the effect of global climate change
on plant population viability requires understanding how weather variables affect population dynam-
ics. One possible reason for omitting the effect of weather variables in demographic studies is the diffi-
culty in detecting tight associations between vital rates and environmental drivers. In this paper, we
applied Functional Linear Models (FLMs) to long-term demographic data of the perennial wild-
flower, Astragalus scaphoides, and explored sensitivity of the results to reduced amounts of data. We
compared models of the effect of average temperature, total precipitation, or an integrated measure of
drought intensity (standardized precipitation evapotranspiration index, SPEI), on plant vital rates. We
found that transitions to flowering and recruitment in year t were highest if winter/spring of year t was
wet (positive effect of SPEI). Counterintuitively, if the preceding spring of year t � 1 was wet, flower-
ing probabilities were decreased (negative effect of SPEI). Survival of vegetative plants from t � 1 to t
was also negatively affected by wet weather in the spring of year t � 1 and, for large plants, even wet
weather in the spring of t � 2 had a negative effect. We assessed the integrated effect of all vital rates
on life history performance by fitting FLMs to the asymptotic growth rate, log(kt). Log(kt) was high-
est if dry conditions in year t � 1 were followed by wet conditions in the year t. Overall, the positive
effects of wet years exceeded their negative effects, suggesting that increasing frequency of drought
conditions would reduce population viability of A. scaphoides. The drought signal weakened when
reducing the number of monitoring years. Substituting space for time did not recover the weather sig-
nal, probably because the weather variables varied little between sites. We detected the SPEI signal
when the analysis included data from two sites monitored over 20 yr (2 9 20 observations), but not
when analyzing data from four sites monitored over 10 yr (4 9 10 observations).

Key words: carryover effects; detecting weather signals; drought; environmental drivers; matrix models; plant
demography; space for time substitution.

INTRODUCTION

Temperature and precipitation are key drivers of plant
population dynamics (e.g., Doak and Morris 2010, Nicole
et al. 2011, Salguero-G�omez et al. 2012, Sletvold et al. 2013,
Dahlgren et al. 2016) and are essential components for pre-
dicting the distribution of species in space and time (Huntley
et al. 1995, Carey 1996, Bakkenes et al. 2002, Pearson et al.
2002, Pearson and Dawson 2003, Box 1981). Understanding
their combined effects is a prerequisite for predicting immedi-
ate effects of climate change (IPCC 2014) on population per-
sistence. Surprisingly, the central importance of precipitation
and temperature is not reflected in demographic studies. For
example, a review of 396 matrix models in plants (1960
through 2009) found that only 13.1% of the studies linked
demographic responses to environmental drivers (Crone et al.
2011, 2013). In recent years, interest in studying the effects of
environmental drivers has increased (Ehrl�en et al. 2016), per-
haps because of growing attention on their importance for
predicting species distributions and abundances (Ehrl�en and

Morris 2015). Although 27.6% of 136 structured population
models published between 1995–2015 considered abiotic dri-
vers, only one-half of those were associated with climate
(Ehrl�en et al. 2016).
Integrating vital rate responses to variation in weather

variables and further into demographic models would be
valuable for predicting the effect of climate change on popu-
lation viability. Understanding the environmental drivers of
vital rates would also be helpful for projecting population
dynamics in any kind of variable environment (Morris and
Doak 2002) and for devising appropriate management
strategies (e.g., Ehrl�en et al. 2005). However, demographic
studies are typically conducted over a relatively short time
frame (Crone et al. 2011; see Salguero-G�omez et al. [2016]
for demographic studies in animals); most studies on plants
include less than five transition years (Salguero-G�omez
et al. 2015). Short time series may not capture the full range
of variation in temperature and precipitation typical for the
study area and as a consequence, it may be challenging to
detect correlations between environmental drivers and vital
rates. The failure to adequately capture environmental varia-
tion due to short time series may contribute to the mismatch
between predicted and observed population growth rates
(Crone et al. 2013).
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One possible reason for omitting the effects of temperature
and precipitation in demographic studies is the difficulty in
detecting tight associations between vital rates and environ-
mental drivers because the information from time series data
is typically insufficient for unravelling the complex mecha-
nisms leading from variation in weather variables to popula-
tion fluctuations (Knape and de Valpine 2011). Our ability to
detect the signal of weather variables on population dynamics
is influenced by the way we choose to aggregate temperature
and precipitation data. For example, precipitation can be
summed up by day, month, season, or year. If we aggregate
by season, we need to choose the months to be included in
that season. The best choice of weather variables to include
depends on the bias-variance trade-off between the risk of
over-fitting against the risk that an important variable would
be missed (e.g., Hastie et al. 2009:220). Moreover, any type of
aggregation bears the risk of losing information about the
actual sequence of environmental events that led to observed
vital rates. This is particularly problematic if the effects of
weather variables are context dependent. For instance, the
detrimental effects of frost in spring depends on whether the
chilling and heating requirements were sufficient to break
winter dormancy (Campoy et al. 2011).
An additional challenge for detecting the effect of weather

variables on plant vital rates are situations where the effects
are delayed. For instance, water availability during the grow-
ing season controls the amount of resources plants can use
for growth and reproduction. Perennial plants may allocate
some of the available resources to storage thereby influencing
plant vital rates in future growing seasons. In low productiv-
ity environments a single growing season may not be
sufficient to exceed the resource threshold required for repro-
duction, and plants rely on accumulating resources in storage
pools (e.g., roots or rhizomes; Ehrl�en and Van Groenendael
2001) over more than a single growing season. Storing
resources also increases survival in the presence of environ-
mental stress. This is particularly relevant in seasonal habitats
where the amount of stored resources has a direct effect on
next year’s regrowth and plant size is positively correlated
with survival, flowering and seed production (e.g., Ellner and
Rees 2006, Tenhumberg et al. 2008, 2015). Even in seasonal
habitats, the investment into growth can extend beyond the
current growing season as indicated by size of individuals
being positively correlated among years (Ehrl�en and Van
Groenendael 2001). Detecting delayed effects of weather
variables on the demography of perennial plants may require
statistical models that explicitly include time lags.
Teller et al. (2016) demonstrated an elegant statistical

method that uses functional linear models (FLMs) of lagged
weather data. A functional linear model is a smooth spline f(x)
whose values are multiplied by a vector of observed data zx
and then summed. If the vector of observed data is a time series
of environmental values such as monthly precipitation, the
resulting estimated spline function clearly identifies how much
each month contributes to the observed response. The model is

gðyi;tÞ ¼
Xk

j¼0
bjxi;t;j þ

Xn

m¼0
f ðmÞzi;t;m (1)

where yi,t is the response at site i in year t. The first term is a
vector of k linear predictors as in a usual linear or

generalized linear model. The second term is the functional
linear term of the environmental driver variable zi,t,m for
each site i, time t, and m months before July of year t; n is
the maximum number of lags considered. In principle, addi-
tional functional linear terms could be included in the same
model, but increasing complexity will naturally lead to an
increase in the amount of data required to successfully fit
the model. This approach solves the bias–variance trade-off
by searching the space of possible weighted sums to mini-
mize prediction error using cross-validation (Wood 2017).
Minimizing prediction error identifies an optimal level of
complexity (Hastie et al. 2009:220).
A prerequisite for successfully fitting FLMs is the availabil-

ity of a sufficient number of independent observations of vital
rates under different environmental conditions. Simulation
results from Teller et al. (2016) indicate that at least 20–25
observations of the response y are required to detect climate
signals. This requirement is a severe limitation for analyzing
demographic data with functional linear smooth splines
because most demographic studies are much shorter than
20 yr (Crone et al. 2011, Salguero-G�omez et al. 2015). A
possible alternative to using long time series at single sites is
to use shorter time series from several sites. In this case, it is
essential for the locations to be far enough apart to experi-
ence different weather at least to some extent. How well this
space for time substitution works is an open question. Teller
et al. (2016) did explore the effect of correlations within a
time series and found the method robust to correlations. They
also found the method robust to cross-correlations between
different weather drivers, but this is not the same situation as
spatial correlations within a single weather driver.
In this paper, we use FLMs to unravel the effects of

weather variables on the demography of the perennial wild-
flower, Astragalus scaphoides, using a long-term data set col-
lected at four different sites with the longest time series
being 26 continuous years of demographic monitoring.
Water availability is probably the most limiting factor for
accumulating resources in the environment of A. scaphoides
but the evidence for this is mixed. Observational analyses
(Crone and Lesica 2004) and water addition experiments
(Crone and Lesica 2006) did not detect a significant effect of
water on flowering patterns, but flowering was significantly
reduced in an extreme drought year (Gremer and Sala
2013). We expect that the effect of weather variables on vital
rates are delayed in this species because A. scaphides can
store and reallocate resources over time (Crone et al. 2009,
Gremer et al. 2010) and it exhibits biannual flowering peaks
(Crone and Lesica 2004, Crone et al. 2005), probably
because plants require more than one flowering season to
accumulate sufficient nutrients for reproduction (Isagi et al.
1997, Satake and Iwasa 2000). We hypothesized that water
availability has immediate and delayed effects: High water
availability during the growing season will have immediate
positive effects on survival, flowering, and growth. If a large
proportion of the plants flower pollen is unlikely to be lim-
ited and seed production will be high (Crone et al. 2009).
The high seed production depletes the pool of non-struc-
tural carbohydrates (NSC; Crone et al. 2009), which reduces
NSC availability in the following season with likely negative
consequences for growth, survival, and reproduction. Hence,
we hypothesized that high water availability in the previous
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year reduces survival, growth, and flowering in the following
year. A. scaphoides also exhibits whole-plant dormancy
(staying underground for one or more growing seasons).
Gremer et al. (2010) found that dormant plants have lower
NSC at the beginning of the growing season compared to
emergent plants, and accumulate nonstructural carbohy-
drates via remobilization of structural carbon into available
forms. Hence we hypothesized that high water availability in
the previous year also increases the probability of plants
entering dormancy.
We fitted FLMs of temperature, precipitation, and drought

intensity to explore weather effects on vital rates, an inte-
grated measure of life history performance logðktÞ, and the
observed change in population size log(Nt+1/Nt). Finally, we
examine the utility of swapping spatial replication for dura-
tion of a time series using subsets of the real data, and a semi-
parametric power analysis using bootstrapped weather data.

METHODS

Study system

A. scaphoides is a long-lived pea plant (Fabacae) with an
average life expectancy of approximately 21 yr (Ehrl�en and
Lehtil€a 2002). This species is endemic to high-elevation sage-
brush steppes in southwestern Montana and east-central
Idaho. Our study sites were located near Lemhi Pass on the
Montana–Idaho border, where summers are typically dry
with a mean annual precipitation of approximately 250–
300 mm. The dry conditions suggest that resource accumu-
lation by plants is likely water limited and individuals may
need more than one growing season to accumulate sufficient
resources for exceeding the threshold required for flowering
(Isagi et al. 1997, Satake and Iwasa 2000). Resource limita-
tion likely contributes to the observed biannual flowering
peaks of A. scaphoides populations (Crone and Lesica 2004,
2006, Crone et al. 2005, 2009). Here, we present annual vital
rates estimated from a long-term monitoring data set col-
lected by Lesica and Crone (E.g., Lesica 1995, Crone and
Lesica 2004, 2006); we use these to quantify the effect of
weather variables on vital rates and population growth rates
using FLMs.

Monitoring data

A. scaphoides was monitored at four different sites near
Lemhi Pass on the Montana–Idaho border. Sheep Corral
Gulch (Montana), and Haynes Creek (Idaho) were estab-
lished in 1986, McDevitt Creek (Idaho) in 1988, and Reser-
voir Creek (Montana) in 2003. Haynes Creek was not
monitored from 2000 to 2002. The distances between the
study populations ranged between 9.3 km and 52.9 km. At
each site, plants were mapped annually to the nearest 10 cm
along two 50 9 1 m transects, and plant ID, number of
inflorescences, fate, size class, and number of seed pods were
recorded. The population was divided into four different
stages: small vegetative plants (one to five leaves), large veg-
etative plants (six or more leaves), flowering plants, and dor-
mant plants. A plant was considered dormant if it stayed
underground for at least one growing season, but reap-
peared in a later year.

We estimated vital rates from a subset of the data: two pop-
ulations that were monitored continuously from 1988 to 2014
(Sheep Corral Gulch and McDevitt Creek) and two popula-
tions that were monitored continuously during 2003–2014
(Haynes Creek and Reservoir Creek). We used generalized
mixed effects models with year as a random effect to calculate
annual estimates of the following stage specific vital rates:
survival, flowering probability conditioned on survival, dor-
mancy conditioned on survival and not flowering, growth/
shrinkage conditioned on survival and not flowering or not
being dormant, and number of small, large, and flowering
recruits (i.e., small, large, and flowering plants, respectively)
produced by flowering plants. The number of recruits was
estimated using a Poisson distribution with log-link and other
vital rates were estimated using a binomial distribution with
logit-link (function glmer in the lme4 package in R). We com-
bined those vital rate estimates into annual matrix models
and calculated asymptotic growth rates, log(kt), for each
matrix. The corresponding life cycle graph of A. scaphoides is
displayed in Fig. 1, and vital rates and population projection
matrices are listed in Appendix S1.

Data sets used for FLM analyses

We included five different subsets of monitoring data in
the FLM analyses:
(1) All estimates from the short and long time series for a

total of 70 observations (2 sites 9 25 yr + 2 sites 9 10 yr);
(2) all estimates for McDevitt Creek and Sheep Corral Gulch
for a total of 50 observations (2 sites 9 25 yr); (3) the last
20 yr (1994–2014) for McDevitt Creek and Sheep Corral
Gulch for a total of 40 observations (2 sites 9 20 yr); (4) the
first 20 yr (1989–2009) for McDevitt Creek and Sheep Corral
Gulch for a total of 40 observations (2 sites 9 20 yr); (5) the
last 10 yr (2004–2014) for all four sites for a total of 40 obser-
vations (4 sites 9 10 yr). Subsets 3, 4, and 5 are chosen to
have the same sample size regardless of the number of sites
involved. We used subset 1 for our main analyses to under-
stand the effect of weather on A. scaphoides demography.
Next, we used the subsets 2–5 to explore if the availability of
less data (shorter time series, fewer sites, and space for time
swap) would have eliminated detection of the weather signal.

FIG. 1. Life cycle graph of Astragalus scaphoides, modeled after
Lesica (1995). The arrows indicate transitions between four different
plant stages: V-sm (small vegetative plants with one to five leaves),
V-lg (large vegetative plants with six or more leaves), F (flowering
plants), and D (dormant plants).
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Weather data

We downloaded daily rainfall and temperature data for
each study site from the PRISM Climate Group (data avail-
able online).6 For the smooth spline analysis (Teller et al.
2016), we used the temperature averaged for each month
and the rainfall summed up over each month. Then we cal-
culated the one-month standardized precipitation evapo-
transpiration index (SPEI; Vicente-Serrano et al. 2010),
which quantifies the beginning, duration, and magnitude of
drought conditions compared to normal conditions. This
index takes into account both precipitation and scaled
potential evapotranspiration (PET) using the Thornthwaite
method (Thornthwaite 1948) and thus captures the main
impact of increased temperature on water demand. This
index has been used to analyze effects of drought on agricul-
tural (Potop et al. 2012) and a variety of ecological systems
(e.g., Vicente-Serrano et al. 2012, 2013, Cavin et al. 2013,
Drew et al. 2013, L�evesque et al. 2013). Studying the effect
of drought on population demography is especially impor-
tant for nutrient limited systems such as in our study system
because drought affects nutrient availability, which determi-
nes plant population growth rates (e.g., Gotelli and Ellison
2002, Brys et al. 2005, Colling and Matthies 2006). To visu-
alize the general trend of changing drought conditions over
the monitoring periods at the four study sites we calculated
12-month SPEIs (package SPEI version 1.7; Beguer�ıa and
Vicente-Serrano 2017). Negative values indicate dryer than
normal conditions and positive values indicate wetter than
normal conditions (Fig. 2). The 12-month SPEI includes
both the water availability of the current month and the
influence of the past 11 months. For the statistical analysis
of SPEI per se, we used one-month SPEI rather than 12-
month SPEI to avoid correlations in the residuals.

Modeling the effects of weather variables on plant
demography

We fit models with linear terms (the xi,t,j in Eq. 1) for site
and a site by year interaction. The site by year terms allow
for differences in responses between sites and for linear
trends across time other than predicted by variation in
weather. For better comparison between sites, we centered
the year variable at 2004, which is 16 yr after data collection
started at Sheep Corral Gulch in 1989 and the end of the
first demographic year of the continuous time series at Hay-
nes and Reservoir Creeks. The method for estimating FLMs
of lagged weather data is described in detail by Teller et al.
(2016). For each monitoring year, t, we calculated 30 time
lags; each time lag aggregated the weather data over one
month (e.g. average temperature, summed rainfall). This
way we could evaluate how demographic rates in year t were
influenced by weather up to 30 months back in time
(m = �1, �2, . . ., �30). We modeled the relationship
between the annual demographic rates, log(kt), or the
observed change in population size log(Nt+1/Nt), and each
weather variable by fitting a smoothing spline (package
mgcv 1.8-17 [Wood 2011]; cubic spline basis with c ¼ 1:2
and all other parameters set at the defaults).

For each vital rate and log(kt), we fitted three models
using monthly average temperature, monthly total precipita-
tion, or one month SPEI. Models did not converge for the
flowering to dormant transition, probably because there was
no inter-annual variation at two sites. For the remaining 17
vital rates, we compared AIC values to identify the best
environmental driver of variation (Appendix S2: Tables S1
and S2). We chose a priori to evaluate 30-month lags based
on the observation of a two-period cycle in flowering. We
evaluated the robustness of our conclusions to the specifica-
tion of different time lags (6–36 months) of the models using
SPEI (Appendix S3).
We visualized the effect of lagged weather variables on

plant demography by plotting the estimated mean effect of
the lagged weather data and the pointwise 95% confidence
intervals. An AIC best-fit model is only relatively good, so
we assessed the effect size of the lagged weather variables by
considering both the overall F test of the spline term and
whether pointwise 95% confidence intervals excluded zero
for any lag. For brevity, we only display the results where the
overall F tests for the smooth spline had P < 0.01 because P
values for the smooth term in generalized additive models
are only approximate and are likely too low (Wood 2017).
Our preliminary analysis found that the pointwise 95% CI
of splines with P > 0.01 usually included zero effect of
weather variables at all lags. We focus on presenting the
effect of SPEI on vital rates and log(kt) of A. scaphoides
populations because SPEI integrates the effect of tempera-
ture and precipitation on the water demand of plants in a
biologically appropriate way. Temperature and precipitation

FIG. 2. Standardized multi-scalar drought index SPEI (stan-
dardized precipitation evapotranspiration index) per month at the
four study cites from 1982 to 2015. Negative values (red) indicate
dryer than normal conditions, and positive values (blue) indicate
wetter than normal conditions. All four sites are getting more
drought prone. Haynes Creek and McDevitt are in Idaho and Reser-
voir Creek and Sheep Corral Gulch are in Montana.

6 http://www.prism.oregonstate.edu/
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are correlated (Appendix S2: Fig. S1), making direct statisti-
cal models of the interaction problematic.
Finally, we tested the ability of the model to make predic-

tions on independent data by refitting the model of log(kt)
and SPEI to a subset of data with the response in each year
left out in turn, resulting in 25 models. Each of the 25 mod-
els was used to predict the response at all sites for the year
left out. We repeated the cross-validation with a model
where the spline term is set to zero to evaluate the relative
contributions of the spline and linear terms in the model.
These independent predictions were compared with the
observed responses using a simple linear regression, where
the expected value of the intercept is 0 and of the slope is 1.

Simulating the effect of bootstrapped SPEI data

This procedure served as a post-hoc semi-parametric
power analysis for evaluating the detectability of a weather
signal on A. scaphoides demography. We used bootstrapping
to generate random SPEI sequences that kept the statistical
properties of the historical SPEI sequence during the demo-
graphic A. scaphoides study and maintained the spatial cor-
relation structure between all four sites (see Appendix S4 for
details of bootstrap procedure). The advantage of using
bootstrapped SPEI data is that it preserves the temporal
relationship between temperature and rainfall. Then we used
the results of the linear smooth spline analysis to give us
annual means and standard deviations of the population
growth rate, log(kt), associated with the bootstrapped SPEI
sequence. We simulated the effect of bootstrapped SPEI
data 1,000 times and calculated the probability of detecting
a significant effect as the proportion of runs with P < 0.01.
The analysis was repeated with three different standard devi-
ations in the presence and absence of correlations in weather
conditions between sites. We used the standard deviation
from the linear smooth spline analysis (r ¼ 0:25) with lar-
ger values (r = 0.5, 0.8) mimicking an environment with lar-
ger environmental variation.

Software

All analysis was performed in the open source software R
(version 3.4.0; R Development Core Team 2017). Code and
data available from the Dryad Digital Repository (see Data
Availability).

RESULTS

Effects of weather variables on Astragalus scaphoides

For each site, we calculated the 12-month SPEI indices and
plotted the deviations from the average; the weather pattern
was extremely similar between sites (Fig. 2). In the following,
we refer to the “monitoring year” as the period from the July
census in the previous year (t – 1) to the July census in the
current year (t). The monitoring year starts at a lag of �12.

Vital rates.—FLMs indicated that 8 out of 17 vital rates
considered showed significant effects of one or more weather
variables (mean temperature, total precipitation or SPEI;
overall F test, P < 0.01, Appendix S2: Table S1). In four

cases, SPEI was the AIC best model for that vital rate and
the other two weather variables were either not significant
or had DAIC > 3. In three cases, mean temperature or total
precipitation were the AIC best models, but the SPEI model
in all three cases had P < 0.01 and DAIC < 1. In the final
case, survival of flowering plants, only mean temperature
had P < 0.01.
For small, large, and flowering plants, flowering in year t

was highest if winter/spring of year t was wet (positive effect
of SPEI over lags 0 to �5, 0 to �7, and 0 to �6, respec-
tively), but also if the preceding year was dry (negative effect
of SPEI over lags �13 to �16 [small], and �16 to �22 [flow-
ering]; Fig. 3a–c) although this negative effect had confi-
dence intervals including zero for large plants. Recruitment
in year t was highest with wet springs in year t (positive
effect of SPEI over lags 0 to �6, and 0 to �4), and had a
tendency (only significant for large recruits) to be higher fol-
lowing dry years in t – 1 (negative effect of SPEI over lags
�13 to �18, Fig. 3d, e). Survival of vegetative plants from t
– 1 to t was highest if summer of year t – 1 was dry (negative
effect of SPEI over time lags �11 to �15 [small], and �13 to
�15 [large]; Fig. 3f, g). For large vegetative plants, survival
was also negatively affected by SPEI two years in the past
(over time lags �24 to �26, Fig. 3g). Mean temperature
positively affected flowering plant survival during t – 2 (over
time lags �17 to 28), and negatively during the spring of
year t (over time lags 0 to �5, Fig. 3h). Drought conditions
two years in the past had no significant effect on any other
vital rate (Fig. 3).
Our conclusions are robust to the specification of the

number of lags to include. In most cases with significant
smooth splines, the models with 30 time lags had either the
lowest AIC or were similar to the lowest AIC value (differ-
ence to smallest ≤2; Appendix S3). Even in those cases where
the difference in AIC was larger for the models with 30-
month lags, the qualitative predictions of models with differ-
ent time lags were the same (same sign and trend with time
during overlapping lags).

Asymptotic growth rates, log(kt).—We repeated the analysis
with log(kt), i.e., the leading eigenvalue of the matrix com-
posed of vital rates for each year, as the response variable.
Although log(kt) does not reflect the observed changes in
population size, it integrates variation in all vital rates in a
biologically meaningful way (Fig. 3I). Log(kt) was highest if
winter/spring of year t was wet (positive effect of SPEI over
time lags 0 to �5) but also if the preceding year was dry
(negative effect of SPEI over time lags �12 to �19). Overall,
growth rates from t � 1 to t are highest in years when year t
� 1 was dry but spring of t was wet. The net effect of wet
conditions in year t is greater than the net effect of dry con-
ditions in year t � 1. Therefore, increasing drought likely
reduces population growth rates of A. scaphoides, in spite of
both positive and negative effects on different vital rates and
at different times of year. For comparison we also calculated
the effect of SPEI on the observed population growth rate,
log(Nt=Nt�1), where Nt specified the total population size in
year t (Appendix S5). Interestingly, only the positive effect
of SPEI over time lags 0 to �6 was significant for the
observed population growth rate although the sign of the
signals is consistent with the log(kt) analysis.
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Test of independent predictions.—The independent predic-
tions generated from the leave-one-year-out cross validation
including the spline term were significantly related to the
observed response (F1,72 = 17.7, P = 7.2 9 10�5,
R2 = 0.2). The intercept of the validation model is not sig-
nificantly different from zero (0.02 � 0.034 [mean � SE],
t = 0.561, P = 0.576), and although the slope is less than 1
the difference is not significant (0.72 � 0.171, t = 1.63,
P = 0.11). In contrast, when the spline term was set to zero,

the independent predictions generated from the leave-one-
year-out cross validation were no longer significantly related
to the observed response (F1,72 = 3.6, P = 0.06, R2= 0.05).

Utility of space for time substitution for detecting
weather signal on plant demography

We compared the fits of log(kt) to FLMs of SPEI on the
full data set to models fitted to subsets of data that reduced

FIG. 3. Effect of past (a–g, i) SPEI or (h) mean temperature (temp) on vital rates and population growth rate, log(kt), of A. scaphoides
during the demographic transitions between July in year t � 1 and t. The x-axes show time in the past at a resolution of months. The gray
and white stripes indicate winter/spring and summer/fall periods, respectively. The horizontal line indicates no effect, and the solid line indi-
cates the average effect. There is a significant effect of SPEI or mean temperature during those time periods where the 95% confidence inter-
vals (dashed lines) do not overlap with the horizontal line.
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the number of sites, the length of the monitoring period, or
both (Table 1), and to bootstrapped SPEI data (Table 2).
For brevity, we only display the P values and considered a
weather signal to be significant if P < 0.01. Including all
data led to the strongest relationship (Fig. 3I and Table 1;
P = 0.0001). Including only the two longest time series
(25 yr 9 2 sites) weakened the effect slightly (Table 1;
P = 0.0006). Next, we included only the first 20 yr and the
last 20 yr for the two longest monitored sites in the analysis,
which further weakened the effect but still led to a signifi-
cant (P < 0.01) relationship in the same direction. Finally,
we included the last 10 yr of all four sites (2004–2014) in the
analysis, which included the same number of years
(10 yr 9 4 sites) as subsampling the two longest sites. This
last analysis no longer detected a significant effect of SPEI
on log(kt).
Next, we performed a post-hoc semi-parametric power

analysis by fitting FLMs to bootstrapped SPEI data. We
simulated the effect of SPEI on log(kt) by drawing values
from normal distributions with three different SDs
(SD = 0.25, 0.5, and 0.8, Table 2). When using the standard
deviation derived from the empirical data (SD = 0.25), our
analysis virtually always detected a significant SPEI signal
(99–100%). In contrast, when increasing the SD to 0.8 we
detected a significant weather signal in only 44–66% of the
runs. Correlation in weather between sites and using a
shorter time period for bootstrapping decreased detection
ability. Overall, our analysis confirmed that using a shorter
time period reduced the detectability of the SPEI signal

(bootstrapping from 2001 to 2014 vs. 1981–2014), and that
including correlation of weather variables between sites
decreases the power to detect effects of SPEI, presumably
because correlation reduced the variation in SPEI values
included in the analysis. If sites were not correlated and
bootstrapping was based on a long time series (1981–2014),
the power of simulating four sites for 10 yr was comparable
to simulating two sites for 20 yr because the variation in
SPEI included in both analyses was similar. Reducing the
time period from which we bootstrapped the data decreased
detectability of the SPEI signal highlighting the need for
including a sufficiently large range of weather data to detect
weather signals.

DISCUSSION

Immediate and delayed effects of weather
variables on Astragalus scaphoides

Abiotic drivers are key determinates of plant population
viability, but there are few studies quantifying their demo-
graphic effects (Crone et al. 2011, 2013, Dalgleish et al.
2011, Chu et al. 2016, Dahlgren et al. 2016). This study
demonstrates clear associations between drought measured
as SPEI and plant demography when using long-term demo-
graphic and climate data (≥20 years from two sites). As
hypothesized, our analysis shows that wet conditions early
in the current growing season promoted flowering and
recruitment of A. scaphoides (Fig. 3). We also detected
hypothesized delayed effects: wet conditions in the previous
spring reduced flowering and survival of vegetative plants
(Fig. 3). The negative effect of wet spring conditions extends
back two years for the survival of large vegetative plants. We
did not find immediate or delayed effects of drought on
growth, presumably because the monitoring data distin-
guished only between small and large vegetative plants and
flowering plants were not differentiated by size. Detecting
an effect on growth likely requires a larger number of size
classes representing the size distribution of plants.
Our results are consistent with resource allocation by flow-

ering plants affecting transitions from the flowering stage. We
hypothesized that the larger proportion of the population
flowering in wet years reduced pollen limitation (Crone et al.
2009) and the resulting high fruit production depleted the
pool of NSC stores in flowering individuals (Crone et al.
2009). The low NSC pool in the following year reduced the

TABLE 1. Effect of monitoring window on detecting weather
signals on asymptotic growth rate log(kt) using the smooth spline
method proposed by Teller et al. (2016).

No.
sites

No.
observations Sites

Transition
period

P for
smooth
term

4 70 0.0001
Devitt, Sheep 1989–2014
Haynes, Reservoir 2004–2014

2 50 Devitt, Sheep 1989–2014 0.0006
2 40 Devitt, Sheep 1994–2014 0.0041
2 40 Devitt, Sheep 1989–2009 0.0028
4 40 Devitt, Sheep,

Haynes, Reservoir
2004–2014 0.1767

Note: The sites are McDevitt Creek (Devitt), Sheep Corral Gulch
(Sheep), Haynes Creek (Haynes), and Reservoir Creek (Reservoir).

TABLE 2. Results from bootstrapped standardized precipitation evapotranspiration index (SPEI; standardized drought index) sequences to
evaluate the effect of monitoring window on detecting the effect of SPEI on asymptotic growth rate log(k) using the smooth spline
method proposed by Teller et al. (2016).

Bootstrapping
source period No. simulated years No. sites Correlation between sites

Proportion of runs with P < 0.01

SD = 0.25 SD = 0.5 SD = 0.8

1981–2014 20 2 Yes 1 0.931 0.592
1981–2014 20 2 No 1 0.963 0.657
1981–2014 10 4 Yes 1 0.884 0.568
1981–2014 10 4 No 1 0.927 0.614
2001–2014 10 4 Yes 0.993 0.790 0.439
2001–2014 10 4 No 0.994 0.865 0.518

Note: SD denotes the magnitude of environmental variation.
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flowering probability as has been proposed for other systems
(Chapin et al. 1990, Wyka 2000), which is consistent with the
results of this study (Fig. 3C). For many perennial plant spe-
cies the amount of stored resources has a direct effect on next
year’s regrowth (Landa et al. 1992) and plant size is posi-
tively correlated with survival (e.g., Ellner and Rees 2006,
Tenhumberg et al. 2008, 2015). Thus, the low NSC pool
should have also reduced the survival probability of flowering
plants. In fact, the negative effect of fruit production on sur-
vival has been demonstrated by Crone et al. (2009). Although
we did not find a significant effect of SPEI on the survival of
flowering plants, the effect of mean temperature on flowering
plant survival shows a consistent pattern (compare Fig. 3C,
H). Higher mean temperatures mean lower SPEI values, so
the effect of mean temperature has the opposite sign to the
SPEI effect. It would be informative to examine possible
trade-offs between survival and flowering because life history
trade-offs can lead to negative autocorrelation in time
(Buckley et al. 2010), which can have important implications
for population persistence (e.g., Pike et al. 2004, Tuljapurkar
and Haridas 2006, Eager et al. 2017).
Alternatively, the effect of drought on plant vital rates

could be explained by intensified intraspecific competition
for scarce resources. We found that wet years had a positive
effect on recruitment, which is one of the most vulnerable
transitions in the life cycle of plants (Harper 1977). High
recruitment in wet years should increase population size in
the following year, which may trigger density-dependent reg-
ulation of plant vital rates. For instance, density dependence
can affect survival even at low densities provided the envi-
ronment is stressful (Dahlgren et al. 2014). A similar effect
could operate via interspecific competition if other members
of the plant community are positively affected by wet condi-
tions, leading to increased competition the following year. If
population regulation is not immediate, the positive effect of
wet years on population size may carry over to more than
one year, which would explain the longer lasting signal of
SPEI on survival. Competition might also affect plant
growth in our system, but detecting such an effect would
require higher size resolution than was available in our
study.
One way to integrate the effect of drought on all vital

rates is to calculate the annual asymptotic growth rates, log
(kt). Annual asymptotic growth rate log(kt) may differ from
the annual population growth rate observed in the field
because observed change in population size is affected by
both the vital rates and the relative proportion of individuals
in each life history stage (e.g., Caswell 2001, Tenhumberg
et al. 2009, Tenhumberg 2010). For A. scaphoides, the effect
of drought on log(kt) was similar to that of flowering and
recruitment (Fig. 3): log(kt) was highest if conditions in the
growing season were wet and the conditions in the previous
year were dry. Overall, increasing drought should reduce
population growth rates of A. scaphoides because the mag-
nitude of the positive effects during the year t generally
exceeded the negative effects of SPEI during the year t � 1.
Our observed temporal effect of drought on vital rates and
population growth implies that temporal autocorrelation in
SPEI could be an important determinant of A. scaphoides
demography. Based on our results, we would expect larger
variation in vital rates and log(kt) if wet years are more

likely to be followed by dry years (negative autocorrelation),
while their variation should be dampened if wet years are
more likely followed by wet years (positive autocorrelation).
Dampened variation in vital rates and log(kt) generally pro-
motes population persistence. However, in our study, SPEI
was not significantly autocorrelated in time (Appendix S2:
Fig. S2), suggesting that temporal autocorrelations in vital
rates might be driven by environmental factors other than
temperature and precipitation. For instance, an analysis of
50 terrestrial plant species (Buckley et al. 2010) found that
vital rates and log(kt) were negatively correlated in time. The
correlation was mostly due to survival of stages other than
seedlings, which might be mostly influenced by fire and her-
bivory (Buckley et al. 2010).
These effects of past environmental conditions on present

performance could be ecological carryover effects. O’Connor
et al. (2014) defined a carryover effect as “. . . any situation in
which an individual’s previous history and experience
explains their current performance in a given situation.” In
the present case, the hypothesis that increased moisture leads
to increasing fruit production, which reduces survival, growth
and flowering in the subsequent year is a carryover effect.
The individual’s past state (flowering and fruiting) affects
performance in the current demographic year. The hypothesis
that interspecific competition increases the year following a
wet spring is not a carryover effect, because it is the current
biotic environment that leads to the negative effects on sur-
vival, growth and flowering, not the individual’s past state or
the direct experience of increased rainfall.

Utility of space for time substitution for detecting
weather signal on plant demography

Understanding how population viability changes over
time is central to basic and applied ecology. Because long
time series are rare, ecologists often use spatial variation to
infer temporal variation (space-for-time substitution; Pickett
1989). As an example, space for time substitution has been
used to reconstruct long-term temporal dynamics such as
succession (reviewed by Walker et al. 2010), changes in bio-
diversity (Blois et al. 2013), community responses to climate
change (reviewed by Fukami and Wardle 2005), and soil
development (Matamala et al. 2008, Walker et al. 2010).
In this paper, we explored the utility of space for time sub-

stitution by analyzing subsets of our A. scaphoides monitor-
ing data and by performing post-hoc semi-parametric power
analyses with bootstrapped SPEI data. Our analysis suggests
that space for time substitution did not work for detecting
the effect of SPEI on log(kt). We detected a very strong sig-
nal when using only the two sites with the longest time series
(25 yr at Mc Devitt and 25 yr at Sheep Corral Gulch,
P = 0.0006); adding the other two sites (10 yr at Haynes
Creek and 10 yr Reservoir Creek) only marginally improved
signal detectability as indicated by a slightly lower P value.
Using only 20 yr of the two sites with the longest time series,
each was still sufficient for detecting a significant SPEI sig-
nal; it did not matter if we used the first or last 20 yr of the
time series. In contrast, when using the last 10 yr of all four
sites, we no longer detected a significant SPEI effect on log
(k) even though the total number of years included in the
analysis was the same (4 sites 9 10 yr = 2 sites 9 20 yr). It
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is possible that the weather between sites was too highly cor-
related so that adding more sites did not increase the range
of SPEI values included in the analysis, even though the
Montana and Idaho sites are located on opposite sides of
the continental divide. In contrast, adding more years did
increase the range of observed SPEI values because the sites
became drier over the 25-yr period (Fig. 1). In agreement
with these results, the power to detect a SPEI signal slightly
decreased if sites were correlated and if only the weather
from the last 10 monitoring years were included in the boot-
strapping procedure (Table 2). We suspect that space-for-
time substitution may be suitable in cases, such as succes-
sional studies, where the range of environmental variation is
known and can be sampled across a number of separate
sites. In contrast, if the range of temporal variation is not
known a priori, space-for-time substitution runs the risk of
not sampling relevant environmental variation. Other rea-
sons why space for time substitution can be inaccurate
include using sites that do not share similar environmental
conditions and histories (Pickett 1989, Fukami and Wardle
2005, Jongejans and De Kroon 2005, Walker et al. 2010), if
sites differ in their spatiotemporal dynamics (Hammond
and Kolasa 2014), if variation between sites does not repre-
sent the temporal auto-correlation through time of single
sites (Tyre et al. 2000), or if genotypes vary among sites
(Huenneke 1991).

CONCLUSIONS

FLM analysis is a powerful method to detect weather sig-
nals on plant vital rates and annual population growth rates,
log(kt). A. scaphoides populations do best if dry conditions
in one growing season are followed by wet conditions in the
following growing season. This pattern may be explained by
wet years triggering density-dependent regulation and influ-
encing resource allocation of plants. It also illustrates a com-
plex relationship between environmental drivers and plant
vital rates (specifically negative and positive effects over dif-
ferent time periods) and the use of integrated (population)
models to resolve the net effects. However, our analysis con-
firms that FLM requires long-term time series data for cap-
turing sufficiently large variation in weather variables. How
many years are required for capturing a weather signal prob-
ably depends on the natural variation in precipitation and
temperature as well as the sensitivity of a species to that
variation. Substituting space for time (2004–2014) was not
suitable for this system because variation in weather vari-
ables between sites was too small compared to variation over
the entire time series (1989–2014).
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